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Abstract:  

To be vigilant is highly required for traffic controllers in transportation fields, such as air traffic 

management, vessel traffic service, and railway management, as they need to monitor traffic 

conditions and notice any potential hazards. Hence, emerging studies have been conducted to 

develop an objective and non-intrusive approach to assessing vigilance levels and generate 

warnings if needed. This study aims to investigate the effects of impaired vigilance on human 

performance via non-intrusive data analysis, namely spatial and temporal gaze pattern analytics, 

and develop an objective model for vigilance assessment accordingly. A novel four-phase 

framework, including vigilance test design, non-intrusive data collection, spatial and temporal 

gaze pattern analytics, and a shallow neural network-based model was proposed to achieve this 

aim. Meanwhile, an illustrative experiment in the maritime industry was conducted to verify the 

proposed method. The spatial and temporal gaze patterns analytics revealed that low vigilance 

levels impacted comprehension time but not perception time, with longer fixations duration but 

stable time-to-the-nearest-fixation under a low vigilance level. It is found that even a person with 

impaired vigilance can quickly notice abnormal events. The effectiveness and empirical 

implications of this model can help traffic controllers avoid fatigue-induced vigilance reduction. 

In addition, it provides evidence, references, and solutions for designing human-computer 

interfaces to reduce human errors caused by low vigilance.  

 

Keywords: Eye-tracking; gaze pattern; fatigue; maritime; human performance, shallow neural 

network.  
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1. Introduction: 

The term vigilance normally is used to represent the sustained attention over a lengthy period 

of cognitive work [1]. With the increased adoption of automation technology in the workplaces, 

the role of an operator tends to change from a controller to a supervisor [2-4], whose sustained 

attention are critical in detecting potential threats and coping with the possible failures of the 

automated systems [5, 6]. Accordingly, the operations tend to change from physical tasks to 

prolonged cognitive tasks, such as decision-making and monitoring [7, 8]. These prolonged 

cognitive tasks would cause impaired vigilance, which induces the increased response time and a 

high probability of human errors [9-11]. An operator with impaired vigilance may fail to notice 

the warnings and miss a potentially unsafe situation developing. Statistics of Europe showed that 

more than 10% of traffic accidents were caused by vigilance decrement [12].  In 1993, an American 

cargo plane crashed and burned due to the pilots’ impaired vigilant situational awareness of the 

airplane. The accident caused huge economic loss, it was luck that all crew members survived.  

Owing to the huge consequence of impaired vigilance, extensive studies have been conducted 

to assess vigilance levels, improve vigilance, and design interventions to recovery from low 

vigilance states [13]. Among them, assessing the vigilance levels is the first step and one of the 

most important steps. Vigilance assessments serve as reactive strategies that alert operators once 

vigilance decrement occurs. Classically, vigilance can be objectively measured using 

physiological responses [14], such as brain dynamics, blood flow velocity, and eye movements, 

which can provide relatively reliable assessments for detecting the subtle changes in vigilance [13-

16]. For example, brain dynamics data from 2-hour virtual reality-based simulated driving tasks 

were used to build a vigilance model [17]. The eye-tracking data from 40-minutes air traffic control 

tasks were utilized to assess the vigilance levels [18].  
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This study proposes to use the eye-tracking technique to analyze the vigilance stages [19, 20], 

as it can collect non-intrusive data. This idea is supported by decades of scientific evidence 

indicated that there could be a link between mental activities and gaze movements [21-23]. With 

advanced infrared technology, gaze movements can be remotely captured in a non-intrusive 

manner [24]. In addition, as an important information channel, vision presents most of the human-

computer interactions in conducting cognitive tasks, especially in supervisory operations [25]. 

Previous studies found that the fixation duration is correlated with comprehension efficiency and 

the capacity of cognitive sources [26]. Saccades are required during the process of target search. 

In the authors’ previous study, we have confirmed that the relations between saccade peak velocity 

and the reaction time are affected by cognitive states [27]. Besides, it has long been found that 

there are close relations between vigilance stages and gaze patterns. For example, Zheng and Lu 

[17] proposed an eye-tracking-based indicator of vigilance, called as PERCLOS, by calculating 

the duration of blinks, fixations, and saccades. Hence, it is expected that gaze movements analytics 

can be used to assess vigilance stages. 

Nevertheless, to achieve the gaze patterns-based assessment of vigilance, several challenges 

have to be addressed. First, gaze patterns would be significantly affected by task types [28]. The 

gaze patterns of monitoring would be different from gaze patterns of control operations. 

Nevertheless, there are limited studies that analyzed gaze movement in vigilance tests. Hence, it 

is necessary to design a general and basic task for fully understanding the general gaze patterns 

across different vigilance stages. Second, the complex context, such as time-on-task and fatigue 

would affect gaze movements [13, 29], and thusly should be considered during data collection. A 

systematic way to collect data should be proposed. Third, it is hard to figure out the suitable 

indicators of vigilance from gaze patterns, as they have close relations with the decision-making 



5 
 

process. In other words, it is difficult to determine whether the specific gaze patterns are caused 

by impaired vigilance or a special decision-making process. Finally, the relations between 

vigilance stages and gaze movements are dynamic and complex [30], the traditional linear 

regression is not suitable for dealing with gaze movements. Hence, the recently widely applied 

data mining and machine learning methods may be applied [31, 32]. 

To address these challenges, a four-phase framework is proposed, including vigilance test 

design, non-intrusive data collection, spatial and temporal gaze movement analytics, and artificial 

intelligence (AI)-based model for vigilance assessment. Vigilance stages normally have great 

effects on hazard identification [13]. To simulate the hard identification operations, we designed 

two tasks, namely simple response tasks and multichoice tasks. Both of them require subjects to 

notice a sudden change displayed in the interface and make a corresponding response. The 

response time, which is one of the most widely used vigilance labels [33], is collected as the 

performance of vigilance. In the second phase, a general structure for collecting behavior data, 

context data, gaze movement data is proposed. To well understanding how vigilance stages impact 

the cognitive process of human performance, a spatial and temporal gaze pattern analytic method 

is proposed in the third phase. Finally, a shallow neural network is adopted to establish a vigilance 

model.  

An experiment in vessel traffic service operations was conducted to demonstrate and verify the 

proposed framework and test the following hypotheses: (1) H1: Vigilance stages has significant 

effects on gaze patterns; (2) H2: The task complexity and fatigue level have interaction effects on 

gaze patterns; (3) H3: the gaze patterns can be used to assess vigilance. The following sections are 

structured as follows. The state-of-the-art literature is reviewed in Section 2. Section 3 describes 

the proposed framework. Section 4 presents the case study and results and is followed by 
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discussions in Section 5. The contributions, limitations, and future works are concluded in Section 

6.  

2. Literature Review 

2.1 Vigilance Assessment 

Vigilance has a similar meaning to watchfulness, it is a kind of state or quality of being vigilant. 

Keeping vigilant is greatly important in safety-security industries, such as air traffic management, 

vessel traffic service, and nuclear power plant [13]. Hence, several studies have been conducted to 

assess vigilance and tried to alert operators with low vigilance. Historically, vigilance assessment 

was conducted via measuring task performance, such as lane departure and local error rates [17, 

34]. In lab-based experiments, subjects are normally asked to the vigilance tests, such as the 

psychomotor vigilance task and Mackworth Clock test, which can induce impaired vigilance and 

the collected response is the measurement of vigilance states [35].  

Recently, as the wearable devices for collecting psychological data matured, much of the related 

research was geared toward bio signal-based vigilance assessment [13]. Classically, the vigilance 

stages are described in terms of variations in our psychophysiological data, such as brain dynamics, 

eye movements, and heart rate [36-38]. Among them, brain dynamics have received the most 

research attention. A study predicted vigilance stages by using the 256-channel 

electroencephalogram (EEG) functional connectivity metrics [36], and the different features 

extracted from EEG were tested. Besides multi-channel-based assessment, recent studies tried to 

assess vigilance using EEG data collected from two channels or a single channel [39]. A recent 

study proposed two EEG-channel configurations, which can classify vigilance changes of ATCOs’ 

vigilance [35]. Although the EEG-based approach seems can accurately estimate the vigilance 



7 
 

level, it is not currently suitable for practical applications owing to the uncomfortableness of 

wearing an EEG device.  

Though some studies have tried to use gaze movements to assess vigilance, none of them has 

deeply investigated the gaze patterns along with the decision-making under the states of high or 

low vigilance. 

2.2 Gaze patterns and cognitive states 

The eye-tracking technique normally captures two events, including fixations and saccades [40]. 

Fixations mean maintaining gazes on a location with limited ranges and low gaze velocity. A 

saccade is a quick movement from one fixation to another with a high gaze velocity [41, 42]. 

Movements of the eyeballs are the primary way to direct attention [40, 43]. Reading and 

comprehension usually occur during fixations [44]. It has long been found that gaze movement 

data can provide objective and reliable indicators for cognitive states [45, 46]. Several parameters 

would be generated from the two basic events, such as the saccadic speed [46], the number of 

fixations [12], the saccade rate, the peak saccade velocity, the amplitude and duration of saccades 

[47], and the latency [48]. Besides, by considering the dynamic or static aggregations of fixations 

and saccades, some parameters are generated, such as fixation sequences [49] and heat maps [34]. 

 A number of studies have been conducted to investigate the correlations between gaze 

movements parameters and cognitive states, such as fatigue, workload, vigilance, and situation 

awareness [49-52]. For example, accumulated fatigue will decrease the saccadic speed, the peak 

saccade velocity, and the amplitude of saccades [48, 53] but increase the saccade duration [47]. In 

addition, gaze spatial distribution can be used to monitor or assess the inattention level of users. 

Normally the optimal variations in eye fixation movement depend on the research problem [54].  
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3. AI-enabled non-intrusive vigilance assessment 

According to the literature review presented in Section 2, gaze patterns analytics may reveal 

the cognitive states of human beings and is expected to be used for vigilance assessment. Hence, 

a general framework with four phases is proposed to assess vigilance based on gaze patterns. The 

overall architecture of the proposed framework is presented in Figure 1. Four phases are involved 

in it: the vigilance test, data collection, data analysis, and AI-based model. The user interfaces for 

phase 1 and 2 includes a Tobii X3-120 with a sampling frequency of 120 Hz and a computer for 

displaying the vigilance test. A data management system was developed to collect and keep eye-

tracking data, human behaviors, and other related information. The four modules are discussed in 

detail as follows. 

 
Figure 1: The vigilance assessment system framework  

3.1 Vigilance test design 

Though the gaze patterns reveal a part of the mental process, the complex and dynamic 

interactions among the mental process are still hard to be analyzed. Since the mental process may 
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be fleeting, the perception of the stimulus and comprehension may occur simultaneously. Even the 

advanced eye-tracking technique cannot clearly distinguish them. To address this problem, we 

designed two tasks with different task complexities, namely a simple reaction time test and a multi-

choice reaction time test. For the simple reaction time test, participants are asked to press the J key 

whenever an orange circle appeared. The participant is only required to acknowledge the presence 

of the visual cue. The location of the orange circle is randomized, but it is always either at one of 

the pre-defined eight locations, as shown in Figure 2. The locations are chosen to be as far away 

as possible and have the same distance to the center dot. For the multi-choice reaction time test, 

participants should press the J key when vowel letters (A, I, U, E, O) appear and press the F key 

when consonant letters (K, L, T, V, X) appear. Similar to the first test, the locations of the vowel 

letters and consonant letters are randomized. In the easy tasks, only the perception of stimulus and 

actions are required. In complex tasks, the whole mental process, including the perception of 

stimulus, comprehension, and actions is required. 

The two reaction time tests were designed with OpenSesame, a widely utilized program to 

create experiments for psychology, neuroscience, and experimental economics. This task was 

similar to most of the traditional and classic reaction time tests [27]. The differences lie in the 

characteristics and location of the target cue. Roman alphabets and multiple choices were used in 

this experiment, as they have higher complexity and can force subjects to fixate on the visual cues. 

To induce saccades, the locations of the visual cues vary in each trail. Human performance was 

assessed in terms of the percentage of correct signals detected and reaction time. These variables 

were averaged every 120 trials. 
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Figure 2: The eight predefined locations and the center dot 

3.2 Non-intrusive data collection 

Data are collected from several sources, namely eye tracker, questionnaire, OpenSesame, and 

experiment notes, as shown in Figure 3. The raw data of the eye tracker include timestamps (t), 

gaze locations (x, y), and gaze velocities. In this study, the gaze locations (x, y) generated by Tobii 

X3-120 are measured in pixels and transferred into millimeters. The velocity threshold 

identification algorithm (I-VT) [55] was used to extract fixations and saccades from the raw data. 

The fixation is a point where one focuses on and precedes its detailed information. The fixation is 

aggregated by many consecutive gaze points located in a specified area [56]. 

The questionnaire collects demographic data, such as name, age, gender, experience, and 

fatigue level. The Samn-Perelli Fatigue Scale [57, 58] was used to measure fatigue level. It uses 

the 7-point Likert scale, where “1” represents “fully alert, wide awake,” and “7” denotes 

“completely exhausted, unable to function effectively.” 

The vigilance performance, namely response time and hit rate is collected by OpenSesame. The 

reaction time (RT) measures the interval time between the appearance of a stimulus and the 

response of participants on a button [59]. It is a widely used index of psychomotor vigilance 

performance [60, 61]. Besides the reaction time, the hit rate is commonly used to assess vigilance, 

too [18, 38]. The hit rate refers to the percentage of correct signals detected. Other context 

information, such as time-on-task is recorded in experiment notes by experts.  
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Figure 3: The diagram of data collection and analysis 

3.2 Spatial and temporal gaze pattern analytics 

The gaze movements during the task were presented in Figure 4. The fixation that occurs at the 

appearance of the target is named F0, and the fixation that locates nearest the target is named F1. 

Several spatial and temporal parameters are generated based on the two fixations. For the temporal 

parameters, the time to F1(TF1) and F1 duration (DF1) are extracted. As shown in Figure 4, TF1 

means the time elapsed from the appearance of the target to the fixation that locates nearest the 

target (F1). As shown in Figure 5, for the spatial parameters, the distance between F0 and target 

(DTF0) and distance between F1 and target (DTF1) are calculated based on the following equations: 

𝐷 = #(𝑥& − 𝑥!)" + (𝑦& − 𝑦!)"
!  (1) 

(𝑥! , 𝑦!) refer to the position of the target which is measured in millimeters. 
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Figure 4: Temporal analysis of gaze movements in reaction time test 

 
Figure 5: Spatial analysis of gaze movements in reaction time test 

Also, we proposed to consider the number of valid fixations. The valid fixations were defined 

as the ones that were located near targets. Depending on the nature of the task, it is normally 

recommended that the dispersion of fixations should be a radius of 0.25° to 0.5° [62, 63]. For 

stimuli that contain mostly pictures, Tobii Technology [55] recommends a fixation radius of 50 

pixels. Considering the recommendations and the experiment setup mentioned in Section 2.3, the 

radius of fixations is defined as 40 pixels. Hence, fixations that are located in 40 pixels of targets 

are defined as valid fixations. The ratio of valid fixations (RVF) is the number of valid fixations 

divided by the number of all fixations that occur between F0 and F1.  

3.3 Shallow artificial neural network-based vigilance model 

In this section, we develop a deep learning method to assess human performance based on gaze 

patterns. The input and output variables are summarized in Figure 10. The input variables include 

indicators that are extracted from the spatial and temporal gaze pattern analytics, namely the time 
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to F1(TF1), F1 duration (DF1), the distance between F0 and target (DTF0), the distance between 

F1 and target (DTF1), and the ratio of valid fixations (RVF). The output variable is the response 

time, as shown in Figure 10.  

Considering the great individual difference, a subject-dependent model was developed with a 

shallow artificial neural network (SANN). It has a layered structure and a set of interconnected 

nodes, as presented in Figure 11. The SANN has been widely used in recognition, classification, 

and prediction. Comparing with the deep artificial neural network, it can save computational time 

and improve efficiency. In this study, the quantitative model is developed with MATLAB and 

Deep Learning Toolbox in MATLAB 2019b. Several steps are conducted to process the data: 

1. Normalization: Scale inputs and targets into the range [0,1] 

2. Data division: Divide data into three parts, training (70%), validation (15%), and testing 

(15%). 

3. Optimization: Update the weights and bias according to the training loss. 

4. Validation: Stop training when the validation loss has been relatively low. 

5. Test: Test the trained model with a testing dataset. 

To guarantee the generalization of our model, two different data sets, namely the training and 

validation set are utilized to determine the stop point and avoid overfitting.  

 

Figure 10: The process of quantitative model development 
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The 5-fold cross-validation was selected to calculate the performance of the predictions. Cross-

validation splits the training sets into several sets. One set of the data is utilized to test the 

performance of the model trained by other remain data datasets. The 5-fold cross-validation can 

fully use the data and address the problem of insufficient samples of training data [64]. 

All parameters are set as default. For example, the maximum number of epochs to train is 1,000. 

The minimum performance gradient is 1e-6. 

𝑍# = 𝑓(𝑊#𝑋 + 𝐵#) (2) 

The linear activation function is used in the output layer. W1 is the weight matrix of the hidden 

nodes. B1 is the bias vector of the hidden nodes. The weights and biases of the SANN are initialized 

using the normal distribution. The activation function used in the hidden layers is hyperbolic 

tangent: 

∅(𝑧) =
𝑒$ − 𝑒%$

𝑒$ + 𝑒%$  
(3) 

The dimension of the hidden layers is tested and determined to minimize the model loss, which 

is mean square error, 

𝐿𝑜𝑠𝑠 = 	
1
𝑛:(𝑅&'(( − 𝑅)*+)"

,

-.#

 
(4) 
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Figure 11: The structure of the shallow neural network 

4. Demonstrating experiment 

An experiment was conducted at Nanyang Technological University to collect data and 

demonstrate the proposed framework. This experiment complied with the American Psychological 

Association Code of Ethics and was approved by the Institutional Review Board of Nanyang 

Technological University (NTU-IRB), Singapore. The reference number is IRB-2018-04-007. All 

methods were carried out following the guidelines and regulations of NTU-IRB. 20 subjects were 

recruited. They were above 21 years old and signed the informed consent before participating in 

the experiment.  

4.1 Experimental tasks 

The two designed tasks were adopted to test vigilance in this case study. Both two tests have 

two sessions: the practice session and the test session. The practice session, which includes 10 

trials, was given to reduce learning effects and to let the participant familiarizes themselves with 

the task. The test session includes 4 blocks of trials, with each block consisting of 27 trials. In each 

trial, the participants were required to fixate their eyes on the center of the display (a black dot) 

when there is no visual cue. One of the letters was presented randomly on the display. The visual 
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cue is set to appear randomly between 800 – 1500 milliseconds to guarantee the occurrence of 

fixations and saccades.  

To guarantee the changes in vigilance performance, a fatigue-inducing task is added, which is 

a simulation task of the vessel traffic service operations, as shown in Figure 12. Participants were 

required to monitor the videos of vessel traffic and record the name of vessels whose speed is 

larger than a pre-defined threshold. The vessel traffic videos are real traffic recordings of Gibraltar 

on 1 May 2016, Port of Rotterdam on 7 May 2016, and OSCL Jupiter agro on 14 Aug 2017. The 

vessel traffic monitoring task is monotonous and tedious, requiring attention, engagement, and 

information processing. The time given for each task is around one hour. According to our previous 

studies, at least 40-minutes monotonous task is required to induce human fatigue, which can 

significantly affect vigilance performance. 

 
Figure 12: Snap of the vessel traffic video 

The flow of the experiment started with the subject received a verbal briefing and signed the 

consent form in the brief session. The verbal brief describes the objectives, procedures, apparatus, 

and tasks. Followed by the verbal brief, the participants were instructed to calibrate the eye tracker. 

For each participant, the calibration has to be done at least once. On calibration, a red moving dot 

moves to 5 different positions with a “z” shape. The participants should track and fixate on the 
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moving dot. After calibration, the participant was instructed to rate their fatigue score with the 

Samn-Perelli Mental Fatigue Scale and do the reaction time test. Upon the completion of the 

reaction time test, participants rate their fatigue level again. Then, the fatigue induce-task was 

presented. The mental fatigue was assessed before and after the participant completed the vigilance 

task. Next, the reaction time test and fatigue induce task would be done again before the last mental 

fatigue assessment and the last reaction time test. In total, each participant rated the fatigue scale 

six times, did six reaction time tests, and two fatigue-induction tasks. In general, this experiment 

lasts around 120 minutes. 

In this study, we focused on human fatigue-induced vigilance performance impairment. Hence, 

the reaction time test only lasted six minutes to reduce the possibility of mind wandering. We 

recorded the fatigue level before and after the reaction time test to confirm that the reaction time 

test would not induce or recovery mental fatigue. Figure 13 shows the experimental procedures. 

 
Figure 13: Experimental procedures 
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4.2 Data Collection 

Due to the trace problem of the eye-tracker, the eye-tracking data normally suffer from quality 

problems. Hence, some collected eye-tracking data were deleted according to the procedures 

mentioned in our previous study [41]. In this study, only eye-tracking data collected from 14 

subjects were utilized for statistical analysis. As mentioned in Section 4.1, subjects conducted 

4*28=108 trials for both simple reaction time test and multiple-choice reaction time test. The eye-

tracking data and vigilance performance data were collected during the test. The gaze pattern 

parameters and performance parameters were averaged across each trail. Table list the structured 

data.  

The collected data were structured for spatial and temporal data analysis and AI-model 

development, as shown in Table 1. For spatial and temporal data analysis, all gaze pattern 

parameters and performance parameters were averaged across time-on-task to figure out how they 

change with time-on-task. For AI-model development, this study yields 108*3=324 data points for 

each subject on both simple reaction time test and multiple-choice reaction time test, as subjects 

conducted the tests three times. 

Table 1: Sample of the structured data 
Subject 
No 

Trail 
No 

Time 
on 
task 

TF1 DF1 DTF0 DTF1 RVF Response 
time 

Hit 
rate 

1 1 0 312.2222 298.1333 134.8333 40.42164 0.63 387.5111 1 
1 2 0 405.8235 278.4706 134.1849 89.06549 0.74 532.9118 1 
1 3 0 289.9783 214.913 143.5596 57.62113 0.62 385.6087 1 
1 4 0 295.2083 197.5625 113.6245 32.22488 0.6 372.2708 1 
1 5 0 221.7333 142.0333 119.0238 69.04201 0.78 313.9667 1 

 

4.3 Spatial and temporal data analysis  

4.3.1 Vigilance performance 
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All subjects conducted the reaction time test three times. Hence, a repeated measure Analysis 

of Variance (ANOVA) was performed to test the changes in response time and hit rate. Since the 

hit rate of the simple reaction time test is always 1, we did not conduct a statistical analysis on it. 

Both time-on-task and task complexity showed significant effects on response time (time-on-task: 

F(2, 38) = 8.27, p = 0.01; task complexity: F(1, 19) = 9.73, p = 0.003), where F value is the results of 

ANOVA test, it is a value on the F distribution, and p value is the probability of the test results 

would occur by random chance. According to Figure 14 (a), the response time of both two tests 

decreased with time. Similarly, time-on-task had a significant effect on hit rate (F(2, 38) = 4.596, p 

= 0.014). The hit rate was decreased with time going on. 

    
Figure 14: Response time across two reaction time tests and time (a); Hit rate of the multiple-choice test across 

time (b) 

4.3.2 The temporal analysis 
The task complexity had significant main effects on TF1 (F(1, 13) = 20.9, p = 0.0005), while the 

effects of time on TF1 were not significant (F(2, 26) = 0.97, p = 0.39) and the interaction effects on 

TF1 were not significant (F(2, 26) = 1.39, p = 0.27). As shown in Figure 15(a), subjects spent much 

more time to arrive F1 in the multi-choice reaction time test (mean = 302.7ms) than in the simple 

reaction time test (mean = 371.6ms). For the duration of F1 (DF1), the task complexity had 

significant effects on it (F(1, 13)=20.6, p=0.0006), while the effects of time were not significant (F(2, 

26)=1.94, p=0.16). Comparing with the simple reaction time test (mean = 296ms), subjects needed 
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much more time to understand the visual cues in the multi-choice reaction time test (mean DF1 = 

363ms). It is worth noting that the interaction effects of time and task complexity on DF1 were 

significant (F(2, 26) = 5.42, p = 0.01). With time going on, subjects presented much longer F1 in the 

complex multiple-choice test, while for the simple reaction time test, the DF1 was stable during the 

whole experiment.  

  
Figure 15: The time to F1 (TF1) across times and two tests (a); Duration of F1 (DF1) across times and two tests 

(b) 

4.3.3 The spatial analysis 
As shown in Figure 16 (a), the distance between F0 and target (DTF0) stay unchanged across 

times and two tests. No significant result was observed in the main effects of time (F(2, 26)=0.34, 

p=0.71) and task complexity F(1, 13)=0.33, p=0.57, nor in their interaction effects (F(2, 26)=1.39, 

p=0.27). The task complexity has significant effects on (DTF1) (F(1, 13)=5.58, p=0.034), while the 

effects of time (F(2, 26)=1.68, p=0.2) and their interaction effects were not significant (F(2, 26)=2.36, 

p=0.11), as shown in Figure 8 (b). 
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Figure 16: DTF0: the distance between F0 and target (a); DTF1: the distance between F1 and target (b) 

 
Figure 17: The ratio of valid fixation (RVF) 

The task complexity had significant effects on RVF (F(1, 13) = 9.54, p = 0.0086), while the effects 

of time on RVF were not significant (F(2, 26) = 1.32, p = 0.28), as shown in Figure 17. Their 

interaction effects on RVF were significant (F(2, 26) = 3.52, p = 0.044). 

4.4 Shallow neural network-based model development  

As discussed in Section 4.3, there are great associations between gaze patterns, time-on-task, 

and vigilance performance. Hence, it is expected that spatial and temporal gaze pattern analytics 

can be adopted for assessing vigilance. In this study, a regression neural network is developed to 

fit eye-tracking parameters with vigilance performance, namely reaction time. To measure the 

performance of regression methods, the mean squared error (MSE) and a goodness-of-fit measure 

between outputs and targets (R2) are utilized [13]. Typically, we should minimize MSE and 
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maximize R2 for achieving good performance. In this study, MSE and R2 are utilized as 

performance indicators of the developed SANN and other benchmarks. 

A shallow artificial neural network (SANN) was developed via MATLAB deep learning 

toolbox. As mentioned in Mathworks, to develop the SANN, we run through the following steps, 

(1) create a network, (2) configure the network, (3) initialize weights and biases, (3) training 

network, and (4) verify the network.  

In the first step, a shallow neural network was created with Matlab syntax “network.” Then, in 

network configuration, the number of hidden layers was set to “1,” considering the dimension of 

the input data was just five, as shown in Figure 11. A pilot experiment was conducted to investigate 

how the performance of SANN varied with the number of hidden nodes and training algorithms, 

as shown in Figure 18. To minimize MSE and maximize R, the Bayesian regularization was 

selected as the training algorithm, as it can resulting in relatively good generalization for small and 

noisy datasets. Though the scaled conjugate gradient and Levenberg-Marquardt algorithms require 

less memory and can save computational time, their performance is much worse than the Bayesian 

regularization, as shown in Table 2. It can be found that with hidden nodes of “10” and “15,” a 

smaller MSE can be obtained, but the R2 value was greatly reduced. Considering the computational 

efficiency, we determined to set the hidden nodes as “5.” 

In the step of initializing weights and biases, biases were initialized with 0 and weights were 

initialized with random numbers. Weights were not initialized with zero to avoid fitting the eye-

tracking data with the linear regression. For each subject, 648 data points, including eye-tracking 

parameters and reaction time, were obtained. In this study, to establish a subject-independent 

method, data collected from all subjects were mixed and randomly classified into three parts, 

training (70%), validation (15%), and testing (15%). As mentioned in Section 3.3, all the manually 
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extracted spatial and temporal eye-tracking parameters were utilized as inputs of the SANN, and 

the output was the reaction time. The SANN was trained with 75% of the collected data points. Its 

hyperparameters were tuned during training and verification.  

Table 3 shows the testing results of applying the trained SANN on the randomly selected 15% 

test data. It was compared with linear regression to verify the proposed method, which is the most 

widely used quantitative model in traditional human factors studies. Moreover, the proposed 

method was compared with other machine learning methods, such as “decision tree”, “support 

vector machine”, and “bagged trees.” These benchmarks were initially developed with default 

hyperparameters, some of which were tuned later to achieve better performance. Specifically, the 

sigmoid kernel function was adopted in developing the support vector machine. These methods 

utilized the same input features, labels, and same training/testing data with the SANN. Table 3 

presented the performance of all these methods. It can be found that the SANN performance is 

much better than the traditional machine learning methods in terms of MSE and R. Specifically, 

the SANN achieved the smallest MSE and largest R2. 

 
Figure 18: The training time across the number of hidden nodes 

Table 2: The model performance across the number of hidden nodes and training algorithms 
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 MSE R2 

Number of 
hidden nodes 

Levenberg-
Marquardt 

Bayesian 
regularizatio
n 

Scaled 
conjugate 
gradient 

Levenberg-
Marquardt 

Bayesian 
regularizatio
n 

Scaled 
conjugate 
gradient 

5 0.004 0.003 0.004 0.162 0.792 0.013 

10 0.002 0.002 0.008 0.084 0.494 0.130 

15 0.006 0.002 0.002 0.102 0.476 0.005 

20 0.003 0.011 0.016 0.003 0.672 0.096 

25 0.012 0.004 0.004 0.303 0.078 0.102 

30 0.004 0.006 0.005 0.058 0.024 0.001 

 

Table 3: The performance of traditional machine learning methods   
 MSE R2 

SANN 0.003 0.792 

Linear Regression 0.0042 0.2 

Decision Tree 0.0064 0.053 

Support Vector Machine 0.0048 0.36 

Bagged Trees 0.0052 0.1 

5. Discussion and verification 

5.1 Effectiveness of the spatial and temporal analytics  

According to the spatial analysis of gaze movements, gazes were always fixated far away from 

the target in the simple reaction time test although the visual cue appeared. Specifically, gazes are 

located between the center dot and the target cue most of the time. The average DTF1 is 52 pixels, 

which is much larger than the radius of a fixation defined in this study. The average RVF is 0.35. 

Since no significant eye movements were observed, it can be concluded that only covert attention 

was paid in the simple reaction time test, and users can notice the stimulus, even the cues lying in 

the subjects’ peripheral view. In other words, to acknowledge the presence of the visual cue, no 

significant gaze movements and valid fixations are needed. Compared with the simple reaction 

time test, the frequency of the subjects’ gazes fixating on the targets increased in the multiple-



25 
 

choice reaction time test. Specifically, the average DTF1 is 40 and the average RVF is 0.58. The 

DTF0 is stable across time and task complexities. Hence, we can conclude that subjects followed 

our instruction to fixate in the center when there is no visual cue, and our analysis of all parameters 

is practical. In addition, much more overt attention was required in the multiple-choice reaction 

time test. 

According to the mental process theory, subjects need to perceive, understand, and then react 

to the target. In this study, the simple reaction time test mainly requires perception and reaction, 

as the task is too simple to need information processing. We found that the time effects on TF1 and 

response time of the simple reaction time test were not significant. It can be concluded that the 

perception ability of subjects was not impaired by the impaired vigilance. Fixation duration is 

highly associated with information processing. We can find that DF1 of the simple reaction time 

test was not affected by vigilance levels, while DF1 of the multiple-choice test significantly 

increased under the fatigue condition. As mentioned in the spatial analysis of gaze movement, the 

simple reaction time test seems only requires perception and needs limited time on information 

processing. Hence, the stable DF1 of the simple reaction time test is reasonable. The increased DF1 

of the multiple-choice test indicated that the time required for processing the cues’ information 

was significantly increased with impaired vigilance levels. Considering that the response time 

decreased with time, the perception time kept still, and the information processing time increased 

with time, we can conclude that the decreases were caused by the decreased action time. 

Decreased action time may result from learning effects and arousal effects. In our study, we 

have arranged a series of practices to make subjects to be familiar with the tests. Moreover, a post-

analysis was conducted to test the human performance differences within each session. We divided 

each session into four parts and compared the hit rates across the four parts. No significant results 
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were observed in this analysis. Hence, we concluded that the decreased action time was not caused 

by learning effects. For the arousal effects, as mentioned in [13], a lengthy period of work has 

multi aspects, such as impaired vigilance and emotional fatigue. These aspects are highly 

correlated and interact with each other. The emotional fatigue induced in this study may make 

subjects to be impatient and impetuous. Subjects were eager to finish the tasks as soon as possible, 

resulting in a shorter response time. Though participants achieved high performance in the 

response time, their hit rate decreased. The result of the decreased hit rate is in line with many 

studies [18, 38]. According to the temporal analysis of gaze movement, the psychomotor 

performance was not affected by impaired vigilance in this work. At the same time, the cognitive 

capacity was impaired. As a result, they achieved the shortest reaction time with the lowest hit rate 

after two hours of vessel traffic service operations.  

5.2 Effectiveness of the proposed AI-based method 

In this study, the SANN was developed to fit the spatial and temporal eye-tracking data with 

vigilance performance, namely reaction time.  The proposed method was compared with other AI 

methods. As shown in Table 3, it is unexpected to find out that decision trees and bagged trees 

generated the poorest predictions. Since, the bagged tree algorithm ensembles a number of decision 

trees to generate the final result, it is reasonable that the bagged tree algorithm has a similar but 

better performance than the decision tree algorithm [44]. The problem lies in the weak correlation 

between predicted results and the observed data. The poor results may be caused by the limited 

dimension of the input data and a large number of training data. The decision tree is not suitable 

for continuous data prediction and may be overfitted. The performance of the linear regression is 

not so good, too. The results may be caused by the complex and dynamic relations between the 

eye-tracking parameters and vigilance performance [27]. In addition, there are generally great 
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individual differences in eye-tracking parameters [41]. By extracting parameter from the spatial 

and temporal gaze movement analytics, the method is expected to be generalized and can be 

applied to other traffic controller’s working environments with similar enterprise context and risks. 

It is hoped that this work provides practical guidances for achieving a more advanced AI enabled 

human-computer interfaces and a consolidated assessment approach. 

The proposed method achieved relatively high performance with an MSE of 0.003 and R2 of 

0.792. The performance is much better than most of the existing eye-tracking-based vigilance 

models. For example, a study published in 2019 [13] combined the context data and traditional 

eye-tracking parameters, such as fixation duration, fixation number, saccade amplitude to predict 

the reaction time. It achieved an RMSE of 0.119, namely an MSE of 0.014. A recent study 

published in 2021 [65] utilized the linear regression model and the saccade number to predict the 

driver reaction time to handover request, and it reported R2 of 0.399, which is much poorer than 

the performance of the proposed method. The proposed method can achieve better performance 

due to several reasons. On the one hand, most of the existing studies utilize parameters that are 

averaged from a long period of recording. These parameters highly depend on the context [66]. As 

a result, models developed based on these eye-tracking parameters have limited robustness. On the 

other hand, this study proposes to analyze the eye-tracking data with SANN, which is dynamic to 

significant variance and has good fault tolerance [67].  

6. Conclusion 

Nowadays, high levels of vigilance are required in many fields, such as vessel traffic service, 

high-speed train, and aviation. Hence, an objective way to non-intrusively assess vigilance is 

urgently needed. This study proposes a four-phase framework to achieve a non-intrusive 

assessment of vigilance based on gaze movement pattern analytics. The gaze patterns were 
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analyzed temporally and spatially to figure out how vigilance stages affect human performance in 

terms of perception, comprehension, and action. We found that the psychomotor performance was 

not affected under impaired vigilance, while the cognitive capacity was impaired under a 

moderate-high level of impaired vigilance. The temporal analysis of our gaze movements 

explained the impaired vigilance-motor performance paradox. A shallow neural network model 

has been developed to predict the reaction time based on the proposed spatial and temporal gaze 

movement parameters. With the same input features, the proposed model achieved relatively better 

performance than other machine learning methods. In addition, the proposed method outperformed 

several recently published eye-tracking-based vigilance models in terms of the mean squared error 

and a goodness-of-fit measure between outputs and targets. 

The limitations to our study stemmed from the experiment design and laboratory tests. Instead 

of real-word tasks, two general and basic tests were designed to measure vigilance. Even the tests 

simulated the common hazard identification tasks, the gaze patterns of the designed tasks should 

be different from the real-world tasks. In future works, some practical scenarios should be applied 

for vigilance assessment. Furthermore, manually extracted eye-tracking parameters were utilized 

as the input features of a shallow neural network. To reduce the dependence on manual work, the 

deep neural network can be applied to deal with the raw eye-tracking data in future works.   
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