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Abstract

The control strategies of emergency infectious diseases are constrained by limited

medical resources. The fractional dose vaccination strategy as one of feasible

strategies was proposed in response to global shortages of vaccine stockpiles.

Although a variety of epidemic models have been developed under the circum-

stances of limited resources in treatment, few models particularly investigated

vaccination strategies in resource-limited settings. In this paper, we develop a

two-group SIR model with incorporation of proportionate mixing patterns and

n-fold fractional dose vaccination related parameters to evaluate the efficiency

of fractional dose vaccination on disease control at the population level. The

existence and uniqueness of the final size of the two-group SIR epidemic model,

the formulation of the basic reproduction number and the relationship between

them are established. Moreover, numerical simulations are performed based

on this two-group vector-free model to investigate the effectiveness of n-fold

fractional dose vaccination by using the emergency outbreaks of yellow fever in

Angola in 2016. By employing linear and nonlinear dose-response relationships,

we compare the resulting fluctuations of four characteristics of the epidemics,

which are the outbreak size, the peak time of the outbreak, the basic reproduc-
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tion number and the infection attack rate (IAR). For both types of dose-response

relationships, dose-fractionation takes positive effects in lowering the outbreak

size, delay the peak time of the outbreak, reducing the basic reproduction num-

ber and the IAR of yellow fever only when the vaccine efficacy is high enough.

Moreover, five-fold fractional dose vaccination strategy may not be the opti-

mal vaccination strategy as proposed by the World Health Organization if the

dose-response relationship is nonlinear.

Keywords: Fractional dose vaccination, epidemic model, the final size, the

basic reproduction number, the outbreak size

2000 MSC: 37N25, 34K60, 92D40

1. Introduction

The emergence and reemergence of various infectious diseases pose great

threats to public health. The intervention and elimination of infectious dis-

eases have aroused wide public concern. Global public health systems have

implemented multiple control strategies such as providing effective treatments5

to infected individuals, isolating infectious individuals in lowering the transmis-

sibility and vaccinating susceptible individuals to build herd immunity. How-

ever, these control strategies have constraints due to limited medical resources,

which are embodied in the shortage of trained doctors, drugs and vaccines, in-

sufficient hospital beds, isolation places and medical devices especially in rural10

areas of developing countries. The limited supply of medical resource also hap-

pens in developed countries. It was hard to access to the popular medication

Tamiflu at metro pharmacies of USA during the flu epidemic in 2018 (CDC,

2018). Similar lack of drugs happened during the avian influenza epidemic in

2005 (Hayden, 2006). Consequently, the investigation on disease transmission15

in resource-limited settings can benefit decision-makers in optimising the utili-

sation of finite public health resources by assessing disease risks.

Mathematical models have played significant roles in investigating the pre-

vention and control of infectious diseases for a long time. Researchers have
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developed a variety of epidemic models under the circumstance of limited re-20

sources. The majority of these epidemic models are aimed at exploring the

impact of limited resources in treatment by assuming an additional removal

rate of each infected individual owing to the treatment, which is either contin-

uously (Cui et al., 2008; Hu et al., 2008; Li et al., 2009; Rao et al., 2019; Rong

and Perelson, 2009; Rahman et al., 2016; Wang, 2006; Wang et al., 2012; Yan et25

al., 2014; Zhou and Fan, 2012; Zhang and Liu, 2008) or discontinuously (Qin et

al., 2016; Wang and Ruan, 2004; Zhang et al., 2015; Zhu and Lin, 2018) depen-

dent on the number of infective individuals and the available resources. Since

the World Health Organization (WHO) regards in-patient beds density as an

important index evaluating the availability of public health services for possible30

infectives, several modelling studies have dedicated to the effect of the number

of limited hospital beds on the control of epidemics by assuming the recovery

rate as a function related to not only the number of infected individuals but also

the number of hospital beds (Abdelrazec et al., 2016; Ge et al., 2015; Njankou

and Nyabadza, 2017; Shan and Zhu, 2014; Wang et al., 2018). By virtue of35

optimal control theory, a couple of researchers used the basic epidemic model

with incorporation of either isolation, vaccination or both to explore the optimal

isolation strategies of epidemics in resource-limited settings (Hansen and Day,

2011; Zhou et al., 2013).

However, few studies particularly investigated vaccination strategies in resource-40

limited settings even though there are plenty of epidemic models investigating

the effect of vaccination strategies in controlling infectious diseases such as yel-

low fever (Zhao et al., 2018), influenza (Qiu and Feng, 2010; Xiao and Moghadas,

2013), pertussis (Magpantay et al., 2016), seasonal flu (Ghosh and Heffernan,

2016) and hepatitis B (Dai, 2016). Lee et al. modified a single outbreak epidemic45

model with nine compartments by incorporating a control function and applied

the optimal control theory to identify how to optimally utilise the influenza

vaccine when the vaccine supply is limited (Lee et al., 2011). A two-group

SIR model with limited vaccination resources was studied in (Yu et al., 2018),

where the optimal vaccination control strategies for heterogeneous models were50
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explored. In order to uncover how the transmission of emerging infectious dis-

eases is affected by limited vaccine supply, Qin et al. designed and analysed an

SIR model with consideration of a specific nonlinear pulse vaccination strategy

(Qin et al., 2013), which was completely different from above two studies. The

objective of this paper is to investigate the effect of another vaccination strategy,55

i.e., dose-sparing vaccination strategy in case of limited vaccine stocks.

Researchers have launched long-term trials to examine the immunogenicity

and safety of various types of reduced dose vaccines including poliovirus (Mo-

hammed et al., 2010; Resik et al., 2013), influenza (Hung et al., 2012; Kúnzi

et al., 2009; Wyatt et al., 2006) and yellow fever (Campi-Azevedo et al., 2014;60

Martins et al., 2013; Roukens et al., 2008, 2018) vaccines, which indicate that

reduced dose vaccines showed equivalent immune response with that of full dose

vaccines. The WHO recommend fractional dose vaccination just for emergency

situations rather than routine immunisation (Vannice et al., 2018). The recent

substantial outbreaks of yellow fever in Angola and the Democratic Republic65

of Congo in 2016 result in a global shortage of the yellow fever vaccine, which

pushes the WHO to initiate five-fold fractional-dose yellow fever vaccination

strategy in Kinshasa (Vannice et al., 2018). In order to advance the support-

ing evidence bases of fractional dose vaccination, Wu et al. provided a timely

study in (Wu et al., 2016), where they used simple mathematical models de-70

scribing the transmission of yellow fever to compute the infection attack rate

(IAR) and check the robustness of this vaccination strategy. The mathematical

model used in their work is the basic SIR epidemic model with homogeneous

mixing, which is not appropriate for modelling the effect of vaccination as the

contact and recovery patterns between vaccinated and unvaccinated individu-75

als vary quite differently. Moreover, the basic reproduction number R0 in their

work is fixed and remains unchanged during the course of the epidemics. Hence,

these limitations may affect the accuracy of their results such as the value of

IAR calculated. This motivates us to propose a more reasonable modelling

framework, that is, the multi-group modelling framework with consideration of80

heterogeneous group mixing patterns and n-fold fractional dose vaccination re-
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lated parameters to evaluate the effectiveness of fractional dose vaccination on

disease control at the population level.

The formulations of our model are derived elaborately in Section 2. Theo-

retical analysis involving the existence and uniqueness of the final size, the for-85

mulation of the basic reproduction number and the relationship between them

are presented in Section 3. Numerical simulations are performed in Section 4 to

investigate whether n-fold fractional dose yellow fever vaccination is effective in

reducing the risk of yellow fever transmission in the situation of limited yellow

fever vaccine stockpile. Discussions are provided in the final section.90

2. Model formulation

Our model is based on the classic susceptible-infected-recovered (SIR) struc-

ture with the assumption of standard incidence type for disease transmission

and ignoring the demographic processes (i.e. births and migration) (Brauer,

2008). We suppose the vaccination program is targeted at susceptible individu-95

als only and completed before the epidemic starts. Each standard-dose vaccine

is supposed to be effectively fractionized into n-fold (1 ≤ n ≤ 5). Let p be the

proportion of population that standard-dose vaccines can coverage. Then, the

vaccination coverage can be extended to np for n-fold fractional dosing vac-

cines. Let pe denote the probability that a standard-dose vaccine takes effects100

(providing full or partial protection). This probability may be reduced due to

fractional-dosing vaccines. We use εe(n) to represent the ratio of the probability

for a n-fold fractional dose vaccine taking effects relative to that of a standard-

dose vaccine, which is dependent on n. Another pair of notations, (pf , εf (n)), is

introduced to measure the relative reduction in the probability that a success-105

fully vaccinated individual with the fractional-dose vaccine gains full protection

to that with the standard-dose vaccine.

Let S0(≥ 0) be the number of susceptible individuals just before the vaccine

program starts. In order to better describe the transmission dynamics, we

classify the initial susceptible population into three classes, which are the V -110
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class of vaccinated individuals with full protection, the Sv-class of vaccinated

individuals with partial protection and the Su-class of individuals who are not

vaccinated or experiencing vaccine failure (i.e., the vaccine takes no effect in

protecting the vaccinated individual from infection). At time t, the number of

individuals in the V -class, Sv-class and Su-class are denoted by V (t), Sv(t) and115

Su(t) respectively. In this paper, we assume the full protection that vaccinated

individuals may get does not wane during the epidemic. Consequently, there is

no population flux in the V -class, which implies that the number of individuals

in the V -class is fixed, i.e. V (t) ≡ V (0) = peεe(n)pfεf (n)npS0 = V0 ≥ 0, for all

t ∈ R.120
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Figure 1: The transition diagram for the model with six epidemic compartments

Even though the vaccinated individuals in the Sv-class only receive partial

protection, the vaccines may still play a role in reducing the susceptibility and

infectiousness (Halloran et al., 1997) and increasing the recovery rate (Gan-

don, 2001). In order to evaluate the effects of n-fold fractional-dose vaccine,

we introduce several similar pairs of notations as above, which are (pi, εi(n)),125

(ps, εs(n)) and (pr, εr(n)), representing the relative infectiousness, relative sus-
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ceptibility and relative recoverability for a standard-dose and n-fold fractional-

dose vaccine respectively. Detailed descriptions of the parameters are provided

in Table 1. The mixing patterns between subpopulations in multi-group popu-

lations greatly affect the transmission of the disease (Chow et al., 2011; Yuan130

and Wang, 2010). In this paper, we assume the common proportionate mixing,

that is, the contact probability of an individual in i-th group with the one in

j-th group is in proportion to the number of contacts in j-th group (Chow et

al., 2011). Thus, susceptible individuals in the Sv-class and Su-class can get

infected either by the infected individuals in the Iv-class or by the infected in-135

dividuals in the Iu-class. All individuals recover from infection and enter into

the recovered R-class. The transfer diagram between different classes is shown

in Fig. 1. The disease transition dynamics is described by a system of ordinary

differential equations (ODEs) in model (2.1):



dSu(t)

dt
= −cβ

N

(
Iu(t) + piεi(n)Iv(t)

)
Su(t),

dIu(t)

dt
=
cβ

N

(
Iu(t) + piεi(n)Iv(t)

)
Su(t)− γIu(t),

dSv(t)

dt
= −cβ

N

(
Iu(t) + piεi(n)Iv(t)

)
psεs(n)Sv(t),

dIv(t)

dt
=
cβ

N

(
Iu(t) + piεi(n)Iv(t)

)
psεs(n)Sv(t)− γprεr(n)Iv(t),

dR(t)

dt
= γIu(t) + γprεr(n)Iv(t),

(2.1)

with nonnegative initial conditions140

Su(0) = [1− peεe(n)np]S0 = Su0, Iu(0) = Iu0,

Sv(0) = peεe(n)(1− pfεf (n))npS0 = Sv0, Iv(0) = Iv0,

R(0) = 0, np ≤ 1.

(2.2)

Remark 2.1. It is worth noting that system (2.1) can be used to investigate

the impact of fractionated vaccination on vector-borne diseases. Indeed, this
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two-group vector-free SIR model can be reasonably deduced from a vector-host

model via a quasi-equilibrium approximation approach given that the life cycle of145

most vectors (e.g. mosquitoes) is more rapid compared to the timescales of the

epidemic and the host (Keeling and Rohani, 2008). Furthermore, it is shown

that this type of vector-free SIR model may be better in parameter fitting and

estimation than the vector-host model (Pandey et al., 2013).

By employing the standard ODE theory (Hale, 1980), it is not difficult to150

show that system (2.1) with the initial condition (2.2) is mathematically well-

posed and biologically reasonable, which is summarised in the following theorem.

Theorem 2.2. Given the initial condition (2.2), system (2.1) admits a unique

nonnegative and bounded solution on [0,∞).

Before presenting the main results of this paper, it is necessary to introduce

the following notations that will be used. In order to differ the column vectors

and scalars, we use bold characters to denote column vectors. Denote Rm+ :=

{X ∈ Rm : Xi ≥ 0, i = 1, · · · ,m} as the positive orthant in Rm and int(Rm+ ) :=

{X ∈ Rm : Xi > 0, i = 1, · · · ,m} as the interior of Rm+ . For X,Y ∈ Rm+ , we

define X ≤ Y and Y ≥ X if Y −X ∈ Rm+ , X < Y and Y > X whenever

Y −X ∈ Rm+ and X 6= Y , X � Y and Y �X if Y −X ∈ int(Rm+ ). Let

Λ = {(Su(t), Sv(t), Iu(t), Iv(t), R(t)) ∈ R5
+ :

Su(t) + Iu(t) + Sv(t) + Iv(t) +R(t) = N − V0},

where the constant N represents the number of total population, V0 is the155

number of individuals in V -class, which is defined in the previous arguments.

It follows from Theorem 2.2 that Λ is positively invariant for system (2.1) with

initial condition (2.2).

3. Theoretical results

In this section, two important indices in controlling the spread of epidemics160

are investigated. One is the final size of the epidemic, which accounts for the
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Table 1: Description of parameters in the model

Parameter Definition Range
c Number of contacts per unit time an individual

makes
(0,∞)

β Probability of infection given contact between a
susceptible and an infected individual

(0, 1]

γ Number of individuals recovered from infection per
unit time without vaccine protection

(0,∞)

pe Probability that a standard-dose vaccine takes ef-
fects

(0, 1]

εe(n) The ratio of the probability that a n-fold fractional-
dose vaccine taking effects relative to that a
standard-dose vaccine taking effects

(0, 1]

pf Probability that a successfully vaccinated individ-
ual with a standard-dose vaccine gains full protec-
tion

(0, 1]

εf (n) The ratio of the probability that a successfully vac-
cinated individual gains full protection with a n-
fold fractional-dose vaccine relative to that with a
standard-dose vaccine

(0, 1]

pi The ratio of the transmissibility of a vaccinated in-
dividual relative to that of an unvaccinated indi-
vidual with a standard-dose vaccine

(0, 1]

εi(n) The ratio of the transmissibility of a vaccinated in-
dividual with an n-fold fractional-dose vaccine rel-
ative to that with a standard-dose vaccine

[1,∞)

ps The ratio of susceptibility of a vaccinated individ-
ual relative to that of an unvaccinated individual
with a standard-dose vaccine

(0, 1]

εs(n) The ratio of the susceptibility of a vaccinated indi-
vidual with an n-fold fractional-dose vaccine rela-
tive to that with a standard-dose vaccine

[1,∞)

pr The ratio of the recoverability of a vaccinated indi-
vidual relative to that of an unvaccinated individ-
ual with a standard-dose vaccine

[1,∞)

εr(n) The ratio of the recoverability of a vaccinated in-
dividual with an n-fold fractional-dose vaccine rel-
ative to that with a standard-dose vaccine

(0, 1]
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number of individuals who actually become infected during the epidemic and

who finally survive from the epidemic. This index is often considered as a crit-

ical issue in evaluating the magnitude of the epidemic. The other is the basic

reproduction number, which always serves as a threshold parameter in deter-165

mining whether the epidemic will break out or die out. Moreover, we establish

the relationship between the final size and the basic reproduction number.

3.1. The final size

The formal statements involving expected final size of the SIR-epidemic

model was first proposed by Kermack and McKendrick (Kermack and McK-170

endrick, 1927). Since then, there are growing interests among researchers to

formulate the final size relation for various types of epidemic models (see e.g.

(Andreasen, 2011; Brauer, 2008; Ma and Earn, 2006; Magal et al., 2016, 2018;

Rass and Radclie, 2003) and references therein). Among these research, both

Cui et al. (Cui et al., 2018) and Magal et al. (Magal et al., 2016) proposed a175

similar tractable approach of establishing the final size relation for two-group

SIR model, which motivates us to drive the final size relation of epidemic model

(2.1) under the effect of n-fold fractional dosing vaccine.

In view of system (2.1), it easily follows that Su(t) and Sv(t) decrease

and R(t) increases with respect to time t ∈ R. Besides, the non-negativity180

and boundedness of Su(t), Sv(t) and R(t) imply the existence of Su(∞) :=

lim
t→∞

Su(t), Sv(∞) := lim
t→∞

Sv(t) and R(∞) := lim
t→∞

R(t). By adding the first

four differential equations in system (2.1), we have

d

dt

(
Su(t) + Sv(t) + Iu(t) + Iv(t)

)
= −

(
γIu(t) + γprεr(n)Iv(t)

)
. (3.1)

Equation (3.1) implies that Su(t)+Sv(t)+Iu(t)+Iv(t) is decreasing in virtue of

the nonnegativity of Iu(t) and Iv(t). Due to the boundedness of Iu(t) and Iv(t),185

it follows from equation (3.1) that the derivative of Su(t) +Sv(t) + Iu(t) + Iv(t)

is also bounded. By letting t → ∞ on both sides of equation (3.1), we have

lim
t→∞

d

dt

(
Su(t)+Sv(t)+ Iu(t)+ Iv(t)

)
= 0, which further indicates that Iu(∞) =
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Iv(∞) = 0 on account of the nonnegativity of Iu(t) and Iv(t). Consequently, we

have R(∞) = N − V0 − Su(∞)− Sv(∞) if the final size of the epidemic Su(∞)190

and Sv(∞) are well determined.

Thus, it is imperative to establish the final size relation of the epidemics

involving Su(∞) and Sv(∞), which is summarised in the following lemma.

Lemma 3.1. Suppose system (2.1) has initial conditions satisfying Su0 � 0,

Sv0 � 0, then the final sizes of susceptible populations, i.e., Su(∞) and Sv(∞)195

are determined by the following equations:



Su(∞) =Su0 · exp
( cβ
Nγ
·
(
Su(∞)− Su0 − Iu0

)
+

cβpiεi(n)

Nγprεr(n)
·
(
Sv(∞)− Sv0 − Iv0

))
,

Sv(∞) =Sv0 · exp
(cβpsεs(n)

Nγ
·
(
Su(∞)− Su0 − Iu0

)
+
cβpiεi(n)psεs(n)

Nγprεr(n)
·
(
Sv(∞)− Sv0 − Iv0

))
.

(3.2)

Proof. Dividing the Su-equation and Sv-equation in (2.1) by Su and Sv respec-

tively, and then integrating these two scalar equations from time 0 to t yield


lnSu(t)− lnSu0 = −cβ

N

∫ t

0

Iu(s)ds− cβpiεi(n)

N

∫ t

0

Iv(s)ds,

lnSv(t)− lnSv0 = −cβpsεs(n)

N

∫ t

0

Iu(s)ds− cβpiεi(n)psεs(n)

N

∫ t

0

Iv(s)ds.

(3.3)

It follows from the integration of the sum of Su-equation and Iu-equation in200

(2.1) from time 0 to t that

−
∫ t

0

Iu(s)ds =
Su(t) + Iu(t)− Su0 − Iu0

γ
. (3.4)

By applying similar arguments, we have

−
∫ t

0

Iv(s)ds =
Sv(t) + Iv(t)− Sv0 − Iv0

γprεr(n)
. (3.5)
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Substituting (3.4) and (3.5) into (3.3) gives



ln
Su(t)

Su0
=
cβ

Nγ
·
(
Su(t) + Iu(t)− Su0 − Iu0

)
+

cβpiεi(n)

Nγprεr(n)
·
(
Sv(t) + Iv(t)− Sv0 − Iv0

)
,

ln
Sv(t)

Sv0
=
cβpsεs(n)

Nγ
·
(
Su(t) + Iu(t)− Su0 − Iu0

)
+
cβpiεi(n)psεs(n)

Nγprεr(n)
·
(
Sv(t) + Iv(t)− Sv0 − Iv0

)
.

On account of Iu(∞) = Iv(∞) = 0, we can easily obtain (3.2) by letting t→∞

on both sides of the above equations.

We define a map L: R2 → R2 based on system (3.2), more specifically,

L(X) = L


 x1

x2


 =

 L1(x1, x2)

L2(x1, x2)

 ,
where

L1 (x1, x2) =Su0 · exp
( cβ
Nγ

(
x1 − Su0 − Iu0

)
+

cβpiεi(n)

Nγprεr(n)
(x2 − Sv0 − Iv0)Big)

and

L2 (x1, x2) =Sv0 · exp
(cβpsεs(n)

Nγ
(x1 − Su0 − Iu0)

+
cβpiεi(n)psεs(n)

Nγprεr(n)
(x2 − Sv0 − Iv0)

)
.

Lemma 3.1 implies that the final size of the epidemic is well determined whenever205

L(X) has a unique fixed point.

For simplicity, column vectors are used to represent the susceptible and

infected population respectively, each of which contains both the unvaccinated

and vaccinated individuals. Denote

S(t) =

 Su(t)

Sv(t)

 and I(t) =

 Iu(t)

Iv(t)

 .

12



Thus, it follows that

S(0) =

 Su0

Sv0

 , S(∞) =

 Su(∞)

Sv(∞)

 ,
and

I(0) =

 Iu0

Iv0

 , I(∞) =

 Iu(∞)

Iv(∞)

 .
By applying similar arguments as in (Magal et al., 2016), it is easy to prove that

L(X) is monotonically increasing and strictly convex. Besides, 0 < L
(
S(0)

)
<

S(0) holds. Consequently, we can deduce that L(X) admits a unique fixed

point 0 � S(∞) < S(0), which constitutes the main result of this subsection210

as shown in the next theorem.

Theorem 3.2. For system (2.1) with initial conditions (2.2), there exists a

unique fixed point S(∞) in
[
0,S(0)

]
and S(∞) can be determined differently

on different initial conditions:

(1) Assume S(0)� 0 and I(0) > 0, then S(∞) = lim
n→∞

Ln
(
0
)
.215

(2) Assume S(0)� 0 and I(0)� 0, then S(∞) = lim
n→∞

Ln
(
S(0)

)
.

Remark 3.3. Theorem 3.2 provides one possible way to numerically compute

the final size of the epidemic and investigate the effects of n-fold fractional dosing

vaccine on the final size.

3.2. The basic reproduction number220

The basic reproduction number is defined as the spectral radius of the next

generation matrix, which denotes the expected number of individuals in the

completely susceptible population infected by an infectious individual during

the course of its entire infectious period (Diekmann et al., 1990). In order to

establish the explicit formulation of the basic reproduction number, van den

13



Driessche and Watmough derived a straightforward expression of next gener-

ation matrix for compartmental disease models (van den Driessche and Wat-

mough, 2002). By virtue of their theory, we obtain the next generation matrix,

which is shown as follows:

G =


cβ

Nγ
Su0

cβpiεi(n)

Nγprεr(n)
Su0

cβpsεs(n)

Nγ
Sv0

cβpiεi(n)psεs(n)

Nγprεr(n)
Sv0

 .

Therefore, the basic reproduction number of model (2.1)-(2.2) is

R0 = ρ (G) =
cβ

Nγ
Su0 +

cβ · pi · εi(n) · ps · εs(n)

Nγ · pr · εr(n)
Sv0, (3.6)

where ρ (G) represents the spectral radius of the next generation matrix G.

Remark 3.4. It is apparent that 1
γ and cβ

N represent respectively the expected

infectious period and transmission probability for individuals without vaccine225

protection. In view of the impact of fractional-dose vaccines, 1
γprεr(n)

and

cβ
N piεi(n)psεs(n) denote respectively the expected infectious period and transmis-

sion probability for vaccinated individuals with n-fold fractional dose vaccines.

Consequently, the first term, cβ
NγSu0 and the second term, cβ·pi·εi(n)·ps·εs(n)

Nγ·pr·εr(n) Sv0,

in equation (3.6) can be regarded as the number of new infections from unvacci-230

nated and vaccinated group respectively infected by an infective individual, which

indicates that the basic reproduction number R0 is counted as the addition of

the reproduction numbers of unvaccinated and vaccinated groups.

3.3. The final size relations with R0

In this subsection, we establish the relations between the final size of the

epidemic and the basic reproduction number R0. Recall that we have obtained

the final size equations in (3.2). Multiplying the first equation and second

equation in (3.2) by Su0 and
piεi(n)

prεr(n)
Sv0 respectively, then adding these two
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new equations together given the following final size relation with R0:

Su0 · ln
Su(∞)

Su0
+
piεi(n)

prεr(n)
Sv0 · ln

Sv(∞)

Sv0

=R0 ·
[(
Su(∞)− Su0 − Iu0

)
+
piεi(n)

prεr(n)
·
(
Sv(∞)− Sv0 − Iv0

)]
.

3.4. Infection attack rate (IAR)235

Another significant characteristic evaluating the transmission of infectious

diseases is the infection attack rate, which represents the fraction of individuals

infected during the period of an epidemic (Wu et al., 2016). The infection attack

rates for unvaccinated, vaccinated and total populations, denoted as IARu(n),

IARv(n) and IAR(n) respectively, are shown as follows:

IARu(n) =
Su0 + Iu0 − Su(∞)

Su0 + Iu0
= 1− Su(∞)

Su0 + Iu0

=1− Su0
Su0 + Iu0

exp
(
− cβ

Nγ

[
Su0 + Iu0

]
IARu(n)

− cβpiεi(n)

Nγprεr(n)

[
Sv0 + Iv0

]
IARv(n)

)
,

IARv(n) =
Sv0 + Iv0 − Sv(∞)

Sv0 + Iv0
= 1− Sv(∞)

Sv0 + Iv0

=1− Sv0
Sv0 + Iv0

exp
(
− cβpsεs(n)

Nγ

[
Su0 + Iu0

]
IARu(n)

− cβpiεi(n)psεs(n)

Nγprεr(n)

[
Sv0 + Iv0

]
IARv(n)

)
,
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and

IAR(n) =
Su0 + Iu0 + Sv0 + Iv0 − Su(∞)− Sv(∞)

Su0 + Iu0 + Sv0 + Iv0

=1− Su(∞) + Sv(∞)

Su0 + Iu0 + Sv0 + Iv0

=1− Su0
Su0 + Iu0 + Sv0 + Iv0

exp
(
− cβ

Nγ

[
Su0 + Iu0

]
IARu(n)

− cβpiεi(n)

Nγprεr(n)

[
Sv0 + Iv0

]
IARv(n)

)
− Sv0
Su0 + Iu0 + Sv0 + Iv0

exp
(
− cβpsεs(n)

Nγ

[
Su0 + Iu0

]
IARu(n)

− cβpiεi(n)psεs(n)

Nγprεr(n)

[
Sv0 + Iv0

]
IARv(n)

)
.

Note that the formulations for the infection attack rate are slightly different

from those in (Wu et al., 2016) due to the differences in model structures.

In the following section, numerical simulations involving the n-fold fractional

dose vaccine related characteristics are performed to investigate the impact of

fractional dose vaccination strategy on the control of infectious diseases.240

4. Numerical simulations

Motivated by the Kinshasa dose sparing yellow fever vaccination campaign

in July-August 2016, the yellow fever epidemic in Kinshasa is chosen as the

case study to investigate whether the n-fold fractionated vaccination campaign

before the epidemic effectively control the outbreak. Yellow fever is a vector-245

borne disease and transmitted between humans through Aedes aegypti (A. ae-

gypti) mosquitoes. In general, compartmental models involving both vectors

and hosts are appropriate to describe vector-borne diseases. However, the main

concern of this paper is to evaluate the impacts of vaccination before an epidemic

by investigating variations on disease transmission between vaccinated and un-250

vaccinated hosts. Moreover, only a small fraction of mosquitoes are involved

over the course of yellow fever epidemics (Wu et al., 2016) and the vaccina-

tion strategy brings little effect on the activity of mosquitoes (WHO, 2014).
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Thus, our grouped vector-free SIR model as a quasi-equilibrium approximation

of describing vector-borne diseases makes sense by considering the population255

of mosquitoes as a constant parameter, which is embodied in the coefficients

related to disease transmission.

A fraction 20% of total population (around 12.46 million) in Kinshasa are

excluded from this mass vaccination campaign as they were vaccinated and

gained immunity before this campaign (Wu et al., 2016). Moreover, another260

0.2 million children aged between 9 months and 2 years are recommended to

be given full-dose vaccines (Wu et al., 2016; Vannice et al., 2018). However,

only 2.5 million standard-dose vaccines are expected to be distributed, which

means the vaccination only cover around 25% of the Kinshasa population if

standard-dose vaccine is given. Under the circumstance of vaccine shortage,265

WHO has administered 5-fold fractionated yellow fever vaccines to the rest of

the population (around 9.768 million) (Wu et al., 2016). Even though there are

valid supporting evidences of equal safety and immunogenicity as standard-does

vaccines (Campi-Azevedo et al., 2014; Roukens et al., 2008), the effectiveness

of fractional dose vaccines in protecting at-risk populations has been rarely270

evaluated. Wu et al. showed that 5-fold fractional dosing vaccination strategy

implemented by WHO will substantially reduce the IAR of yellow fever provided

that the vaccine efficacy of five-fold fractional vaccines is at least 20% (Wu

et al., 2016). A linear dose-response relationship was assumed in (Wu et al.,

2016). However, the relationship between the amount of fractional dose vaccine275

and vaccine efficacy may not be completely linear (Visser and Roukens, 2016).

By comparing different (linear and nonlinear) dose-response relationships, we

attempt to investigate whether n-fold fractional dose yellow fever vaccination

is effective in reducing the risk of yellow fever transmission in the situation of

limited yellow fever vaccine stockpile. Four key factors characterising the spread280

of infectious diseases are mainly concerned, which are the outbreak size of the

epidemic, the peaking time of the outbreak, the infection attack rate (IAR) and

the basic reproduction number R0.

Most constant parameters of our model are obtained from literature review
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of prior information involving the outbreak of yellow fever. The transmission285

ability of yellow fever between humans is closely related to the biting activity

of mosquitos and the frequency of contact between humans and mosquitoes. As

indicated in previous literatures (Andraud et al., 2012; Zhao et al., 2018), the

biting rate is 0.5 per day per mosquito and the transition probability of each

bite is 0.4, which implies that the transmission probability is 0.4×0.5 = 0.2 per290

mosquito per day. On account of the bites of A. aegypti and the environmental

and climatic conditions in Africa, the average contact rate between humans

through mosquitoes is fixed as 5 (Padmanabha et al., 2012). Since the average

period of yellow fever infection lasts for 6 − 10 days (Monath, 2008), we set

the recovered rate as 1/8 day−1. Other constant parameters related to vaccine295

efficacy are estimated based on the assumptions due to lack of data. The detailed

information of constant parameters and initial conditions are summarised in

Table 2.

Table 2: Constant parameters and initial conditions

Symbol Value Unit References

c 5 Dimensionless (Padmanabha et al., 2012)
β 0.2 day−1 (Andraud et al., 2012; Zhao et al.,

2018)
γ 1/8 day−1 (Andraud et al., 2012; Zhao et al.,

2018)
p 0.2355 Dimensionless Estimated
pe 0.85 Dimensionless Estimated
pf 0.65 Dimensionless Estimated
pi 0.55 Dimensionless Estimated
ps 0.55 Dimensionless Estimated
pr 5 Dimensionless Estimated
N 9768000 Dimensionless Fixed
S0 9767980 Dimensionless Fixed
Iu0 20 Dimensionless Fixed
Iv0 0 Dimensionless Fixed

Parameters corresponding to the n-fold fractional dosing vaccine efficacy are

determined by the dose-response relationship, which has not been explicitly con-300

firmed up to now. The reasonable hypothesis is that the vaccine efficacy tends
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not to increase with the reduced dose of fractional vaccine. The amount of anti-

gen in one standard dose is assumed as 1, then the amount of antigen in an n-fold

fractional dose is 1/n, where n ≥ 1. We denote VE(n) as the vaccine efficacy of

n-fold fractional dose vaccine. For the fractionation n between n1 (≥ 1) and n2305

(≥ 1), these vaccine efficacy related parameters are assumed to be controlled by

the vaccine efficacy at its upper (VE(n2)) and lower (VE(n1)) bound in order to

avert the overestimation of the vaccine efficacy for n-fold fractional dose. Then,

the n-fold fractional vaccine efficacy related parameters (εe(n), εf (n), εr(n)) in-

crease with the amount of antigen in the vaccine, i.e. positively proportional to310

1/n. The following equation shows the detailed dose-response relationship:

εj(n) =VE(n2) +

(
1
n −

1
n2

1
n1
− 1

n2

)θ1 (
VE(n1)−VE(n2)

)
,

for n1 ≤ n ≤ n2 and j = e, f, r,

(4.1)

where θ1 is a positive number. The other two parameters (εs(n), εi(n)) of n-fold

fractional-dose vaccine show contrast relationships with the amount of antigen

in the vaccine, i.e., negatively proportional to 1/n. Then we assume

εj(n) =VE(n1) +

(
1
n1
− 1

n
1
n1
− 1

n2

)θ2 (
VE(n1)−VE(n2)

)
,

for n1 ≤ n ≤ n2 and j = s, i,

(4.2)

where θ2 is a positive number.315

A recent study affirms that individuals receiving the one-fifth dose of yellow

fever vaccines attain a long-term immunity lasting up to 10 years (Roukens et

al., 2018). Hence, we assume the n-fold fractional dose vaccine can confer long-

term protection without waning against yellow fever when the dose fractionation

n is at most 5. Since the standard dose vaccine coverage p is 0.2355, the cover-320

age of n-fold fractional dose vaccines is assumed as 100% when np > 1. It then

follows from (4.1) and (4.2) that n-fold fractional dose vaccine efficacy related

parameters are determined by VE(1) and VE(5) for 1 ≤ n ≤ 5. The vaccine

19



efficacy for standard dose vaccine is assumed as 1, i.e., VE(1) = 1. Since the

benefit threshold of 5-fold fractional dose vaccine indicated in (Wu et al., 2016)325

is at least 20%, we set the range of fluctuations of VE(5) as [0.2, 1]. Different

relationships between the dose of the fractionated vaccine and vaccine efficacy

related parameters (shown in Fig. 2) are chosen to examine the resulting vari-

ations of the effectiveness of n-fold fractional dose vaccination in the following

simulations.330
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Figure 2: Two different dose-response relationships for the n-fold fractional dose vaccine
efficacy related parameters. (a) Linear dose-response relationship, where θ1 = θ2 = 1 and the
vaccine efficacy of the maximum fold fractional vaccine is fixed VE(5) = 0.2. (b) Nonlinear
dose-response relationship, where θ1 = 0.5, θ2 = 5 and VE(5) = 0.2.

For these two different dose-response relationships, the dynamics of the total

infected population are plotted with respect to various n and VE(5) respectively.

The linear dose-response relationship is delineated in Fig. 2(a), where both θ1

and θ2 are set as 1 and the maximum-fold fractional-dose vaccine efficacy VE(5)

is fixed as 0.2. Under linear dose-response relationship, n(≥ 2)-fold fractional335

dose vaccination enlarge the outbreak size for total population and bring for-

ward the peak time of the outbreak with the increase of the dose fractionation

n if the vaccine efficacy VE(5) is less than 0.6 (see Figs. 3(a)-(b)). This indi-

cates that dose-fractionation of the standard dose vaccine takes negative effects

in controlling the outbreak of yellow fever when the vaccine efficacy of n-fold340

fractional dose vaccines is low. The dose-fractionation strategy plays a role in
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delaying the outbreak and lowering down the outbreak size when the vaccine

efficacy is high (see Figs. 3(c)-(d))
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Figure 3: Dynamics for the total infected population with various dose-fractionation, n and
the vaccine efficacy of maximum fold fractional vaccines, VE(5). n-fold fractional vaccine
efficacy related parameters under linear dose-response relationship.

The situations for the case of nonlinear dose-response relationship become

quite different from those under linear dose-response relationship. Fig. 2(b)345

shows the detailed nonlinear dose-response relationship, in which case θ1 = 0.5,

θ2 = 5 and VE(5) = 0.2. Even though the vaccine efficacy VE(5) is very low,

dose-fractionation is still effective in reducing the outbreak size and postpon-

ing the peak time of the outbreak as long as the fractionation n is less than 4

(see Figs. 4(a)-4(b)). However, five-fold fractional dose vaccines result in big-350

ger outbreak size and earlier peak time with low vaccine efficacy VE(5). The

effectiveness of five-fold fractional dose vaccination in lowering the risk of yel-

low fever becomes apparent as the vaccine efficacy VE(5) grows, while five-fold

fractional dose vaccination is not the optimal strategy until the vaccine efficacy

VE(5) is over 0.8 (see Figs. 4(c)-4(d)). For both dose-response relationships,355

the effectiveness of certain fold fractional dose vaccination in attenuating the
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transmission of yellow fever is enhanced with increasingly higher vaccine effi-

cacy. The outbreak of yellow fever is nearly prevented by five-fold fractional

dose vaccination when the vaccine efficacy VE(5) reaches 100%.
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Figure 4: Dynamics for the total infected population with various dose-fractionation, n and
the vaccine efficacy of maximum fold fractional vaccines, VE(5). n-fold fractional vaccine
efficacy related parameters under nonlinear dose-response relationship.

The surfaces in Fig. 5 depict changes of R0 and IAR with respect to the360

number of dose fractionation n and the maximum fold of fractionated vaccine

efficacy VE(5) under two different cases of dose-response relationships. For

the linear case, it is analogous to the control of the outbreak size that similar

negative effects in lowering R0 and IAR (see Fig. 5(a)) occurs if the vaccine effi-

cacy VE(5) cannot reach 60%. In order to substantially lessen IAR, the benefit365

threshold of VE(5) is required to be higher than 80%. The decreasing trends

in IAR and R0 become gently whenever dose fractionation n is greater than 4
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and the vaccine efficacy VE(5) is increasingly closer to 1. This is caused by

negligible differences in the fractionated vaccine efficacy related parameters and

the vaccine coverage of fractional dose vaccination. In the case of the nonlinear370

dose-response relationship, it can be seen from Fig. 5(b) that both R0 and IAR

decline with the increased number of dose fractionation n no matter the vaccine

efficacy VE(5) is high or low. Compared with other dose fractionated vaccines,

five-fold fractional dose vaccination does not optimally control the transmission

until the vaccine efficacy VE(5) is higher than 0.8. Similar insignificant decline375

occurs as that in the linear case when n ≥ 4 and the vaccine efficacy V E(5) is

raised to be close to 1.

5. Discussion

Under the circumstances of limited vaccine stockpiles, n-fold fractional dose

vaccination strategy is considered as a feasible vaccination strategy in emergency380

epidemics. In order to model the impact of n-fold fractional vaccination strat-

egy, we proposed a two-group SIR epidemic model with incorporating n-fold

fractionated vaccines related parameters and proportionate mixing patterns.

By virtue of the theories in (Magal et al., 2016; Cui et al., 2018), we established

the existence and uniqueness of the final size of the epidemic for two-group SIR385

model, the formulation of the basic reproduction number and the relation be-

tween them. In addition to the theoretical analysis, we performed numerical

simulations based on this two-group vector-free model to evaluate the effective-

ness of n-fold fractional dose vaccination by using the emergency outbreaks of

yellow fever in Angola. In view of our model, n-fold fractional dose vaccine390

related parameters are determined by the dose-response relationship. Thus,

different dose-response relationships may affect the transmission dynamics. In

this paper, we compared linear and nonlinear dose-response relationships and

investigated the resulted fluctuations of four characteristics of the spread of in-

fectious diseases, which are the outbreak size of the epidemic, the peaking time395

of the outbreak, the infection attack rate and the basic reproduction number.
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Figure 5: The variations of the basic reproduction number R0 and the infection attack rate
(IAR) with respect to the dose-fractionation n and the vaccine efficacy VE(5). (a) n-fold
fractional vaccine efficacy related parameters under linear dose-response relationship. (b) n-
fold fractional vaccine efficacy related parameters under nonlinear dose-response relationship.
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For both cases of dose-response relationships, we plotted the changes of these

four characteristics with respect to the dose-fractionation n and the vaccine ef-

ficacy of the maximum fold dose VE(5). The numerical results indicated that

dose-fractionation for both cases takes positive effects in lowering the outbreak400

size of yellow fever, delaying the peak time of the outbreak, reducing the IAR

and R0 when the vaccine efficacy VE(5) is high enough. The situations become

different when the vaccine efficacy is low. For linear case, dose-fractionation

takes negative effects in controlling the transmission of yellow fever, which is

embodied in the larger IAR, R0, outbreak size and earlier peak time of the405

outbreak with increased dose-fractionation when the vaccine efficacy is low.

However, the effectiveness of n-fold fractional dose vaccines with nonlinear dose-

response relationship is not influenced by the low vaccine efficacy. Moreover,

the simulated results for nonlinear case show that five-fold fractional dose vac-

cination might not be the optimal vaccination strategy until the vaccine efficacy410

VE(5) is higher than 80%. Consequently, five-fold fractional dose vaccination

implemented by WHO can prevent the transmission of yellow fever when the

vaccine efficacy is high enough. Other fold of fractionation is worth considering

when the vaccine efficacy is low. Public health authorities should cautiously

propose the dose-sparing vaccination strategy to optimise the efficiency.415

There are several limitations that may affect the accuracy of numerical re-

sults. First, our model is a two-group vector-free model, which is just an ap-

proximation to describe the transmission of vector-borne diseases by assuming

the vector population as a constant parameter. However, the yellow fever is

transmitted directly by mosquitoes. Thus, epidemic models incorporating dy-420

namics of mosquitoes may be better. In the future, we will seek other infectious

diseases that are directly transmitted by humans as the simulating example.

Second, the parameters in the numerical simulations were fixed from literature

review. Other parameterised method such as fitting from true vaccination and

epidemic data may be conductive to objectively evaluate the role of vaccination425

strategy.
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