
Title: Critical Lifting Simulation of Heavy Industrial Construction in Gaming 1
Environment 2

3
Christoph Sydora, Zhen Lei, Ming Fung Francis Siu, SangHyeok Han, Ulrich Hermann 4

5
Journal: Facilities – Special Issue: Smart City Facilities and their Management 6
Purpose – Heavy industrial construction often relies on large mobile cranes to erect equipment 7
and pre-assembled modules. Engineering calculations are required for the lifting analysis where 8
lifting capacity is analyzed to ensure the feasibility of the lifting scenarios. Such engineering 9
calculations are often presented in static formats, e.g. 2D or 3D models. However, it is difficult 10
to help practitioners (e.g. lifting engineers, site crews, and operators) understand the complexity 11
of the lifting process and thus operational decisions are often made intuitively. Therefore, this 12
paper introduces a game-based simulation system to allow for interactive analysis of the lifting 13
process to improve lifting efficiency and safety. 14
Design/methodology/approach – The proposed method treats the mobile crane as a robot with 15
degree-of-freedoms (DOFs), and the movements are simulated in the Unity game environment. 16
The lifting capacity is calculated dynamically based on the lifting object weight, rigging weight 17
and lifting radius. 18
Findings – Compared with the 4D visualization, this development has added a dimension of 19
real-time interactive simulation; this allows the users to understand the complexity and feasibility 20
of the lifting process. 21
Originality/value – The developed prototype has been tested and validated using a real case 22
study from a heavy industrial project with the possibility of generalizing crane lifting 23
configurations. 24
Keywords: heavy lift plan, game engine, Virtual Reality, mobile crane, heavy industrial 25
construction, construction simulation 26
Article Type: Research paper 27

28
Critical Lifting Simulation of Heavy Industrial Construction in Gaming Environment 29

30
Abstract: Heavy industrial construction often relies on large mobile cranes to erect equipment 31
and pre-assembled modules. Engineering calculations are required for the lifting analysis where 32
lifting capacity is analyzed to ensure the feasibility of the lifting scenario. Such engineering 33
calculations are often presented in static formats, e.g. 2D or 3D models. However, it is often 34
difficult for practitioners to understand the complexity of the lifting process and operational 35
decisions are made intuitively. Therefore, this paper introduces a newly developed game-based 36
simulation environment to allow for interactive analysis of the lifting process. The proposed 37
method treats the mobile crane as a robot with degree-of-freedoms (DOFs), and the movements 38
are simulated in the Unity game environment. The lifting capacity is calculated dynamically 39
based on the lifting object weight, rigging weight and lifting radius. Compared with 4D 40
visualization, this development has added a dimension of real-time interactive simulation; this 41
allows the practitioners to understand the complexity and feasibility of the lifting process. The 42
developed prototype has been tested and validated using a real case study from a heavy industrial 43
project with the possibility of generalizing crane lifting configurations. 44
Keywords: Mobile crane; heavy lift plan; game engine; virtual reality; visualization 45

© Emerald Publishing Limited. This AAM is provided for your own personal use only. It may not be used for resale, reprinting, systematic distribution,
emailing, or for any other commercial purpose without the permission of the publisher.
The following publication Sydora, C., Lei, Z., Siu, M.F.F., Han, S. and Hermann, U. (2021), "Critical lifting simulation of heavy industrial construction in
gaming environment", Facilities, Vol. 39 No. 1/2, pp. 113-131 is published by Emerald and is available at https://dx.doi.org/10.1108/F-08-2019-0088

This is the Pre-Published Version.

1. Introduction and Literature Review 46
 47
In the province of Alberta, Canada, the oil and gas industry has been the backbone of the local 48
economy. However, productivity has been stagnant due to harsh outdoor working conditions and 49
a lack of a skilled workforce in remote areas. Consequently, modular construction has been 50
predominant in the construction of heavy industrial facilities. For this type of construction, the 51
entire project is broken down into modules that are prefabricated offsite and shipped to the site 52
directly for installation. This helps minimize the exposure of on-site work and improves the 53
heavy equipment utilization rate. PCL Industrial Management Inc. has been a leader in Alberta’s 54
heavy industrial construction, and is known forhigh efficiency in construction planning and 55
logistics. Its engineering department has been working closely with academia in the past to 56
develop innovative engineering tools [1–4]. One research initiative is focused to improve heavy 57
lift planning efficiency by automating CAD drafting as well as engineering planning and 58
visualization [5]. This paper discusses the example of a recently developed simulator for heavy 59
lifting using the Unity game engine environment. The simulator can be used to validatecritical 60
lifting plans and also provide safety training. The benefits of this this type of simulation include: 61
(i) allowing users to interact with theheavy lifting environment in three dimensions; (ii) 62
identifying potential lifting hazards and performing collision detection; and (iii) simulating the 63
lifting process to obtain near-optimal lifting scenarios. 64
Past research in crane operations has seen the development of advanced algorithms to facilitate 65
crane lifts. Automating these types of algorithms is critical to improving efficiency and 66
productivity in planning specific to: (i) crane type and location selection [1,6–8]; (ii) crane path 67
planning and simulation [9–12]; (iii) crane lift visualization [13–16]; and (iv) crane lift 68
engineering design and analysis [15,17–19]. Due to the advancement of digital modeling 69
technologies, crane planning has evolved from a 2D plan to a 3D/4D model with realistic 70
visualization. The practitioners prefer a more direct presentation of the lifting plan rather than 71
previous static designs. In more recent practices, the lifting planning also involves integration 72
with hardware (e.g. laser technologies) to improve safety in the lifting processes [20,21]. The 73
3D/4D crane lifting simulation is often programmed or pre-calculated, in which case the user 74
cannot interact with the lifting environment and the simulation results are limited to the pre-75
defined scenarios. Such a challenge is overcome by using game engines to create a dynamic 76
crane simulation, in which the users can control the movement of the crane throughout the lifting 77
process. Figure1 shows this progression of crane lift planning over the past decades due to 78
technological advancements. With the capabilities of dynamic interactions in the gaming 79
environment, construction training environments have then become possible to simulate 80
construction processes for imporved safety and job-related hazard reduction [22–25]. The 81
applications of game technology is also seen as a solution to enhance project management with 82
integration with existing CAD modeling systems (e.g. Building Information Modeling (BIM)) 83
[26]: CAD models are used to develop immersive Virtual Reality (VR) environments [27], and 84
assist with preconstruction planning to achieve better communication and coordination [28]. As 85
VR technologies have matured, the development environment has added new technology such as 86
motion sensors and computer vision to allow for more meaningful interactions between the 87
virtual world and the real world. For example, to understand construction workers' fall risk 88
behavior, an avatar-based system was developed. using the Microsoft Kinect sensor to track real-89
time motion of construction workers [29]. The development of this type of real-time 90
interactionhas enabled further research to utilize the motion data to improve the performance of 91

the VR models through machine learning algorithms (e.g. reinforced learning methods [29]). 92
Image processing, a computer vision technique, was also used to automatically update the VR 93
gaming environment through machine learning algorithms [30]. 94

Figure 1: Crane lifting planning systems. 95
Designers from the Architecture, Engineering, and Construction (AEC) and Facility 96
Management (FM) industries utilize tools such as AutoCAD®, Revit®, and 3ds MAX® by 97
Autodesk®to create digital assets [31–34].These assets are then imported to a game development 98
platform to construct the scenes and objects in a virtual environment. A common file type for 99
these type of digital asset is .fbx which sometime requires a file type conversion. Once in the 100
development environment, these objects are controlled by scripts and linked to achieve physical 101
movements of the avatars. Using this process as a basis, this research has developed a game-102
engine-based simulation for the heavy lifting process that integrates engineering calculations of 103
lifting capacities, and clash detection to detect potential hazards in the lifting process. 104
 105
2. System Development 106
 107
2.1 Crane Management System Structure 108
 109
Thesimulation development originates from a central database where all the project and 110
engineering data is stored. The idea is to provide a central data source for all the engineering 111
planning and provide access to his data from various digital platforms. Applications have been 112
developed specifically for on-site crane management shown in Figure 2 for: crane location 113
selection and optimization [1], lifting sequencing [4], 4D animations from a macro and micro 114
perspective [5], automated client-oriented lift study CAD system. In the central database, three 115
main types of data are stored: (i) the project data: lifting object specification (e.g. dimensions, 116
weight, etc.); (ii) crane data (e.g. crane’s dimension, lifting capacity chart, etc.); and (iii) rigging 117
data (e.g. rigging components such as shackles, slings, etc.). The pre-step before this study is the 118
static lift study and 3D crane simulation, which create the crane/module/environment models 119
from CAD libraries. However, legacy models do not interact with each other with physics in a 120
3D virtual space, which can be achieved through the Unity game engine as discussed in this 121
paper. . 122

Figure 2: Structure of Crane Management Systems. 123
 124

2.2 Game Engine Development 125
 126
The simulation has been developed with the Unity game engine. The Unity software was 127
orginally created for the video game industry to develop computer games running on multiple 128
platforms (i.e iOS, Android, mobile, desktop, console, etc.).. In the Unity environment, the 3D 129
physics engine simulates real-world interactions between virtual objects. The behaviors of 130
objects are controlled by and programmed in .NET script through the application program 131
interface (API). Other game engines, such as Unreal, utilizes API’s to control objects. The 132
authors have selected Unity® as the development tool due to its ease of use and large online 133
support community. As shown in Figure 3, in Unity, the foundation for any development is the 134
Scene, which contains the environment objects, obstacles and controllable objects that can be 135
added by the user. The Scene istherefore, a “global environment” that holds all game items inside. 136
The Game Objects are literally the objects in the game environment, which can be a 3D/2D 137

physical object or dummy objects which serve as object containers or scene controllers. In this 138
case, 3D Game Objects were primarily used in the development. However, these Game Objects 139
are associated with specific properties, and become controllable characters in the game 140
environment (e.g. tree, light, crane boom, etc.). The Game Objects can interact with each other, 141
or they can contain multiple Game Objects to make themselves nested objects (as described by 142
1:N relationship in Figure 3). The “Properties” that help the Game Objects function in 3D space 143
are called Components. For example, the Transform Component defines the position, rotation, 144
and scale of a Game Object in the 3D Scene. Typical Components used in our study include: 145
Translation, Rigid Body, Script, Collider, and Joint, which are discussed further in the 146
“Implementation and Case Studies” section. 147

Figure 3: Unity game engine development structure. 148
In Unity, Game Objects are the base class for all objects in the scene. A game object can 149
represent any real-life 3D entity (e.g. box, tube, etc.). In our development, a crane boom, mast, 150
and crawler are each separate Game Objects. They can be grouped together into one parent 151
Game Object. However, the crane objects are not able to move, collide or interact in any way 152
without containing components. For a typical crawler crane, the game objects can be defined 153
based on its degree’s-of-freedom (DOFs), specifically, the number of independent parameters to 154
define its configuration in a 3D environment. Figure 4 shows a typical crawler crane’s DOFs and 155
corresponding game objects used in game development. The defined DOFs also set the 156
movement types of crane in the game environment. For other crane types, the DOFs can be 157
defined differently in implementation. 158

{ }zxDOFs ,,,, γβα= (1)
Where: α = rotation of the rigging and lifting module; β = boom up and down; γ = rotation of 159
the crane superstructure; x = crawler walking forward and backward; z = hoist up and down. 160

Figure 4: Degree’s-of-Freedom (DOFs) of a typical mobile crane. 161
Components are the defined attributes of each game object that determines the role of the Game 162
Object in the scene. All Game Objects inherit a standard object class that contains only the 163
transform component: the object’s location, rotation, and scale in a scene. As any Game Object 164
can be nested within a parent object, its transform components become relative to its immediate 165
parent game object. Therefore, the global location of an individual game object would be the 166
local position of the object multiplied by the translation matrix of the parent game object. To 167
give a generic example, if an object is the child of an object that’s location is rotated by θ about 168
the y-axis and translated by a vector of],,[zyx ttt , then the location of the child object globally 169

can be calculated using the following homogeneous transform: 170

×

−
=

11000
cos0sin

010
sin0cos

1

'

'

'

z
y
x

t
t
t

z
y
x

z

y

x

θθ

θθ

(2)

 171
In Unity, both the local and global locations of the object can be found using the 172
Transform.localPosition and Transform.position properties of the Game Object class 173
respectively. Many different types of components can be added to a single Game Object to give 174
it different functions within the Scene. For the crane simulation development, some of the key 175
Component(s) required are: (i) The Mesh Component, which is the “skin” of the object and gives 176

the object its form, although without a Collider Component other objects would simply pass 177
through the object; (ii) The Collider Component is used to detect the collision between two 178
objects in 3D space. Collider Components can take on primitive shapes (such as capsule, sphere, 179
or box colliders) or can use the mesh of an object to take the exact shape of the object (mesh 180
collider). Unity has a built-in Ray Casting mechanism to check collisions and thus reducing the 181
face count of the objects will result in a faster process time; (iii) Rigidbody Component, which 182
makes use of the physics simulation, such as gravity. This also impacts the Collider functionality. 183
In order for an entire object to react to forces in the Scene, each child Game Object is given a 184
Rigidbody Component which takes in the mass and other kinematic properties of the object; and 185
(iv) A Joint Component is a direct connection between two Game Objects, specifically the two 186
rigid bodies of each game object. These are added to an object and adjusted such that the 187
combined objects’ DOFs accurately match those of the desired structure. By modifying the 188
orientation of the pivot of a joint component, the axis around which the two objects can rotate 189
with respect to the other can be altered. 190
In addition to the above-mentioned Components, custom Script components serve as means of 191
controlling Game Objects over short iterations in a way that cannot be done by other predefined 192
components alone (e.g. movement, rotation, etc.). All scripts inherit a base class MonoBehaviour. 193
MonoBehaviour contains predefined methods that are executed automatically depending on the 194
function of the method. There are four main methods of MonoBehaviour and these are listed in 195
Table 1. When certain events are triggered, an object's behavior and properties can be 196
programmatically altered as needed in the scene. For example, when two objects colliders come 197
into contact, an event would be triggered and forces or components can be applied to the objects 198
in order to mimic any type of effect, such as an explosion or a fusion of the objects using joints. 199
Using events that can be set to trigger over certain time intervals allows adding controls to the 200
game object by checking keys that are pressed. For example, when a keyboard key is pressed the 201
object will respond to the corresponding action such as booming up or down. Scripting is also 202
essential for network managing and controlling the network flow and synchronization in the 203
scene. 204

Table 1: Sub-classes of Unity Script. 205
 206

3. Implementation and Case Studies 207
 208
3.1 Model Import and Script 209
 210
The crane lift study is broken down into separate objects suitable to import into Unity as .fbx 211
files. The objects include crane mats, crane boom, hoist cable linking rigging to boom, crane’s 212
super-lift attachment, crane crawler, mast and derrick, surrounding environment and obstacles, 213
lifting module, and delivery truck. After importing, required Components are added, and the 214
Game Objects are arranged and properly aligned with respect to each other to re-create the real-215
world lift scenario (a hierarchy is created to link and group the related Game Objects together). 216
Figure 5 shows the Unity interface with the imported model. The interface contains the edited 217
window and the game play testing window (where camera points at). The hierarchy defines the 218
Game Objects structure, and in this study, a main Game Object “Crane” is created to include all 219
crane objects including the crane crawler track, the derrick mast, super-lift counterweight, 220
rigging, and cables. Instead of using separate scripts to control individual crane objects, a master 221
script can be used to control all sub-objects through the main “Crane” object. The hierarchy is 222

also defined by the DOFs of the crawler crane. The crane crawler track is at a higher level in the 223
hierarchysince the movement of the crawler track dictates the movements of the other crane 224
superstructures (e.g. boom, mast, etc.). For example, boom-up does not trigger the movement of 225
the crawler track. All crane objects link with each other through the Unity component Joint. 226

Figure 5: Unity Interface with Imported 3D Model. 227
Custom Scripting was used to control crane components, specifically the user controls and 228
subsequent moments and as triggers for lift simulation feedback. In this development, Scripts can 229
be categorized into the following kinds: (i) crane movement script which control the crane 230
movements; (ii) camera control script that allows the user to move the camera and view the 231
project from difference perspectives; and (iii) collision/complete event trigger script which 232
detects any collisions in the lifting process and completes the lifting once the object reaches its 233
set location. For the crane movement, there are two types of movements: translation and rotation, 234
which can be controlled by GameObject.Transform function, a built-in parameter of Unity Game 235
Object. The GameObject.Transform allows the user to access the object’s 3D position, rotation 236
angle, and scale. For example, for crane crawler forward-movement can be controlled through 237
the crawler’s rigidbody (private Rigidbody crawlerRB), and when the KeyCode CrawlerForward 238
is pressed, the updated crawler position can be redefined by a new Vector3 in FixedUpdate(): 239
 240
crawlerRB.transform.position = new Vector3 241
(crawlerRB.transform.position.x + crawlerObj.transform.forward.x, 242
crawlerRB.transform.position.y + crawlerObj.transform.forward.y, 243
crawlerRB.transform.position.z + crawlerObj.transform.forward.z); 244
 245
During the lifting process, constant checking forcollisions between the crane and the surrounding 246
environment is done through the Collider object. Collider objects can be defined and checked 247
with each other in the void OnCollisionStay(Collision collision) function through game 248
objects’ name tags. When a collision occurs, this method is triggered and, depending on the 249
objects involved, scene objects can be modified e.g. displaying a warning symbol to the user or 250
simulating a crash event. 251
 252
Crane components that required a little more elaborate control were the cables from the super-lift 253
to the boom and from the the boom to the lifting module and rigging. This is because when the 254
boom moves, the total cable length must be maintained. In our implementation, we opted for a 255
simplistic two-piece cable, each simulated as a long thin cylinder. Therefore, the actual boom 256
and super-lift control are dependent on the cable rescaling rather than their movements in space. 257
There are more elaborate methods that could have been employed to improve the realism of the 258
swing such as using a single series of minuscule segments or a kinematic chain, however, using a 259
single cable with full swing range was sufficient for the level of detail in this research. Importing 260
additional objects from the Unity Asset Store or other third-party object vendors is possible for 261
this scenario; however, the scale must then be maintained such that all objects follow the Unity 262
scene unit which corresponds to 1 meter. 263
 264
3.2 Crane Lifting Simulation in Unity Environment 265
 266
Crane lifts can be categorized into two types: (i) the non-critical lift; and (ii) the critical lift. The 267
critical lift requires engineering design before lifting due to site congestion and/or high lifting 268
capacity (e.g. more than 80% of the crane’s lifting capacity). In the presented case, a real critical 269
lift is used for testing the developed game engine simulation. As shown in Figure 6, a LR-1600 270

crane with buggy super-lift attachment is used to perform this lift. The total weight is 114,017 lbs 271
(51.7 Te) (including module load weight, load block weight, rigging weight, and auxiliary ball 272
and runner). At maximum radius of 115 ft (35.1m) and 88.4% of crane capacity is used given the 273
manufacturer’s chart capacity is stated to be 128,970 lbs (58.5 Te). Due to its high capacity and 274
congested surrounding, this lift is considered a critical lift. In general, the crane’s lifting capacity 275
is calculated by the following equation: 276

%100×
+++

=
Chart

AdditionalLoadBlockRiggingModule
lifting W

WWWW
C

(3)

Where: liftingC = crane lifting capacity; ModuleW = module weight; RiggingW = Rigging weight; 277

LoadBlockW = Load block weight; AdditionalW = Additional weight (e.g. auxiliary ball and runner); 278

ChartW = Chart allowable lifting capacity. 279
As shown in Figure 6, the module is picked up from a delivery truck and swung clockwise to the 280
set position. The static lift study in Figures 5 and 6 do not give a clear understanding of potential 281
collision that the lifting object may encounter with the grey existing structures at the final set 282
position. The crane operator and other on-site staff would thus have to “imagine” the trajectory 283
for the lifting module to be maneuvered without any collision. An elevation view is provided to 284
show the potential collision at the final position between the lifting module and the surrounding 285
structures (Figure 7). The elevation view also shows merely a static scene where the lifting 286
module is at its final set location, which provides the clearance checking. In Unity, the lifting 287
scenario is created as shown in Figure 8. Through the keyboard control, the user is able to 288
maneuver the lifting object to its set location, during which the lifting capacity is checked at each 289
time frame as well as having continuous collision detection (as in Figure 9 where the lifting 290
radius is 130.65ft with a lifting capacity of 30.77%). Once the lifting object reaches its set 291
location (Figure 10), the Script that checks lift progress is triggered and a “Complete” sign is 292
displayed. An example list of allowed movements along with the control keys that the user can 293
perform is: 294
W - Crane Forward
S - Crane Backward
A - Crane Left
D - Crane Right
Q - Main Camera Left
E - Main Camera Right
Y - Boom Left
U - Boom Right
I - Boom Forward
O - Boom Backward
G - Rigging Halt
H - Rigging Rotate CounterClock
J - Rigging Rotate Clockwise
K - Rigging Up
L - Rigging Down

 295
Figure 6: Plan view of a critical heavy lift study. 296

Figure 7: Elevation view of a critical heavy lift study. 297

Figure 8: Lifting Scenario in Unity Environment. 298
Figure 9: Crane lifting module simulation. 299

Figure 10: Crane lifting complete at the module set location. 300
To summarize, the steps required to recreate the lift simulation are as follows: 301
(i) import all crane, module, and environment objects; 302
(ii) arrange all objects into their starting positions and hierarchies;(iii) add each object’s physics 303
components, namely the rigid body, collider, and joints between the connected objects; 304
(iv) for dynamic scene objects, add additional controller scripts for movement and lift simulation 305
progress (based on distance from current to desired goal state); 306
(v) place Camera objects in the crane's operator location and additional locations in the scene as 307
necessary. The following section will elaborate on this for multiple users. 308
 309
3.2.1 Multi-player Simulation 310
 311
With the addition of Unity’s NetworkManager class, we were able to achieve a multiple player 312
environment. In this environment, three players (Fig. 11) can simultaneously interact and 313
collaborate to complete the lift. This simulates a more realistic lifting scenario compared to a 314
single player system. Limitations of the views of the crane operators are shown in Figure 12 315
where it is difficult to observe the lifted object’s location, while also considering that there are 316
many blind spots in the process of lifting. With the aid of one or more signalers (Figure 13 shows 317
where they are located on the ground and on the platform of the obstructions), instant feedback 318
of the lifting is given to the operator, who can then can make reasonable and safer decisions. 319
Figures 12 and 13 are taken from the same moment where the crane sets the lifted object at its 320
destination. From Figure 12 it is unlikely to capture the complete picture of the lifting 321
environment and the clearance from a collision is questionable. In Figure 13, the signal persons 322
are able to ensure the safety of the lift and provide valuable feedback to the operator. 323
In the Unity environment, a High-Level API (HLAPI) server authoritative system is used for 324
building multiplayer games. It allows one of the players to be the client and server at the same 325
time, which in our case will be the crane operator [33].As such, no dedicated server is needed 326
and other players can simply connect to the server (the crane operator’s machine) through its 327
Internet Protocol address (IP address). The Network Identity and Network Transform 328
Components are used and attached to the crane objects to ensure object synchronization between 329
each user’s scenes. The scripts for controlling these two components are: 330
private NetworkManager networkManager; 331
private InputField ipInput; 332
private InputField portInput; 333
/// <summary> 334
 /// When game starts up 335
 /// </summary> 336
 void Start() 337
 { 338
 Debug.Log("NetManagerStart"); 339
 networkManager = GameObject.Find("NetworkManager").GetComponent<NetworkManager>(); 340
 ipInput = GameObject.Find("IPInputField").GetComponent<InputField>(); 341
 portInput = GameObject.Find("PortInputField").GetComponent<InputField>(); 342
 } 343
 344
 /// <summary> 345
 /// when server starts up: 346
 /// </summary> 347

 public override void OnStartServer() 348
 { 349
 Debug.Log("NetManagerOnStartServer"); 350
 networkManager.serverBindAddress = ipInput.text; 351
 networkManager.networkAddress = ipInput.text; 352
 networkManager.networkPort = Convert.ToInt32(portInput.text); 353
 } 354

Figure 11: Unity Engine Multiple Player Scenario. 355
Figure 12: Multiple Player – Crane Operator Perspective. 356
Figure: 13 Multiple Player – Signal Person Perspective. 357

 358
4. Generalization of Crane and Lift Configuration 359
 360
In order for the lift simulation to be irrespective of a crane model, lift module, or lift 361
environment, a certain amount of data beyond the geometrical is required for each crane 362
component. Loading a full crane 3D model into a Unity scene would be problematic, as each of 363
its components (boom, crawler, super-lift, etc.) would not be able to move independently of each 364
other. Thus, as with our implementation, each crane component must be loaded separately to the 365
scene. For our implementation, the reconstruction of the full crane from its components was 366
performed manually, however, if connection information for each component was provided, the 367
full crane object could be automatically reconstructed. The requirements for such as 368
reconstruction are as follows: (i) Each component, in addition to its own metadata such as type 369
and mesh geometry, must have a joint location, degree of freedom (rotation axis and/or 370
movement plane) and movement speed, the component type that must be connected on the other 371
end, and the default or starting configuration angle. This would allow the automated 372
reconstruction of the crane to piece together each component starting with the base crawler and 373
building up one by one. (ii) Next, the crane would need the connecting cables to be attached. 374
This is a separate step done after the crane is constructed, as the cables need to be shortened or 375
lengthened based on the default setup. In addition, the cable objects extend and contract relative 376
to each other. For example, if the boom lowers, the cable connecting the superlift to the boom 377
extends, resulting in a contraction of the cable connecting the rigging to the boom, since the total 378
length of the cables combined must be maintained. Therefore, to automatically model a cable, 379
there must be a predefined start and end point to the cable with intermediate points sequentially 380
ordered. For the case study, this corresponded to the start point being the superlift followed by 381
the tip of the boom and finally ending at the rigging attachment. Therefore, a single controller 382
can control all cable manipulations and maintain consist cable lengths. Once each of the 383
components have been connected and the cables have been placed, each of the possible 384
movements, based on the degrees of freedom, can then be assigned a controller key or button.By 385
utilizing BIM within the lifting environment and the properties of each of the objects and the 386
selected rigging, the possible lifting points of the lifting module can be determined such that the 387
points on the lift module and rigging align. (iii) Finally, based on the mesh of each of the objects 388
in the scene, colliders can be attached with a script alerting the user of collisions between 389
environment objects and crane components. Each of the vantage points can be based on freely 390
moving cameras, with one being fixed to the crane’s operation cabin. 391
 392
5. Conclusions and Future Work 393
 394

In this paper, a crane simulator has been developed using the Unity game engine. In the 395
developed system, the crane is treated as a robot with DOFs and considers realistic lifting 396
capacities. The a virtual physics engine was implemented to help detect collisions and determine 397
the completion of a lift. Imported from CAD as .fbx files, the rigid crane components are linked 398
and controlled by the script with colliders added for clash detection. In the methodology and 399
implementation, algorithms and related API’s were introduced so that other 400
researchers/practitioners can refer to them in future work or implementation. Two real case 401
studies were provided to validate the proposed method and efficiency of the simulation. In the 402
first case, the single-player crane operation is presented with the lifting capacity calculation and 403
lifting radius during the lift. From the single-player mode, it can be concluded that blind spots 404
can impede the crane operator ability to direct the lift without assistance from the signal persons. 405
In case two, a multi-player crane scenario is developed and presented using the NetworkManager 406
component in Unity. The HLAPI system in Unity allows the crane operator-player to host the 407
machine and avoid a dedicated server for multiplayer purposes. This development provides a 408
systematic and effective approach to provide an interactive simulation for crane lifting scenarios. 409
It helps the users to identify safety hazards and virtually rehearse the lifting process. The testing 410
can also allow the workers to become more efficient. For example, through iterations of practice 411
and discussion, reasonable lifting paths can be arranged to avoid unnecessary movements and 412
increase the ease of lifting. The VR development can be introduced to construction on-site, pre-413
lift meetings as an instructive tool for crews to enhance their understanding of the construction 414
execution plans. Additionally, the signal persons can virtually practice on-site coordination of the 415
lifting process. Although it is a prototype, the authors think there is a positive impact on crane 416
lifting safety and training and will extend the work in that direction. The authors have also 417
realized there is a limitation that each lifting scenario requires manual adjustment of the model 418
and setup. This can be mitigated to some extent in the future through automation using API 419
codes and reduce the human effortto create the simulation. Another possible solution could be 420
using Cloud-based BIM metadata to synchronize CAD models and the VR environment [35]. 421
Meanwhile, commercial VR equipment such as Oculus and Vive can be used for further 422
development of an immersive virtual environment. 423
 424
6. Acknowledgements 425
 426
The authors would like to acknowledge all the participants in the research, particularly our 427
industry collaborator PCL Industrial Management Inc. We would also like to express our 428
appreciation for the support received from the Hole School of Construction Engineering, and the 429
Nasseri School of Building Science and Engineering at the University of Alberta. Support from 430
the Off-site Construction Research Centre (OCRC) at the University of New Brunswick is also 431
acknowledged. 432
 433
References: 434
 435
[1] U. Hermann, A. Hendi, J. Olearczyk, M. Al-Hussein, An Integrated System to Select, 436

Position, and Simulate Mobile Cranes for Complex Industrial Projects, in: Constr. Res. 437
Congr. 2010, American Society of Civil Engineers, Reston, VA, 2010: pp. 267–276. 438
doi:10.1061/41109(373)27. 439

[2] Z. Lei, H. Taghaddos, U. Hermann, M. Al-Hussein, A methodology for mobile crane lift 440

path checking in heavy industrial projects, Autom. Constr. 31 (2013) 41–53. 441
doi:10.1016/j.autcon.2012.11.042. 442

[3] Z. Lei, H. Taghaddos, J. Olearczyk, M. Al-Hussein, U. Hermann, Automated Method for 443
Checking Crane Paths for Heavy Lifts in Industrial Projects, J. Constr. Eng. Manag. (2013) 444
04013011-1–9. doi:10.1061/(ASCE)CO.1943-7862.0000740. 445

[4] H. Taghaddos, Asce, U. Hermann, S. Abourizk, M. Asce, Y. Mohamed, Simulation-Based 446
Multiagent Approach for Scheduling Modular Construction, J. Comput. Civ. Eng. 28 447
(2014) 263–274. doi:10.1061/(ASCE)CP.1943-5487.0000262. 448

[5] Z. Lei, H. Taghaddos, S. Han, A. Bouferguène, M. Al-hussein, U. Hermann, From 449
AutoCAD to 3ds Max : An automated approach for animating heavy lifting studies, Can. J. 450
Civ. Eng. 1 (2016) 5404. doi:10.1139/cjce-2014-0313. 451

[6] C. Huang, C.K. Wong, C.M. Tam, Optimization of tower crane and material supply 452
locations in a high-rise building site by mixed-integer linear programming, Autom. Constr. 453
20 (2011) 571–580. doi:10.1016/j.autcon.2010.11.023. 454

[7] L.-C. Lien, M.-Y. Cheng, Particle bee algorithm for tower crane layout with material 455
quantity supply and demand optimization, Autom. Constr. 45 (2014) 25–32. 456
doi:10.1016/j.autcon.2014.05.002. 457

[8] H. Safouhi, M. Mouattamid, U. Hermann, a. Hendi, An algorithm for the calculation of 458
feasible mobile crane position areas, Autom. Constr. 20 (2011) 360–367. 459
doi:10.1016/j.autcon.2010.11.006. 460

[9] H.R. Reddy, K. Varghese, Automated Path Planning for Mobile Crane Lifts, Comput. Civ. 461
Infrastruct. Eng. 17 (2002) 439–448. doi:10.1111/0885-9507.00005. 462

[10] Y. Lin, D. Wu, X. Wang, X. Wang, S. Gao, Lift path planning for a nonholonomic crawler 463
crane, Autom. Constr. 44 (2014) 12–24. doi:10.1016/j.autcon.2014.03.007. 464

[11] Y.-C. Chang, W.-H. Hung, S.-C. Kang, A fast path planning method for single and dual 465
crane erections, Autom. Constr. 22 (2012) 468–480. doi:10.1016/j.autcon.2011.11.006. 466

[12] M. Ali, N. Babu, K. Varghese, Collision free path planning of cooperative crane 467
manipulators using genetic algorithm, J. Comput. Civ. Eng. 19 (2005) 182–193. 468
http://ascelibrary.org/doi/abs/10.1061/(ASCE)0887-3801(2005)19:2(182) (accessed May 469
28, 2014). 470

[13] J.R. Juang, W.H. Hung, S.C. Kang, SimCrane 3D+: A crane simulator with kinesthetic 471
and stereoscopic vision, Adv. Eng. Informatics. 27 (2013) 506–518. 472
http://linkinghub.elsevier.com/retrieve/pii/S1474034613000529 (accessed May 23, 2014). 473

[14] C. Zhang, A. Hammad, Improving lifting motion planning and re-planning of cranes with 474
consideration for safety and efficiency, Adv. Eng. Informatics. 26 (2012) 396–410. 475
doi:10.1016/j.aei.2012.01.003. 476

[15] Y. Lin, D. Wu, X. Wang, X. Wang, S. Gao, Statics-based simulation approach for two-477
crane lift, J. Constr. Eng. Manag. 138 (2012) 1139–1149. 478
http://ascelibrary.org/doi/abs/10.1061/(ASCE)CO.1943-7862.0000526 (accessed May 28, 479
2014). 480

[16] W.C. Hornaday, C.T. Haas, J.T. O’Connor, J. Wen, Computer-aided planning for heavy 481
lifts, J. Constr. Eng. Manag. 119 (1993) 498–515. 482

[17] S. Hasan, M. Al-hussein, D. Ph, U.H. Hermann, H. Safouhi, Interactive and Dynamic 483
Integrated Module for Mobile Cranes Supporting System Design, (2010) 179–186. 484

[18] S. Hasan, A. Bouferguene, M. Al-Hussein, P. Gillis, A. Telyas, Productivity and CO2 485
emission analysis for tower crane utilization on high-rise building projects, Autom. Constr. 486

31 (2013) 255–264. doi:10.1016/j.autcon.2012.11.044. 487
[19] D. Wu, Y. Lin, X. Wang, S. Gao, Algorithm of crane selection for heavy lifts, J. Comput. 488

Civ. Eng. 25 (2011) 57–65. http://ascelibrary.org/doi/abs/10.1061/(ASCE)CP.1943-489
5487.0000065 (accessed May 28, 2014). 490

[20] G. Lee, H.-H. Kim, C.-J. Lee, S.-I. Ham, S.-H. Yun, H. Cho, B.K. Kim, G.T. Kim, K. Kim, 491
A laser-technology-based lifting-path tracking system for a robotic tower crane, Autom. 492
Constr. 18 (2009) 865–874. doi:10.1016/j.autcon.2009.03.011. 493

[21] S. Hwang, Ultra-wide band technology experiments for real-time prevention of tower 494
crane collisions, Autom. Constr. 22 (2012) 545–553. 495
http://linkinghub.elsevier.com/retrieve/pii/S0926580511002226 (accessed May 28, 2014). 496

[22] I.M. Rezazadeh, X. Wang, M. Firoozabadi, M.R. Hashemi Golpayegani, Using affective 497
human-machine interface to increase the operation performance in virtual construction 498
crane training system: A novel approach, Autom. Constr. 20 (2011) 289–298. 499
doi:10.1016/j.autcon.2010.10.005. 500

[23] J. Goulding, W. Nadim, P. Petridis, M. Alshawi, Construction industry offsite production: 501
A virtual reality interactive training environment prototype, Adv. Eng. Informatics. 26 502
(2012) 103–116. doi:10.1016/j.aei.2011.09.004. 503

[24] S.P. Smith, D. Trenholme, Rapid prototyping a virtual fire drill environment using 504
computer game technology, Fire Saf. J. 44 (2009) 559–569. 505
doi:10.1016/j.firesaf.2008.11.004. 506

[25] H. Guo, H. Li, G. Chan, M. Skitmore, Using game technologies to improve the safety of 507
construction plant operations, Accid. Anal. Prev. 48 (2012) 204–213. 508
doi:10.1016/j.aap.2011.06.002. 509

[26] X. Wang, P.E.D. Love, M. Jeong, C. Park, C. Sing, L. Hou, A conceptual framework for 510
integrating building information modeling with augmented reality, Autom. Constr. 34 511
(2013) 37–44. doi:10.1016/j.autcon.2012.10.012. 512

[27] J. Whyte, N. Bouchlaghem, A. Thorpe, R. McCaffer, From CAD to virtual reality: 513
Modelling approaches, data exchange and interactive 3D building design tools, Autom. 514
Constr. 10 (2000) 43–45. doi:10.1016/S0926-5805(99)00012-6. 515

[28] A.F. Waly, W.Y. Thabet, A Virtual Construction Environment for preconstruction 516
planning, Autom. Constr. 12 (2003) 139–154. doi:10.1016/S0926-5805(02)00047-X. 517

[29] Y. Shi, J. Du, C.R. Ahn, E. Ragan, Impact assessment of reinforced learning methods on 518
construction workers’ fall risk behavior using virtual reality, Autom. Constr. 104 (2019) 519
197–214. doi:10.1016/j.autcon.2019.04.015. 520

[30] F. Pour Rahimian, S. Seyedzadeh, S. Oliver, S. Rodriguez, N. Dawood, On-demand 521
monitoring of construction projects through a game-like hybrid application of BIM and 522
machine learning, Autom. Constr. 110 (2020) 103012. doi:10.1016/j.autcon.2019.103012. 523

[31] N.O. Nawari, BIM Standard in Off-Site Construction, J. Archit. Eng. 18 (2012) 107–113. 524
doi:10.1061/(ASCE)AE.1943-5568.0000056. 525

[32] Z. Hu, J. Zhang, BIM- and 4D-based integrated solution of analysis and management for 526
conflicts and structural safety problems during construction: 2. Development and site trials, 527
Autom. Constr. 20 (2011) 155–166. doi:10.1016/j.autcon.2010.09.013. 528

[33] B. Akinci, M. Fischer, J. Kunz, Automated Generation of Work Spaces Required by 529
Construction Activities, J. Constr. Eng. Manag. 128 (2002) 306–315. 530
doi:10.1061/(ASCE)0733-9364(2002)128:4(306). 531

[34] S. Zhang, J. Teizer, J.K. Lee, C.M. Eastman, M. Venugopal, Building Information 532

Modeling (BIM) and Safety: Automatic Safety Checking of Construction Models and 533
Schedules, Autom. Constr. 29 (2013) 183–195. doi:10.1016/j.autcon.2012.05.006. 534

[35] J. Du, Z. Zou, Y. Shi, D. Zhao, Zero latency: Real-time synchronization of BIM data in 535
virtual reality for collaborative decision-making, Autom. Constr. 85 (2018) 51–64. 536
doi:10.1016/j.autcon.2017.10.009. 537

[33] https://docs.unity3d.com/Manual/UNetUsingHLAPI.html (accessed on Sep 4th 2017) 538

https://docs.unity3d.com/Manual/UNetUsingHLAPI.html

	1. Introduction and Literature Review
	2. System Development
	2.2 Game Engine Development
	3. Implementation and Case Studies
	4. Generalization of Crane and Lift Configuration
	5. Conclusions and Future Work
	6. Acknowledgements
	References:

