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Spatio-temporal (ST) data is a collection of multiple time series data with different spatial locations and is inherently stochastic 
and unpredictable. An accurate prediction over such data is an important building block for several urban applications, such 
as taxi demand prediction, traffic flow prediction, etc. Existing deep learning based approaches assume that outcome is 
deterministic and there is only one plausible future; therefore, cannot capture the multimodal nature of future contents and 
dynamics. In addition, existing approaches learn spatial and temporal data separately as they assume weak correlation be-
tween them. To handle these issues, in this paper, we propose a stochastic spatio-temporal generative model (named D-
GAN) which adopts Generative Adversarial Networks (GANs)-based structure for more accurate ST prediction in multiple 
time steps. D-GAN consists of two components: 1) spatio-temporal correlation network which models spatio-temporal joint 
distribution of pixels and supports a stochastic sampling of latent variables for multiple plausible futures; 2) a stochastic 
adversarial network to jointly learn generation and variational inference of data through implicit distribution modelling. D-GAN 
also supports fusion of external factors through explicit objective to improve the model learning. Extensive experiments per-
formed on two real-world datasets show that D-GAN achieves significant improvements and outperforms baseline models. 

CCS Concepts: • Information systems → Location based services; Data stream mining;  

Additional Key Words and Phrases: Generative adversarial networks, Spatio-temporal prediction, Deep learning 

1 INTRODUCTION 

With the rapid development in computer vision and artificial intelligence, a multitude of important research prob-
lems on spatio-temporal (ST) predictive learning have emerged and attracted much interest in the research 
communities [1]–[10]. It has been well-studied in last few years due to their enormous prospect for several real-
world applications, such as traffic/crowd flows prediction [5]–[9], [11], [12], precipitation forecasting [13], air and 
water quality forecasting [14], cellular traffic prediction [4], and demand prediction [3]. While, ST predictive 
learning for such applications is challenging due to the complex spatial dependencies and temporal dynamics. 
A ST prediction model must be able to capture ST dynamics between the previous spatio-temporal sequence 
and future frames accurately. However, capturing these dynamics among the high-dimensional ST data is non-
trivial due to the diverse and different types of stochastic events that can occur in ST data.  

Recent studies have shown remarkable success for deep learning based spatio-temporal prediction as dis-
cussed in [15] . In most of the works, the whole area of a city is partitioned into a grid map (i.e., an image) based 
on the latitude and longitude. To model the spatial and temporal structure on these grid maps, a combination 
of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have been widely used. [16] 
used the CNN-based method (DeepST) to model the spatial and temporal features, while [2] used the residual 
structures for the same purpose. In [2] and [17], different network of residual CNNs are used to model the spatial 
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data mapped from different time periods (hourly, daily, and weekly). Similarly, in [11] and [18], the spatial infor-
mation is first modelled by CNNs or GCNs and then result is passed to the LSTM to get the final output. How-
ever, there are a number of challenges limiting the performance of ST prediction in complex scenarios. 

Figure. 1. High variations in the ST data volume, e.g., taxi demand variation pattern for two consecutive weeks in a PoI area 
of NYC

Figure 2(a). Distribution of number of Taxi trips in NYC for 
each hour in a day of the week 

Figure 2(b). Distribution of number of Bike trips in NYC 
for each hour in a day of the week 

Spatio-temporal correlations. To model dynamic relationships between spatial and temporal features sim-
ultaneously and finding their impact on the data variations is a non-trivial problem. Figure 1 shows a scenario 
of ST correlations in which for a PoI area of NYC, taxi demand is high from the evening to night while taxi 
demand is low in the early morning. This scenario also shows the high variations in the ST data as it is inherently 
dynamic and changing over time (i.e., stochastic). Through Fig. 1, it can be observed that both spatial attributes 
(location, i.e., PoI area) and temporal attributes (i.e., time) have high influence on the variations of the ST data 
(i.e., outflow trend). In addition, several latent events, such as blocked driveway, road construction, traffic jam, 
etc., happen suddenly and over a very short period of time in a location cannot be observed through data, but 
have hidden influence on the variations of the ST data. Also, the frequency of such events depends on both 
spatial and temporal attributes, i.e., some locations are more prone to traffic jam at particular period of time. 
Existing ST prediction methods [2][11][17][18], have separate models for each modality and fuse the learned 
spatial and temporal features in the final layer for the prediction. Modelling spatial and temporal dependencies 
independently shows that existing models assume that the relationships between these dependencies are 
weak; therefore, cannot model data variations accurately. Thus, how to jointly learn spatial dependencies at 
each timestamp and temporal evolution is a major challenge. 

Multiple types of temporal correlations. Figure 2 (a) and (b) show the trips distribution for each hour of 
the week for Taxi and Bike datasets, respectively. Taxi and Bike trip distribution is showing that taxi and bike 
demand values are highly influenced by hour of a day, day in a week and hour in a week. Existing approaches 
use the one level data mapping (i.e., hour/day/week) as an input to the model which can lead to low accuracy 
due to the lack of modelling complicated temporal dynamics in the ST data of real-world. Thus, how to decide 
input to the model to capture long and complicated temporal dynamics in the real-world spatio-temporal 
prediction problem is a challenging task.  



 

 

Multimodality. In the case of high-dimensional data and the complex dynamics of the environment, model-
ling multimodality in prediction is a hard problem [19]. Existing spatio-temporal prediction approaches have 
assumed that the environment is deterministic and there is only one plausible future. Due to this assumption, 
prediction model leads to poor performance in the case of handling stochastic dynamics in real-world environ-
ment. Therefore, when a model trained using the mean squared error (MSE) by construction between the 
ground truth and the predicted data, model chooses an average over many slightly different data. This causes 
the low accuracy in the long-term prediction [20]. When a model trained using both regression and adversarial 
loss, model performs better than models with means, but produces only single mode of the distribution instead 
of having multimodal training dataset, as pointed out in [19]. Therefore, we can say multimodality is extremely 
difficult to handle by standard regressors or classifiers as standard regressors based models choose a mean 
and classifiers based models only produce a good fit to the principal mode and could not generate quality data. 
Thus, how to handle such multimodality is quite challenging.  

External Factors Fusion. Spatio-temporal prediction is enormously a challenging task due to the inherent 
uncertainty of the future and numerous factors of the variation in ST data causing complex dynamics in raw 
pixel values. ST prediction is highly influenced by many external factors, such as time factors, adverse weather, 
accidents, traffic control, PoI, etc. Existing approaches either concatenate the representation vectors or apply 
element-wise sum or product. These solutions may produce a joint representation but cannot capture the com-
plex relationships between ST data and external factors as they do not have any explicit objective function to 
find correlations between them. Thus, fusing external factors with the ST data to improve the overall model’s 
performance is still remains a challenging task.  

To handle the above-mentioned challenges, we propose a deep spatial-temporal generative model (named 
D-GAN) for more accurate ST prediction in multiple time steps. D-GAN provides a general design to handle 
spatio-temporal prediction for different urban applications. D-GAN adopts a GANs-based structure and jointly 
learns generation and variational inference of data to produce stochastic predictions of the future accurately. 
D-GAN learns stochastic latent variables by optimizing variational lower bound combined with the adversarial 
loss. This allows to learn stochastic posterior distributions of data for handling the multimodality and the joint 
distribution of ST data. This is inspired by VAE-GANs which has been applied for image generation [21], multi-
modal image-to-image translation [22], and video prediction [23]. However, applying image generation and 
video prediction approaches directly are not applicable for predicting ST data of urban applications, such as 
taxi demand, crowd flow, etc. An image generation process can consider the large changes in appearance 
between the input and output image, but it cannot adequately handle spatial variations. Video prediction process 
can take spatial changes into account, but appearance remains largely the same from image-to-image. In ad-
dition, the prediction of next image in image sequences is highly dependent on its previous image. We extend 
VAE-GANs to stochastic ST data prediction for urban applications, such as taxi demand, crowd flow, etc.  

Our deep stochastic spatial-temporal generative model has two components. First, we propose a spatio-
temporal correlation network to model spatio-temporal joint distribution of data and support a stochastic sam-
pling of the latent variables for multiple plausible futures; This network also supports the fusion of external 
factors with ST data through explicit objective to improve the model performance by learning a shared repre-
sentation and then reconstruct them from the learned shared representation to discover correlations among 
them. Second, we design a stochastic adversarial network to jointly learn generation and variational inference 
of ST data through implicit distribution modelling. To the best of our knowledge, we are the first to propose latent 



variable model to successfully show the stochastic multi-frame spatio-temporal prediction on real-world data for 
urban applications, such as taxi demand, crowd flow, etc. We also propose to use the 3D ST maps with different 
temporal resolution as model input which allows to capture the complex temporal dynamics of ST data. In 
addition, we validate our proposed model, D-GAN on large-scale real-world datasets, including taxi data of New 
York City (NYC) and bike-sharing data of NYC. The comparisons with baseline methods show the effectiveness 
of our proposed model, D-GAN.  

In summary, the main contributions of this paper can be concluded as follows: 

• We for the first time propose a stochastic spatial-temporal generative model (named, D-GAN) to predict
spatio-temporal data accurately in multiple time steps for urban applications, such as taxi demand, crowd
flow, etc. D-GAN is highly flexible and extendable as it can be easily extended for a new ST problem with
multiple data sources.

• In D-GAN model, the variational inference is combined with GANs to jointly capture ST correlations, under-
lying factors of variations and multimodality in the data. We also propose to use the 3D ST maps with
different temporal resolution as model input for capturing the complex temporal dynamics of ST data.

• Results show that stochastically sampling the ST feature space to predict future ST dynamics are plausible.
We demonstrate application of the learned model to challenging task, like taxi demand prediction on two
large-scale real-world datasets. We extend proposed model for another challenging task, crowd flow pre-
diction to show that our proposed solution provides a general design to handle spatio-temporal prediction
for different urban applications. The results show that D-GAN is achieving more accurate performance than
baseline methods for both applications.

The rest of this paper is organized as follows: Section 2 reviews the previous works on spatio-temporal 
prediction for urban applications and introduces the background of our proposed model. In Section 3, we pre-
sent the formal definition of the studied problem. Section 4 introduces our proposed model and its different 
components. In Section 5, we describe the datasets, baselines and provide the implementation details of our 
proposed model. Evaluation and analysis are also shown in Section 5. Finally, Section 6 concludes the paper.  

2 RELATED WORKS 

Spatiotemporal Prediction in Urban Computing 

Spatiotemporal predictive learning is a fundamental problem for data-driven urban management. In recent 
times, many effective statistics and deep learning based models have been proposed for spatio-temporal pre-
diction. Autoregressive integrated moving average (ARIMA) and its variants have been widely applied for spatio-
temporal prediction [24][25]. But these models are not able to capture spatial and temporal relations. [25] pro-
posed a framework where predicted demand is a weighted ensemble of three prediction models. While, some 
researchers aim to predict travel speed and traffic volume on the road [26][27]. These methods predict traffic 
volume only for single or multiple road segments instead of a city. Then time-series based prediction ap-
proaches [28][29] are proposed to capture the spatial relations with the external context data, such as weather, 
holiday, etc. But still these models could not model the complex non-linear ST relationships.  



 

 

Besides traditional time-series models, deep learning based models achieved a great success for the mod-
elling of ST data. Some researchers used context data from multiple sources and modelled that data using a 
stack of several fully connected layers for traffic demand prediction [30], and taxi supply-demand gap [31]. 
These models do not consider spatial and temporal relations explicitly. Some researchers explored the CNN to 
capture spatial correlation for ST prediction [2][10]. While, some researchers used RNN to model temporal 
dependencies in the data [32]. Very recent studies [14] used RNN and attention for learning spatial correlations 
and temporal dependencies. [33] introduced ST factors in the gates of RNN. ST-ResNet [2] modeled temporal 
closeness, trend, and period using the residual neural network for predicting the crowd flow in a city. [3] pro-
posed ST network for predicting demand, and considered ST temporal correlation and semantic variations. [34] 
introduced a cascade multiplicative unit to learn the dependencies between multiple frames for traffic flow pre-
diction. [35] used the meta-learning to model diverse traffic flow from other auxiliary geographical information. 
Recently, [5] proposed a GANs based structure to model the crowd flow prediction.  

In recent times, deep learning has made a remarkable progress in generating future outputs either by de-
signing different network architectures or by proposing different learning techniques, such as adversarial loss. 
However, these deep neural networks based approaches have certain limitations: (1) Assume that correlations 
between spatial and temporal dependencies are weak and model them independently; (2) Existing deep learn-
ing based ST prediction approaches use deterministic models, such as feed-forward and RNN which assume 
that outcome is deterministic, i.e., cannot model multimodal data [20]; (3) Existing approaches either directly 
concatenate representation vectors of external factors with ST data or apply element-wise sum or product. This 
can generate a shared representation, but it cannot capture correlations among ST data and external factors; 
(4) Using adversarial learning with input noise can indeed generate better results but fails to adequately cover 
the space of possible futures, i.e., either fail to capture the full distribution of outcomes, or yield blurry genera-
tions, or both; (5) Existing approaches do not support an inference network to support the reasoning about data 
at an abstract level. This is important for policy makers to identify what contributes to the model’s improvement.  

The proposed D-GAN model addresses these limitations by combining variational inference with GANs to 
jointly model the spatio-temporal correlations and uncertainties of multi-frame prediction. D-GAN also supports 
the fusion of external factors through multimodal integration to improve the model learning. 

Variational Autoencoder (VAE) 
As the deterministic LSTM model fails to capture the multimodal nature of a data, we use the VAE [36] to learn 
the complex data distribution in which model estimates a probability for the possible future sequence y instead 
of a single outcome. To model the multimodality, a latent variable z (sampled from prior distribution) is used to 
capture the inherent uncertainty. An autoencoder is a member of neural network models which learns com-
pressed latent variables of a high-dimensional data. VAE is one of the autoencoders based on the Variational 
Bayesian and graphical model concept. VAE maps the input into a distribution rather than into a fixed vector. In 
the multivariate Gaussian case, model is trained by learning the mean (𝜇) and variance (𝜎) of the data distribu-
tion explicitly using reparameterization trick, while the stochasticity remains in the random variable 𝜖	~	𝒩(0, 𝐼).  

VAE uses deep learning with statistical inference for representing a data point in a latent space [36] and 
experiences the complexity in the approximation of intractable probabilistic computations. In addition, these 
generative models are trained by maximizing training data likelihood where likelihood-based methods go 
through the curse of dimensionality in many datasets, such as image, video. To handle the abovementioned 



 

 

issues, [20] proposed Generative Adversarial Nets (GANs), an alternative training methodology to generative 
models. GANs is a novel class of deep generative models in which backpropagation is used for training to evade 
the issues associated with MCMC training [37].  

Generative Adversarial Networks (GANs) 
Recently, GANs has gained a lot of attention for generating realistic images as it avoids the difficulty related to 
maximum likelihood learning. GANs works with multimodal outputs and learns rich distributions implicitly over 
images and data which are hard to model with an explicit likelihood. GANs uses the concept of a non-coopera-
tive game in which two networks, a generator (G) and a discriminator (D), are trained to play against each other 
as shown in Figure 3. G takes latent vector z from a prior distribution 𝑝! as input and outputs a sample G(z) 
with the goal of bringing G(z) as close as possible to D(x) where data x is drawn from the true data distribution, 
𝑝"#$#. At the same time, D tries to avoid getting fooled by G. A GANs model is well trained when equilibrium is 
achieved between D and G, and D cannot distinguish whether a sample is generated by G or generated from 
the real data distribution.  

 
Figure 3. Basic GANs architecture 

Basic GANs use two objective functions: (1) D minimizes the negative log-likelihood for binary classification; 
(2) G maximizes the probability of generated samples for being real. D parameters are denoted by 𝜃%, which 
are trained to maximize the loss to distinguish between the real and fake samples. G parameters are denoted 
by 𝜃& which are optimized such that the D is not able to distinguish between real and fake samples generated 
by G. 𝜃& is trained to minimize the same loss that 𝜃% is maximizing. Hence, it is a zero-sum game where players 
compete with each other. The following minimax objective applied for training G and D models jointly via solving: 

                            min
'!

max
'"

𝑉(𝐺,𝐷) =	min
&
max
%

𝔼(∽*#$%$[log𝐷(𝑥)] +	 𝔼!∽*& ?log 	@1 − 	𝐷C𝐺(z)EFG																																		(1) 

𝑉(𝐺,𝐷) is a binary cross entropy function, commonly used in binary classification problems. In Eq. 1, for 
updating the model parameters, training of G and D are performed by backpropagating the loss via their re-
spective models. With the enough capability at D and G, and sufficient training iterations, G will be able to 
transform a simple prior distribution 𝑝+ to more complex distributions, i.e., 𝑝+ converges to 𝑝"#$#, such as 𝑝+ =
	𝑝"#$#. In practice, the players are represented with deep neural nets and updates are made in parameter space. 

Autoencoders learn the relationship between data and its latent code directly (i.e., explicit), while GANs learn 
to generate samples indirectly (i.e., implicit) [37]. D-GAN composes of both VAE and GANs to handle the ST 
data prediction problem in an effective way.  
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3 PRELIMINARY 

In this section, we define the notations and the studied problem. 

3.1 Notations 
Region. There are many ways to define a location w.r.to different granularities and semantic meanings. In 

this study, we divide a city based on longitude and latitude into 2D non-overlapping grid map of 𝑚× 𝑛 size, 
where a grid represents a region 𝑟 in a city and a grid map represents a ST map (S) where S = {𝑟,, 𝑟-, … , 𝑟./}.   

Measurements. There are different types of measurements for a region that can be used for various ST 
applications, such as taxi demand, crowd flows prediction, and air quality prediction. In this study, we first take 
a case study of on-demand service prediction in a city. The taxi demand at a region 𝑟0 (i ∈ [1, mn]) in a given 
period t is defined as the number of taxis starting their trips during this time period. To show that our proposed 
solution provides a general design to handle spatio-temporal prediction for different urban applications, we take 
case study of another ST application, crowd flow prediction. The crowd flow can be categorized as inflow and 
outflow. The inflow and outflow of crowd at a region 𝑟0 (i ∈ [1, mn]) in a given period t is defined as the number 
of crowds coming in and going out, respectively. Two ST maps are maintained at a time interval t, one for inflow 
and another for outflow. To have the general problem statement, we use the demand values and crowd in-
flow/outflow values V as measurements. 

External Factors (ExF). These represent the following information: weather data (e.g., rainy, sunny, etc.), 
PoI information and time meta (e.g., time of day, day of week, holidays).  

Problem statement. Given a sequence of T observations 𝑉&012/3 = [𝑉,3, 𝑉-3, … , 𝑉43] and a sequence of exter-
nal factors 𝐸𝑥ℱ3 = [𝐸𝑥ℱ,3, 𝐸𝑥ℱ-3, … , 𝐸𝑥ℱ43]	where 𝑉03 and 𝐸𝑥ℱ03 ∈ 𝑅% is a 𝐷 dimensional vector representing the 
observation at time 𝑡, we aim to build a model that is capable of predicting future ST maps, 𝑉562"07$2"3 =
[𝒴,3, 𝒴-3, … ,𝒴43], where 𝒴03 ∈ 𝑅% represents the predicted 𝑡$8 step in the future. 

4 THE PROPOSED D-GAN MODEL 

4.1 D-GAN Overview 
We propose a novel deep generative model which jointly learns dynamic ST correlation, stochasticity in the 
data, fusion of multi-source data for multi-frame prediction. The overall architecture of the proposed D-GAN is 
illustrated in Figure 4. Our model comprises of two components: 

• Spatio-temporal Correlation Network. It encodes the information from ST data samples and external fac-
tors sampled at different time interval into a ST latent vector and ExF latent vector, respectively. It learns a
unified representation of the ST data and external factors which is used further for stochastic sampling of
the latent variables for multiple plausible futures.

• Stochastic Adversarial Network. It uses the learned shared representation (sampled latent vector) to
jointly learn generation and variational inference of data.



 

 

4.2 Spatio-temporal Correlation Network 
The inputs to the spatio-temporal correlation network are ST maps and external factors and outputs a deep 
fused representation of latent vector sampled from the shared representation of ST maps and external factors. 
The spatio-temporal correlation network can be broken down into three sub-components: data mapping, en-
coder and external factors fusion.  

Data mapping. We map the historical spatio-temporal data into the following categories which is passed to the 
encoder as an input.  

• 𝑆𝑇8": A 3d-tensor having a ST data of a day where each ST map within a tensor contains ST data of an 
hour.  

• 𝑆𝑇89: A 3d-tensor having a ST data of a week where each ST map within a tensor contains ST data of an 
hour. 

• 𝑆𝑇"9: A 3d-tensor having a ST data of a week where each ST map within a tensor contains ST data of a 
day. 

These tensors are the input of the encoder which is designed to capture the spatial and temporal correlation.  

 
Figure 4. The network architecture of the proposed D-GAN. It contains two components: spatio-temporal correlation net-

work and stochastic adversarial network 

Encoder. We design an encoder (E) which encodes past ST data to learn ST correlation. The encoder can 
be broken down into a sub-component: fusion network. To extract features from the ST data, we use the Con-
vLSTM which is the convolution layer embedded within the LSTM. ConvLSTM uses convolution operation 
instead of matrix multiplication at each gate in the LSTM cell to capture the underlying spatial features in high-
dimensional data. ConvLSTM includes both current input and the past states of its neighbours which allows it 
to model temporal dependencies. Thus, ConvLSTM can handle spatial dependencies by CNN and handle tem-
poral dependencies by LSTM as follows:  

                                                    𝑖$ = 	𝜎(𝑊(0 ∗ 𝑋$ +	𝑊80 ∗ 𝐻$:, +	𝑊70 ∘ 𝐶$:, + 𝑏0) 
                                                    𝑓$ = 	𝜎C𝑊(; ∗ 𝑋$ +	𝑊8; ∗ 𝐻$:, +	𝑊7; ∘ 𝐶$:, + 𝑏;E 
                                                    𝐶$ = 𝑓$ ∘ 𝐶$:, + 𝑖$ 	 ∘ tanh(𝑊(7 ∗ 𝑋$ +	𝑊87 ∗ 𝐻$:, +	𝑏7)                                            (2) 
                                                    𝑜$ = 	𝜎(𝑊(< ∗ 𝑋$ +	𝑊8< ∗ 𝐻$:, +	𝑊7< ∘ 𝐶$ + 𝑏<) 
                                                    𝐻$ = 𝑜$ 	 ∘ tanh(𝐶$)  
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where * is the convolutional operator, 𝑖$ is the input gate at time t, 𝑓$ is the forget gate, 𝐶$ is the cell state, 𝑜$ 
is the output gate and 𝐻$ is the hidden state at time t. Input gate control what to feed, forget gate decides what 
to forget and output gate chooses the output. Similarly, 𝑖$:, is the input gate, 𝑓$:, is the forget gate, 𝐶$:, is the 
cell state, 𝑜$:, is the output gate and 𝐻$:, is the hidden state at time t − 1. σ and tanh are the sigmoid and 
hyperbolic tangent activation functions, respectively. W is the weight and b is the bias.  

We employ multiple stack of ConvLSTM units to extract spatial and temporal features. We pass the Con-
vLSTM output through a 3D-ConvNet, a self-attention layer [38] and a multi-layer perceptron (MLP) to produce 
a condensed feature vector 𝐕(, i.e., 

																																																𝐕( 	= 	MLPeAttention hConvNet3D@ConvLSTM=(𝐱62#>)Fqr,																																																			(3)	

where 𝐱62#> is a real data space either 𝑆𝑇8" or 𝑆𝑇"9 or 𝑆𝑇89, 𝐕( is the extracted feature vector of 𝐱62#>, and L 
is the number of ConvLSTM layers. ConvLSTM neural network is able to capture long-term trends in the ST 
map sequences while 3D-ConvNet captures local spatial dependencies. 3D-ConvNets can capture better short-
term demand/crowd flow fluctuations and improves overall model’s generalization abilities as it maintains the 
relationship between neighboring input points by sharing weights across different locations in the input and ST 
locality in feature representations. We use a self-attention layer to capture long-range spatial dependencies. 
Spatio-temporal data prediction in urban applications, such as taxi demand prediction, crowd flow prediction, a 
particular region can be connected to a distant region in a city. Existing approaches use the convolution to 
model the dependencies across different city regions. However, convolution operator has a local receptive field 
which requires several convolutional layers to compute the long-range dependencies. As a solution, size of the 
convolution kernels can be increased but it loses the computational and statistical efficiency obtained by using 
local convolutional structure. To handle this issue, self-attention [39]–[41] has been proposed to model the long-
range dependencies with the computational and statistical efficiency. Unlike convolution, self-attention is used 
to model long-range, multi-level across image regions. The module of self-attention computes the response at 
a position as a weighted sum of the features at all positions where the weights or attention vectors are computed 
with only a small computational cost. Inspired from the mentioned benefits, we use the self-attention with the G 
[38] in which long-range dependencies are calculated for each region in the ST map. 

We use the same layered architecture of encoder for different inputs (𝑆𝑇8", 𝑆𝑇89 and 𝑆𝑇"9). The outputs of 
encoders of different inputs are concatenated 𝐕(7 and passed through an MLP to have the latent vector of ST 
data. An encoder used to extract features of ST data is called as ST encoder.  

Fusion. It is used to further boost the model performance by considering the influence of different external 
factors. External factors, such as PoI, weather, time, etc., have high effect on the ST applications, such as traffic 
prediction, demand prediction. We design a general fusion network to incorporate several external factors from 
different domains.  

For each external factor, a feature map is extracted using a stack of ConvLSTM layers, a ConvNet3D, a self-
attention layer and an MLP, similar as the ST Encoder. Then, the learned auxiliary feature vector is represented 
as 𝐕𝐄𝐱𝐅𝒊, 𝑖 = 1, 2,… ,𝑤, where 𝑤 is total number of external factors to be used. The extracted condensed feature 
vectors are concatenated to obtain more precise feature representation for better performance as follows:  

																																																																𝐕𝐄𝐱𝐅𝑐 	= 	h@C	𝐕𝐄𝐱𝐅𝒊E ⊕	𝐕𝐄𝐱𝐅𝒊(𝟏F…⊕𝐕𝐄𝐱𝐅𝒘q                                                              (4) 



 

 

where ⊕ represents concatenation. An encoder used to extract features of external factors data is called as 
ExF encoder. The spatio-temporal feature representation 𝐕(7 and the external factors feature representation 
𝐕BCD7  are then concatenated and passed through an MLP to form the shared representation 𝐕E. Whole latent 
vector 𝐕E cannot capture the distribution of ST correlation for each pixel location. To learn the variations in the 
data, we use a Variational Bayesian method with the multivariate Gaussian assumption and variational lower 
bound loss function where model calculates the mean (𝜇) and variance (𝜎) of the distribution explicitly from the 
shared representation 𝐕E as follows: 

																																																																									𝐕 = 	𝜇 + 	𝜎	 ⊙ 	𝜖,	where	𝜖	~	𝒩(0, 𝐼),																																																																						(5)	

Where 𝐕 is the final reparameterized multimodal representation, ϵ is an auxiliary independent random vari-
able sampled from a previous distribution, and ⊙	is the element-wise product. The deep fused representation 
𝐕 from the fusion network is passed to generator G. 

We denote the spatio-temporal correlation network as 𝐺34F(𝑋, 𝜃34F) where 𝜃34F denotes all the parameters 
to be learned in encoder, and 𝒙 represents the set of ST data as input (i.e., ST and ExFs data). Hence, the 
output of the spatio-temporal correlation network for the ST and ExFs data 𝒙 is the multimodal representation:  

																																																																																									𝐕 = 	𝐺34F(𝒙, 𝜃34F)																																																																																										(6) 

4.3 Stochastic Adversarial Network 
Our proposed D-GAN integrates the directed graphical model, i.e., VAE with GANs to learn the ST correlations 
and stochastic elements that exists within ST data. The stochastic adversarial learning network can be broken 
down into two sub-components: a generator (G) (i.e., decoder (Dec)) and a discriminator (D). 

Generator (𝐆)/Decoder (Dec). An MLP is applied on the multimodal representation 𝐕 to get the deep fused 
representation 𝐕𝒓 of ST and ExFs data. Then, G decodes the deep fused representation to reconstruct the input 
ST map in original size using an MLP and stacked ConvLSTM layers and a 3D-ConvNet. 

																																																																	𝐱2/7= ConvNet3D@ConvLSTM=(𝐕𝒓)F,                                                           (7) 

where 𝑥2/7 is the reconstructed ST map of 𝐱62#> and 𝐱!"#$%& is the reconstructed map of 𝐱H(I. Furthermore, a 
noise vector (𝐳) is passed to G as input for generating reconstructed ST map of noise vector 𝐱;#J2. After training, 
G is used to generate samples similar to real data. 

We denote the decoder as 𝐺"27(𝑉, 𝜃"27) where 𝜃"27 denotes all the parameters in the decoder. Hence, the 
output of the decoder for the ST and ExFs data, is reconstructed feature of the ST data, 𝐱62#> and 𝐱H(I. 

																																																																																		𝐱2/7 , 𝐱𝑒𝑛𝑐𝐸𝑥𝐹 =	𝐺"27(𝑉, 𝜃"27)																																																																																		(8) 

Discriminator (𝐃). D learns to determine whether a generated ST map is from the ground truth or produced by 
G. For the D’s input, we concatenate the deep fused representation 𝐕𝒓 with its generated ST map latent 𝐱2/7+ 
and real ST map latent 𝐱62#>+ to jointly learn the latent code and data space in a pair as we notice that it supports 
fast convergence, better learning and high training stability, i.e., 𝑦2/7 = [𝐱2/7+ , 𝐕𝒓] is the encoded pair and 𝑦62#> 
= [𝐱62#>+ , 𝐕𝒓] is the real pair. We also generate 𝑦;#J2 = [𝐱;#J2+ , 𝐳], a fake pair, where 	𝐳 is the noise feature vector. 
Then, we use similar stacked ConvLSTM layers and a ConvNet3D layer as follows:   

																																																																						𝐷<K$	= σhConvNet3D@ConvLSTM=(𝑦)Fq,                                                         (9) 



 

 

where 𝑦 is 𝑦62#>, 𝑦2/7 and 𝑦;#J2, and σ(∙) is the sigmoid function to transfer convolutional output into proba-
bility. D<K$ is the predicted probability of input 𝑦 being real or fake. G and D are trained simultaneously till D 
cannot discriminate the ST map generated by G with ST map generated from real data.   

We denote the discriminator D as	𝐺"0E7(𝑦, 𝜃"0E7), where 𝜃"0E7 denotes all the parameters in the discriminator. 
The output of D for the reconstructed ST data and real data, is the probability of input 𝑦 being real or fake. 

																																																																																						𝐷<K$ =	𝐺"0E7(𝑦, 𝜃"0E7)																																																																																					(10) 

We can view the value of 𝐷<K$ as a label 1 means D detected input 𝑦 as real data and 0 otherwise.  

4.4 Learning Process 
In this work, we propose a general model for different prediction tasks, such as regression and classification, 
on different types of spatio-temporal data. For different types of prediction tasks, it is required to identify different 
loss functions accordingly.  

Variational loss comprises of two losses as follows: 1) KL divergence (𝐷J>). It measures the divergence 
between two probability distributions. 2) Reconstruction loss (ℒLMN). It calculates element-wise deviations be-
tween the ground truth and the reconstructed ST map to find the local differences between grids (ℒ627:() and 
similar for external factors (ℒ627:H(I). ℒ627 is defined as the element-wise L2-norm. KL divergence minimization 
means here is to optimize the probability distribution parameters (𝜇 and 𝜎) to closely match that of the target 
distribution. These can be calculated as follows:  

																																																																																		ℒ𝑟𝑒𝑐−𝑥 =	
1
𝑚𝑛
‖𝐱𝑟𝑒𝑎𝑙 	−	𝐱𝑒𝑛𝑐‖2 																																																																				(11) 

																																																																									ℒ𝑟𝑒𝑐−𝐸𝑥𝐹 =	
1
𝑚𝑛 �𝐱𝐸𝑥𝐹 	−	𝐱𝑒𝑛𝑐

𝐸𝑥𝐹	�2 																																																																							(12) 

																																																																									ℒJ> =	
,
-
∑ C𝜇0- + 𝜎0- − 𝑙𝑜𝑔(𝜎0) − 1E
*
0O, 																																																																					(13) 

where 𝑚𝑛 is the total number of regions in a ST map, p is the dimensionality of multimodal features and 𝐷J> 
is the KL-divergence. We minimize the VAE loss by seeking optimal parameters 𝜃�34F and 𝜃�"27 and this can be 
represented as follows: 

																																																				(𝜃34F∗ , 𝜃"27∗ ) = argmin
',-.,	'#/0	

	(ℒ627:( + ℒ627:H(I +	ℒJ>)																																																																(14) 

We use the least squares loss function instead of binary cross entropy used in GANs to evaluate the differ-
ence. The adversarial loss is used to find the equilibrium between G and D during the adversarial training pro-
cess. In D-GAN, the adversarial loss of D (ℒSTUV ) is as follows:  

																																												ℒ&WF% = ‖D(𝑦62#>) − 	1‖--+ 	�DC𝑦;#J2E − 0�-
- + ‖D(𝑦2/7) − 1‖--,																																														(15) 

On the other hand, G’s aim is to generate real-looking samples w.r.to D, so to minimize the G loss (ℒ&WF& ), G 
tries to reduce the difference between D(𝑦2/7) and true label, and D(𝑦;#J2) and true label as shown in Eq 15. 

																																																														ℒ&WF& =	�DC𝑦;#J2E − 1�-
- + ‖D(𝑦2/7) − 1‖--,																																																																	(16) 

The overall GANs loss can be calculated as follows:  

																																													ℒ&WF = [(𝐷(𝑦62#>) − 1)-] + C𝐷C𝑦;#J2E − 0E
- + [(𝐷(𝑦2/7) − 1)-]																																												(17) 

We minimize this loss by seeking the optimal parameters 𝜃�"0E7 and 𝜃�"27 and can be represented as follows. 



	(𝜃"27∗ , 𝜃"0E7∗ ) = arg	min
'#/0

max
'#120

ℒ&WF	 		(18)

We jointly train the spatio-temporal correlation network (STN), decoder and discriminator. Thus, the final loss 
of D-GAN is as follows: 

		ℒ;0/#>(𝜃34F, 𝜃"27 , 𝜃"0E7) = 	𝜆6ℒ627:( +	𝜆2ℒ627:H(I 	+ 𝜆J>ℒJ> + 𝜆+ℒ&WF	 		(19) 

where the hyperparameter λ control the relative importance of each term. The optimal parameters can then 
be calculated by minimizing the final loss as follows. 

		(𝜃34F∗ , 𝜃"27∗ , 𝜃"0E7∗ ) = argmin	max
	',-.,	'#/0		'#120	

ℒ;0/#>(𝜃34F, 𝜃"27 , 𝜃"0E7)		 		(20) 

5 EVALUATION 

We demonstrate application of the learned model to challenging task, like taxi demand prediction on two large-
scale real-world datasets. The main aim of demand prediction task is to learn an accurate model to predict the 
total number of requests for a particular service in each grid of ST map during each time slot where a time slot 
can be an hour, or a day, or a week. We extend proposed model for another challenging task, crowd flow 
prediction to show that our proposed solution provides a general design to handle spatio-temporal prediction 
for different urban applications. The main aim of crowd flow prediction task is to learn an accurate model to 
predict the total number of inflow/outflow in each grid of corresponding ST map during each time slot.  

In this section, we shall demonstrate the effectiveness of the proposed D-GAN on large-scale real-world 
datasets: the yellow taxi dataset1 and the bike trip dataset2 in New York. We will first introduce the datasets, the 
baselines, and the experiment settings. Then, we will show the experiment results. In particular, we aim to 
answer the following research questions:  

• Q1: How does our D-GAN model perform compared to the baseline approaches?

• Q2: What is the performance of D-GAN’s variants with different combinations?

• Q3: What is the performance of D-GAN with the external factors’ fusion?

• Q4: What is the impact of the proposed two-level temporal correlation scheme on D-GAN’s performance?

5.1 Datasets 
The details of the two datasets used for evaluation are described as follows: 

• TaxiNYC dataset. This dataset contains the 2,062,262 taxi trip records of yellow taxis from Janunary 2016
to June 2016. Each trip record includes the coordinates and times of pickup and dropoff events.

• CitiBikeNYC dataset. The bike data are collected from NYC CitiBike system available for the bike sharing
service from January 2016 to June 2016. This dataset contains the 4,500,000 taxi trip records where each
record includes the coordinates and times of pick-up and drop-off events.

1 http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml.
2 https://www.citibikenyc.com/system-data



 

 

• BikeNYC dataset [42]. Generated from the NYC bike trajectory data for 182 days, this dataset contains 
4,392 traffic flow maps with a time interval of one hour. The given input and output in the dataset are (16, 
8,10) and output is (16, 8, 2), respectively. As for external factors, 20 holiday categories are recorded. The 
first 172 days are used for training and the data of the last ten days are chosen to be the testing set. 

Urban areas are divided into different regions where these regions may have different functions, such as 
shopping mall, airport, business function [43]. Different functional areas have different traffic flow and taxi de-
mand patterns. For example, students commute from residential areas to their university in the morning and 
return home in the evening. [44] mentioned that in some prepared datasets NYC area is partitioned into regions 
without considering functional areas; therefore, some regions are water area where demand is always zero 
which causes to decrease the mean error and affect the evaluation of algorithm performance. Considering this 
issue, we study different functional areas in NYC dataset and partition NYC area into 100 regions using K-
means clustering method [45] on average historical demand observations. After that, we drop the region having 
very low demand most of the time and get 81 active regions. In other words, the NYC area clustered into 9×9 
non-overlapping regions using k-means which represents as an ST map.  

To show that our proposed solution can work on a more fine-grained manner, we extend our analysis for the 
(16, 8) map of widely used preprocessed BikeNYC dataset [36] for crowd flow prediction. In the given dataset, 
the dimension of input and output ST map is different, (16, 8, 10) and (16, 8, 2), respectively, therefore, we 
extend our proposed solution to the conditional D-GAN in which output of G is conditioned with the input.  

  
Figure 6(a). Clusters distribution of TaxiNYC dataset. 

Green color circle shows cluster of pickup location while 
Blue color shows cluster of drop-off locations. Green lines 

show the trips 

Figure 6(b). Clusters distribution of CitiBikeNYC dataset. 
Green color circle shows cluster of pickup location while 
Blue color shows cluster of drop-off locations. Red lines 

show the trips 

In addition, we use the external factors, such as Point of Interest (PoI), weather data and weekend/weekday 
with the historical data. We also use the publicly available PoI data of New York3. There are 18,912 POIs in 
total, and it includes the POIs of the following facility domains: residential, education facility, culture facility, 
recreational facility, social services, transportation facility, commercial, government facility, religious institution, 
health services, public safety, water, and miscellaneous. We also use weather information, including the 
weather conditions of 16 types (rainy, snowy, sunny, etc.), temperature, and so on. Figure 6(a) and (b) show 

 
3 https://data.cityofnewyork.us/City-Government/Points-Of-Interest/rxuy-2muj/data 



 

 

the clusters distribution of the TaxiNYC and CitiBikeNYC datasets, respectively. We can notice that trips’ distri-
bution in the taxi dataset is diverse in compared to the Bike dataset. 

5.2 Evaluation Metrics 
We use the widely adapted Rooted Mean Square Error (RMSE) and Mean Absolute Error (MAE) as the evalu-
ation metrics as follows: 

RMSE = �,
!
∑ (𝑦�0 − 𝑦0)-!
0 , MAE = ,

!
∑ |𝑦�0 − 𝑦0|!
0   

where 𝑦�0 is prediction ST maps, 𝑦 is real ST map, and z indicates number of samples used for validation.  

5.3 Baselines 
To illustrate the effectiveness of our D-GAN model, we compare it with the following baselines, both traditional 
statistical models and the state-of-the-art deep learning models and tune parameters for all methods. 

• Moving Average (MA): It predicts the data value using average values of previous data values at the 
location given in the same relative time interval. 

• Autoregressive integrated Moving Average (ARIMA): A well-known model which combines MA and 
autoregressive components for time-series data modelling.  

• Linear Regression (LR): We use ordinary least squares regression (OLSR) model to estimate the rela-
tionship between multiple variables. 

• XGBOOST (XGB): It is an ensemble learning in which many ML models are trained at once for better 
performance. The number of trees set to 80, and the maximum depth is 4. 

• Long Short Term Memory Neural Network (LSTM): A neural network of a LSTM with a fully connected 
layer. The hidden unit is set as 64 and learning rate set to 0.001. 

• Convolutional Neural Network (CNN): We use the two convolutional layers followed by a MaxPooling 
layer and a fully connected layer.  

• ST-ResNet [2]: A deep convolutional based residual networks used for the grid-based traffic flow predic-
tion. External factors are fused with the learned ST features after applying two fully connected layers.  

• DMVST-Net [3]: A deep multi-view ST neural network, i.e., temporal, spatial and semantic view for grid-
based prediction. External factors are directly concatenated with the learned ST features by CNN. 

• STGCN [46]: A spatial-temporal Graph Convolutional Network which combines graph convolution with 
gated temporal convolution. 

5.4 Parameters Setting 
• Preprocessing. We use the Min-Max normalization [0, 1] on the training set to normalize the demand 

values. After training, we apply an inverse of the Min-Max transformation to recover the actual demand 
values. We choose first 90% of the data as training data and the remaining 10% is used for the testing in 
the case of demand prediction. 



 

 

• Network architecture. We use four ConvLSTM layers with 32/16/8/4 number of filters and 3×3 size of 
filters. We use the Batch normalization (BN) after each ConvLSTM layer. After ConvLSTM layers, we use 
the Conv3D with Max-pool (2x2x2) and BN. The output of Conv3D is passed to the two fully connected 
(FC) layers. E and D use the same layer architecture as discussed for downsampling, while G shares the 
same network for upsampling.  

• Hyperparameters. The batch size is 32 and number of epochs are 500. 

• Activation function. We apply LeakyReLU [47] for FC layers and Conv3D as the activation function and 
use Sigmoid function for D’s output layer.  

• Optimization method. We use the stochastic gradient descent (SGD) algorithm with learning rate 0.001, 
decay 1e-6, and momentum 0.9. To prevent overfitting, we apply the dropout method with probability 0.4 
between two FC layers. 

• Experimental environment. Our model is trained on two Tesla P100-PCIE GPU with 16 GB memory at 
1.3285 GHz and an operating system of 64 bits in the University Research Facility in Big Data Analytics 
(UBDA) of the Hong Kong Polytechnic University. (UBDA website: https://www.polyu.edu.hk/ubda/). The 
programming environment is Keras with TensorFlow as backend.  

Table 1: Performance comparison among different baseline methods 

Models 
Demand Prediction Crowd Flow Prediction 

TaxiNYC data CitiBikeNYC data BikeNYC data 
RMSE MAE RMSE MAE RMSE MAE 

HA 11.41 - 11.96 - 21.57 - 
ARIMA 11.35 - 13.56 - 10.07 - 
LR 6.65 4.74 10.32 6.43 8.17 4.33 
XGB 5.85 4.29 9.62 6.21 7.78 4.12 
LSTM 3.81 1.39 9.01 6.15 7.21 3.37 
CNN 3.44 1.28 8.78 4.03 7.01 3.22 
ST-Res-Net 3.38 1.74 8.14 4.78 6.37 2.95 
DMVST-Net 3.30 1.49 7.06 3.47 6.11 2.86 
STGCN 2.67 1.25 6.75 3.11 5.98 2.75 
D-GAN (24 steps prediction) 1.35 1.01 4.09 2.85 4.77 2.63 

5.5 Performance Comparison with Baselines (Q1) 
We now compare D-GAN with the baseline methods in predicting the demand volume on NYC taxi and Bike 
datasets. Table 1 shows the performance of D-GAN in comparison to other baseline methods. From Table 1, 
we have the following main observations: 

The proposed D-GAN performs best among other approaches in the case of demand prediction with lowest 
1.35 and 4.09 RMSE, and 1.01 and 2.85 MAE for Taxi and Bike datasets, respectively. It achieves 49.2% and 
39.4% (RMSE) relative improvement over the best performance among all baselines for Taxi and Bike datasets, 
respectively. In the case of crowd flow prediction, proposed solution also achieves lowest 4.77 RMSE and 2.63 
MAE. It achieves 20.23% (RMSE) relative improvement over the best performance among all baselines. We 
believe that the benefits are credited to the effective design of the D-GAN – jointly capturing the dynamic spatial 
and temporal features and multimodality in the data. Classical approaches, such as HA and ARIMA perform 
quite poor with RMSE of 11.41 and 11.35, respectively, for taxi data, 11.96 and 13.56, respectively for bike 



 

 

dataset in demand prediction, and 21.57 and 10.07, respectively in crowd flow prediction as these models 
predict demand using average values of previous demands given in same relative time interval. Regression 
methods, such as RF, and XGB achieve better performance than previous ones but these methods cannot 
capture the spatial and temporal variation trend at the same time. We extend our model comparison with the 
well-known deep learning methods, such as LSTM and CNN. LSTM cannot model spatial correlations while 
CNN cannot capture temporal dynamics. To model spatial correlations, ST-ResNet and DMVST-Net are the 
state-of-the-art baseline approaches for grid-based data prediction. Both approaches achieve limited improve-
ments over the LSTM and CNN. On the other hand, STGCN also achieves limited improvements over the LSTM 
and CNN as it uses predicted conditions in the previous iterations as the historical observations for the next 
iterations; thus, errors accumulated in the prediction task. More layers in the network structure, the more error 
accumulates, particularly in the case of the long-term prediction. In addition, results obtained through traditional 
machine learning model use MSE which is a pixel-wise average over many slightly different possible solutions 
in the pixel space and cannot model multimodal data [20]. These approaches fuse the spatial and temporal 
features directly; therefore, they could not model the inherent relationships between spatial and temporal attrib-
utes. In addition, external factors are directly concatenated, therefore, correlation between external factors and 
ST data is missing.  

In contrast, our proposed D-GAN model learns rich distributions implicitly over data which allows to learn the 
inherent relationships between spatial and temporal features and to model multimodal data. Results in Table 1 
show that D-GAN achieves more accurate ST prediction in comparison to both traditional and deep learning 
based ST prediction models which verifies the advantage of learning inherent spatial and temporal relationships 
jointly, fusion of external factors through objective function and handling multimodality in the data. On the other 
hand, D-GAN prevents pixel-level error propagation by learning the data distribution implicitly. In our work, each 
future step is predicting 24 frames at a time and performance of 24 future frames is better than baselines 
approaches’ single steps. We can say that existing approaches lack in modelling the temporal dynamics of ST 
content as input is 2D ST maps, while we propose to use the 3D ST maps with different temporal resolution as 
input to model the fine-grained temporal dynamics. 3D ST maps, i.e., video, which allows to capture the complex 
spatial dependencies evolving over time.   

5.6 Evaluations on Variants of D-GAN (Q2) 
We evaluate key components of our multimodal D-GAN to understand it well. We raised the following two ques-
tions: (i) Does the architecture of encoder and decoder play a crucial role in capturing dynamic spatial and 
temporal dependencies? (ii) Is the selection of loss plays a role for making accurate predictions? We consider 
five variants of the proposed method to answer these questions.  

• GANs-LSTM: We use adversarial learning with LSTM layers to model the spatio-temporal data. The num-
ber of hidden units is 64.  

• GANs-CNN: We use the adversarial learning with two convolutional and one fully connected layer.  

• GANs-CNN-LSTM: We use the adversarial learning with two CNN layers, a fully connected layer and a 
LSTM layer.  

• GANs-ConvLSTM-n: We use basic structure of GANs with four ConvLSTM and one 3DConvNet with same 
parameters. This architecture design is similar to D-GAN. The differences are as follows: (1) only 𝑆𝑇8" data 



 

 

is used as input which is a 3d-tensor having a ST data of a day where each ST map within a tensor contains 
ST data of an hour; (2) it could not handle the stochasticity in the data; (3) external factors are not fused.  

Table 2: Comparison between different variants of D-GAN 

D-GAN Variants TaxiNYC data CitiBikeNYC data 
RMSE MAE RMSE MAE 

GANs-LSTM 2.72 1.63 5.14 4.46 
GANs-CNN 3.27 2.45 5.33 4.16 
GANs-CNN-LSTM 2.68 1.6 4.76 4.35 
GANs-ConvLSTM-n 4.68 3.93 5.24 4.57 
GANs-ConvLSTM-s 1.51 1.09 4.33 3.01 
D-GAN-FS 8.89 7.65 8.54 7.03 
D-GAN 1.35 1.01 4.09 2.85 

• GANs-ConvLSTM-s: We use basic structure of GANs with four ConvLSTM and one 3DConvNet with same 
parameters. This architecture design is similar to D-GAN as it can handle the stochasticity in the data. The 
differences are as follows: (1) only 𝑆𝑇8" data is used as input which is a 3d-tensor having a ST data of a 
day where each ST map within a tensor contains ST data of an hour; (2) external factors are not fused. 

• D-GAN-FS: We use the feature similarity loss [21] instead of L2 loss.  

Table 2 shows the performance comparison of D-GAN with other variants. We notice that full version of our 
developed model D-GAN achieves the best performance in most evaluation metrics across various settings. In 
particular, we summarize three key observations: 
(i) Results in Table 2 show that GANs-based models are performing better than existing deep learning mod-

els as they are learning the sample generation from the probability distribution. Even though, GANs-LSTM 
and GANs-CNN models (Tensor size (TS): (9, 9)) are performing better than LSTM and CNN. GANs-CNN-
LSTM is performing better than GANs-LSTM and GANs-CNN as it is able to capture both spatial and 
temporal features. But the D-GAN outperforms these models as basic GANs with input noise cannot ade-
quately cover the space of possible futures, i.e., cannot generate high quality samples.  

(ii) We then implement GANs-ConvLSTM-n (TS: (24, 9, 9, 1)) where each input feature of a ConvLSTM net-
work is a three-dimensional ST tensor. Studies show that ConvLSTM network captures better ST correla-
tion and consistently outperforms LSTM [13]. GANs-ConvLSTM-n’s results show that accuracy is lower 
than GANs-LSTM and GANs-CNN. The reason can be that basic GANs cannot capture dynamic ST cor-
relation for the high-dimensional data in comparison to low-dimensional data. We further extend our anal-
ysis and combine the variational inference with GANs (using ConvLSTM), named GANs-ConvLSTM-s 
which performs better than other variants as it can handle both highly-structured yet stochastic nature of 
ST data. Furthermore, we observe that D-GAN outperforms GANs-ConvLSTM-s which uses the same 
architecture with similar number of parameters, shows the effectiveness of external factors fusion and two-
level temporal correlation for spatio-temporal prediction. 

(iii) In the case of spatio-temporal data prediction in urban applications, such as taxi demand prediction, crowd 
flow prediction, a grid in the ST map (i.e., a pixel in the image), represents the number of Taxis/Bikes 
requests at a region in a time interval t. Our main focus is to minimize the pixel loss between generated 
and real data. To show the importance of the selected pixel loss, we use the feature loss in our proposed 



 

 

solution, D-GAN. The result shows performance decreases significantly as two ST maps can have small 
feature loss even if they are significantly different in pixel-by-pixel comparison. We also note that D-GAN-
FS does not convergence most of the time. 

  
Figure 7. Impact of weather on the taxi trips Figure 8. Distribution of PoIs in NYC area 

Table 3 Impact of external factors on D-GAN 

D-GAN Variants TaxiNYC data CitiBikeNYC data 
RMSE MAE RMSE MAE 

D-GAN-ExF-n 1.41 1.09 4.21 2.93 
D-GAN-ExF-c 1.40 1.08 4.17 2.90 
D-GAN-ExF-1 1.41 1.09 4.21 2.93 
D-GAN-ExF-2 1.41 1.09 4.21 2.92 
D-GAN-ExF-3/D-GAN 1.35 1.01 4.09 2.85 

5.7 Evaluation on External Factors Fusion (Q3) 
We further evaluate the performance of D-GAN by fusing the additional data with the ST correlation module to 
enhance the overall predictive performance. We use PoI data (PoI), weekday/weekend (Dw) and weather data 
(W) as external factors (ExF). Figure 7 shows the impact of weather data on the taxi trips. Figure 8 shows the 
distribution of PoIs in the NYC area. We fuse the external factors one-by-one with the aim of answering the 
following two questions: (i) Is the fusion of external factors effective? (ii) What is the effect of a particular external 
factor on the D-GAN’s performance? We consider five variants of the proposed method to answer these ques-
tions.  

• D-GAN-ExF-n: External factors are not fused into the proposed model.  
• D-GAN-ExF-c: External factors are directly concatenated with the proposed model.  
• D-GAN-ExF-1: Only a PoI data is fused as external factor.  
• D-GAN-ExF-2: PoI and Dw are fused into our proposed model. 

• D-GAN-ExF-3/D-GAN: All external factors are fused into our proposed model. This is the complete version 
of our proposed model, D-GAN.  

Table 3 shows the impact of external factors on the D-GAN performance. We notice that the full version of our 
developed D-GAN model achieves the best performance in most evaluation metrics. In particular, we summa-
rize two key observations: 



 

 

(i) In complete version of our prediction model, D-GAN, all external factors are fused, and results show that 
D-GAN outperforms all D-GAN variants in which either external factors are directly concatenated or not all 
external factors are fused. This shows that the external factors are useful and incorporating them does 
improve the model performance. Results also show that the improvement on the prediction model perfor-
mance in the case of the D-GAN-ExF-c and D-GAN-ExF-n are approximately same. The reason is in the 
case of D-GAN-ExF-c that model does not have any explicit objective to discover correlations among 
different data sources.  

  
Figure 9. Impact of sequence length on RMSE 

and future time steps for TaxiNYC data. Each fu-
ture step is predicting 24 frames at a time 

Figure 10. Impact of two-level temporal correlation 
on RMSE and future time steps for TaxiNYC data. 
Each future step is predicting 24 frames at a time 

(ii) Result shows that D-GAN performs better than D-GAN-ExF-1 and D-GAN-ExF-2. The reason is that D-
GAN jointly learns the ST correlations and underlying factors of variations by modelling ST data distribu-
tion; therefore, fusion of external factors, such as PoI (i.e., location) and Dw (i.e., time) are not effective. 
The improved predictive performance shows the advantage of our fusion network.  

Table 4 Impact of Two-level Temporal Correlation on D-GAN 

D-GAN	Variants	 TaxiNYC	data	 CitiBikeNYC	data	
RMSE	 MAE	 RMSE	 MAE	

D-GAN-hd	 1.47	 1.04	 4.22	 2.91	
D-GAN	 1.35	 1.01	 4.09	 2.85	

5.8 Effect of Two-level Temporal Correlation (Q4) 
We propose the two-level temporal correlation approach for spatio-temporal data prediction to capture more 
comprehensive temporal dependencies. To investigate the effect of two-level temporal correlation, we study 
the performance of our D-GAN model with different data mapping. 

• D-GAN-hd: The input to the proposed model is a 3d-tensor having a ST data of a day where each ST map 
within a tensor contains ST data of an hour.  

Table 4 shows the effect of data mapping on the D-GAN performance. We notice that complete version of our 
proposed model D-GAN achieves the best performance in most evaluation metrics. In particular, we summarize 
two key observations: 
(i) Here each future step is predicting 24 frames. First, we study how the sequence length of ST maps affects 

the model’s performance (see Figure 3) (CitiBikeNYC dataset has approximately similar results for this 



 

 

case, so we omit them). D-GAN-hd achieves the best performance for sequence length of 24 hours. While, 
for 8 and 12 hours, RMSE degraded. The reason can be that model could not capture temporal depend-
encies. As the sequence length increases to 48, at the step 1, the prediction error degrades slightly while 
in later steps, performance is approximately equal to the performance of 24 hours. The reason is that 
calculating longer temporal dependency means to train higher number of parameters, i.e., training be-
comes hard. In our work, each future step is predicting 24 frames at a time. This shows stochastically 
sampling the ST feature space to predict future ST dynamics are plausible. 

(ii) We perform another experiment in which we passed three inputs to the proposed model. The input to the 
proposed model is a 3D-tensor having a ST data of hours/days/weeks where each ST map within a tensor 
contains ST data of an hour/day/week, i.e., full version of D-GAN. The results show that D-GAN performs 
better than D-GAN-hd (see Figure 10) (CitiBikeNYC dataset has approximately similar results for this case, 
so we omit them). The possible reason is that through the two-level temporal correlation, model is able to 
capture more fine-grained temporal dependencies.  

Result shows that our full version of proposed model, D-GAN outperforms the D-GAN-hd which verifies that D-
GAN can capture the long and complicated temporal dependencies.  

6 CONCLUSION 

In this paper, we propose a novel deep stochastic generative adversarial based network (named, D-GAN) for 
ST prediction in multiple time steps. D-GAN deeply captures the underlying ST data distribution implicitly for 
modelling ST correlations, underlying factors of variations and multimodality in the data. D-GAN comprises of 
two components: (1) a spatio-temporal correlation network to model ST correlations underlying factors of vari-
ations and multimodality in the data. It also includes a fusion network to learn correlations between the external 
factors and ST data using an explicit objective function; (2) a stochastic adversarial network to jointly learn 
generation and variational inference of ST data through implicit distribution modelling. We also propose to use 
two-level temporal correlation to capture fine-grained temporal dynamics. D-GAN is highly flexible and extend-
able as it can be easily extended for a new ST problem with multiple data sources. We evaluated the perfor-
mance of our proposed model on a case study of demand prediction using two real-world datasets. To show 
that our proposed solution provides a general design to handle spatio-temporal prediction for different urban 
applications, we extend proposed model for another challenging task, crowd flow prediction. The results show 
that D-GAN is achieving more accurate performance than baseline methods for both applications. This research 
provides new insights for modelling the complex inherent spatial and temporal relationships and capturing var-
iations in the data simultaneously.  

Our model introduced a simple, but effective solution to multimodal spatio-temporal prediction of large con-
tinuous spaces and we expect that it will be useful in domains with uncertainty. In the future, we will study how 
to enrich this research by incorporating several ST data, such as bus/bike/truck data, mobile usage data, mo-
bility data, etc., into account for collective prediction.  
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