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Abstract 24 

Earlier, an ameliorated MUSIC (Am-MUSIC) algorithm is developed by the authors [1], aimed 25 

at expanding conventional MUSIC algorithm from linear array-facilitated nondestructive 26 

evaluation to in situ health monitoring with a sparse sensor network. Yet, Am-MUSIC leaves a 27 

twofold issue to be improved: i) the signal representation equation is constructed at each pixel 28 

across the inspection region, incurring high computational cost; and ii) the algorithm is applicable 29 

to monochromatic excitation only, ignoring signal features scattered out of the excitation 30 

frequency band which also carry information on structural integrity. With this motivation, a 31 

multiple-damage-scattered wavefield model is developed, with which the signal representation 32 

equation is constructed in the frequency domain, avoiding computationally expensive pixel-based 33 

calculation – referred to as frequency-domain MUSIC (F-MUSIC). F-MUSIC quantifies the 34 

orthogonal attributes between the signal subspace and noise subspace inherent in signal 35 

representation equation, and generates a full spatial spectrum of the inspected sample to visualize 36 

damage. Modeling in the frequency domain endows F-MUSIC with the capacity to fuse rich 37 

information scattered in a broad band and therefore enhance imaging precision. Both simulation 38 

and experiment are performed to validate F-MUSIC when used for imaging single and multiple 39 

sites of damage in an isotropic plate waveguide with a sparse sensor network. Results accentuate 40 

that effectiveness of F-MUSIC is not limited by the quantity of damage, and imaging precision is 41 

not downgraded due to the use of a highly sparse sensor network – a challenging task for 42 

conventional MUSIC algorithm to fulfil. 43 

 44 

Keywords: ultrasonic imaging; guided ultrasonic waves; multiple signal classification (MUSIC); 45 

sparse sensor network; frequency domain analysis 46 

47 
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1. Introduction 48 

Multiple signal classification (MUSIC) algorithm is a proven array processing technique for 49 

guided wave-based damage characterization [2-6]. Instead of using straightforward wave features 50 

such as time-of-flight or signal amplitude [7-12], MUSIC is an eigen-structure approach making 51 

use of the orthogonality of subspaces extracted from wave signals [13-16]. Stepinski and Engholm 52 

[17] are among those who first demonstrated the use of the MUSIC algorithm for estimating the 53 

direction of arrival (DOA) of an incoming wave in acoustic emission. As an extension of that 54 

study, Yang et al [18, 19] determined the direction of impact-induced acoustic waves accurately 55 

using MUSIC in conjunction with a linear sensor array. The approach, however, failed to precisely 56 

locate the impact site, as the approach is based on the far-field hypothesis which simplifies the 57 

impact-emanated wave as a plane wavefront when the wave arrives at the array – it is not true for 58 

a waveguide of small dimensions. To circumvent this limitation, Zhong et al [3] developed a near-59 

field MUSIC algorithm on the basis of Taylor expansion theory, in which an incoming wave was 60 

deemed as a spherical wavefront. This method was validated by locating damage in a real 61 

composite oil tank, showing potentials to improve localization accuracy. Extending this study and 62 

also taking into account other impact-induced wave components out of the excitation frequency 63 

range, Yuan et al [20] proposed a single frequency component-based re-estimated MUSIC 64 

(SFCBR-MUSIC) algorithm with Shannon wavelet transform, showing proven capability of 65 

localizing impact to a composite wing box in aircraft. Conventional MUSIC was revamped by 66 

Zhong et al [21] based on 2D near-field assumption and Gerschgorin discs theorem, and this 67 

revamped MUSIC algorithm facilitated detection of multiple sites of damage. 68 

 69 

In addition to these parametric studies concerning passive impact localization, MUSIC-based 70 

detection has also been extended to active damage identification. Bao et al [22] combined 71 

transmitter beamforming and weighted imaging with MUSIC, with which the severity of 72 

corrosion in aluminum plates was assessed using actively generated waves, in conjunction with 73 
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the use of a dual array consisting of two linear sensor groups. Zuo et al [23] presented a model-74 

based MUSIC algorithm by calculating the cross-correlation function between the modeled wave 75 

scattering signals and measured residual signals, to identify a mass added to a composite laminate, 76 

though material anisotropy of the composites and discrepancy of wave velocities in different 77 

propagation directions were not considered in modeling. To compensate for the anisotropy of 78 

composites, Bao et al [24, 25] developed an updated MUSIC algorithm, taking into account the 79 

effect of both the sensor localization error and the sensor phase error due to material anisotropy, 80 

whereby to enhance damage localization precision. 81 

 82 

Despite proven effectiveness, MUSIC-driven damage identification is usually restricted to the use 83 

of a linear array featuring a dense configuration of transmitter elements with a sufficiently small 84 

and uniform element pitch. Approaches in this category barely provide full inspection coverage, 85 

presenting downgraded beamforming capability at azimuth angles close to 0° and 180°, as a result 86 

of which the damage in an inspection region of [0, 30°] or [150°, 180°] may be overridden [26]. 87 

To circumvent such deficiency, an ameliorated MUSIC (Am-MUSIC) algorithm was developed 88 

by the authors in an earlier study [1], in which the signal representation matrix is manipulated at 89 

each pixel using the excitation signal series, instead of the scattered signal series. Am-MUSIC 90 

algorithm does not necessarily demand the use of a linear phased array, and instead it is compatible 91 

with a sparse sensor array. In the sparse sensor array, individual transducers can be positioned 92 

arbitrarily. The Am-MUSIC yields a full spatial spectrum of the inspected sample, and damage in 93 

the sample, if any, can thus be visualized in the spectrum. 94 

 95 

However, the flexibility in sensor array configuration bestowed by the Am-MUSIC algorithm is 96 

at the cost of higher computational expense (compared with conventional MUSIC algorithms), 97 

because the signal representation matrix is calculated at each pixel across the entire inspection 98 

region. In addition, Am-MUSIC algorithm is manipulated in the time domain within a narrowed 99 
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frequency band, at which the monochromatic wave is excited. Such manipulation discards wave 100 

components in a captured signal that are out of the excitation frequency range, irrespective of the 101 

fact that these wave components also carry rich information on damage in the sample [27, 28]. 102 

 103 

Aimed at exploiting the merits of Am-MUSIC algorithm earlier developed (particularly its 104 

flexibility in configuring a sensor network) but surmounting deficiency that the algorithm remains, 105 

a frequency-domain MUSIC algorithm (F-MUSIC) is developed, in conjunction with the use of a 106 

sparse sensor network with arbitrarily positioned transducers. Distinct from Am-MUSIC, F-107 

MUSIC constructs the signal representation equation over the frequency domain, rather than at 108 

each pixel in the spatial domain, based on a multiple-damage-scattered wavefield model. F-109 

MUSIC quantifies the orthogonal attributes between the signal subspace and noise subspace 110 

inherent in signal representation equation, and produces a full spatial spectrum of the inspected 111 

sample to pinpoint damage. The accuracy of F-MUSIC is examined via simulation and 112 

experiment, in which single and multiple sites of damage in a plate waveguide are imaged with a 113 

sparse sensor network. 114 

 115 

2. Principle of Methodology 116 

Consider a monochronic Lamb wave guided by a plate waveguide, ( )f t . Upon propagating the 117 

distance of d, without considering the attenuation, the received signal, ( )r t , is governed by 118 

( )( ) ( ) exp ,ik d i tr t F e d  





                                                (1) 119 

where ( )F   is the Fourier transform of ( )f t  in the frequency domain, t  the time,   the angular 120 

frequency, i  the imaginary unit, and ( )k   the wavenumber of the Lamb wave ( ( )= ( )pk c   , 121 

where ( )pc   is the phase velocity). Applying Fourier transform on Eq. (1), ( )r t  in the frequency 122 

domain, ( )R  , is obtained by 123 
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/ ( )( )( ) ( )exp ( )exp .pi d cik dR F F
   

                                (2) 124 

 125 

Assuming a wave scatterer (e.g., damage) in the waveguide, the scatterer can be modeled as a 126 

secondary wave source to scatter incoming ( )f t  and interfere with the original wavefield of 127 

signal ( )f t ; and the scattered wavefield scattered ( )R   in the frequency domain can be defined by 128 

modulating the original wavefield with a scattering coefficient related to the scatterer, as 129 

 
scattered/ ( )scattered ( ) ( ) ( )exp ,pi d c

R F
 

   


                                  (3) 130 

where ( )   is the scattering coefficient in the frequency domain, and scatteredd  is the distance from 131 

the excitation source to the scatterer and then to the wave receiver. 132 

 133 

Discuss a sparse sensor network with Q piezoelectric lead zirconate titanate (PZT) wafers 134 

(labelled as PZT-1, …, PZT-i, …, PZT-Q) ( 1,2, ,i Q K  ) surface-mounted on the plate 135 

waveguide, as shown schematically in Fig. 1. With an arbitrary position on the waveguide, each 136 

wafer functions as a wave transmitter and a wave receiver as well. Thus, this sensor network 137 

renders ( 1)M Q Q   transmitter–receiver paths, and the 
thm  transmitter–receiver path (138 

1, 2, ,m M K ) links PZT-i (as wave transmitter) and PZT-j (as wave receiver). 139 

 140 

For an intact waveguide, the wave signal, captured by the 
thm  transmitter–receiver path (denoted 141 

with 
measured-intact ( )mr t ), is the direct arrival wave 

direct ( )mr t , boundary-reflection wave 142 

boundary-reflection ( )mr t  with incoherent noise 
measured-intact ( )mw t ,as 143 

 measured-intact direct boundary-reflection measured-intact( ) ( ) ( ) ( ), 1, 2, , .m m m mr t r t r t w t m M    K            (4) 144 

 145 
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 146 

Fig. 1. A plate waveguide with a sparse sensor network of Q PZT wafers and L damage sites. 147 

 148 

Assume that up to L damage sites co-exist in the waveguide which are respectively located at 149 

1 1( ), , ( ), , ( )l l L L       L L . Ignoring mode conversion and multiple reflection among damage 150 

sites, the wave signal captured by the same transmitter-receiver path, 
measured-damage ( )mr t , embraces 151 

the direct arrival waves 
direct ( )mr t , boundary-reflection wave 

boundary-reflection ( )mr t , damage-scattered 152 

waves  scattered, ( ), 1, 2, ,l

mr t l L K  from all damage sites, and the incoherent noise 
measured-damage ( )mw t153 

, as 154 

 measured-damage direct boundary-reflection scattered, measured-damage

1

( ) ( ) ( ) ( ) ( ), 1,2, , ,
L

l

m m m m m

l

r t r t r t r t w t m M


     K      155 

(5) 156 

where 
scattered, ( )l

mr t  represents the wave signal that propagates from PZT-i (as wave transmitter) to 157 

the 
thl   damage site and then to PZT-j (as wave receiver). 158 

 159 

Benchmarking against the intact waveguide, one has, 160 
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 measured-damage measured-intact scattered, residual

1

( ) ( ) ( ) ( ) ( ), 1,2, ,
L

l

m m m m m

l

r t r t r t w t r t m M


     K    (6) 161 

where ( )mw t  signifies the difference between two noise terms, 
measured-damage measured-intact( ) ( )m mw t w t . 162 

To facilitate discussion in what follows, the term, scattered,

1

( ) ( )
L

l

m m

l

r t e t


 , is referred to as the 
thm  163 

residual signal 
residual ( )mr t . Applying Fourier transform on Eq. (6) and substituting Eqs. (3) to (6), 164 

the 
thm  residual signal in the frequency domain, 

residual ( )mR  , is obtained as 165 

 
/ ( )residual

1

( ) ( ) ( ) exp ( ), 1,2, ,
l
m p

L
i d cl

m m

l

R F W m M
 

    




   K           (7) 166 

where ( )l   denotes the scattering coefficient for the 
thl  damage site within the inspection 167 

region; 
2 2 2 2( ) ( ) ( ) ( )l

m l i l i l j l jd x y x y           , which represents the distance from 168 

the thi  wave transmitter to the thl  damage and then to the thj  wave receiver; ( )mW   is the 169 

Fourier counterpart of ( )mw t  in the frequency domain. 170 

 171 

Defining that ˆ ( )= ( ) ( )l

lF F     and 
/ ( )

( ) exp
l
m pi d cl

ma
 




 , both of which are related to the 
thl  172 

damage site, the residual signal 
residual ( )mR   can be rewritten, in the frequency domain, as 173 

 residual

1

ˆ( ) ( ) ( ) ( ). 1,2, ,
L

l

m m l m

l

R a F W m M   


   K                     (8) 174 

Extending the above manipulation to all the available M transmitter–receiver paths in the sensor 175 

network, it has 176 

residual 1
11 1 1 1

residual residual 1

residual 1

1 1

ˆ ( )( ) ( ) ( ) ( )

ˆ( ) =( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( ) ( )

l L

l L

m m m m l

l L

M M M MM M L L L

FR a a a

R a a a F

R a a a F

   

     

      

    
    
    
    
    
    
    

      

R

L L

MM M M M

L L

M M M M M

L L

1

1

( )

.( )

( )

m

M M

W

W

W








 
 
 
 
 
 
  

M

M

 177 

(9) 178 
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residual residual residual residual

1( ) [ ( ), , ( ), , ( )]H

m MR R R   R L L  is the residual signal vector for the entire 179 

sensor network. Defining that 1( ) [ ( ), , ( ), , ( )]l l l H

l m Ma a a   a L L  as the steering vector for the 180 

thl  damage site, 
1( ) [ ( ), , ( ), , ( )]l L   Α a a aL L  as the steering vector dictionary for all 181 

damage sites, 1
ˆ ˆ ˆ( )=[ ( ), , ( ), , ( )]H

l LF F F   F L L  as the excitation signal vector, and 182 

1( ) [ ( ), , ( ), , ( )]H

m MW W W   W L L  as the noise term, Eq. (9) is 183 

residual ( ) ( ) ( ) ( ) .    R Α F W                                      (10) 184 

Equation (10) defines all wave signals received by the entire sensor network, containing multiple 185 

damage-scattered wave components. It is referred to as a multiple-damage-scattered wavefield 186 

model over the frequency domain. With this model, the residual signal series can be expressed 187 

with the excitation signal series, which is independent of the location of a wave receiver. It is such 188 

merit that allows arbitrarily positioning sensors in the sensor network – difficult to fulfill by 189 

conventional MUSIC algorithms which are largely bound up with the use of a dense, linear array 190 

with a uniform element pitch. Equation (10) also serves as the theoretical cornerstone for the F-191 

MUSIC, as detailed as below. 192 

 193 

Recalling the conventional MUSIC algorithm, the covariance matrix ( )C  of the residual signal 194 

vector residual ( )R  is defined as 195 

residual residual( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ,

H

H H H

H H H

E

E E

E E

  

      

    

   

       

       

C R R

Α F F Α Α F W

W F Α W W

g

g g

g g

                  (11) 196 

where  E g  is covariance computation and the superscript H the complex conjugate transpose. As 197 

the source signal is un-correlated to a noise signal, both ( ) ( )HE    F Wg  and ( ) ( )HE    W Fg  198 

retreat to zero. The noise, ( )W , is commonly a Gaussian white noise which satisfies 199 
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2( ) ( ) ( )HE       W W Ig , where 2  is noise power and ( )I  the identity matrix. Therefore, 200 

Eq. (11) can be rewritten as 201 

2( ) ( ) ( ) ( ) ( ) ,H      fC Α C Α I                                    (12) 202 

where ( )= ( ) ( )HE    fC F Fg , denoting the covariance matrix of the source signal. 203 

 204 

Applied with eigenvalue decomposition, the covariance matrix ( )C  in Eq. (12) is decomposed 205 

into two orthogonal subspaces, viz., signal subspace and noise subspace, as 206 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,H H H

S S S N N N           C U Σ U U Σ U U Σ U           (13) 207 

where 
1 2( ) [ ( ), ( ), , ( )]M      U L  (the eigenvectors), and 

1 2( ) diag[ , ,..., ]M   Σ  (the 208 

eigenvalues with 2

1 2 1 2= =j j j M            L L ). The number of damage sites can 209 

be predicted by counting the number of eigenvalues 1 2, , j  ,L , which is equal to j. The signal 210 

subspace 1 2( ) [ ( ), ( ), , ( )]S j      U L  is spanned by the eigenvectors corresponding to the 211 

j largest eigenvalues 1 2( ) diag[ , ,..., ]S j   Σ ; the noise subspace 212 

1 1( ) [ ( ), ( ), , ( )]N j j M       U L  is spanned by those eigenvectors corresponding to the 213 

remaining eigenvalues 1 2( ) diag[ , ,..., ]N j j M    Σ . 214 

 215 

Multiplying ( )N U  with ( )C  in Eq. (12) results in 216 

                     
2( ) ( ) ( ) ( ) ( ) ( ) ( ).H

N N N        fC U Α C Α U U                      (14) 217 

As 
2( ) ( ) ( )N N   C U U  (according to Eq. (13)), substituting 

2 ( )N U  into Eq. (14) leads to 218 

( ) ( ) ( ) ( ) .H

N    fΑ C Α U 0                                             (15) 219 

Due to the full rank of ( )
f

C , Eq. (15) can be simplified as 220 

1( ) ( ) [ ( ) ( ) , , ( ) ( ), , ( ) ( )] .H H H H

N N l N L N        Α U a U a U a U 0L L             (16) 221 
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Equation (16) indicates that the steering vectors at a damage site are orthogonal with regard to the 222 

noise subspace, because ( ) ( )H

l N  a U 0 . 223 

 224 

With that, the F-MUSIC algorithm is defined in terms of the degree of orthogonality between the 225 

steering vector at each pixel and the noise subspace ( )N U , as 226 

2

1 1
( , , ) ,

( ) ( ) ( ) ( )( ) ( )
F MUSIC H HH

xy N N xyxy N

P x y 
    

  
a U U aa U

                 (17) 227 

where 228 

1 / ( ) / ( ) / ( )
( ) [exp , ,exp , ,exp ] ,

m M
xy p xy p xy pi d c i d c i d c H

xy

     


  
a L L  229 

2 2 2 2( ) ( ) ( ) ( ) .m

xy i i j jd x x y y x x y y         230 

 231 

By varying ( , )x y  in Eq. (17), the entire inspection region of the sample under inspection is 232 

scanned, and a spatial spectrum is obtained. In the presence of damage at a particular location, the 233 

steering vector ( )xy a  is orthogonal to the noise subspace ( )N U , as a result of which the 234 

denominator of Eq. (17) tends to be zero, resulting in a steep peak in the spatial spectrum, to 235 

indicate the damage presence and its location. It is noteworthy that on the basis of the multiple-236 

damage-scattered wavefield model, the eigenvalue decomposition in Eq. (13) is calculated only 237 

once, and then the calculated ( )N U  is applicable to all pixels. It is such a feature of the F-238 

MUSIC algorithm that avoids time-consuming pixel-based calculation – a demerit of the AM-239 

MUSIC algorithm developed earlier [1], and remarkably lowers the computational costs. 240 

 241 

On the other hand, the residual wave signals, residual ( )R , are distributed over a broad band (ω ) 242 

rather than confined at the frequency of wave excitation. The broadband signals embrace rich 243 

information on damage or material degradation along wave propagation path. With this in mind, 244 
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the F-MUSIC algorithm is further refined by integrating the calculation conducted by Eq. (17) 245 

over a broad frequency band (ω ), as 246 

1
( , ) .

1

( , , )

F MUSIC

F MUSIC

P x y

P x y 



 




ω

                                     (18) 247 

 248 

Compared with conventional MUSIC algorithms manipulated in the time domain solely at the 249 

monochromatic excitation frequency, Eq. (18) suggests that F-MUSIC algorithm, based on the 250 

analysis of the multiple-damage-scattered wavefield over the frequency domain, fuses rich wave 251 

components over a broad frequency band, consequently enhancing imaging precision (to be 252 

demonstrated in what follows). 253 

 254 

3. Numerical Validation 255 

3.1 Modeling and Results 256 

To verify the developed multiple-damage-scattered wavefield model and proposed F-MUSIC 257 

algorithm, numerical simulation is implemented first. A homogeneous, isotropic plate (density: 258 

ρ=2700 kg/m3; Young modulus: E=71 GPa; Poisson’s ratio: ν=0.33; dimension: 300 mm × 300 259 

mm × 2 mm) is modeled. Eight PZT wafers (labelled as P1, P2, …, P8) that are on the surface of 260 

the plate form a sparse sensor network for wave generation and acquisition (a total of 8(8 1) 56 261 

sensing path), as illustrated schematically in Fig. 2. 262 
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 263 

Fig. 2. Schematic of a plate waveguide in simulation with a sparse sensor network (all dimensions in 264 

mm).  265 

 266 

Two scenarios are comparatively modeled: one is the benchmark that is free of damage, and the 267 

other contains a through-hole of a diameter of 8 mm at (110 mm, 120 mm). Allowing for 268 

sensitivity and excitability, a 5-cycle Hanning windowed toneburst at 200 kHz, Fig. 3, is generated 269 

by each PZT wafer in turn, and in the meantime the rest wafers serve as wave receivers to capture 270 

S0 mode Lamb wave signals in a time window of 150 µs. In Fig. 3 the bandwidth of the excitation, 271 

centralized at 200 kHz, is observed to span from 100 to 300 kHz. The 56 sets of residual signals, 272 

 residual ( ), 1, 2, ,56mr t m  K  in Eq. (6), are obtained and shown in a waterfall view in Fig. 4. 273 

https://www.sciencedirect.com/science/article/pii/S0263822318304252#f0020
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 274 

Fig. 3. Excitation signal and frequency domain spectrum. 275 

 276 



Fig. 4. Waterfall view of 56 sets of residual signals. 278 

 279 

 280 

Applying the F-MUSIC algorithm on all residual signals at the excitation frequency of 200 kHz 281 

using Eq. (17), the spatial spectrum of the plate containing the through-hole is displayed in Fig. 282 

5(a), in which, however, the damage can barely be visualized. Further, upon taking into account 283 

wave components scattered in the whole frequency band of excitation (100–300 kHz, as observed 284 
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in Fig. 3) with Eq. (18), the re-constructed image is shown in Fig. 5(b), which explicitly indicates 285 

the damage site and depicts the damage geometry with reduced artifacts, compared with Fig. 5(a). 286 

 

 

(a) 
 

 

(b) 

Fig. 5. Spatial spectra obtained with F-MUSIC algorithm: (a) at the excitation frequency of 200 kHz; and 287 

(b) over the whole excitation band of 100–300 kHz (red ‘o’: actual damage).  288 

 289 

 290 

 291 

https://www.sciencedirect.com/science/article/pii/S0263822318304252#f0020


16 

3.2 Discussion 292 

Comparison with Conventional MUSIC Algorithm 293 

The conventional MUSIC algorithm [3, 21, 29] is recalled to image the same damage in the above 294 

scenario for comparison. To this end, seven PZT wafers are configured in a linear array as wave 295 

receivers, Fig. 6, along with another PZT wafer at (150 mm, 240 mm) as wave transmitter. The 296 

image constructed using the conventional MUSIC algorithm is presented in Fig. 7, failing to 297 

pinpoint and size the through-hole. In addition, an elongation artifact is spotted along the scanning 298 

direction toward the damage, which is related to the point-spread function of the liner array at the 299 

location of the damage [3, 20-24]. 300 

 301 

          302 

Fig. 6. Schematic of a plate waveguide in simulation with a linear sensor array to implement 303 

conventional MUSIC algorithm (all dimensions in mm). 304 

 305 

 306 
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      307 

 308 

Fig. 7. Spatial spectrum obtained with conventional MUSIC algorithm (red ‘o’: actual damage). 309 

 310 

 311 

Different Patterns of Sensor Distribution in Sparse Sensor Network 312 

To examine the performance of F-MUSIC algorithm when the sensors are arranged in different 313 

patterns in the sparse sensor network, parametric studies respectively using six PZT wafers 314 

(namely, P1, P2, P4, P5, P6, P8) and using four PZT wafers (P2, P4, P6, P8), Fig. 2, are conducted, 315 

and correspondingly imaged spatial spectra are in Figs. 8 and 9, respectively. Comparison with 316 

the spectrum in Fig. 5(b) constructed when eight PZT wafers are used, these results obtained using 317 

partial sensors of the sparse sensor network with different sensor distribution patterns still show 318 

a high degree of detectability, and this implies the high flexibility in sensor network configuration 319 

endowed by the F-MUSIC algorithm: not only in number of sensors, but in sensor distribution. 320 

 321 

 322 
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 323 

Fig. 8. Spatial spectrum obtained with F-MUSIC algorithm using six PZT wafers (P1, P2, P4, P5, P6, 324 

P8) (red ‘o’: actual damage).  325 

 326 

 327 

Fig. 9. Spatial spectrum obtained with F-MUSIC algorithm using four PZT wafers (P2, P4, P6, P8) (red 328 

‘o’: actual damage). 329 

 330 

 331 

Multiple Damage Sites 332 

The capability of identifying multiple damage sites in the inspection region using F-MUSIC 333 

algorithm is studied. Two damage sites are included in the plate waveguide at (110 mm, 120 mm) 334 
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and (190 mm, 180 mm), respectively. The spatial spectrum constructed using F-MUSIC algorithm 335 

is shown in Fig. 10, to observe quantitative match between identified and actual damage sites.  336 

 337 

Fig. 10. Spatial spectrum obtained with F-MUSIC algorithm for a plate waveguide containing multi-338 

damage (red ‘o’: actual damage). 339 

 340 

4. Experimental Validation 341 

Experimental validation is conducted. An aluminum plate (density: ρ=2700 kg/m3; Young 342 

modulus: E=71 GPa; Poisson’s ratio: ν=0.33; dimension: 1000 mm × 1000 mm × 2 mm) is 343 

prepared, on which a sparse sensor network, consisting of eight PZT wafers (labelled as PZT-1, 344 

PZT-2, …, PZT-8), is surface-adhered, with respective locations indicated in Fig. 11(a). The 345 

excitation is generated with a NI PXI-5412 arbitrary waveform generation unit, in the form of a 346 

5-cycle Hanning-windowed tone-burst at the central frequency 200 kHz and amplified with a 347 

Ciprian US-TXP-3 linear power amplifier before applied in turn to each PZT wafer. The S0 mode 348 

of Lamb waves are captured by remaining PZT wafers and then recorded with an Agilent MSOX 349 

3014A oscilloscope at the sampling rate of 60 MHz. The experimental setup is shown 350 

schematically in Fig.11(b). 351 

 352 
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           353 

(a) 354 

 355 

(b) 356 

Fig. 11. (a) An aluminum plate with a surface-adhered sparse sensor network consisting of eight PZT 357 

wafers in experiment (all dimensions in mm); and (b) schematic of experimental set-up. 358 

 359 

In line with simulation in Section 3, two damage scenarios are demonstrated in experiment. In the 360 

first case, a through-hole of a diameter of 10 mm is drilled at the location (400 mm, 400 mm) as 361 

a single damage case; after then multiple damage case C-II is studied by adding another through-362 

hole of the same diameter at the location (600 mm, 600 mm). The F-MUSIC algorithm is applied 363 
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to two damage cases to obtain the spatial spectra, in Figs. 12(a) and (b), in which all damage sites 364 

are clearly depicted with high precise and image resolution. 365 

 366 

 367 

(a) 368 

 369 

(b) 370 

Fig. 12. Spatial spectra for (a) the single damage case (b) the multiple damage case (red ‘o’: actual 371 

damage).  372 

 373 
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5. Concluding Remarks 374 

Aimed at exploiting merits of the Am-MUSIC algorithm (particularly its flexibility in configuring 375 

a sparse sensor network) that is earlier developed based on conventional MUSIC algorithms but 376 

surmounting deficiency that the Am-MUSIC algorithm still remains, a frequency-domain MUSIC 377 

(F-MUSIC) algorithm is developed, based on a multiple-damage-scattered wavefield model over 378 

the frequency domain. F-MUSIC avoids computationally expensive pixel-based calculation, and 379 

fuses rich information scattered in a broad band to enhance imaging precision. The algorithm is 380 

validated using simulation and experiment, and results articulate that effectiveness of F-MUSIC 381 

is not restricted by the quantity of damage, and with it the imaging precision is not sacrificed as a 382 

result of the use of a sparse sensor network. 383 
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