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ABSTRACT 16 
 17 
The construction industry relies heavily on the use of equipment. Equipment management for a 18 
single project is, in itself, challenging, and large contractors who want to achieve long-term 19 
success must also manage equipment at an intra-organizational level. While vast amounts of data 20 
are collected and updated dynamically to track equipment status within an organization, current 21 
practices do not consider these data during the decision-making process. Rather, companies often 22 
rely on a single metric, equipment utilization, for evaluating management performance. Inspired 23 
by the ability of social network analysis (SNA) to examine the interactions and relationships 24 
between people or objects, a SNA-based method for investigating equipment movements 25 
between project sites and equipment shops is proposed. This study proposes a novel performance 26 
metric, the direct dispatch index (DDI), which adds a distance weight to the clustering coefficient 27 
of SNA, to measure equipment dispatching performance from equipment logistics data. 28 
Historical equipment logistics data from the equipment and project management systems of a 29 
company in Alberta, Canada, were used to demonstrate the functionality and feasibility of the 30 
proposed approach. The methodology was found capable of evaluating the logistical effort 31 
associated with equipment dispatch and planning, thereby enhancing equipment management 32 
through improved decision-making. 33 
 34 
Keyword: Resource Planning; Equipment Management; Social Network Analysis 35 
 36 
INTRODUCTION 37 
 38 
Equipment represents a large expense for heavy civil construction projects and corporations. 39 
While equipment management is essential for ensuring that projects are completed on time and 40 
on budget (Vorster, 2009), optimization of this process can have a considerable impact on project 41 
efficiency and, in turn, overall cost. Accordingly, many construction organizations are interested 42 
in evaluating equipment management performance. In current practice, however, evaluation of 43 
equipment management is solely based on rates of equipment utilization, with increased 44 
utilization suggestive of improved management performance.  45 
Equipment utilization represents slightly different concepts depending on the management level 46 
to which it is applied. Utilization at a project level (El-Rayes and Moselhi, 2001; Wang et al., 47 
2004) is based on equipment downtime, which is affected by a variety of factors such as site 48 
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conditions, operator skills, equipment conditions, and force majeure (Prasad and Park, 2004). 49 
Utilization at the corporate level, also known as deployment, assesses the utilization of 50 
equipment over its lifetime (Vorster, 2009). This level of management, also known as centralized 51 
equipment management, is performed to allocate self-owned mobile equipment across various 52 
projects at a corporate level (Mitchell, 1998; Fan et al., 2006). Factors influencing corporate-53 
level equipment utilization include the length of the construction season, economic situation, and 54 
ongoing project numbers.  55 
Although an important metric for evaluating equipment management performance, utilization 56 
rates do not consider the logistical effort associated with equipment management at a corporate 57 
level. Inefficient deployment of equipment between worksites and equipment shops can increase 58 
logistics-associated effort, expenditures, and reduce the amount of time equipment is available to 59 
work. Methods capable of reliably quantifying logistical effort of equipment management 60 
practices, however, remain relatively unexplored. Social network analysis (SNA) is an analysis 61 
or investigation method used for examining the interaction or relationship between studied 62 
objects. It is a powerful tool to study intra-organizational interactions that is well-suited to study 63 
the movement of equipment from project to project or equipment shop using existing company 64 
data—a process that is relatively unexplored in equipment management literature. Although 65 
useful for determining the number of equipment movements, SNA does not consider the distance 66 
of each movement, which is an important factor when assessing logistical performance. To 67 
address this limitation, this research has developed a novel decision metric—the direct dispatch 68 
index (DDI)—that adds a distance weight to the clustering coefficient of SNA to more 69 
comprehensively evaluate the logistical effort associated with equipment management practices. 70 
Use of the DDI can enhance the ability of construction companies to more comprehensively and, 71 
in turn, more reliably assess equipment management practices and to compare them between 72 
various equipment managers or groups within the organization.   73 
The content of this paper is organized as follows: First, previous research on equipment 74 
management and applications of SNA in construction are reviewed. Then, the DDI performance 75 
metric is formulated, data sources are detailed, data cleaning and fusion are described, and social 76 
network theory and characteristics of SNA are introduced. To demonstrate the functionalities of 77 
the decision-support metric, a case study is conducted using historical data collected by a large 78 
contractor in Alberta, Canada. Potential applications of the DDI and strategies to improve 79 
performance are suggested. Research contributions, limitations, and future work are discussed. 80 
 81 
LITERATURE REVIEW 82 
 83 
Construction Equipment Management  84 
 85 
Equipment management is an essential component of a construction business that can affect both 86 
project and corporate performance (Samee and Pongpeng, 2016). Over the past decades, 87 
construction equipment management has been studied from various perspectives that can be 88 
classified into three major topics: (1) equipment costs associated with acquisition, operations, 89 
maintenance, and disposal of equipment (Mitchell, 1998; Fan et al., 2008; Bayzid et al., 2016); 90 
(2) equipment and fleet management using modern tracking technology (Azar and Kamat 2017); 91 
and (3) equipment selection and operation to improve equipment utilization at the project level 92 
(Chae and Yoshida, 2010; Alshibani and Moselhi, 2016).  93 
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Equipment cost is the most frequently studied amongst all equipment management factors. With 94 
the development of data mining technology, recent regression models capable of using historical 95 
equipment data to predict equipment maintenance cost at any point in time for any maintenance 96 
interval have been developed (Yip et al., 2014; Bayzid et al., 2016). Rather than using internal 97 
historical data, equipment residual value analysis is now primarily being performed using 98 
auction and re-sale records collected in online databases—a practice that is widely accepted in 99 
literature (Lucko, 2003). Recently, advanced heuristic algorithms and spatial cost analysis based 100 
on regression models have been further developed (Lucko 2003; Fan et al., 2008; Ponnaluru et al. 101 
2012). In short, these models are used to estimate life-cycle or maintenance costs of equipment, 102 
to provide analytical support for determining when equipment should be acquired, and to 103 
determine if a make or model is worth being acquired. 104 
Due to the rapid development of tracking technology, recent equipment operation studies have 105 
focused on tracking and analyzing equipment data. While systems based on global positioning 106 
systems (GPS) developed by equipment manufacturers have been designed to locate individual 107 
pieces of heavy equipment and to diagnose their mechanical health (e.g., equipment engine hours, 108 
fuel consumption, and geo-location of equipment) in real time, these systems lack in-depth 109 
analytical capabilities and are limited by poor accuracy (Azar and Kamat, 2017). Other 110 
researchers have focused on coupling tracking technology with other types of technological 111 
advances. Taking advantage of pattern recognition technology and algorithms, recent research 112 
has investigated the incorporation of non-location data, such as the weight, payload, and pose of 113 
the machine, with tracking technology to improve model accuracy (Ibrahim and Moselhi, 2014; 114 
Pradhananga and Teizer, 2015). 115 
At the project level, real-time tracking has been used to record the cycle time of equipment and 116 
to reduce idle time on large worksites by facilitating fleet management and equipment dispatch 117 
for material handling problems, such as concrete delivery (Lu et al. 2007) and earthmoving 118 
projects (Song and Eldin, 2012; Alshibani and Moselhi, 2016). Taking advantage of shortest path 119 
algorithms in logistics, real-time optimization of transportation routes have been developed to 120 
improve earthmoving operations based on GPS on mining worksites (Choi and Nieto, 2011). 121 
However, the overwhelming costs associated with achieving real-time data together with the 122 
rigidity of simulation and optimization methods have limited the practical application of these 123 
methods. Indeed, it remains common practice in construction to examine tracking data weekly or 124 
monthly, with analyses being conducted quarterly or annually.  125 
While equipment logistics have been seldom studied or considered in equipment management 126 
research, several researchers have contended that consideration of equipment dispatch and 127 
transport may enhance decision-making (Fan et al., 2006; Hendi, 2007). Furthermore, in contrast 128 
to real-time tracking data, equipment logistics data, which involves recording equipment 129 
movements from project to project, can be tracked economically and updated dynamically. In 130 
spite of these advantages, methods capable of transforming logistics data into useful information 131 
have not yet been reported.  132 
 133 
Social Network Analysis 134 
 135 
SNA was first introduced into sociology, anthropology, and political science based on 136 
knowledge from networks and graph theory. Nodes (i.e., vertices) and edges (i.e., ties) comprise 137 
the network structure of SNA, where nodes can represent individuals, groups, or companies and 138 
edges can represent relationships, communications, or movements between nodes. Taking 139 
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advantage of its visualization power, an increasing number of studies are adopting SNA to 140 
analytically evaluate social relationships and network characteristics (Zheng et al., 2016). SNA 141 
has been applied in construction engineering and project management, and has proven to be a 142 
powerful tool for illustrating business relationships and behaviors between construction projects 143 
(Borgatti and Foster, 2003; Tortoriello et al., 2012; Hansen et al., 2005). Recently, human 144 
mobility using civil infrastructure was studied using geo-social network analysis using mobility 145 
data collected from Twitter (Wang and Taylor, 2015).  146 
SNA can be used to investigate network issues in the field of engineering project organization 147 
(Chinowsky and Taylor, 2012).  Among 63 recent SNA-based papers in construction engineering 148 
and management, 15 papers examined intra-organizational relationships and 47 papers examined 149 
inter-organizational relationships. Only one paper did not examine intra- or inter-organization 150 
relationships, instead using nodes to represent defects rather than individuals or organizations 151 
(Zheng et al., 2016). At the inter-organizational level, which comprises the scope of most studies, 152 
SNA is often used to evaluate business activities, such as supply chain management and strategic 153 
alliances. Many believe that the ability of SNA to conduct multiple-level analysis and integrate 154 
quantitative, qualitative, and graphical data represents a unique approach for solving certain 155 
project management problems (Pryke, 2012). SNA has been used to study (1) historical data for 156 
construction project coalitions, which revealed close relationships between some consultants and 157 
contractors (Pryke, 2004), and (2) resource management to investigate business relationships at 158 
the inter-organizational level (Sandhu and Helo, 2006).  159 
At the intra-organizational level, SNA can be applied to study the communication problems 160 
between key individuals in a complex network that are difficult to investigate using other 161 
methods. With the development of virtual design technologies in civil engineering, SNA has 162 
been conducted using digital logs generated by Building Information Modeling (BIM) software 163 
to visualize collaborations and rank importance of designers (Zhang and Ashuri, 2018). In 164 
addition, intra-organizational SNA can demonstrate positive relations between relationships and 165 
performance, allowing the efficiency and performance of corporate operations to be evaluated 166 
using SNA (Lin and Tan, 2013; Priven and Sacks, 2015).  167 
By failing to provide sufficient detail to improve overall performance intra-organizationally, 168 
previous studies have not fully addressed the practical needs of equipment management 169 
personnel. The present research is proposing an analytical method designed to generate 170 
interpretable information for practitioners to improve intra-organizational equipment 171 
management performance in terms of equipment movement. Data obtained from a large general 172 
contractor has been used to validate and to demonstrate the functionality of the proposed 173 
approach, rendering the method ready for implementation. 174 
 175 
METHODOLOGY 176 
 177 
A data-driven performance measurement method capable of quantitatively and reliably assessing 178 
logistical effort associated with equipment deployment is proposed. Workflow of the developed 179 
methodology is summarized in Figure 1. Briefly, data collected from equipment tracking and 180 
project management systems are first fused and cleaned. Based on the mapped equipment 181 
logistics data, a social network model is established using social network theory. To map the 182 
management scope of each equipment shop, community structures are detected in the network 183 
using the Louvain method (Blondel et al., 2008). Centrality measurements are calculated to 184 
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identify the importance of shops. The novel DDI performance metric is then used to evaluate the 185 
logistical performance of each shop.  186 
 187 
Data Input 188 
 189 
Equipment logistics, involving equipment dispatch and transport, can be extracted from 190 
equipment movement data, especially for heavy mobile equipment such as large excavators. 191 
Equipment manufacturers offer subscriptions that allow companies to record the real-time geo-192 
locations of their equipment. Alternatively, self-developed systems, commercial tracking systems, 193 
or manual recording practices can be used to obtain real-time equipment location data. An 194 
example of equipment tracking data is shown in Table 1. 195 
To connect the geo-locations with internal identifications of projects and shops, project details 196 
from the project management system are extracted. Details, such as project internal identifications, 197 
project location, and project descriptions, are used to geographically associate each piece of 198 
equipment with the equipment tracking data. Data adapters are then used to combine data from 199 
these various sources into one centralized dataset, providing richer information for data mining (Ji 200 
and AbouRizk 2018).  201 
In this study, the data adapter was designed to extract only the portion of the information 202 
contained in the equipment tracking and project management systems that are required for input 203 
into the social network model. The data adapter was developed in R (R Core Team, 2017), an 204 
open-source statistics software program capable of handling large-scale data, which performs 205 
several functions including data connection, wrangling, cleaning, and mapping. In this study, the 206 
dplyr and tidyr packages in R, which can process large-sized datasets in relatively little time, 207 
were used to perform data wrangling tasks. Output of the data adapter are mapped logistics data, 208 
exemplified in Table 2, which detail the location and assigned project for each piece of 209 
equipment at any point in time. 210 
 211 
Social Network Modeling 212 
 213 
The social network model, presented as a weighted network diagram, consists of nodes and 214 
edges. In social network studies, nodes are, typically, the individual or group being studied, 215 
while edges represent relationships, communications, or behaviors between nodes. In this study, 216 
project and equipment shops, where equipment is used, maintained, and stored, are the 217 
individuals being studied. Similarly, the movement of equipment can be represented as a 218 
communication between a shop and a project, or between two project sites.  219 
As such, nodes represent locations of project jobsites or equipment shops (i.e., storage sites), and 220 
edges represent the movement of equipment between sites. In the example outlined in Table 3, 221 
equipment shops (e.g., S600016 and S600019) and projects (e.g., PE09190, PE09194, and 222 
PE09196) are identified as nodes. The edge (e.g., ID 1), represents the movement of construction 223 
equipment between nodes S600016 and PE09190. Weights of edges are often used to denote the 224 
strength of the relationship between nodes. Here, the weight, wij, is defined as the total count of 225 
the equipment movements between node i and j, which can be obtained through accumulating 226 
each movement associated with individual equipment from historical logistics data. In this 227 
example, there are 7 movements along edge 1 between nodes S600016 and PE09190. 228 
 229 
Social Network Analysis 230 
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A social network model can be used to (1) recognize patterns of relationships, (2) identify the 231 
importance of each node through centrality measurements, and (3) detect the community 232 
structure in a network as subgroups or subsets (Zhang and Ashuri, 2018). Since shops and 233 
projects are usually divided into geographically-distinct groups in practice, the community 234 
structure can be detected by modularity to identify the management area of an equipment shop. 235 
The centrality of nodes representing the equipment shops can also be measured by either a social 236 
network model or a community structure of the social network. 237 
Centrality measurements are used to rank the importance of nodes. Characteristics including 238 
degree (i.e., number of edges connected to the node in the network), closeness (i.e., average 239 
length of the shortest path between the node and all other nodes), betweenness (i.e., number of 240 
times that a node is on the shortest path between two other nodes in the network), and clustering 241 
coefficients (i.e., degree to which nodes in a social network tend to cluster together) are well-242 
defined in SNA to quantitatively evaluate the centrality of a node. In an undirected graph, the 243 
local clustering coefficient can be calculated using Eq. 1, which ranges from 0 to 1.  244 

  𝐶𝐶𝑖𝑖 = 2𝑒𝑒𝑖𝑖
𝑘𝑘𝑖𝑖(𝑘𝑘𝑖𝑖−1)

                                                          (1) 245 

Where ki is the number of neighbours of the ith node, and ei is the number of connections 246 
between these neighbours. 247 
Long-distance transport of equipment across states or provinces is a costly endeavor. 248 
Consequently, equipment management is usually divided geographically and assigned to 249 
equipment shops instead of managing the equipment at a corporate level. Each equipment shop 250 
manages the equipment in a certain region, with management scope including planning, dispatch, 251 
maintenance, and repair. Accordingly, equipment movements within management regions often 252 
account for a substantial portion of the data, with a few equipment movements occurring from 253 
region to region to fulfill the urgent needs of projects. To investigate the performance of each 254 
shop, regions managed by each shop must be identified.  255 
Modularity, which aims to divide networks into smaller groups and detect community structures 256 
within a network, can be used to identify the management region of each shop. Following the 257 
application of modularity techniques, the nodes in a community are more densely connected with 258 
each other that the rest of the network. Among the proposed modularity algorithms, the Louvain 259 
method, essentially a greedy optimization method, is the most popular due to its ability to 260 
outperform similar methods in terms of modularity and speed (Blondel et al. 2008). In each 261 
iteration of the Louvain method, the nodes are first grouped into small communities based on the 262 
value ΔQ as shown in Eq. 2.  263 
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Where ∑in is the sum of the weights of the links inside C, ∑tot is the sum of the weights of the 265 
links incident to nodes in C, ki is the sum of the weights of the links incident to node i, ki,in is the 266 
sum of the weights of the links from i to nodes in C, and m is the sum of the weights of all of the 267 
links in the network. 268 
Nodes in the communities then become the nodes, and the optimization method is again applied 269 
to the new network. Through iterations, modularity results are achieved, and tight relationships 270 
between projects and shops within the community structures of the network emerge. From this, 271 
the management scopes of shops are easily identified. 272 
 273 
Direct Distance Index Performance Metric 274 
 275 
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 276 
Equipment dispatch in real practice must be investigated and divided into two strategies: (1) 277 
equipment that can be dispatched from the equipment shop or (2) equipment that can be  278 
dispatched from another project when the locations of two projects are close. Other than when 279 
equipment must be sent back to equipment shops for repairs or rebuilds, equipment should be 280 
dispatched from one project to another. Direct dispatch of equipment from project to project can 281 
not only reduce the logistical effort but may also reduce equipment travel time and, in turn, 282 
increase long-term equipment utilization.  283 
Notably, clustering coefficients can be used to evaluate dispatch strategies by quantifying the 284 
number of times that equipment is dispatched from projects as a ratio of the number of 285 
dispatches from shops. For nodes representing shops, the numerator of the clustering coefficient 286 
(i.e., ei) refers to the number of equipment movements from project to project. Clustering 287 
coefficients are currently limited by their inability to consider the impact of distance on project 288 
performance (i.e., cost and time). While the number of movements (as calculated by clustering 289 
coefficients) is significant, it is also important to consider distances associated with each 290 
movement. As such, to overcome the limitation of clustering coefficient, a second weight, 291 
distance, is introduced to achieve the DDI. The DDI is, therefore, designed to quantify the 292 
reduction in the distance that equipment must travel to reach its destination. Here, the distances 293 
between nodes in kilometers, dij, are the distances that must be driven to transport equipment 294 
from one location to another given the geo-locations of the nodes for both shops and projects. In 295 
this study, driving distances are determined using navigation tools from transportation routes; 296 
algorithms to determine distances are not applied. DDI, which considers both the number of 297 
equipment movements, wij, and the logistical distances, dij, can be calculated using Eq. 3 and 4.  298 

  𝑑𝑑𝑖𝑖𝑖𝑖∗ = 𝑑𝑑𝑖𝑖𝑖𝑖 + 𝑑𝑑𝑖𝑖𝑖𝑖                                                       (3) 299 

    𝐷𝐷𝐷𝐷𝐷𝐷 =
∑ ∑ (𝑑𝑑𝑖𝑖𝑖𝑖

∗𝑖𝑖
𝑖𝑖=1 −𝑑𝑑𝑖𝑖𝑖𝑖)×𝑤𝑤𝑖𝑖𝑖𝑖

𝑖𝑖
𝑖𝑖=1

∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
∗ ×𝑤𝑤𝑖𝑖𝑖𝑖

𝑖𝑖
𝑖𝑖=1

𝑖𝑖
𝑖𝑖=1

                                              (4) 300 

Where dij is the distance from node i to node j, dij
* is the distance from node i to node j through 301 

shop S, and wij is the total count of equipment movements between node i to node j.  302 
The index ranges from 0 to 1, with a greater value indicating improved dispatch efficiency. 303 
When the index is 0, equipment is inefficiently dispatched from equipment shops to projects, and 304 
when the index is 1, all equipment is efficiently dispatched from project to project. 305 
 306 
ILLUSTRATIVE EXAMPLE 307 
 308 
This example compares two dispatch plans, which are illustrated as social network models in 309 
Figures 2 and 3. Both social network models include a shop, four projects that are represented by 310 
five nodes, with five pieces of equipment travelling from location to location. Shop and project 311 
locations, and, consequently, the distance between nodes (i.e., dij), are the same in both models. 312 
However, because equipment dispatch plans vary between the models, the number of equipment 313 
movements (i.e., wij) differs. Data are summarized in Tables 4 and 5. 314 
As per Eq. 2, clustering coefficients are calculated for Models A and B as 0 (=0/6) and 0.5 (=3/6), 315 
respectively. While there are a maximum of 6 edges between nodes 1, 2, 3, and 4, there are 0 316 
edges in Model A and 3 edges in Model B. Using Eq. 3 and Eq. 4, DDI are calculated as 0 317 
(=0/400) and 0.7125 (=19×5/400+19×5/400+19×5/400=285/400) for Models A and B, 318 
respectively. Note that denominators of both DDI ( ∑ 𝑑𝑑𝑖𝑖𝑖𝑖∗ × 𝑤𝑤𝑖𝑖𝑖𝑖

𝑛𝑛
𝑖𝑖=1 ) are the same (i.e., 400). For 319 

Model A, both the clustering coefficient and DDI of node S are 0. For Model B, the clustering 320 



8 

coefficient of node S is 0.5, and the direct dispatch index is 0.7125. A greater DDI indicates that 321 
fewer detours comprise the dispatch plan outlined in Model B compared to that in Model A, 322 
consistent with illustrations in Figures 2 and 3.  323 
As the number of projects managed by the shop increases, the difference between the clustering 324 
coefficient and DDI will increase. An extreme case, demonstrated in Figure 4, is illustrated. Here, 325 
the same dispatch plan in Model B is used to sequentially complete N projects in the same 326 
location that are managed by one shop. In this case, the clustering coefficient is 2/N, which 327 
approaches 0 when N is large. In contrast, however, the DDI remains close to 1. Altogether, 328 
these results demonstrate that dispatch efficiency can be reliably evaluated regardless of project 329 
number when using the DDI metric. 330 
 331 
CASE STUDY 332 
 333 
The proposed methodology was applied to a case study. Historical data were collected from a 334 
construction contractor in Alberta, Canada, between 2013 and 2016. Equipment data were 335 
extracted from the internal equipment management system, SAP ERP (SAP SE, 2018), and 336 
project data were collected from a self-developed project management system. Data from both 337 
systems were combined, and missing data were omitted using R (R Core Team, 2017).   338 
Following the application of the proposed methodology, the social network model, based on the 339 
historical data, is demonstrated in Figure 5. Note that all edges are bidirectional. Here, nodes 340 
denote project sites or equipment shops, the sizes of the nodes their degree, and the thicknesses 341 
of the edges are determined by the number of equipment movements (i.e., wij). 342 
The social network model is comprised of 297 nodes including 7 equipment shops and 290 343 
projects. Based on the Louvain method, four communities (i.e., management areas) are detected 344 
and marked as orange (Shop 1), green (Shop 6/3), blue (Shop 5), and purple (Shop 7, 4, and 2) in 345 
Figure 5. In two communities, orange and blue, only one equipment shop was determined to be 346 
managing projects in that region. In the other two communities, green and purple, multiple shops 347 
were found to be responsible for the projects. One possible explanation is that small shops did 348 
not have sufficient equipment to supply projects, thereby requiring assistance from larger shops. 349 
In this case study, the resolution value of the Louvain method applied was 1; adjusting this value 350 
will affect the number of communities that are detected with the numbers of communities 351 
detected increasing as the resolution value increases. 352 
The five nodes representing five major shops are listed in Table 6 in order of degree (i.e., number 353 
of projects connected with the shop in the network). After dividing the network into communities, 354 
closeness, betweeness, the clustering coefficient, and DDI were calculated for each node (Table 355 
6). The DDI was calculated based on four years’ worth of data, which were used to evaluate the 356 
overall dispatch performance during this time. 357 
The proposed methodology was then applied to each of the four years. Results of the five shops 358 
are illustrated in Figure 6, with the dashed line indicating the average value for each year. 359 
Given the DDI, equipment management performance of the shops were evaluated and ranked, 360 
with a greater DDI indicative of a greater dispatch efficiency. Annual DDI of each shop were 361 
compared with the average four-year value. For example, the DDI for Shop 1 in 2016 was 0.212, 362 
which is above average for the five shops that year. However, its performance in 2016 was lower 363 
than that in 2015, which may require additional investigation. Performances of various 364 
equipment shops were also compared with each other.  365 
 366 
Equipment Utilization Rate 367 
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 368 
As mentioned previously, equipment utilization is the primary metric by which equipment 369 
management performance is evaluated. It is generally accepted that high equipment utilization 370 
rates indicate efficient use of equipment. At a corporate level, equipment utilization, also known 371 
as deployment (Vorster, 2009), can be defined by Eq. 5.  372 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑈𝑈𝐸𝐸𝐸𝐸𝑈𝑈𝐸𝐸𝑈𝑈𝑈𝑈𝐸𝐸𝐸𝐸𝑈𝑈𝐸𝐸 = 𝑈𝑈𝑖𝑖𝑒𝑒𝑑𝑑 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑤𝑤𝑛𝑛𝑒𝑒𝑂𝑂𝑖𝑖ℎ𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒

                                     (5) 373 

Where Total Ownership Time is the time (in days or hours) that equipment has been owned by 374 
the corporation and Used Time is the time (in days or hours) that equipment is allocated to a 375 
project, regardless of its operation on the jobsite.  376 
For comparative purposes, annual equipment utilizations for the five major shops are illustrated 377 
in Figure 7, with the dashed line indicating the average value for each year.  378 
Investigation of both metrics simultaneously can reveal further insight into the equipment 379 
management practices of each shop. While Shop 1 would have been considered average in terms 380 
of equipment utilization in 2016, its logistical performance was above average. Conversely, 381 
while Shop 2 is close to average with respect to its utilization rate in 2016, it is considerably 382 
below average with respect to logistical performance. Consideration of both factors reveals that, 383 
although these two shops share a similar utilization rate, Shop 1’s equipment management 384 
performance exceeds that of Shop 2. 385 
To ensure the proposed performance metric is capable of reliably evaluating practical logistical 386 
performance, expert validation was conducted. Three equipment managers, each with more than 387 
ten years of working experience, were invited to evaluate the functionalities of the proposed 388 
metric and calculation methodology based on their own professional experience and knowledge. 389 
All three subject matter experts indicated that the metrics was aligned with the needs of the 390 
industry in Western Canada, which is interested in the development of more comprehensive 391 
quantitative methods for assessing logistical performance to reduce wasteful practices and 392 
improve overall project outcomes. 393 
 394 
POTENTIAL APPLICATIONS 395 
 396 
Lack of reliable, comprehensive performance measurements renders the improvement of 397 
equipment management challenging in practice. The proposed DDI performance metric is 398 
designed to quantitatively evaluate the logistical performance of equipment shops and to provide 399 
analytical decision-support to equipment managers and executives of construction companies. 400 
Potential applications of the proposed performance metrics include: (1) benchmarking equipment 401 
management, (2) logistics-oriented equipment management, and (3) resource management. 402 
 403 
Benchmarking Equipment Management  404 
 405 
Following the implementation of the proposed methodology, executives will be able to 406 
determine which equipment shops are most proficient in equipment logistics. Managers of these 407 
equipment shops should be invited to share their professional knowledge for employee training 408 
purposes, particularly in the area of equipment dispatch. Companies may also standardize the 409 
equipment management process as per the high-performance equipment shops’ dispatching 410 
strategies. Sharing best practices company-wide is essential for improving overall equipment 411 
management.  412 
 413 
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Logistics-oriented Equipment Management 414 
 415 
The DDI emphasizes the importance of considering equipment logistics in equipment 416 
management. Currently, logistical costs are not deliberately considered in equipment dispatch 417 
and transport. Examination of current practices using the proposed analytical method (or the 418 
development of an optimization method) can be used to design equipment dispatch plans that 419 
minimize logistical costs while maximizing utilization rates. Logistics-oriented equipment 420 
management offers companies the potential to improve long-term equipment management 421 
efficiency.  422 
 423 
Resource Management 424 
 425 
As a major resource in construction, it is anticipated that the proposed methodology can be 426 
generalized to other resource-based logistical problems. Social network theory and analysis can 427 
be easily generalized and embedded into the current material or labour management systems to 428 
visualize dynamic data and facilitate performance evaluation. Poor resource logistics can be 429 
identified and mitigated in a timely manner.  430 
 431 
CONCLUSION AND FUTURE WORK 432 
 433 
Previous research has not yet addressed how to make use of equipment logistics data collected 434 
from equipment and project management systems to enhance decision-making. This research 435 
proposes the use of a social network analysis-based approach, commonly applied in sociology, to 436 
facilitate the visualization of equipment logistics and investigation of logistical performance. A 437 
dispatch distance-based performance metric, which can be used in conjunction with other metrics 438 
such as the equipment utilization to evaluate the performance of intra-organizational equipment 439 
management, is also proposed. The ability of the DDI metric to quantify the distance savings of 440 
various dispatch plans was demonstrated in the illustrated example provided, and the 441 
functionality of the proposed approach was confirmed following its application to a practical 442 
case study. When examined in conjunction with equipment utilization rates, the social network 443 
analysis-based method together with the DDI index can be used to more comprehensively 444 
examine equipment management practices. 445 
Efficiency of equipment dispatch plans varies considerably between shops and organizations. It 446 
is possible to improve equipment management through benchmarking of the new performance 447 
metric. In addition, best practices identified using the proposed method can be shared within the 448 
company or even between companies to improve the time and cost-effectiveness of equipment 449 
dispatch. Research deliverables are anticipated to be of immediate use in practice and to satisfy 450 
the needs of large contractors that are eager to more comprehensively evaluate equipment 451 
management performance. Furthermore, the SNA-based approach described here can be 452 
generalized to identify and solve problems of other logistics-associated resources, such as labor 453 
and material. 454 
To further support decision-making for equipment management and to facilitate the 455 
implementation of the quantitative, integrative methodology into real practice, further 456 
improvements of this research will be required:   457 
1) The relationship between equipment utilization and the DDI may be further studied. 458 

Equipment utilization is primarily affected by the length of the construction season, ongoing 459 
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project numbers, and economic conditions, which may not impact the DDI. In short, after 460 
collecting sufficient time series of both performance metrics, a serial correlation analysis can, 461 
and should, be conducted. 462 

2) In this study, it is assumed that logistical costs are primarily determined by distance. 463 
However, the logistical costs may also be affected by the size of equipment, the remoteness 464 
of project locations, and the permit fee of certain routes. The replacement of the second 465 
weight in the DDI with these logistical costs may serve as a method for rapidly estimating 466 
cost savings associated with various equipment dispatch plans in contrast to the very time-467 
consuming process of obtaining multiple quotations from equipment transportation 468 
companies. 469 

3) Other than optimizing equipment logistics, equipment dispatch may also be improved by 470 
adjusting the management region of equipment shops and the quantity of self-owned 471 
equipment. Notably, the proposed performance metric can quantitatively evaluate the 472 
dispatch efficiency after these improvements. However, the impact of such improvement 473 
strategies on the performance metric should be studied and an appropriate sensitivity analysis 474 
should be conducted in future research work.  475 
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TABLES 590 
Table 1. Sample of Equipment Tracking Data 591 

Equipment ID Description Location Start Date End Date Utilization 
10005217 Excavator S600016 5/1/2013 5/31/2013 0.00 
10005218 Excavator PE12110 5/1/2013 5/31/2013 0.82 
10005231 Excavator PE11077 5/1/2013 5/31/2013 0.76 

 592 
Table 2. Sample of Mapped Equipment Logistics Data 593 

Date Equipment ID Departure  Departure Location Arrival  Arrival Location 
5/13/2013 10005237 S600016 City A PE13008 City B 
5/15/2013 10013234 S600002 City C S600016 City A 
5/18/2013 10016007 PE11077 City D PE11079 City E 

 594 
Table 3. Example of Logistics Data for Modeling the Social Network 595 

Edge ID Node i Node j Weight 
1 S600016 PE09190 7 
2 PE09196 PE09190 3 
3 S600019 PE09190 1 
4 S600016 PE09194 3 
5 PE09190 PE09194 1 
6 PE09196 PE09194 3 

 596 
Table 4. Edge Data in Social Network Model A 597 

Edge ID Node i Node j wij
 dij 

1 S 1 10 10 
2 S 2 10 10 
3 S 3 10 10 
4 S 4 10 10 
5 1 2 0 1 
6 2 3 0 1 
7 3 4 0 1 

598 
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Table 5. Edge Data in Social Network Model B 599 
Edge ID Node i Node j wij

 dij 
1 S 1 5 10 
2 S 2 0 10 
3 S 3 0 10 
4 S 4 5 10 
5 1 2 5 1 
6 2 3 5 1 
7 3 4 5 1 

 600 
Table 6. Logistical Data of Each Shop for Four Years 601 

Node ID Description Degree Closeness Betweenness Clustering Coefficient DDI 
S001 Shop 1 130 0.482 12193 0.118 0.254 
S002 Shop 2 96 0.492 20678 0.016 0.066 
S003 Shop 3 76 0.485 15222 0.038 0.155 
S004 Shop 4 31 0.375 5305 0.035 0.107 
S005 Shop 5 25 0.339 8152 0.012 0.038 

 602 
 603 


















