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Abstract: To implement Prognostics and Health Management (PHM) for industrial systems, it is 

paramount to conduct early fault prognosis on the systems to ensure the stability and reliability during 

their entire lifecycles. Investigations on early fault prognosis have been actively carried out, but there is 

a lack of systematic analysis and summary of the developed methods. To bridge the gap, in this paper, 

the relevant methods are comprehensively reviewed from the aspects of signal processing and fault 

identification. Furthermore, the applications of the methods are systematically described. In the end, to 

further facilitate researchers and practitioners, statistical and comparative analysis of the reviewed 

methods are given, and future development directions are outlined. 
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Nomenclature 

PHM Prognostics and Health Management 

WT wavelet transform 

EMD empirical mode decomposition 

EWT empirical wavelet transform 

VMD variational mode decomposition 

SR stochastic resonance 

IMF intrinsic mode function 

EEMD ensemble empirical mode decomposition 

LMD local mean decomposition 

SVD singular value decomposition 

CNN convolutional neural network 

RNN Recurrent neural network 

DBN deep belief network 

FCM fuzzy c-mean 

SVM support vector machine 

ANN artificial neural network 

KNN k-nearest neighbour

CMF combined mode function 

CEEMD complementary ensemble empirical mode decomposition 

CEEMDAN complete ensemble empirical mode decomposition with adaptive noise 

HHT Hilbert-Huang transform 

HT Hilbert transform 
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FFT fast Fourier transform 

TEO Teager energy operator 

MCKD maximum correlated kurtosis deconvolution 

PSO particle swarm optimisation 

SNR signal-to-noise ratio 

FT Fourier transform 

GA Genetic Algorithm 

QPSO quantum particle swarm optimisation algorithm 

TQWT Tuneable Q-factor Wavelet Transform 

WPT wavelet packet transform 

DWT discrete wavelet transform 

SEI Shannon entropy index 

LS-SVM least squares support vector machine 

CWT continuous wavelet transform 

BPNN backpropagation neural network 

SDAE stacked denoising autoencoder 

SVDD support vector data description 

SAE Sparse autoencoder 

S4VM safe semi-supervised support vector machine 

GRU gated recurrent unit 

DTDA deep dual temporal domain adaptation 

DCAE deep autoencoder network 

RDA robust deep autoencoder 

1. Introduction

Modern industrial systems are characterised as increasingly integrated, autonomous and

sophisticated [1-3]. It is vital to conduct an effective prognosis on the health states of the industrial 

systems, i.e., Prognostics and Health Management (PHM), to maintain stable operations of the systems 

throughout their lifecycles [4-6]. In the PHM field, numerical research papers have been published and 

a series of methodologies have been developed [7-9]. The majority of the investigations have been carried 

out to diagnose faults and identify the faults’ severities when the faults have already occurred, i.e., fault 

diagnosis. Nevertheless, it will be more significant to prognosticate the signs of potential faults (instead 

of obvious faults already) as early as possible, i.e., early fault prognosis. The early fault prognosis is 

difficult to be quantitatively described in fault severity identification. It is more beneficial to improve 

system resilience to prevent the occurrence and development of catastrophic failures of industrial systems 

incurring significant losses later on [10]. 

The design of a fault diagnosis method is through scrutinising condition monitoring signals from 

some key components of industrial systems reflecting the characteristic changes of the systems [11-15]. 

The signals include vibration signals [16-20], acoustic emission signals [21-25], current signals [26-28], 



and temperature signals  [29-31]. Vibration signals have been popularly used, as abnormal vibrations can 

reveal the underlying physical phenomena of the monitored components to indicate damage and faults. 

Nevertheless, early fault prognosis is more difficult to be conducted due to the inconspicuous 

characteristics of faults [32-34]. Fig. 1(a) shows the kurtosis of the vibration signals on a rolling bearing 

from a normal condition to a faulty condition. From the 345th minute, the fluctuation of the kurtosis 

indicates an upward trend, showing the bearing is in a severely damaged condition. Nevertheless, the 

fault is not obvious during its early development stage. For instance, in Fig. 1(b), the time-domain 

waveform at the 260th minute (early fault stage) is selected for observation. It can be observed that the 

kurtosis value at that moment maintains the same level as that of previous periods. 

Fig. 1. The kurtosis trend for the vibration signals of a rolling bearing. 

During the early stages of a fault (early fault), features are a bit weak and drowned out by the strong 

background noise. It, therefore, makes early fault prognosis a challenging problem. To address the issue, 

in recent years, research investigations have been increasingly carried out but a timely summary of the 

developed methods is lacking. The purpose of this paper is to provide such an update on the relevant 

research progresses and applications.  

The structure of this paper is as follows. Section 1 explains the importance and challenges of early 

fault prognosis for applications. Section 2 introduces the selection criteria of published papers and the 

classification schema of the methodologies presented in the papers. In Section 3, key steps of widely 

used methods in this field are depicted in detail. In Section 4, the applications of the methods are summed 

up. Section 5 reports the statistical analysis of the published papers and outlines the future research 

directions. Finally, a summary is given in Section 6. 

2. Research Methodology for Review

2.1 Selection criteria of the reviewed literature 

Due to the importance of early fault prognostics, in the past years, research works have been 

effectuated and published in the field. In this survey, there are two steps for identifying and analysing the 

relevant literatures. Firstly, relevant research works are selected through a keyword search in electronic 

databases, such as IEEE, ScienceDirect, Elsevier, and Springer online journal collection. Selected 

(a) The kurtosis trend for the vibration
signals of a rolling bearing.

(b) Signals under the time-domain at
t = 260th minute (left) and t = 345th

minute (right).



keywords include (early fault OR incipient fault OR initial fault OR early failure OR incipient failure) 

AND (fault prognosis OR fault diagnosis OR fault prediction), etc. Criteria for the selection of literature 

include: (1) any paper that mentions early faults; (2) journal papers published from 2,000 to the present. 

In the meantime, the following is used as the exclusion criteria: (1) papers using signals other than 

vibration signals for analysis; (2) papers not related to the early stages of failure; (3) conference papers, 

books and review papers. Secondly, the selected papers are fine-tuned through carefully reading and 

analysing to avoid bias purely on the keyword search, as different percentages of papers could be 

obtained depending on the interest and preference at the time of keyword selection. 

The screening process is shown in Fig. 2. In view of the above criteria and steps, 111 papers were 

eventually selected for survey in this research. 

Fig. 2. The search and screening processes of the relevant literature. 



2.2 Key stages for early fault prognosis 

Early fault prognosis works follow a similar procedure, which includes data acquisition, feature 

extraction and fault identification. That is, after obtaining vibration signals through sensors mounted on 

the components of an industrial system (data acquisition), a feature extraction algorithm is then applied 

to recognise early fault-related features (feature extraction); a method is finally used to classify the fault 

types (fault identification). Signal acquisition is fundamental to supporting feature extraction and fault 

identification. Since a comprehensive survey on signal acquisition was already given [35,36], to make 

this survey more focused, the summary in this paper will be on feature extraction and fault identification. 

It is assumed that acquainted signals are in good quality and carry sufficient information to support 

further processing. 

In the early fault stage, only tiny damages take place and fault-related features are submerged with 

background noise. It will be beneficial to design an effective signal processing algorithm to identify weak 

features from signals containing a large amount of noise [37-39]. Popular signal processing algorithms 

include wavelet transform (WT) [40], empirical mode decomposition (EMD) [41], empirical wavelet 

transform (EWT) [42], variational mode decomposition (VMD) [43] and stochastic resonance (SR) [44]. 

The algorithms can suppress noise and enhance weak features. Fault identification methods are either 

model-based [45] or data-driven [46]. The former refers to the use of characteristic frequencies for 

analysis, and the latter refers to the use of artificial intelligent technologies for analysis. Both methods 

are suitable for periodic fault signals, which are from rotational mechanical equipment. However, only 

the data-driven methods are effective for abrupt aperiodic signals, such as tool wear in a machining 

process. The methods will be detailed in Section 3. 

3. Key Methods for Early Fault Prognosis

3.1 Feature extraction 

In a practical environment, vibration signals contain a large amount of noise, interference signals, 

and information that does not represent desired fault characteristics. Thus, it necessitates the development 

of effective signal processing algorithms that can extract features from signals with noise. 

The majority of the signal processing algorithms for early fault extraction are through time-

frequency analysis. WT is a classic time-frequency analysis method that is based on the short-time 

Fourier transform with the addition of a changeable time window [47]. In WT, the wavelet transformation 

is used to remove high-frequency noise in the signals. The selection of a wavelet basis plays a strong 

influence on the results of wavelet analysis, which makes WT less robust to support applications. 

Adaptive decomposition methods, represented by EMD [48], were introduced to effectively overcome 

the shortcomings of WT without requiring a necessary basis function as support. EMD is suitable for 

non-linear and non-stationary signals. EMD is to decompose the fluctuation or trend of different scales 

in the signals gradually and generate a series of data sequences with different characteristic scales. Each 

sequence is called an Intrinsic Mode Function (IMF) [48]. EMD can perform denoising through the 

rejection of IMFs in different frequency bands. 

Nevertheless, there exist some problems in EMD, such as the boundary effect [49], mode mixing 

[50], overshoot and undershoot [51]. Therefore, EMD was further improved, like Ensemble Empirical 



Mode Decomposition (EEMD) [52]. In addition, new adaptive methods, like Local Mean Decomposition 

(LMD), EWT and VMD, were proposed in order to overcome the limitations of EMD [53-55]. In addition 

to the aforementioned methods, there are morphological filtering, sparse decomposition, Singular Value 

Decomposition (SVD) and other methods, which are used for feature extraction and denoising for early 

fault prognosis.  

When signals and noise overlap in the frequency band, the application of the aforementioned 

methods can lead to information loss when the noise is suppressed. The SR technique is an effective 

means to resolve this problem [56-59]. It can enhance weak periodic signals in rotating machines [60-

62]. However, the classic SR still needs to be further improved and optimised to be used in mechanical 

fault signal processing [63-65]. 

In recent years, deep learning algorithms, such as Convolutional Neural Networks (CNN), 

Recurrent Neural network (RNN), and Deep Belief Network (DBN), have been increasingly applied for 

early fault prognosis. CNN is currently the most popular neural network in deep learning, which can 

automatically extract deep features from signals [66]. Compared to CNN, RNN is suitable for the analysis 

of time-series data owing to its capability of storing the past information, which is commonly used for 

remaining useful life prediction [67]. For online anomaly detection, models such as deep autoencoder 

and DBN have been often used for feature extraction [68]. 

3.2 Fault Identification 

3.2.1 Model-based methods 

When the contact surface of components in an industrial system is damaged, the metal surfaces in 

contact will collide with each other during operations. In this situation, low-frequency vibration signals 

will be generated. These frequencies are related to the structural size of the components and can be 

calculated, i.e., the characteristic frequency of the fault. 

Taking a rolling bearing as an example, the damage on the bearing is the low-frequency vibration 

caused by the repeated impact of the damage point on the surface of other components. The fault 

frequency can be calculated from the rotation speed and geometric dimension of the bearing. For a rolling 

bearing with local fault damages, a large wave peak will appear at the fault characteristic frequency 

through the signal processing and frequency spectrum analysis. The purpose of the fault identification is 

to detect the fault characteristic frequency, that is, to find out the obvious fault frequency in the spectrum. 

The fault type can be judged by the calculated characteristic frequency. The traditional frequency domain 

analysis approach is difficult to accurately extract the fault characteristic frequency. However, 

demodulation analysis can judge the fault degree and fault location from the frequency distribution 

characteristics of the envelope demodulation spectrum [69]. The envelope trace of time-domain signal 

waveform can be extracted by demodulation analysis. The envelope signal that only contains impact 

characteristic frequency component attached to the high-frequency natural vibration can be extracted. 

Then, the detailed spectrum analysis of the envelope signal can be carried out. Popular demodulation 

technologies include Hilbert demodulation [70] and energy operator demodulation [71]. 

3.2.2 Data-driven methods 

With the rapid growth of the machine learning technology, fault prognosis for industrial systems are 



gradually transformed into an intelligent way, i.e., data-driven approaches. A data-driven method is to 

train an intelligent prognosis model and use the trained model to make judgments on real-world data. 

Data-driven methods can be further divided into unsupervised and supervised on the basis of 

underlining intelligent algorithms. Cluster analysis groups data from the same class and separates data 

from different classes as much as possible according to a certain criterion. This method is an unsupervised 

learning method to divide samples into classes without training. Clustering analysis can be classified into 

partition-based algorithms, hierarchical algorithms, density-based algorithms and so on. The main 

partition-based clustering algorithms include k-means, k-modes, k-medoids, and fuzzy c-mean algorithm 

(FCM). Taking k-means as an example, it is a typical partition-based algorithm that is iteratively 

calculated to determine a partitioning scheme of K-clusters by minimising the loss function 

corresponding to the clustering result. These methods are often applied in the field of early fault prognosis. 

The counterpart to the clustering algorithm is the classification algorithm with supervised learning. 

Commonly used classification algorithms include support vector machine (SVM), artificial neural 

network (ANN), and k-nearest neighbour algorithm (KNN) [72]. Among them, SVM and ANN are most 

popularly applied in the field of early fault prognosis [73]. 

In recent years, deep learning has been applied for early fault prognosis owing to their superior 

performance than SVM, ANN and other shallow intelligent models [74-76].  Furthermore, in contrast to 

other traditional data-driven methods, its overwhelming advantage in feature extraction makes it less 

dependent on signal processing methods in the early fault stage. 

4. Early Fault Prognosis Methods and Applications

As aforementioned, an early fault prognosis method is based on the combination of feature extraction

and fault identification. In this survey, early fault prognosis approaches are divided into the following 

four categories (shown in Fig. 3):  

(1) Combination of signal processing and model-based methods;

(2) Combination of feature extraction by signal processing and data-driven methods;

(3) Deep learning algorithms;

(4) Methods that do not belong to the above three categories.

Fig. 3. Early fault prognosis and key constitutive methods with different combinations. 
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4.1 Combination of signal processing and model-based methods 

4.1.1 Single signal processing and model-based methods 

Recently, the most dominant approach for early fault prognosis is the application of signal 

processing methods in combination with model-based methods. The basic process is that a signal 

processing method is adopted to process the original signal, followed by the spectral analysis on the 

processed signal. Since the process of spectrum analysis is similar, this section concentrates on noise 

suppression algorithms. The following is a description of the applications based on the selected literature. 

(1) EMD and modified EMD methods

EMD, as a classical time-frequency analysis method, can decompose the original signal adaptively 

into a series of IMFs. It is a common application to reconstruct the signal after processing the IMFs. 

Dybała et al. [77] decomposed the vibration signal into IMFs by EMD and aggregated them into three 

combined mode functions (CMF). Fault identification was carried out with the use of spectrum analysis 

of empirically determined local amplitudes. Cai et al. [78] estimated 1.5-dimensional spectrum of the 

selected IMFs obtained by EMD and reconstructed the 1.5-dimensional spectrum of the raw signal for 

fault diagnosis. Li et al. [79] used an EMD method to identify the characteristic frequency of faults for a 

gripper cylinder. Abdelkader et al. [80] proposed a method to denoise IMFs obtained by EMD through 

the optimized threshold operation and to determine the fault location by envelope spectrum analysis.  

Since EMD itself has defects such as modal mixing, the improved EEMD, complementary ensemble 

empirical mode decomposition (CEEMD), complete ensemble empirical mode decomposition with 

adaptive noise (CEEMDAN), etc. are currently applied to signal processing widely. In order to alleviate 

the problem of mode mixing in EMD, Lei et al. [81] proposed the EEMD method to process the raw 

signal and recognise faults through spectrum analysis. To improve the accuracy of Hilbert-Huang 

Transform (HHT) filtering in rotating machinery for fault prognosis, Lei et al. [82] put forward an 

improved HHT filtering method based on EEMD and sensitive IMF. Li et al. [83] calculated the cross-

correlation coefficient between the original signal and the IMFs obtained via CEEMD. It forms a new 

signal and then calculated the characteristic frequencies to identify faults by Hilbert transform (HT) and 

fast Fourier transform (FFT). Chen et al. [84] combined EEMD with Hilbert square demodulation for 

early fault prognosis for gearboxes. Imaouchen et al. [85] utilised CEEMD to obtain IMFs, and 

introduced a frequency-weighted energy operator to extract amplitude and frequency modulation from 

selected IMFs. Karatoprak et al. [86] applied a median filter with variable window size to EMD to obtain 

an improved Median EMD method and distinguished faults by calculating characteristic frequencies. 

Yuan et al. [87] proposed a new dual-mode noise reconstructed EMD for weak feature extraction and 

analyse the IMFs for early fault detection. 

(2) VMD and EWT

To overcome the shortcomings of EMD, in addition to its improvement, time-frequency analysis 

methods such as VMD and EWT have been proposed, which are also applicable to weak feature 

extraction of the original signal. Jiang et al. [88] used EWT and Teager energy operator (TEO) to further 

enhance the fault correlation pulse, and envelope spectrum analysis was used to identify faults.  To 

overcome the shortcomings of HHT, Merainani et al. [89] applied EWT with HT for early fault prognosis. 

Lu et al. [90] utilised  a sparse-based EWT to filter the pre-processed the signal and HT to identify faults. 



Ma et al. [91] put forward an approach to predict the rolling bearing’s early faults based on improved 

VMD and TEO demodulation. Chegini et al. [92] decomposed vibration signals by an EWT method, then 

denoised the signals by an improved threshold function, and detected the early fault by using kurtosis 

parameters and envelope spectrum of the denoised signals. Wang et al. [93] combined a modified EWT 

using the cuckoo search algorithm with computational order tracking and singular value ratio spectrum 

to denoise the envelope signal. The denoised signal was eventually analysed for fault identification. Xu 

et al. [94] utilized VMD optimized by variable dimension chaotic pigeon-inspired optimization algorithm 

and the TEO for early fault prognosis. Zhao et al. [95] applied VMD and spectrum analysis for early fault 

prognosis of a wind turbine. Ding et al. [96] combined VMD algorithm using genetic mutation particle 

swarm optimisation (PSO) to improve the parameters with envelope spectrum analysis for early fault 

prognosis on rolling bearings. Wang et al. [97] proposed an early fault prognosis method based on 

parameter adaptive VMD using beetle antennae search and Hilbert demodulation. Zhang et al. [98] 

combined EWT with a two-layer sliding correlation Kurtosis algorithm to denoise the signal. The 

envelope spectrum was then used to determine the failure type. 

(3) Other time-frequency analysis methods

In addition to some of the common time-frequency analysis methods mentioned above, other 

methods are used for signal processing. For instance, Feng et al. [99] put forward an amplitude frequency 

joint demodulation method based on LMD for planetary gearbox’s fault prognosis. Based on the fixed 

cubic Hermite multiwavelets, Yuan et al. [100] used multiwavelets transform with the local spectral 

entropy minimisation rule and the squared spectrum to detect early fault. Zhao et al. [101] proposed a 

weighted SVD strategy for signal denoising and verified the validity of the method using envelope 

spectrum. Dybała [102] proposed a signal decomposition method based on amplitude level, which was 

used to decompose the signal to get the low amplitude component, and then the local amplitude 

determined by experience was used for spectrum analysis. Li et al. [103] proposed a multi-fault detection 

method based on a Bi-component sparse low-rank matrix separation, and employed Hilbert envelope 

spectrum to identify fault characteristic frequencies. Pang et al. [104] utilised enhanced SVD to denoise 

the optimal notch filter signal and recognised faults through envelope spectrum analysis. Chen et al. [105] 

introduced an adaptive chirp mode decomposition method, which used greedy algorithm to capture each 

signal component and extract the fast fluctuating intermediate frequency of rub impact rotor vibration 

signal. Based on Dempster-Shafer evidence theory, Xu et al. [106] integrated multiple time-frequency 

indexes to establish the objective function. After decomposing the reconstructed frequency band, the 

reconstructed frequency band with the largest objective function value was selected as the optimal 

resonant frequency band, and demodulated by envelope analysis. Yan et al. [107] used the morphological 

hat product operation to process the collected weak fault signal, introduced diagonal slice spectrum into 

morphological analysis to achieve noise suppression and feature enhancement, used the sensitive index 

of fault feature ratio to determine the optimal scale morphological filtering results, and finally identified 

faults via failure frequency. Deng et al. [108] proposed a bandwidth Fourier decomposition method, 

which used bandwidth optimization to improve spectrum decomposition. After pre-processing the 

original signal with recursive singular spectrum decomposition, Wang et al. [109] selected the most 

sensitive singular spectrum component by using the envelope spectrum peak index, and analysed the 



envelope spectrum of deconvolution signal to detect fault. Zheng et al. [110] proposed a bearing fault 

prognosis method based on low rank and group sparse decomposition of Hankel matrix for noise removal 

and envelope spectrum was performed for fault identification. Zhou et al. [111] came up with a method 

based on a combination of attenuated cosine dictionary and feature-sign search to extract fault feature 

frequencies. Jia et al. [112] designed a modified spectral kurtosis method based on maximum correlated 

kurtosis deconvolution (MCKD) applied to early fault prognosis. 

(4) Stochastic resonance

Nevertheless, the aforementioned methods also exhibit the drawback of possible elimination of 

useful information. Therefore, SR was developed to avoid such problems. Cao et al. [113] proposed a 

Fokker-Planck model with smoothly quadratic double well potential combined with power spectrum 

analysis in order to identify the weak flutter component in the processing signal. Hu et al. [114] applied 

a SR model to detect the weak frequency component signal representing the beginning of rub impact 

fault in a rotor system. Wang et al. [115] used the criterion of generalised multi-scale permutation entropy 

screening to select the signal as the input of the SR system optimised by PSO. Zhang et al. [116] proposed 

an approach based on the normalised scaling transform SR and Hilbert demodulation for early fault 

prognosis. Guo et al. [117] utilised multi-stage cascade stochastic resonance using the joint signal-to-

noise ratio (SNR) as the evaluation index and spectrum analysis for early fault prognosis. He et al. [118] 

proposed a new multi-scale noise tuning method, which transforms the multi-scale noise into 

approximate 1/F to achieve stochastic resonance at a fixed noise level. He et al. [119] realised stochastic 

resonance on each scale of time-frequency distribution, collected the output spectrum of stochastic 

resonance in all frequency ranges, and then generated stochastic resonance response. The validity of the 

method was confirmed by the power spectrum results. Leng et al. [120] developed a new rescaled 

frequency SR method to meet the requirement of small parameters. Dang et al. [121] selected the signal 

in view of permutation entropy to input into the Duffing oscillator SR and analysed the spectrum to 

identify faults. Li et al. [122] applied piecewise nonlinear potential and spectral analysis to perform early 

fault prognosis. Li et al. [123] combined the SNR, the correlation coefficient between the main 

components and the original signal, and the zero crossing rate to provide a comprehensive quantitative 

index for the adaptive stochastic resonance system. FFT+ Fourier transform (FT) discrete spectrum 

correction was used for the evaluation of the condition of bearings. Lei et al. [124] proposed an 

underdamped stochastic resonance method with steady-state matching for bearing early fault prognosis 

and the performance of the method was tested by spectral analysis. Yin et al. [125] adopted an adaptive 

SR method based on the state transition algorithm and spectral analysis for weak fault prognosis. 

(5) Modified stochastic resonance methods

Although the directions of SR improvement are described in the previous section, SR was often 

improved in multiple directions in practical applications. Wang et al. [126] proposed a new method 

named Adaptive Multiscale Noise Tuning SR optimized simultaneously by weighted power spectrum 

Kurtosis and artificial fish swarm algorithm and finally verified the performance of the method with 

spectral analysis. Ren et al. [127] applied the second-order underdamped continuous potential stochastic 

resonance method optimised by ant colony algorithm to the early fault prognosis of rolling bearings, and 

used FT to identify feature frequencies. Zhao et al. [128] developed a new method based on dual scale 



cascade adaptive stochastic resonance and spectrum analysis. He et al. [129] used an EMD-based 

multiscale noise tuning method, normalised scaling transform and Genetic Algorithm (GA) to optimise 

the SR system multilaterally and examined the output signal of the optimised SR system by spectral 

analysis. Xia et al. [130] designed an improved underdamped periodic SR method using GA to optimise 

parameters and identified faults by obtaining characteristic frequencies from the spectrum. Xia et al. [131] 

used an information graph method to process the original vibration signal, and combined the quantum 

genetic algorithm with the time domain zero-crossing index to optimise the underdamped well-width 

asymmetric bistable SR system. Han et al. [132] applied adaptive stochastic resonance with a quantum 

particle swarm optimisation algorithm (QPSO) to cascade a piecewise linear system to extract weak 

features of the system, and used the output frequency spectrum to implement early fault prognosis.  Li et 

al. [133] proposed multi-parameter constrained potential underdamped stochastic resonance with 

weighted ant colony algorithm to optimise the parameters, and the spectrum analysis was used to 

recognise early bearing failures. Lai et al. [134] applied the parameter adjustment SR in the standard 

underdamped tristable system combined with spectrum analysis to achieve early fault prognosis. Wang 

et al. [135] developed an adaptive piecewise hybrid stochastic resonance method with three-dimensional 

inverse positioning and least square method to optimising parameters for early fault prognosis. Lai et al. 

[136] overcame the small parameter limitation of SR by adjusting the scale and the damping ratio 

parameter, and used spectral analysis for fault detection. 

The applications regarding the combinations of single signal processing methods with model-based 

methods are specified in Table 1. A further comprehensive performance evaluation from six aspects 

regarding the reviewed papers (applied to all the tables in this paper): 

Capability 1: high sensitivity to early fault detection;  

Capability 2: ability to enhance fault features so as to effectively identify weak faults;  

Capability 3: ability to accurately identify the type or the location of the fault;  

Capability 4: ability to detect early faults in time or online;  

Capability 5: algorithm of simplicity or high efficiency;  

Capability 6: feasibility for strong noise environment.  

Due to the large number of papers in this section, articles that satisfy two or more capabilities are 

selected for display in Table 1. 
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Single signal processing and the model-based method for early fault prognosis: 
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2003 Rotor SR + spectrum analysis  √   √  [114] 

2006 Metal Cutting 
Re-scaling frequency SR + 

spectrum analysis 
 √    √ [120] 
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2013 
Rolling 

Bearing 

EMD + combined mode 

functions + spectrum analysis 
√ √ [77] 

2014 
Rolling 

Bearing 

CEEMD+ cross-correlation 

coefficient + Hilbert Transform 

(HT) + Fast Fourier Transform 

(FFT) 

√ √ [83] 

2015 
Rolling 

Bearing 

Adaptive multiscale noise 

tuning SR + spectrum analysis 
√ √ [126] 

2016 Gear 
EMD + 1.5-dimension 

spectrum 
√ √ [78] 

2017 
Gripper 

Cylinder 
EMD + spectrum analysis √ √ [79] 

2017 
Rolling 

Bearing 

CEEMD + frequency-weighted 

energy operator 
√ √ [85] 

2017 Gearbox EWT + HT √ √ √ [89] 

2017 
Rolling 

Bearing 

Underdamped SR + spectrum 

analysis 
√ √ [124] 

2017 
Rolling 

Bearing 

Cascaded piecewise-linear SR 

+ quantum particle swarm

optimization (QPSO) +

spectrum analysis 

√ √ [132] 

2018 
Rolling 

Bearing 

GA + underdamped periodic 

SR + spectrum analysis 
√ √ [130] 

2018 
Rolling 

Bearing 

Optimal notch filter + 

enhanced SVD + envelope 

spectrum 

√ √ [104] 

2018 

Rolling 

Bearing + 

Gearbox 

Bi-component sparse low-rank 

matrix separation + Hilbert 

envelope spectrum 

√ √ [103] 

2019 
Rolling 

Bearing 

Median EMD + spectrum 

analysis 
√ √ [86] 

2019 
Rolling 

Bearing 

Attenuated cosine dictionary + 

feature-sign search + spectrum 

analysis 

√ √ √ [111] 
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2019 
Rolling 

Bearing 

EWT + cuckoo search 

algorithm + computational 

order tracking + singular value 

ratio spectrum + envelope 

spectrum 

√ √ [93] 

2019 
Rolling 

Bearing 

Piecewise nonlinear SR + 

spectrum analysis 
√ √ √ [122] 

2019 
Centrifugal 

compressors 

Multiscale noise tuning + 

normalized scale transform SR 

+ spectrum analysis

√ √ [129] 

2020 
Rolling 

Bearing 

Beetle antennae search + VMD 

+ Hilbert demodulation
√ √ [97] 

2020 
Rolling 

Bearing 

Genetic mutation particle 

swarm optimisation + VMD + 

envelope spectrum analysis 

√ √ [96] 

2020 
Rolling 

Bearing 

EWT + two-layer sliding-

correlated Kurtosis + envelope 

spectrum 

√ √ √ [98] 

2020 
Rolling 

Bearing 

Generalized multiscale 

permutation entropy + PSO + 

SR + spectrum analysis 

√ √ [115] 

The number of published papers’ distribution by year is displayed in Fig. 4. Since 2017, there has been 

an explosion of research on early fault prognosis using signal processing methods with model-based 

methods. Due to the wide range of signal processing methods, there are still a great potential for further 

development. Also, many different spectral analysis methods have been used in the literature. In the 

future, more spectral analysis methods may be discovered to diagnose early failures based on the working 

mechanisms of equipment. Model-based methods have a lot of rooms for further development in handing 

complex environments. 



Fig. 4. Publications for the combination of single signal processing and model-based methods. 

4.1.2 Multiple signal processing and model-based methods 

The methods described in the previous sub-section all used a single signal processing method, but 

there are also a lot of research works employed multiple methods to be combined with model-based 

methods. The fact is because, although it is a matter of using one signal processing method to achieve 

good results, no a single method is perfect. Using multiple methods in combination can provide better 

results for later fault diagnosis by strengthening the strengths and avoiding the weaknesses. Li et al. [137] 

proposed a bandwidth based method to select the best envelope interpolation for EMD, and introduced 

adaptive multiscale morphological analysis to demodulate the constructed principal components. Wang 

et al. [138] designed adaptive parameter optimised VMD and singular kurtosis difference spectrum to 

process signals, and Hilbert envelope spectrum was adopted for fault recognition. Lu et al. [139] applied 

dual-tree wavelet transform and morphological component analysis to signal processing of early fault 

prognosis, and Hilbert transform was used to obtain fault frequencies. Chen et al. [140] used resonance-

based sparse signal decomposition and multiscale wavelet transform for signal processing and Hilbert 

demodulation for fault identification. Wang et al. [141] combined EEMD and Tuneable Q-factor Wavelet 

Transform (TQWT) for noise suppression and envelope demodulation was applied for fault recognition. 

Jiang et al. [142] used multiwavelet packet to improve EEMD and analyse the EEMD results to judge 

the fault. Jiang et al. [143] combined EMD with VMD method for noise reduction and adopted Hilbert 

envelope analysis for failure detection. Lei et al. [144] extracted additional fault feature information by 

HT, wavelet packet transform (WPT) and EMD. Lv et al. [145] utilised nonlocal mean denoising method 

combined with multivariate EMD to pre-process and analyse multivariate signals to extract fault features, 

and then used spectrum analysis to obtain characteristic frequencies for fault recognition. Sachan et al. 

[146] applied a zero frequency filter and discrete wavelet transform (DWT) for noise removal and

spectrum analysis to achieve fault recognition. 

In signal processing methods, noise suppression methods and feature enhancement methods could 

be used in combination. This allows both suppression of background noise and enhancement of useful 

information, which theoretically will make the signal features more obvious. After a modified EMD 

algorithm was used to denoise the bearing fault signal, Zhang et al. [147] applied MCKD to enhance the 

periodic impulse signal after denoising the bearing fault signal with a modified EMD algorithm, and 

finally performed fault identification by spectrum analysis. Wang et al. [148] combined EMD with SR 
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for signal processing and utilized power spectrum for fault identification in the early fault detection of 

bearings. He et al. [149] combined CEEMDAN with adaptive underdamped SR for noise reduction and 

feature enhancement, and recognized faults through spectral analysis. Lv et al. [150] performed EEMD 

on the signal followed by enhancement of the shock components using MCKD to output fault detection 

results from the envelope spectrum. Chen et al. [151] combined EEMD and adaptive SR with spectral 

analysis for gearbox early fault prognosis. The applications of the works are shown in Table 2. 

Table 2 

Multiple signal processing and model-based methods for early fault prognosis: 

Year 
Studied 

Object 
Proposed Methodology 

Performance 

Ref. 

C
a

p
a

b
ility  1

 

C
a

p
a

b
ility  2

 

C
a

p
a

b
ility  3

 

C
a

p
a

b
ility  4

 

C
a

p
a

b
ility  5

 

C
a

p
a

b
ility  6

 

2010 Gear 
EMD + wavelet packet transform (WPT) + 

HT 
√ [144] 

2013 multi-fault EEMD + multiwavelet packet + HHT √ [142] 

2014 
Rolling 

Bearing 
EEMD + TQWT + envelope demodulation √ [141] 

2015 
Rolling 

Bearing 
EMD + MCKD + spectrum analysis √ √ [147]

2015 Gearbox EEMD + ASR + spectrum analysis √ √ [151] 

2015 
Rotating 

Machine 
EEMD +MCKD + envelope spectrum √ √ [150] 

2016 
Rolling 

Bearing 

Nonlocal means + multivariate EMD + 

spectrum analysis 
√ [145] 

2017 
Rolling 

Bearing 

Bandwidth EMD + adaptive multiscale 

morphological analysis + demodulation 

analysis 

√ [137] 

2018 
Rolling 

Bearing 
EMD + VMD + Hilbert envelope analysis √ √ [143] 

2019 
Rolling 

Bearing 
CEEMDAN + AUSR + spectrum analysis √ [149] 

2019 Gearbox 

Adaptive parameter optimized VMD + 

singular kurtosis difference spectrum + 

Hilbert envelope spectrum 

√ √ [138] 

2019 
Rolling 

Bearing 

Dual-tree WT + morphological component 

analysis + Hilbert transform 
√ √ [139] 

2019 Rolling Resonance-based sparse signal √ √ [140] 
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a
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ility  3
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a
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a
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ility  4

 

C
a

p
a

b
ility  5

 

C
a

p
a

b
ility  6

 

Bearing decomposition + multiscale WT + Hilbert 

demodulation 

2020 
Rolling 

Bearing 
EMD + SR + power spectrum √ [148]

2020 
Rolling 

Bearing 

WT + Zero Frequency Filter + spectrum 

analysis 
√ [146]

The annual number of publications on this category of methods can be seen in Fig. 5. Currently, 

there are fewer studies using multiple signal processing methods to obtain more obvious features. 

However, it is feasible to combine several signal processing methods to complement each other to 

improve the prognostic accuracy. It also suggests that there is significant scope for research. 

Fig. 5. Publications for the combination of multiple signal processing and model-based methods. 

4.2 Combination of signal processing and data-driven methods 

4.2.1 Single signal processing and data-driven methods 

While the previous section mentioned the combinations of signal processing methods with model-

based methods, this section describes the applications of signal processing methods in combination with 

data-driven methods. Apart from the different fault identification methods used, the difference between 

the two lies in that the feature parameters, which include statistical features, nonlinear parameters, etc, 

need to be extracted as input to the data-driven methods. Entropy is an important nonlinear feature of 

time series that varies with the state of the system and is adopted as feature for early fault prognosis. 

Yang et al. [152] proposed a fault prognosis method based on EEMD, sample entropy and SVM. Aiming 

at the problem of weak early fault features of rolling bearings, Zheng et al. [153] proposed a method of 

fault feature extraction and fault pattern recognition based on VMD, permutation entropy and SVM. 

Gomez et al. [154] utilised EMD for signal processing to obtain the Shannon entropy index (SEI) and 

used a decision tree classifier to classify the resulting SEI to detect the early corrosion damage of truss-

type bridge. After the EEMD decomposition of the signal, Zhao et al. [155] used the multi-scale fuzzy 
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entropy as the input eigenvector of the SVM model. Deng et al. [156] decomposed the vibration signal 

into IMF by EMD and calculated the fuzzy information entropy of IMF as the eigenvector. Then, the 

parameters of the least squares support vector machine (LS-SVM) were optimized by improved PSO 

algorithm to construct the optimal LS-SVM classifier for fault classification. Liu et al. [157] used the 

improved EMD algorithm of quartic C2Hermite interpolation to decompose and reconstruct the original 

signal and then calculated the kurtosis and approximate entropy as the feature values which were used 

as the input of SVM for early fault prognosis. Xiao et al. [158] applied improved EMD to decompose 

the signal to get IMFs, and extracted the improved EMD energy entropy as the input of SVM for failure 

detection. 

As can be seen, SVM is chosen in the two examples given above as the fault identification method. 

SVM is a commonly used data-driven method in early fault prognosis due to its simple algorithm and 

certain robustness. Inturi et al. [159] used DWT to process the signal and selected features by a decision 

tree as the input of SVM. Wu et al. [160] proposed a SVM algorithm based on continuous wavelet 

transform (CWT) and classification tree kernels to identify bearing faults. In addition, there are many 

other intelligent identification methods for fault identification. For example, Cui et al. [161] denoised the 

vibration signal by wavelet and used the grey correlation method to locate the fault. Rai et al. [162] used 

EMD to extract fault features from bearing signals. Then, the extracted features are clustered based on 

K-medoids. Zhang et al. [163] utilised EEMD for feature extraction and backpropagation neural network

(BPNN) for fault identification. Table 3 depicts all the approaches mentioned above. 

Table 3 

The combination of single processing and data-driven methods: 

Year Studied Object Proposed Methodology 

Performance 

Ref. 

C
a

p
a

b
ility  1

 

C
a

p
a

b
ility  2

 

C
a

p
a

b
ility  3

 

C
a

p
a

b
ility  4

 

C
a

p
a

b
ility  5

 

C
a

p
a

b
ility  6

 

2016 Rolling Bearing WT + grey correlation method √ √ √ [161]

2017 transmission system Improved EMD + PSO-SVM √ [158]

2017 Rolling Bearing 
EMD + multiscale fuzzy entropy + 

SVM 
√ √ [155]

2017 Rolling Bearing EMD + k-medoids clustering √ [162]

2017 Rotor EEMD + BPNN √ [163]

2017 Rolling Bearing CWT + classification tree kernels SVM √ [160]

2018 Truss-type Bridge EMD + SEI + decision tree √ √ √ [154]

2018 Rolling Bearing EEMD + sample entropy + SVM √ [152]

2019 High-Speed Rails 
Improved EMD + approximate entropy 

+ SVM
√ [157]

2019 Rolling Bearing EMD+ fuzzy information entropy + √ [156]



Year Studied Object Proposed Methodology 

Performance 

Ref. 

C
a

p
a

b
ility  1

 

C
a

p
a
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C
a
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a
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ility  3

 

C
a

p
a

b
ility  4

 

C
a

p
a

b
ility  5

 

C
a

p
a

b
ility  6

 

PSO-LSSVM 

2019 Rolling Bearing VMD + permutation entropy + SVM √ √ [153]

2020 Gearbox DWT + SVM √ [159]

The annual number of publications in the selected literature can be shown in Fig. 6. There are many 

data-driven methods that can be used for fault identification, although at present there are still relatively 

few applications in the field of early faults and only the more classical methods are often used. Future 

developments can be expected. 

Fig. 6. Publications for the combination of single signal processing and data-driven methods. 

4.2.2 Multiple signal processing methods and data-driven methods 

This section focuses on the application of using a combination of multiple signal processing 

methods and data-driven methods. Since the difference between multiple noise suppression methods and 

single noise suppression methods has been mentioned previously, it will not be repeated here. Bin et al. 

[164] decomposed the signal into a series of narrow bandwidths by using WPT denoising method, then

obtained the IMF of corresponding band characteristics by using EMD, and used BPNN for fault 

identification. Wang et al. [165] extracted early fault features using WPT following the enhancement of 

fault information by means of SR for input into SVM for diagnosis.  Tabrizi et al. [166] used WPT to 

filter the collected noise signal, and then used EEMD technology to extract the information feature vector 

as the input of SVM. Gai et al. [167] used EMD and SVD in signal processing, and used fuzzy neural 

network for classification. Dovedi et al. [168] combined EMD and TQWT to process the signal, and used 

SVM to recognize the state.  

Table 4 summarises the applications in the selected papers mentioned above. It can be found that 

there are fewer applications in this section, presumably because the combinations of data-driven and 

noise-suppression methods are more focused on feature extraction in signal processing than the 

combinations of model-based and noise-suppression methods. Moreover, multiple noise suppression 
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methods, whether combined with model-based methods or data-driven methods, have a small number of 

applications and have great potential for investigation. 

Table 4 

The combination of multiple noise suppression and data-driven methods: 

Year Studied Object Proposed Methodology 

Performance 

Ref. 
C

a
p

a
b

ility  1
 

C
a

p
a

b
ility  2

 

C
a

p
a

b
ility  3

 

C
a

p
a

b
ility  4

 

C
a

p
a

b
ility  5

 

C
a

p
a

b
ility  6

 

2012 Rotor WPT + EMD + BPNN √ √ [164] 

2015 aeroengine rotor system SR + WPT + SVM √ √ [165] 

2015 Rolling Bearing WPT + EEMD + SVM √ √ [166]

2019 Rolling Bearing EMD+SVD+ fuzzy neural network √ √ [167]

2020 Rolling Bearing EMD + TQWT + SVM √ [168]

4.3 Deep learning algorithms 

In recent years, the application of the deep learning method in early fault prognosis has been 

developed rapidly due to its adaptive property for feature extraction and end-to-end characteristics. Mao 

et al. [169] combined SVD, EMD and kurtosis in order to determine the starting point of early faults, and 

hired stacked denoising autoencoder (SDAE) to extract healthy and early fault features, which were input 

to the training support vector data description (SVDD) for anomaly detection. Hu et al. [170] utilised the 

optimal EWT to decompose the original signal and employed CNN to extract sensitive features to make 

FCM recognise faults. Luo et al. [171] trained the model by combining Sparse autoencoder (SAE) with 

BPNN, and employed dynamic characteristic similarity to construct an indicator for fault monitoring. 

Mao et al. [172] adopted SDAE to extract deep features which are fed into safe semi-supervised SVM 

(S4VM) for anomaly detection. Wang et al. [173] directly adopted the DBN algorithm that adopted QPSO 

to determine the hidden layer structure and learning rate to extract features as input of SVM.  

In addition to its own powerful feature extraction capabilities, deep learning is also a data-driven 

approach that allows for direct classification. Liang et al. [174] presented a novel approach based on WT 

and CNN to complete the fault detection of rotating machinery. Yang et al. [175] pre-processed the raw 

signal through VMD optimised by GA as the input of CNN for early fault prognosis. Shao et al. [176] 

used the complex WPT energy entropy of the signal as an indicator to train the enhanced deep gated 

recurrent unit (GRU) for early fault prognosis.  

Furthermore, there are cases that deep learning is applied for feature extraction and fault 

identification. Roberto et al. [177] input the FFT data into the predictive maintenance model with CNN 

to diagnose faults in rotating machinery. Yang et al. [178] designed a sliding scale resampling strategy to 

construct a balanced sample set, and constructed an SAE with multi-particle noise addition model to 

identify the type and severity of failures. Zhang et al. [179] input multi-scale signals into multiscale CNN 

model through multiscale data processing for noise reduction and feature extraction and integrated GRU 



network with attention mechanism into the fully-connected layer for prediction.  Li et al. [180] devised 

a novel approach based on dilated CNN combined with spatial dropout to solve the problem that CNN 

will cause feature loss, which is conducive to early fault prognosis.  

Transfer learning is an emerging method in the field of fault diagnosis, which can solve the problem 

of lack of data. Many scholars combine deep learning and transfer learning to construct a deep transfer 

learning model for early fault prognosis. Mao et al. [181] performed state evaluation of the source signal 

using HHT and SVDD, and then extracted the common features of the source and target signals through 

the deep dual temporal domain adaptation (DTDA) model, which was trained for online monitoring. Mao 

et al. [182] input a set of three-channel data containing time, frequency and time-frequency information 

into a pre-trained VGG-16 deep CNN to construct a transfer model, which extracts the features of the 

auxiliary bearing of the health state and inputs the features into SVDD for training fault classification. 

Shi et al. [183] introduced deep autoencoder network (DCAE) to extract the features of the two data to 

obtain the common features, which were then used to train temporal CNN for fault monitoring. Mao et 

al. [184] used a deep autoencoder model with domain adaption to extract common features of bearings 

and performed state evaluation through robust deep autoencoder (RDA) to construct a detection model 

by training SVM.  

All papers adopting deep learning algorithms are represented in Table 5. 

Table 5 

Applications of deep learning algorithms in early fault prognosis: 

Year Studied Object Proposed Methodology 

Performance 

Ref. 

C
a

p
a

b
ility  1

 

C
a

p
a

b
ility  2

 

C
a

p
a

b
ility  3

 

C
a

p
a

b
ility  4

 

C
a

p
a

b
ility  5

 

C
a

p
a

b
ility  6

 

2019 Rolling Bearing SVD + EMD + SDAE + SVDD √   √   [169] 

2019 Machine Tools SAE + BPNN  √     [171] 

2019 Transformer QPSO + DBN + SVM   √    [173] 

2020 Bearing VGG-16 deep CNN + SVDD    √   [182] 

2020 Bearing Complex WPT + GRU √  √    [176] 

2020 Bearing 
Deep autoencoder model with domain 

adaption + RDA + SVM 
  √ √   [184] 

2020 Bearing SDAE + S4VM  √  √ √  [172] 

2020 Bearing SAE with multi-particle noise addition  √     [178] 

2020 
hydraulic pipe clamps in 

aero-engines 
GA-VMD + CNN  √ √    [175] 

2020 Rolling Bearing + Gearbox WT + CNN   √   √ [174] 

2021 Rotating machine 
FFT + predictive maintenance model 

with CNN 
  √    [177] 

2021 Bearing HHT + SVDD + DTDA √ √  √   [181] 
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b
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b
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2021 Rolling Bearing DCAE + temporal CNN √ √ [183]

2021 Rolling Bearing Optimal EWT + CNN + FCM √ [170]

2021 Rolling Bearing Multiscale CNN + GRU Network √ √ [179]

2021 Gear CNN + Spatial Dropout √ [180]

As shown in Fig. 7 below, deep learning algorithms have shown a clear trend of increase. In the 

application in the early fault area, there is a higher volume of literature using this method. Up to the first 

half of 2021 the number is nearly at the same level as in 2020. This shows that deep learning algorithms 

exhibit a great potential for early fault prognosis and represent a popular research direction at present. 

Fig. 7. Publication Distribution with the application of deep learning algorithm in early fault prognosis 

4.4 Other methods 

There are also some applications of early fault prognosis methods that do not fall into the three 

categories above, so they are presented separately in this section. In addition to the model-based and 

data-driven methods, there is another application that simply discriminates early faults from changes in 

statistical indicators which will exceed a certain threshold value if the system fails. When judging when 

an early fault occurs, an index can be set as an early warning criterion to replace or be implemented with 

fault identification methods mentioned above [172]. Usually, the fault type or location at the moment can 

be recognized after determining the fault at a certain moment [169]. Parey et al. [185] proposed a method 

for solving EMD boundary distortion with a variable cosine window and followed the variation in 

indicators such as kurtosis to judge bearing failure. Aiming at the problem that the coupling of multiple 

faults will affect the diagnosis accuracy, Fan et al. [186] utilised discrete wavelet transform to extract 

statistical parameters which were used to diagnose and locate gear damage. Chegini et al. [187] employed 

the change in envelope harmonic noise ratio to identify a moment of bearing failure after the fast 

ensemble empirical mode decomposition of the raw signal selected the most sensitive IMF. The 

references are shown in Table 6 below. 
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Table 6 

Applications of other methods in early fault prognosis: 

Year Studied Object Proposed Methodology 

Performance 

Ref. 

C
a

p
a

b
ility  1

 

C
a

p
a

b
ility  2

 

C
a

p
a

b
ility  3

 

C
a

p
a

b
ility  4

 

C
a

p
a

b
ility  5

 

C
a

p
a

b
ility  6

 

2012 Gear EMD + Cosine Window-based Method √ √ [185] 

2014 Gear DWT √ √ √ [186] 

2020 Rolling Bearing fast EEMD √ √ [187] 

5. Analysis of Reviewed Papers

5.1 Statistical Results 

Fig. 8 shows the proportion of application objects of early fault prognosis methods in selected 

journal papers. It can be seen that so far, rolling bearings are still the most concerned and application 

area for the methods. 

Fig. 8. Proportion of application objects 

Statistical analysis was also made on the methods reviewed in this paper. We have summarized that 

single methods used in some papers have suffered from the problem of difficulty in extracting early fault-

related features, and therefore combined methods have been used to achieve better results for this 

problem. Apart from the deep learning-based methods for early fault prognosis, other methods in the 

papers have been divided into two parts, i.e., feature extraction and fault identification.  

As shown in Fig. 9, most of the papers adopted signal processing methods from the perspective of 

feature extraction, i.e., 71 out of them selected the time-frequency analysis. The remaining papers 

selected deep learning to extract deep features, all of which are from recent years. It should be mentioned 
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that 5 papers of them utilised deep learning with signal processing methods. Specifically, EMD accounts 

for the largest proportion of the feature extraction methods, with 37 papers. This is closely followed by 

the SR method, which occupies 28 papers. 17 papers employed WT, often in conjunction with other 

methods. EWT and VMD were used in similar proportions, with SVD and MCKD accounting for a 

smaller proportion. Although signal processing methods have many applications, deep learning also has 

an emerging growth. It is mainly because although traditional methods can detect early fault effectively, 

there is still a strong demand to develop new methods to cope with increasingly complicated systems and 

working conditions, and deep learning is just the one as such a novel and effective method. 

Fig. 9. Proportion of feature extraction methods adopted in selected papers 

For the fault identification methods, as shown in Fig. 10 below, the vast majority opt for a model-

based approach, with 75 papers, although it is only applicable to rotating machinery. Of the remaining 

papers, 3 chose to use statistical parameters to determine the state of the bearing. SVM and modified 

SVM account for nearly half of the papers choosing data-driven methods, i.e., 17 papers. It is closely 

followed by the deep learning algorithm, i.e., 9 papers. The next more popularly used method is ANN, 

including 4 papers. Of the remaining papers, 2 chose clustering algorithms and 2 used other methods. In 

the data-driven method, ANN has the advantages of nonlinearity, self-learning, adaptability and 

association ability, but it also demonstrates a slow convergence speed and is difficult to determine the 

number of nodes. In contrast, SVM has a better generalisation ability and a faster training convergence 

speed, which makes it widely used in mechanical fault prognosis. Nowadays, data-driven early fault 

prognosis methods have increasingly become the research interests of many scholars, in which deep 

learning is a popular one. Transfer learning has become a further research direction for early fault 

prognosis. It is worth noting that there are 4 papers construct deep transfer learning model. 
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Fig. 10. Proportion of fault identification methods adopted in selected papers 

From the above statistics, it appears that model-based methods are the most frequently studied due 

to their maturity and applicability to real industrial situations. Nevertheless, given the wide range of 

faults available and the fact that how to detect early faults in time is not thoroughly explored, there is 

still an improvement scope for data-driven methods. In data-driven methods, most of the shallow 

classification models have centred on SVMs. More research on early faults has been conducted on feature 

extraction, where various signal processing methods were employed to capture weak features. Compared 

to these shallow models, deep learning has a considerable advantage in the study of early faults owing to 

its ability to extract deep fault features, and there have been substantial achievements in recent years. As 

the portfolio of methods for early fault prognosis is very diverse, there is still plenty of scope for in-depth 

research. Therefore, the advantages and disadvantages of some of the methods currently commonly used 

in the field of early failure are summarised in Table 9 for reference. 

Table 9 

Pros and Cons of the reviewed methods 

Methods Advantages Disadvantages 

Signal Processing 

WT Simple and fast 
Difficult to select mother 

wavelet 

EMD Adaptability 
Mode mixing and 

endpoint effect 

VMD 

High resolution; has better 

anti-mode mixing and anti-

noise capabilities 

Need to determine the 

penalty factor and the 

number of sub modes 

before operation 

EWT 

High operation efficiency; 

effectively suppress mode 

mixing and endpoint effect 

Difficult to determine the 

parameters; not suitable 

for complex faults 

model-based
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ANN
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deep learning
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others
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SR 

Not remove useful 

information while 

suppressing noise 

Difficult to meet the 

requirements of SR in 

engineering practice 

Fault Identification 

spectrum 

analysis 

Accurate extraction of fault 

characteristic frequency 

Application scope is 

limited 

ANN 

Nonlinearity, self-learning, 

adaptability and association 

ability 

Slow convergence speed, 

easy to get stuck at local 

optimum and difficult to 

determine the number of 

nodes 

SVM 

Good generalization ability 

and overfitting problem is 

not as much 

as other methods. 

Sensitive to missing data; 

long training time for 

large datasets. 

Deep Learning 
Powerful feature extraction 

capabilities 

Not adapt to changes in 

working conditions 

Furthermore, some new methods such as graph neural networks have been attempted to be applied 

in the field of fault diagnosis, but no specific research has been conducted on early faults, which is also 

a direction worth developing [188]. Li et al. [189] proposed a rolling bearing fault diagnosis model based 

on horizontal visible graph and graph neural network. Yu et al. [190] presented a novel fast deep graph 

convolutional network for detecting wind turbine gearbox faults. 

As a final addition, the methods mentioned above are not only suitable for vibration signals, but 

also suitable for other signals [191-194]. For instance, Chen et al. [193] calculated the Kullback-Leibler 

divergence residuals as the input of a CNN to extract fault features after applying the canonical 

correlation analysis to the current signal.  

5.2 Discussions on further development 

In this paper, the application of vibration signal analysis for early fault prognosis is reviewed, while 

there might be some inevitable omissions. To sum up, from the statistical analysis of the selected 

literatures, it can be concluded that in practical environment, due to the difficulty of obtaining high-

quality fault data, model-based fault prognosis methods are less effective. Instead, data-driven methods 

are useful because of the high feasibility to handle complex situations like compound faults occurrence. 

To better promote the development of early fault prognosis, future work might be carried on from the 

following aspects: 

(1) As in the early fault stage, data samples might have the problems of asymmetric distributing

and insufficiency. It can be further explored in the direction of unsupervised learning, semi-supervised 

learning and data generation algorithms in the future. Generative Adversarial Networks, which can 

resolve the challenging issue of limited data available, is attracting more researchers’ attentions. 

(2) Since the features of the early fault signal are quite weak, feature extraction for early faults



will continue being a significant research gap to overcome. Deep learning methods will be further 

explored to accelerate early fault feature extraction owing to their end-to-end characteristics.  

(3) Furthermore, for catering with the different operation situations and complex industry

environments, deep transfer learning may hold a great promise to be a better solution on early fault 

prognosis in the coming future. 

6. Conclusion

Early fault prognosis is crucial to support PHM for industrial systems. It can improve the reliability

of the systems, and reduce the risk of operation crash and catastrophic failures significantly. In recent 

years, increasing research has been conducted in this field but a timely update is lacking. To bridge the 

gap, in this paper, the early fault prognosis methods based on vibration signal are systematically reviewed 

from the aspects of feature extraction and fault identification. Furthermore, the applications of the 

methods are analysed in detail. Finally, through the statistical analysis of the literature, some important 

development prospects of this field are pinpointed, providing references and guidelines for researchers 

and practitioners to further develop and apply the relevant research. It can be found that the model-based 

approach is one of the widely used approaches in industry. Nowadays, with the rapid development of the 

machine learning algorithms, the data-based approach is becoming the main direction in the future. The 

same trend goes for feature extraction approaches. Thus, the powerful capabilities of machine learning 

algorithms, particularly deep learning algorithms, clearly hold great potentials for the future. 
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