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Association between global air pollution and COVID-19 mortality, a 

study of forty-six cities in the world 

The ambient air pollution plays a significant role in an increased risk of incidence 

and mortality of the coronavirus disease 2019 (COVID-19) on a global scale. 

This study aims to understand the multi-scale spatial effect of the global air 

pollution on the COVID-19 mortality. Based on 46 cities from six countries 

worldwide between 1 Apr. 2020 and 31 Dec. 2020, a Bayesian space-time 

hierarchical model (BSTHM) was utilized based on the lag effects of 7, 14 and 

21 days to quantify the relative risks of NO2 and PM2.5 on the daily deaths of 

COVD-19, accounting for the effect of meteorological and human mobility 

variability based on global and city level. Results show that positive correlations 

between air pollution and COVID-19 mortality are observed, with the relative 

risks of NO2 and PM2.5 ranging from 1.006 to 1.014 and from 1.002 to 1.004 with 

the lag effects of 7, 14 and 21 days. For the individual-city analysis, however, 

both positive and negative associations are found between air pollution and daily 

mortality, showing the relative risks of NO2 and PM2.5 are between 0.754 and 

1.245, and between 0.888 and 1.032, respectively. The discrepancies of air 

pollution risks among cities were demonstrated in this study, and further allude 

the necessity to explore the uncertainty in the multi-scale air pollution – mortality 

relationship. 

Keywords: COVID-19; air pollution; Bayesian space-time hierarchical model; 

multi-scale analysis 

Introduction 

The exposure to air pollution has been widely recognized to have a substantial impact 

on human health, including respiratory and cardiovascular disease (Brunekreef and 

Holgate 2002; Lelieveld et al. 2015). The rapid urbanization processes comprises 

various of air pollution, i.e. industrial air pollution from fossil fuel combustion, 

emissions from biomass burning such as nitrogen dioxide (NO2), and fine particulate 

matter with a diameter less than 2.5 μm (PM2.5) (Akimoto 2003; He, Huo, and Zhang 

2002). Study has projected a 50% increase in mortality corresponding to the ambient air 



pollution by 2050 (Lelieveld et al. 2015), revealing the necessity of intensive air quality 

control measures on a global scale.  

With the rapid emergence of the coronavirus disease 2019 (COVID-19), the 

government-enforced policies, including lockdowns and social-distancing measures, 

have drastically decrease socioeconomic activities and led to significant air pollution 

changes (Giani et al. 2020; He, Pan, and Tanaka 2020). Existing study has provided 

evidence that the lockdowns have caused 60% and 31% decline in NO2 and PM2.5 and 

an increase trend in O3 until 15 May 2020 in 34 countries (Venter et al. 2020). It 

provides an unprecedented opportunity to estimate the impact of air pollution 

counterfactual to business-as-usual situations on the respiratory disease, i.e. COVID-19, 

on a global scale.  

Among various air pollutants, NO2 and PM2.5, the major pollutants of 

anthropogenic emission, have been studied with the potential risks on the incidence and 

mortality of COVID-19. Villeneuve and Goldberg (2020) evaluated both tropospheric 

and ground-level NO2 and PM2.5 with daily or annual mean values based on varied time 

lag effects in different regions. Ogen (2020) focused on the satellite-based NO2 

distribution and analyzed its association with the fatality of COVID-19 in France, 

Germany, Italy and Spain, and further indicates the close relationship between the long-

term exposure to NO2 and the COVID-19 fatality. A study on China based on two-week 

confirmed cases of COVID-19 suggests that a 10 μg/m3 increase in NO2 and PM2.5 are 

associated with the 6.94% and 2.24% increases of the confirmed cases based on the lag 

effect of 0 – 14 (Zhu et al. 2020a). However, a study proposed by Gujral and Sinha 

(2021) shows negative association between ground-based PM2.5 and the COVID-19 

confirmed cases in Los Angeles, U.S., indicating the discrepancies of air pollution – 

COVID-19 incidences in different areas.  



Other determinants of COVID-19 including meteorological and socioeconomic 

factors are required to be controlled when estimating the association of air pollution and 

COVID-19 incidence and mortality (Chowkwanyun and Reed Jr 2020; Yancy 2020; 

Sarkodie and Owusu 2020; Kwok et al. 2021). Xie and Zhu (2020) adopted 122 cities 

from China within one month and revealed a positive linear relationship between mean 

temperature and the number of the COVID-19 confirmed cases. In contrast, Shao, Xie, 

and Zhu (2021) suggested that on a global scale, ambient temperature is negatively 

associated with the COVID-19 transmission mediated by human mobilities. 

Meteorological factors also include humidity and wind speed, in which 1 unit increase 

of absolute humidity corresponds to the decreasing trend of COVID-19 mortality in 

Wuhan, China (Ma et al. 2020) while cities with low wind speed that is associated with 

atmospheric stability had higher numbers of COVID-19 incidence and mortality 

(Coccia 2021). Socioeconomic factors such as built environment and human mobilities 

have also been considered in the epidemiological modelling. Existing research has 

revealed that higher betweenness centrality of transport nodes and population density in 

the built-up regions are positively associated with COVID-19 infection ratios in China 

(Li, Ma, and Zhang 2021). Moreover, studies have estimated the COVID-19 infectious 

transmission by modelling human mobility patterns (Chang et al. 2021), and suggested 

the effectiveness of travel restrictions combined with transmission-reduction 

interventions on mitigating COVID-19 epidemic (Chinazzi et al. 2020). 

Statistical models to estimate the association between air pollution and COVID-

19 incidence and mortality vary among studies. Existing research has widely utilized 

Pearson correlation (Bashir et al. 2020), multiple linear regression (Andrée 2020; 

Coccia 2020; Barnett-Itzhaki and Levi 2021), difference-in-differences (DID) model 

(Ming et al. 2020; He, Pan, and Tanaka 2020), scenario analysis (Shan et al. 2020), 



generalized linear model (GLM) (Travaglio et al. 2021) and generalized additive model 

(GAM) (Prata, Rodrigues, and Bermejo 2020; Zhu et al. 2020b). As these models were 

proposed in different areas with varied time lag effect, model comparisons based on the 

same spatio-temporal scales are required to assess their accuracies.  

Despite of the analysis on the different air pollution metric, additional 

determinants including meteorological and human mobility factors and varied statistical 

models that have been discussed, existing studies on the COVID-19 incidence and 

mortality mainly focused at city level and country level. Considering of the pandemic 

transmission trends among countries, it is necessary to study in a wider global 

perspective. Although several studies have investigated the global patterns of the air 

pollution and COVID-19 epidemic variation (Venter et al. 2020; Forster et al. 2020; Le 

Quéré et al. 2020), there lacks a deeper understanding of the impact of the global 

trending air pollution mediated by meteorological and human mobility patterns. 

Moreover, the influence of multi-scale spatial analysis should be considered to reduce 

the biases caused by constant spatial units. In addition, the performance of models that 

have been proposed in the association analysis needs to be evaluated to assure the 

model accuracies.  

In this study, we focus on the association between air pollution and COVID-19 

incidence in a global scale. Based on 46 cities from six countries between 1 Apr. 2020 

and 31 Dec. 2020, a Bayesian space-time hierarchical model (BSTHM) was utilized to 

estimate the impact of ground-based air pollution including NO2 and PM2.5 on the 

COVID-19 mortality controlling by the variables of meteorological factors and human 

mobility frequencies. The relative risks of different air pollutants were estimated based 

on the overall global scale-and spatial multiscale-perspective. In addition, model 



comparison was proposed among GLM, GAM and BSTHM to evaluate the model 

effectiveness.  

Materials and Methods 

Study Area 

Considering of the data availability, including the exposure to the air pollution and the 

corresponding COVID-19 deaths on a finer spatial level, about 46 cities from six 

countries that consists of high-quality air station data, COVID-19 mortality data and 

other controlling variable between 1 Apr. 2020 and 31 Dec. 2020 were selected for 

statistical analysis in the following section. As shown in Table 1, five cities from 

Canada, 1 city from Germany, 1 city from China, 2 cities from Mexico, 1 city from 

Netherlands, 36 cities/counties from U.S. were selected as the study areas. 

Table 1. Selected countries and cities as study areas. 

Countries Cities/Counties 

Canada Edmonton, Calgary, Ottawa, Toronto, Montreal 

Germany Berlin 

China Hong Kong 

Mexico Guadalajara, Monterrey 

Netherlands Amsterdam 

U.S. Ada, Alameda, Bernalillo, Clark, Cook, Dallas, Denver, District of 

Columbia, Duval, El Paso, Franklin, Fresno, Fulton, Harris, Hartford, 

Henrico, Hinds, King, Los Angeles, Maricopa, Marion, Milwaukee, 

Multnomah, New York City, Oklahoma, Philadelphia, Pima, 

Providence, Ramsey, Salt Lake, San Diego, San Francisco, Santa Clara, 

Suffolk, Wake, Wayne 

Air Pollution and Meteorological Data 

Although satellite data such as TROPOspheric Monitoring Instrument (TROPOMI) in 



Sentinel-5 Precursor satellite shows the potential to monitor spatio-temporal air 

pollution distribution in a global scale, the column concentration obtained from the 

satellite data cannot efficiently represent ground-level air pollutants. To fill this gap, 

this study adopted station-based air pollution and meteorological data from the Air 

Quality Open Data Platform (see https://aqicn.org/data-platform/covid19/). Specifically, 

daily air pollutants including NO2 and PM2.5, and daily meteorological data including 

daily humidity, pressure, temperature and wind speed between 1 Apr. 2020 and 31 Dec. 

2020 were collected from the selected cities. On this basis, missing values from the 

daily air pollution and meteorological data were further processed using the 

KalmanSmoother based on an autoregressive integrated moving average (ARIMA) 

model (Bishop and Welch 2001). 

Mobility Data from Apple 

Human mobilities play a significant role in estimating epidemic disease transmission. 

To analyze the effect of human mobility patterns in different regions, daily mobility 

data were collected from the Apple Mobility Trends Reports (see 

https://covid19.apple.com/mobility). Specifically, the data calculate the comparative trip 

patterns for the report date to the baseline day (13 Jan. 2020). The mobility data take 

100 as the baseline, with the negative changes lower than 100 and the positive changes 

higher than 100. In this study, two types of transportation are considered, including 

driving and walking transportation. In addition, the missing values in the temporal 

mobility data were filled using the ARIMA model. 

Other Data as Controlling Variables 

Four datasets, including the accessibility to the healthcare, the global friction surface, 

The NOAA Climate Data Record (CDR) of AVHRR Normalized Difference Vegetation 



Index (NDVI), and the nighttime data from the Visible Infrared Imaging Radiometer 

Suite (VIIRS) Day/Night Band (DNB) were adopted to distinguish additional physical 

and socioeconomic conditions among cities. In particular, the accessibility to the 

healthcare in the year 2019, which quantifies the land-based travel time to the nearest 

hospital or clinic, was averaged into city scale. The global friction surface in 2019, 

enumerating the travel speed for all land pixels, which is considered as the potential 

indicator for estimating COVID-19 transmission, was also averaged into city scale. 

Both the accessibility to the healthcare dataset and the global friction surface dataset 

were collected from the research proposed by Weiss et al. (2020). In addition, city-level 

averaged NDVI and DNB radiance values between 1 Apr. 2020 and 31 Dec. 2020 were 

calculated from the NOAA CDR of AVHRR NDVI and VIIRS/ DNB nighttime data, 

separately. In addition, the global population in 2019 were collected from the LandScan 

(see https://landscan.ornl.gov) as the offset variable in the statistical analysis in the 

following section.  

COVID-19 Data 

The COVID-19 mortality data from 46 cities between 1 Apr. 2020 and 31 Dec. 2020 

were collected from multiple sources, which are displayed in Table 2. The daily deaths 

were calculated based on the total deaths provided in the COVID-19 data. 

Table 2. Data sources of COVID-19 mortality in different countries. 

Countries Data sources 

Canada COVID-19 Canada Open Data Working Group 

(https://github.com/ccodwg/Covid19Canada) 

Germany Das Datenportal für Deutschland (https://www.govdata.de) 

China DATA.GOV.HK (https://data.gov.hk/en-data/dataset/hk-dh-

chpsebcddr-novel-infectious-agent) 



Mexico Covid-19 México (https://datos.covid-

19.conacyt.mx/#DownZCSV) 

Netherlands Dataregister van de Nederlandse Overheid 

(https://data.overheid.nl) 

U.S. The New York Times (https://github.com/nytimes/covid-19-

data) 

Statistical Models 

The BSTHM, composed by the hierarchical Bayesian model and the space-time 

interaction model, consists of three components: the overall spatial, temporal and the 

space-time interaction. It has been commonly applied in many fields such as public 

health (Liao et al. 2016; Richardson, Abellan, and Best 2006; Knorr‐Held 2000), 

population assessment (Wang et al. 2021) and air pollution modeling (Li et al. 2018a; Li 

et al. 2018b). Compared with other statistical models such as GLM and GAM, 

hierarchical Bayesian model accommodates unobserved values and prior probability 

distributions to improve estimation accuracies (Dunson 2001).  

Specifically, we assume that 𝑦𝑦𝑖𝑖𝑖𝑖 is the deaths in the city 𝑖𝑖 = (1,2, … ,𝑁𝑁) at the 

time point 𝑡𝑡 = (1,2, … ,𝑇𝑇), the number of daily deaths can be modeled by the Poisson 

regression with the log link function: 

𝑦𝑦𝑖𝑖𝑖𝑖~𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖)                                                        (1) 

where 𝑃𝑃𝑖𝑖 indicates the base distribution in the city 𝑖𝑖, and 𝑟𝑟𝑖𝑖𝑖𝑖 represents the underlying 

mortality risk, which can be further modeled as follows: 

log(𝑟𝑟𝑖𝑖𝑖𝑖) = 𝛼𝛼 + 𝜃𝜃𝑖𝑖 + 𝛿𝛿𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑛𝑛𝑛𝑛2𝑥𝑥𝑖𝑖𝑖𝑖,𝑛𝑛𝑛𝑛2 + 𝛽𝛽𝑝𝑝𝑝𝑝25𝑥𝑥𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝25 + 𝛽𝛽ℎ𝑢𝑢𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖,ℎ𝑢𝑢𝑝𝑝𝑖𝑖

+ 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛽𝛽𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛽𝛽𝑤𝑤𝑖𝑖𝑛𝑛𝑤𝑤𝑥𝑥𝑖𝑖𝑖𝑖,𝑤𝑤𝑖𝑖𝑛𝑛𝑤𝑤 + 𝛽𝛽𝑤𝑤𝑝𝑝𝑖𝑖𝑑𝑑𝑖𝑖𝑛𝑛𝑑𝑑𝑥𝑥𝑖𝑖𝑖𝑖,𝑤𝑤𝑝𝑝𝑖𝑖𝑑𝑑𝑖𝑖𝑛𝑛𝑑𝑑

+ 𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑛𝑛𝑑𝑑𝑥𝑥𝑖𝑖𝑖𝑖,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑛𝑛𝑑𝑑 + 𝛽𝛽𝑤𝑤𝑎𝑎𝑎𝑎𝑝𝑝𝑥𝑥𝑖𝑖,𝑤𝑤𝑎𝑎𝑎𝑎𝑝𝑝 + 𝛽𝛽𝑓𝑓𝑝𝑝𝑖𝑖𝑎𝑎𝑥𝑥𝑖𝑖,𝑓𝑓𝑝𝑝𝑖𝑖𝑎𝑎 + 𝛽𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑥𝑥𝑖𝑖,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

+ 𝛽𝛽𝑛𝑛𝑖𝑖𝑑𝑑ℎ𝑖𝑖𝑥𝑥𝑖𝑖,𝑛𝑛𝑖𝑖𝑑𝑑ℎ𝑖𝑖 + log(𝑥𝑥𝑖𝑖,𝑝𝑝𝑛𝑛𝑝𝑝) + 𝜀𝜀𝑖𝑖𝑖𝑖        (2) 



in which 𝛽𝛽𝑛𝑛𝑛𝑛2, 𝛽𝛽𝑝𝑝𝑝𝑝25, 𝛽𝛽ℎ𝑢𝑢𝑝𝑝𝑖𝑖, 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝛽𝛽𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝, 𝛽𝛽𝑤𝑤𝑖𝑖𝑛𝑛𝑤𝑤, 𝛽𝛽𝑤𝑤𝑝𝑝𝑖𝑖𝑑𝑑𝑖𝑖𝑛𝑛𝑑𝑑, 𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑛𝑛𝑑𝑑, 𝛽𝛽𝑤𝑤𝑎𝑎𝑎𝑎𝑝𝑝, 𝛽𝛽𝑓𝑓𝑝𝑝𝑖𝑖𝑎𝑎, 

𝛽𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and 𝛽𝛽𝑛𝑛𝑖𝑖𝑑𝑑ℎ𝑖𝑖 refer to the regression coefficients of daily NO2, PM2.5, humidity, 

pressure, mean temperature, mean wind speed, and the daily trip based on the driving 

and walking transportation, accessibility to the healthcare, the degree of friction, NDVI 

and the DNB radiance values with the following prior distributions 𝜋𝜋(∙) assigned to the 

coefficients: 

𝜋𝜋(𝛽𝛽) = 𝑁𝑁(0,1000)                                                     (3) 

In addition, 𝛼𝛼 indicates the sum of the intercept. 𝜃𝜃𝑖𝑖, 𝛿𝛿𝑖𝑖 and 𝛾𝛾𝑖𝑖𝑖𝑖 refer to the spatial main 

effect, temporal main effect and the space-time interaction. log(𝑥𝑥𝑖𝑖,𝑝𝑝𝑛𝑛𝑝𝑝) represents the 

offset variable based on the total population in each region. 𝜀𝜀𝑖𝑖𝑖𝑖 is the additional residual 

term. Moreover, the 7, 14 and 21 day-lag effects of socioeconomic and environmental 

factors on COVDI-10 mortality are considered. 

Prior distributions are further assigned to the parameters above. The Besag York 

Mollié (BYM) model is employed to the spatial main effect, temporal main effect 𝜃𝜃𝑖𝑖 

and 𝛿𝛿𝑖𝑖, in which the BYM model is a convolution of a spatially structured and spatially 

unstructured random effect (Besag, York, and Mollié 1991). Specifically, the spatial 

structure is applied by the conditional autoregressive (CAR) models. The prior of 𝜃𝜃𝑖𝑖, 𝛿𝛿𝑖𝑖 

and 𝛾𝛾𝑖𝑖𝑖𝑖 are modeled as follows: 

𝜃𝜃𝑖𝑖|𝜽𝜽−𝑖𝑖,𝑾𝑾~𝑁𝑁�
𝜌𝜌𝑝𝑝 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖𝑁𝑁

𝑖𝑖=1

𝜌𝜌𝑝𝑝 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1 + 1 − 𝜌𝜌𝑝𝑝

,
𝜏𝜏𝑝𝑝2

𝜌𝜌𝑝𝑝 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1 + 1 − 𝜌𝜌𝑝𝑝

�             (4) 

𝛿𝛿𝑖𝑖|𝜹𝜹−𝑖𝑖,𝑫𝑫~𝑁𝑁�
𝜌𝜌𝑖𝑖 ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑇𝑇

𝑖𝑖=1

𝜌𝜌𝑖𝑖 ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑇𝑇
𝑖𝑖=1 + 1 − 𝜌𝜌𝑖𝑖

,
𝜏𝜏𝑖𝑖2

𝜌𝜌𝑖𝑖 ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑇𝑇
𝑖𝑖=1 + 1 − 𝜌𝜌𝑖𝑖

�             (5) 

𝛾𝛾𝑖𝑖𝑖𝑖~𝑁𝑁(0, 𝜏𝜏𝑤𝑤2)                                                     (6) 

where 𝑾𝑾 = (𝑤𝑤𝑖𝑖𝑖𝑖) and 𝑫𝑫 = (𝑑𝑑𝑖𝑖𝑖𝑖) represent the neighborhood matrix and the time 

adjacency, respectively, where 𝑤𝑤𝑖𝑖𝑖𝑖 = 1 and 𝑑𝑑𝑖𝑖𝑖𝑖 = 1 if areas (i, j) share a common 



border and time |𝑗𝑗 − 𝑡𝑡| = 1; otherwise, 𝑤𝑤𝑖𝑖𝑖𝑖 = 0 and 𝑑𝑑𝑖𝑖𝑖𝑖 = 0. (𝜌𝜌𝑝𝑝 ,𝜌𝜌𝑖𝑖) and (𝜏𝜏𝑝𝑝, 𝜏𝜏𝑖𝑖, 𝜏𝜏𝑤𝑤) 

refer to the parameters of the fixed uniform and inverse-gamma distribution, 

respectively, the prior of which is modeled as: 

𝜌𝜌𝑝𝑝,𝜌𝜌𝑖𝑖~Uniform(0,1)                                                 (7) 

𝜏𝜏𝑝𝑝, 𝜏𝜏𝑖𝑖 , 𝜏𝜏𝑤𝑤~Inverse − Gamma(1,0.01)                                 (8) 

Specifically, the neighborhood matrix is constructed based on the spatial distribution 

among cities, with 𝑤𝑤𝑖𝑖𝑖𝑖 = 1 among each pair of adjacent cities and 𝑤𝑤𝑖𝑖𝑖𝑖 = 0 otherwise. 

The proposed BSTHM was implemented Markov chain Monte Carlo (MCMC) 

method and Gibbs sampling. Air pollutants including daily NO2, PM2.5 are utilized for 

estimating the number of deaths while meteorological factors, human mobilities, 

population and other factors are considered as controlling variables. The collinearity of 

variables was assessed using the variance inflation factor (VIF). Then, the estimated 

relative risk (RR), which is proposed based on the exponential transformation of the 

modelling coefficients, were calculated to estimate the impact of air pollutants on the 

changes of COVID-19 mortality.  

Results 

Descriptive Analysis 

Table 3 shows the statistics of the daily deaths of COVID-19, air pollutants, 

meteorological factors, human mobility, population and other controlling variables in 

each city. Daily deaths vary from 0 to 1221, and daily NO2 and PM2.5 are 7.186 ppb and 

33.783 μg/m3, respectively. The mean daily humidity, pressure, temperature and the 

wind speed are 62.708 percent, 1011.274 mb, 17.018 ℃ and 2.687 m/s. For the urban 

mobility, the daily changes of driving and walking transportation are 103.482 and 

110.176, respectively. In addition, the average values of accessibility to healthcare, the 



degree of friction, NDVI and nighttime radiance are 12.191, 0.004, 1652.558 and 

18.484, respectively.  

Table 3. Summary of the ground station data, meteorological data, mobility data, other 

controlling variables, and the COVID-19 mortality. 

Variables Daily measures 

  Min. Max. Mean Std. Dev. Var. 

Daily deaths 0 1221 7.63 33.481 1120.971 

Air pollutant 

    NO2 (ppb) 0.100 49.100 7.186 5.324 28.349 

    PM2.5 (μg/m3) 0.000 404.000 33.783 21.117 445.942 

Meteorological factors           

    Humidity (percent) 0.000 100.000 62.708 21.740 472.630 

    Pressure (mb) 415.400 1039.500 1011.274 26.257 689.446 

    Temperature (℃) -17.700 39.200 17.018 8.710 75.867 

    Wind speed (m/s) 0.034 17.000 2.687 1.630 2.657 

Human mobility           

    Driving 22.390 209.340 103.482 30.682 941.367 

    Walking 7.870 295.690 110.176 45.153 2038.763 

Population 2.471E+05 1.008E+07 2.037E+06 2.041E+06 4.164E+12 

Other controlling 

variables 
     

    Accessibility to 

healthcare 
1.597 47.056 12.191 11.282 127.274 

    Friction 0.001 0.013 0.004 0.003 0.000 

    NDVI 953.004 2435.288 1652.558 399.947 159957.745 

    Nighttime radiance 1.136 49.768 18.484 13.317 177.333 

Overall BSTHM Results 

Fig. 1 shows the relative risk with 95% credible interval of air pollutants on the 

COVID-19 mortality with time lag 7, lag 14 and lag 21. In summary, the increasing 

values of NO2 and PM2.5 are positively correlated with COVID-19 mortality, indicating 



increasing daily deaths with higher NO2 and PM2.5 exposure. It is reasonable that both 

NO2 and PM2.5 and COVID-19 mortality have positive association since the decreasing 

of NO2 and PM2.5 could reduce the respiratory mortality has been demonstrated in other 

studies (Liu et al. 2019; Di et al. 2017; Khomenko et al. 2021). In addition, the 

association between NO2, PM2.5 and COVID-19 mortality vary according to the 

different time lag effects. 

 In particular, the relative risk of 1 ppb increase in NO2 with 7 days lag effect is 

1.009 (Confidence Interval (CI): 1.003 to 1.014). For the lag effect of 14 days, the 

relative risk of 1.014 is revealed with the confidence interval between 1.014 and 1.02, 

which is approximately 0.5% higher than the relative risk based on 7 days lag effect. 

Meanwhile, the relative risk of NO2 with 21 days lag effect is 1.006 (CI: 0.999 to 

1.012), which is 0.3% and 0.8% lower than those of 7 days and 21 days lag effects. For 

the relative risk of PM2.5, similar patterns are revealed with the lag effects of 7 days and 

14 days, representing approximately 0.2% increase (CI: 1.001 to 1.003) in daily death 

with 1 μg/m3 increase in PM2.5. Changes are revealed in the lag effect of 21 days, 

showing the relative risk of 1.004 with the confidence interval between 1.002 and 1.006, 

revealing approximately 0.2% higher than the relative risks based on 7-and 14-day lag 

effects. 

 Despite the varied lag effects (the association analysis without time lag effects is 

excluded considering the incubation period of COVID-19), the results indicate that 

higher exposures to NO2 and PM2.5 are estimated to increase the risks of COVID-19 

mortality from the perspective of global cities. Because this study was conducted 

between 1 Apr. 2020 and 31 Dec. 2020, the potential influence of lockdown and 

restricted social distancing policies were concerned, measured by human mobility data. 

On the other hand, as the public vaccination started at the end of 2020 (Mathieu et al. 



2021), its impacts on COVID-19 mortality are not discussed in this study. However, as 

the proposed controlling variables in BSTHM might not completely depict the 

environmental and socioeconomic conditions of individual cities, the discrepancies of 

relative risks among cities are not discussed. To fill this gap, the air pollution – 

mortality association analysis is proposed in the following section. 

 

Fig. 1. Relative risk (with 95% credible interval) of air pollutants on the COVID-19 

mortality with different time lag effects.  

City-level Analysis 

Changes of the study areas show significant impact on the air pollution - COVID-19 

mortality analysis. After analyzing the overall impacts of NO2 and PM2.5 on COVID-19 

mortality based on all the selected cities, we further focus on the relative risks of 

individual cities separately. The air pollution - COVID-19 mortality association of each 

city was estimated using Bayesian hierarchical modelling. As no spatial adjacency issue 

was found in individual cities, the spatial effect was removed from the proposed 

models. 

 Fig. 2 shows the relative risks of NO2 with time lag effects of 7, 14 and 21 days 

of individual cities. In summary, the relative risks of NO2 exposure vary among cities. 

Despite the different time lag effects, most of the cities show positive impact of NO2 – 



COVID-19 mortality association. It should be noted that significant discrepancies of 

relative risks are revealed among U.S. Henrico and other cities, showing large range 

confidence intervals based on all lag effects, with dramatically lower and higher relative 

risks based on 7 days and 14 days lag effects, respectively. No significant differences of 

relative risks are revealed among other cities for the lag effects of 7, 14 and 21 days, 

within the values between 0.948 and 1.138, between 0.973 and 1.152 as well as between 

0.935 and 1.141. However, the results still revealed negative association between NO2 

and COVID-19 mortality in many cities, such as the relative risks based on 14- and 21- 

day lag effects in Hong Kong and 14-day lag affect-based relative risks in U.S. Suffolk 

and U.S. Wake. Further explanations about the negative trends are discussed later in this 

section. 

 

Fig. 2. Relative risk (with 95% credible interval) of NO2 with time lag effects of 7, 14 

and 21 days at the city scale. 

The relative risks of PM2.5 on the daily death of COVID-19 are shown in Fig. 3. 

The estimated relative risks based on 7-, 14- and 21-day effects range between 0.887 



and 1.032, between 0.968 and 1.013, between 0.971 and 1.023. As with the relative 

risks of NO2, no significant changes are shown in most of the cities. However, 

anomalies are observed, indicating significant discrepancies or negative trends, in 

several cities, such as the 7-day lag effect based relative risk in U.S. Providence, U.S. 

Pima, Canada Edmonton and Canada Calgary, 14-day lag effect based relative risk in 

Hong Kong, U.S. Pima, U.S. Henrico and U.S. Hartford, and 21-day lag effect based 

relative risk in Canada Calgary, Canada Edmonton, Hong Kong and U.S. Pima.  

 

Fig. 3. Relative risk (with 95% credible interval) of PM2.5 with time lag effects of 7, 14 

and 21 days at the city scale. 

The question of how to interpret these anomalies in the relative risks is 

important in the air pollution evaluation, especially the anthropogenic emissions. To 

solve this issue, deeper investigation on daily death, NO2 and PM2.5 emission as well as 

the human mobility for individual cities are proposed. As the number of deaths may 

influence the relative risk estimation (the smaller number of daily deaths, such as 0 

death per day, could lead to estimation biases), the total deaths of COVID-19 during 1 



Apr. 2020 to 31 Dec. 2020 in individual cities were calculated. As displayed in Fig. 4, 

small number of total deaths are found in cities such as Hong Kong, U.S. Hinds, U.S. 

Henrico, Canada Calgary, Canada Ottawa, U.S. Multnomah and U.S. Salt Lake, with 

the total number of deaths lower than 600. It is consistent with the relative risk biases 

that the impacts of NO2 are dramatically lower and higher with 7- and 14-day lag effect 

with large range of confidence intervals in U.S. Henrico, as well as the negative relative 

risk in U.S. Salt Lake. The small number of deaths also provide hints in evaluating the 

relative risk biases of PM2.5, suggesting that the smaller number of deaths may cause the 

significant negative relative risks in Hong Kong, Canada Calgary, Canada Ottawa and 

U.S. Multnomah. In summary, the potential impact of air pollution could be estimated 

with significant biases faced with smaller number of daily deaths. However, there are 

also other potential factors that may influence the relative risk estimation. 

 

Fig. 4. Total deaths of COVID-19 during 1 Apr. 2020 to 31 Dec. 2020 in individual 

cities. 

As with the small number of deaths, the level of air pollution plays a dominated 

role in evaluating the potential risks of air pollution in different cities (Chen et al. 2012). 

Fig. 5 displays the average daily emissions of NO2 and PM2.5 during 1 Apr. 2020 to 31 

Dec. 2020 in each city. Several cities with lower levels of NO2 and PM2.5 reported 



anomalies in relative risks estimation. For example, Henrico in the U.S. with average 

daily NO2 emissions lower than 2 ppb, shows significant negative trends in evaluating 

the relative risks of NO2 on COVID-19 mortality. The lower emissions of PM2.5 in 

Canada Calgary and Canada Edmonton, which are approximately 20 μg/m3, also 

provide evidence on the biases of relative risk estimation. However, as lower-level air 

pollution may reduce the impact of NO2 and PM2.5 on mortality assessment, leading to 

biases in relative risk estimation, no evidence has been provided whether different air 

pollution levels are significantly correlated with the accuracies of potential risk 

estimation on cause-specific mortality.  

 

Fig. 5. Average air pollution emission during 1 Apr. 2020 to 31 Dec. 2020 of individual 

cities. 



Our analysis has also considered the levels of human activity restriction to 

assess the role of anthropogenic emissions. Generally, the decrease of driving trips 

could reduce anthropogenic emissions (Meng et al. 2021), while the lower-level 

walking activities show the potential to reduce the risk of virus transmission (Chu et al. 

2020). This study proposed a mobility variation index to measure the overall trends and 

changes of driving and walking transportation in each city using the Apple mobility 

data: 
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where 𝑀𝑀𝑀𝑀𝑖𝑖 represents the quantified mobility variation of the ith city. 𝑀𝑀𝑃𝑃𝑀𝑀𝑖𝑖𝑀𝑀𝑖𝑖𝑡𝑡𝑦𝑦𝑝𝑝𝑤𝑤𝑚𝑚,𝑖𝑖 

and 𝑀𝑀𝑃𝑃𝑀𝑀𝑖𝑖𝑀𝑀𝑖𝑖𝑡𝑡𝑦𝑦𝑝𝑝𝑖𝑖𝑛𝑛,𝑖𝑖 indicate the maximum and the minimum value of daily mobility 

changes, respectively, which are calculated from the daily mobility data represented by 

the Apple Mobility Trends Reports. As the mobility data take 100 as the baseline, the 

changes of the mobility are scaled to a baseline as 0, with mobility higher and lower 

than 0 indicating positive and negative mobility variation, respectively. 𝑀𝑀𝑃𝑃𝑀𝑀𝑖𝑖𝑀𝑀𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖,𝑤𝑤 

refers to the mobility change of the ith city on the dth day. Specifically, positive and 

negative values represent the overall increasing and decreasing human activity patterns, 

with the higher absolute values (regardless of the positive or negative directions) 

showing the higher-degree activity changes. 

 The calculated mobility variations for driving and walking transportation in 46 

cities are shown in Fig. 6. For the driving transportation, Maricopa in the U.S. reported 

the highest level of decreasing activities with the value of approximately -0.563, while 

Pima in the U.S. show the largest increase of driving trips 0.408. It indicates that the 

proposed policies during COVID-19 yield significant influence on the driving 



transportation, especially the activity changes during and after the short-term restricted 

social-distancing policies. For the variation of walking transportation, U.S. Maricopa 

still reported the highest level of decreasing activities, with the reduction of walking 

trips of about -0.463. In addition, Alameda in the U.S. reported the largest increase in 

the walking transportation, with the mobility variation index of approximately 0.357. 

Those discrepancies of driving and walking transportation among cities are significant 

for assessing the potential risks of air pollution. For example, the decrease of driving 

and walking activities in U.S Maricopa could reduce the emission of PM2.5, leading to 

the biases of negative association with daily deaths based on the lag effects of 7, 14 and 

21 days.  

 

Fig. 6. Mobility variation of driving and walking transportation during 1 Apr. 2020 to 

31 Dec. 2020 of individual cities. 



In summary, the air pollution - COVID-19 mortality analysis shows 

discrepancies among individual cities. Influenced by the number of deaths, air pollution 

conditions and the degree of human mobility variation, biases (usually the negative 

impact of air pollution) exist in evaluating the relative risks of NO2 and PM2.5 in several 

cities, such as U.S Henrico, U.S. Pima, Hong Kong, and Canada Calgary. However, the 

negative trends of relative risks in terms of PM2.5 in several cities cannot be explained in 

this section, such as U.S. Providence and U.S. Wayne, which will be further discussed 

in the following sections. 

Model Assessment 

To evaluate the accuracy of BSTHM, comparative studies were proposed by involving 

GLM and GAM. Specifically, GLM and GAM with negative binomial were utilized to 

estimate the association between air pollutions with time lag effects (lag 7, lag 14 and 

lag 21) and COVID-19 mortality. Spatial fixed effects and time fixed effects are 

included to control spatial and temporal characteristics. For the implement of GAM, the 

degree of freedom, which is applied for the controlling variables including 

meteorological and human mobility factors, was selected using the Generalized Cross 

Validation (GCV) criterion. 

The performance of the proposed models, including GLM, GAM and BSTHM, 

were evaluated by calculating root mean square errors (RMSE). Specifically, RMSE 

calculates the standard deviation of the prediction error. As shown in Table 4, the 

RMSE of GLM for the lag 7, lag 14 and lag 21 are 25.181, 21.509, 15.460, respectively. 

The RMSE of GAM are 24.317, 19.629 and 15.328. For the BSTHM proposed in this 

study, the RMSE for l the lag 7, lag 14 and lag 21 are 0.703, 0.721 and 0.726, 

respectively. It indicates that BSTHM achieves better performance than GLM and 

GAM. However, one should be noted that although lower value of RMSE represents 



better model performance, it could also lead to over-fitting issue. Since we focus on the 

overall trends of model regression instead of classification, the biases caused by the 

potential over-fitting problem could be reduced. On this basis, the overall relative risks 

of NO2 and PM2.5 were further estimated and compared among GLM, GAM and 

BSTHM. 

Table 4. RMSE calculated from GLM, GAM and STHBM models with different lag 

effects. 

Models Lag 7 Lag 14 Lag 21 

GLM 25.181 21.509 15.460 

GAM 24.317 19.629 15.328 

BSTHM 0.703 0.721 0.726 
 

Fig. 7 shows the relative risk of NO2 and PM2.5 with 95% credible interval based 

on GLM, GAM and BSTHM. Generally, overall positive trends are revealed with the 

lag effects of 7, 14 and 21 days. For the NO2 – mortality association, the relative risks 

of 1.008 (CI: 1.008 to 1.015), 1.011 (CI: 1.004 to 1.018) and 1.006 (CI: 0.998 to 1.014) 

are shown with 7-, 14- and 21-day lag effects using GLM. Utilizing GAM, the relative 

risks of 1.025 (CI: 1.017 to 1.032), 1.026 (CI: 1.019 to 1.034) and 1.021 (CI: 1.013 to 

1.029) are estimated for NO2 under different time lag effects. The relative risks of 

BSTHM, as reported in the Overall BSTHM Results section, show the values of 1.009 

(CI: 1.003 to 1.014), 1.014 (CI: 0.995 to 1.02) and 1.006 (CI: 0.999 to 1.012) under 

each lag effect scenario. For the PM2.5 – mortality association, the relative risks of 

GLM, GAM and BSTHM are 1.004 (CI: 1.002 to 1.005), 1.001 (CI: 0.999 to 1.003) and 

1.002 (CI: 1.001 to 1.003) under the 7-day lag effect, 1.003 (CI: 1.002 to 1.005), 1.001 

(CI: 0.999 to 1.003) and 1.002 (CI: 1.001 to 1.003) under the 14-day lag effect, 1.003 



(CI: 1.001 to 1.004), 1.001 (CI: 0.999 to 1.003) and 1.004 (1.002 to 1.006) under the 

21-day lag effect. 

Based on the relative risk estimation in Fig. 7, one can see that different lag 

effects including 7, 14 and 21 days reveal limited impacts on the relative risk variation. 

Discrepancies are mainly caused by different models. Compared with GLM and 

BSTHM, GAM shows higher relative risks of NO2 with different lag effects. Similar 

relative risk patterns of NO2 are revealed using GLM and BSTHM, which are all lower 

than the relative risks of GAM. For the relative risks of PM2.5, lag effects of 7 days and 

14 days show similar relative risk patterns, with GLM exhibiting highest risks and 

GAM yielding lowest risks. Differences are shown in the lag effect of 21 days, with 

BSTHM reporting the highest risk compared with GAM and GLM. Although 

discrepancies are found among different models, which are consistent with the model 

evaluation in Table 4, the overall risk trends based on GLM, GAM and BSTHM are 

similar, revealing the reliability of the proposed model on the risk estimation.  



 

Fig. 7. Relative risk (with 95% credible interval) comparison among GLM, GAM and 

BSTHM. 

Discussion 

Although studies of air pollution and epidemic diseases have benefitted from existing 

research which considers multi-perspective physical and socioeconomic factors (Silva et 

al. 2017; Srivastava 2020; Rahimi et al. 2020), a better understanding of the local spatial 

variations of air pollution-COVID-19 interactions has not been well-studied. This study 

explored the association between daily air pollutants, including NO2 and PM2.5, and 

COVID-19 mortality between 1 Apr. 2020 and 31 Dec. 2020. The epidemiological 

analysis focuses on the relative risks of NO2 and PM2.5 to the changes of daily deaths 

based on a global scale and individual cities.  



The results are consistent with the previous studies that higher NO2 and PM2.5 

emissions are associated with the increasing deaths caused by respiratory diseases (Xiao 

et al. 2020; Zoran et al. 2020). Liu et al. (2019) reported the independent association 

between short-term exposure to PM2.5 and daily respiratory diseases in more than 600 

cities on a global scale. Moreover, Villeneuve and Goldberg (2020) have provided a 

literature review on the ambient air pollution and the increasing risk of severe acute 

respiratory syndrome (SARS) and COVID-19, with all the studies reporting positive 

associations. In addition, long-term exposure to NO2 and PM2.5 was explored by Zhang 

et al. (2021), which was positively associated with the increasing risks of respiratory 

mortality.  

It should be noted that despite the positive trends on a global scale, several 

individual cities in this study, have reported negative association between NO2, PM2.5 

and COVID-19 mortality, which is opposite to the overall global trends. The findings 

reveal the impact of multiple spatial scales on estimating air pollution risks. Previous 

studies have discussed the influence of multi-scale air pollution on the public health, 

involving both scales and boundary districts (Thompson and Selin 2012; Markakis et al. 

2014). Butt et al. (2017) analyzed the influence of PM2.5 in several regions on the 

changes of global attributable deaths, indicating that the increasing global population 

weighted PM2.5 was mainly dominated by the increase of China and India. Another 

research by Thompson and Selin (2012) evaluated the uncertainty of air quality and 

health impacts based on different scales, showing the variation of ozone concentration 

at 36, 12, 4 and 2 km resolution. Those discrepancies of relative risks have also been 

discussed in the City-level Analysis section of this study. The changes of COVID-19 

mortality, the level of air pollution and human mobility variation in individual cities are 

considered to discuss the relative risk discrepancies. For instance, smaller number of 



total deaths, lower-level air pollution and higher-level human mobility variation could 

lead to the biases in relative risk estimation. However, the relative risk patterns in 

several cities, such as U.S. Providence and Wayne, were not explained by the above 

factors. It reveals the fact that compared with the classic risk factors, short-term 

exposure to air pollution shows lower impact on health condition which could lead to 

the non-positive associations (Liu et al. 2019). 

This study has a few new findings. First, it provides evidence on potential risks 

of air pollution exposure under the scenario of lockdown and restricted social-distancing 

policies before vaccination. Second, both global and city-level analysis were 

investigated and compared to illustrate the impact of multi-scale variation on risk 

estimation of air pollution. This research reinforces the evidence of the discrepancies of 

linkages between daily NO2, PM2.5 and COVID-19 mortality on the city scale and 

global scale. 

There are also some limitations of this study, i.e., cities selected in this study are 

limited due to the availability of multi-sourced daily data. For instance, cities which 

lack ground-level air pollution data are excluded in this study. Air pollution exposure 

estimation based on the integration of ground-level and satellite-level air pollution data 

is not considered in this study because of the biases on the fine-scale daily data 

estimation (Sullivan and Krupnick 2018). Thus, the coverage of the collected data may 

be not representative to estimate the air pollutants – COVID-19 mortality on a complete 

global scale. Moreover, although the overall trends of air pollution risks among models 

have been assessed in the Model Assessment section, the discrepancies of relative risks 

caused by GLM, GAM and BSTHM in individual cities have not been discussed. 

Evidence about the estimation biases could be provided by comparing individual city-

level relative risks of NO2 and PM2.5. For instance, by comparing the relative risks of 



PM2.5 using GLM and GAM in individual cities, the negative association trends in the 

U.S. Providence estimated by BSTHM could be further evaluated. 

Conclusion 

Understanding the association between multi-scale air pollution and COVID-19 

mortality is significant in finding the potential factors that could increase the severity of 

COVID-19 infections. This study provided a global perspective of the ground-level 

daily NO2, and PM2.5 between 1 Apr. 2020 and 31 Dec. 2020, and estimated multi-scale 

relative risks of these air pollutants accounting for the meteorological and human 

mobility factors using a BSTHM model.  

Results suggested a significant relationship between daily ground-level air 

pollutants and COVID-19 mortality based on BSTHM. With the lag effects of 7, 14 and 

21 days, the relative risks of NO2 and PM2.5, ranging from 1.006 to 1.014 and from 

1.002 to 1.004 respectively, are higher with the increasing number of daily deaths. 

Moreover, variations of relative risks are shown among individual cities. Relative risks 

of NO2 based on 7-, 14- and 21-days’ lag effects are between 0.754 and 1.138, between 

0.973 and 1.245, and between 0.935 and 1.141, while the relative risks of PM2.5 range 

from 0.888 to 1.032, from 0.968 to 1.013, and from 0.971 to 1.023 with the lag effects 

of 7, 14 and 21 days. Findings reveal the discrepancies in assessing air pollution in 

individual cities compared with global analysis, exhibiting the necessity to investigate 

the potential impact of multi-scale spatial effect of the global air pollution on the 

COVID-19 mortality. 
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