
1 

A nonlinearity-sensitive approach for  

detection of “breathing” cracks relying on 

energy modulation effect 

Maosen Caoa,b,c, Qitian Lua,b, Zhongqing Sud, Maciej Radzieńskie, 

Wei Xua,b,c,, Wiesław Ostachowicze 

a Department of Engineering Mechanics, Hohai University, Nanjing 210098, People’s 

Republic of China 

b Jiangsu Province Wind Power Structural Engineering Research Center, Hohai 

University, Nanjing 210098, People’s Republic of China 

c Jiangxi Provincial Key Laboratory of Environmental Geotechnical Engineering and 

Disaster Control, Jiangxi University of Science and Technology, Ganzhou 341000, 

People’s Republic of China 

d Department of Mechanical Engineering, The Hong Kong Polytechnic University, 

Hung Hom, Kowloon, Hong Kong, People’s Republic of China 

e Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk 80-231, 

Poland 

Corresponding author. 

E-mail address:

wxu@hhu.edu.cn (W. Xu) 

https://dx.doi.org/10.1016/j.jsv.2022.116754 This is the Pre-Published Version.

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.



2 

Abstract: For a cracked structural component under a single-tone harmonic excitation, 

the opening-closing motion of the “breathing” crack can lead to higher harmonics in its 

steady-state responses, which can be efficient indicators for the detection of the crack. 

Nevertheless, when the opening-closing motion of a “breathing” crack is slight, higher 

harmonics can become barely visible in frequency spectra and seem to be hidden. As a 

consequence, the crack can hardly be detected by such hidden higher harmonics. 

Addressing this problem, this study proposes a nonlinearity-sensitive approach for the 

detection of “breathing” cracks. In particular, a novel phenomenon of energy 

modulation effect (EME) is reported, based on which a new concept of quadratic TKE 

(Q-TKE) is formulated. Hidden higher harmonics can be considerably enhanced in Q-

TKEs, such that “breathing” cracks can be readily detected. A physical insight into the 

mechanism of the EME is provided. The approach is numerically verified using the 

finite element method and experimentally validated through non-contact laser 

measurement. The results suggest that hidden higher harmonics can be considerably 

enhanced in the Q-TKEs and become sensitive indicators to manifest the occurrence of 

the cracks, suitable for the detection of initial fatigue cracks. 

Keywords: “breathing” crack; higher harmonics; energy modulation effect; quadratic 

Teager-Kaiser energy; non-contact laser measurement 
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1. Introduction

Fatigue cracks can occur in structural components under long-term cyclic loads [1]. 

Such fatigue cracks can open and close during tension and compression, referred to as 

“breathing” cracks.  

In the recent three decades, a great amount of research has been focused on 

modeling “breathing” cracks to simulate their opening-closing motions during vibration. 

In the early research, cracked structures were simplified as oscillators with single 

degree-of-freedoms (DOFs) [2-11]. Extended to cracked structures with multiple DOFs, 

periodical changes in crack locations were introduced into dynamic stiffness matrices 

to model “breathing” cracks [12-19]. For continuous cracked beams with infinite DOFs, 

“breathing” cracks were modeled in analytical manners [20-25].  

Due to opening-closing motions of “breathing” cracks, higher harmonics generated 

by the cracks can appear at successive multiples of the excitation frequencies in 

frequency spectra [26,27]. These higher harmonics can be efficient indicators for the 

detection of “breathing” cracks in the field of nondestructive testing [28-36]. The 

representative studies are as follows. Hu et al. [28] investigated the nonlinear vibro-

acoustic modulation technique for damage detection in metallic structures using 

instantaneous amplitudes and frequencies. Semperlotti et al. [29] proposed a method 

for localization of “breathing” cracks using phase differences of higher harmonics. The 

method was numerically verified by the finite element (FE) method. Further, the 

method was enhanced with combination tones and experimentally validated [30]. Broda 

et al. [31] investigated nonlinearities of longitudinal vibration of beams with “breathing” 

cracks. The results demonstrated that nonlinearities in cracked beams were particularly 

strong in the vicinity of cracks. Wang et al. [32] investigated the underlying mechanism 

of interaction between guided ultrasonic waves and “breathing” cracks. Contact 
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acoustic nonlinearity manifests unique scattering patterns associated with the crack 

slant, which can be used for orientating cracks. Asnaashari et al. [33] proposed a method 

for the detection and localization of “breathing” cracks using residual operating 

deflection shapes (ODSs), which are the differences between normalized ODSs at first 

and higher harmonics. Lu et al. [34] proposed a method for “breathing” crack 

localization using crack-induced local shape distortions in higher harmonic 

characteristic deflection shapes. Xu et al. [35] proposed a new concept of nonlinear 

pseudo-force, which was formulated from ODSs at higher harmonics. The concept can 

be used to locate cracks and expound the mechanism for generating higher harmonics 

by “breathing” cracks. Cui et al. [36] employed bispectrum analysis for the detection 

of “breathing” cracks by investigating the nonlinear dynamic characteristics of cracked 

beams. 

Although higher harmonics can manifest the occurrence of “breathing” cracks, they 

are usually much weaker than the first harmonics when the opening-closing motions of 

the “breathing” cracks are slight. In these situations, higher harmonics are 

overshadowed by the first harmonics, which seem to be hidden. As a consequence, the 

crack can barely be detected by such hidden higher harmonics. Addressing this problem, 

this study proposes a nonlinearity-sensitive approach for the detection of “breathing” 

cracks. In particular, a new phenomenon of energy modulation effect (EME) is reported, 

based on which a new concept of quadratic TKE (Q-TKE) is formulated. Hidden higher 

harmonics can be considerably enhanced in Q-TKEs, such that “breathing” cracks can 

be readily detected. 

The rest of the paper is organized as follows. Section 2 reports the new 

phenomenon of EME and provides a physical insight into its mechanism for enhancing 

higher harmonics. On the basis of the EME, a new concept of Q-TKE is formulated, 
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hidden higher harmonics in which can be considerably enhanced for the detection of 

“breathing” cracks. Section 3 numerically verifies the capability of the approach for the 

detection of “breathing” cracks using the FE method. Section 4 experimentally 

validates the applicability of the approach on a steel beam that bears a fatigue 

“breathing” crack, whose steady-state velocity responses under single-tone harmonic 

excitations are acquired through non-contact vibration measurement using a Doppler 

laser vibrometer (DLV). The numerical and experimental results suggest that the 

approach is capable of detecting hidden higher harmonics, which can improve the 

efficiency and sensitivity of existing approaches of fatigue crack detection relying on 

higher harmonics. Section 5 presents concluding remarks. 

2. EME for enhancing hidden higher harmonics

Consider a cracked structural component that is under a single-tone harmonic excitation 

at f . Due to the opening-closing motion of the “breathing” crack, its steady-state 

response ( )f t  consists of multiple harmonics [27]: 

1

( ) cos( ),m m m

m

f t A t 


  (1) 

where t   is time and mA , m , and m are the amplitude, angular frequency, and

phase of the mth harmonic, respectively. Note that the response can be displacement, 

velocity, or acceleration. Harmonics in the frequency spectrum are distributed at 

successive multiples of the excitation frequency, i.e., =m fm  . In the situation that 

the opening-closing motion of the “breathing” crack is slight, the generated higher 

harmonics are much less pronounced compared to the first harmonics, leading to 

1mA A . In this study, the Teager-Kaiser energy (TKE) [37] is used to measure the

pointwise energy of ( )f t , denoted as ( )E t : 
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2

2

d ( ) d ( )
( )=ψ( ( ))=( ) ( ) ,

d d

f t f t
E t f t f t

t t
                 (2) 

where ψ( )  denotes the TKE operator. Note that ψ( )  is further extended to ψ ( )c  

for calculation of the TKE between two functions [38]: 

2

2

d ( ) d ( ) d ( )
ψ ( ( ), ( ))= ( ) ,

d d d
c

f t g t g t
f t g t f t

t t t
              (3) 

By substituting Eq. (1) into Eq. (2), ( )E t  can be re-written as per the property of 

the TKE operator [38] (see Appendix A for details): 

1 , 1

( )=ψ( ( ))= ψ( cos( ))+ ψ ( cos( ), cos( )).m m m c m m m n n n

m m n
m n

E t f t A t A t A t     
 



   
(4) 

In Eq. (4), ψ( cos( ))m m mA t   is a constant related to the amplitude and frequency of 

the mth harmonic [39]: 

2 2ψ( cos( ))= ,m m m m mA t A                        (5) 

and ψ ( cos( ), cos( ))c m m m n n nA t A t      can be expressed as 

2

ψ [ cos( ), cos( )] sin( )sin( )

cos( )cos( )

c m m m n n n m n m n m m n n

m n n m m n n

A t A t A A t t

A A t t

         

    

    

  


1

( ),
2

m n mn mnA A   

 (6) 

where mn  and mn  are 

(cos(( ) ) cos(( ) )),mn m n m n m n m n m nt t                          (7) 

2 (cos(( ) )+cos(( ) )).mn n m n m n m n m nt t                         (8) 

Equation (6) indicates that the EME occurs between any two components of harmonics 

in ( )f t  : the modulation between harmonics at m   and 1   ( 1n   ) generates the 

energy component of ( )E t  at 1m   ( 2,3...m  ), whose amplitudes are associated 

with the amplitude of the first harmonic 1A  ( 1 mA A ) and the frequency of the mth 
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harmonic m  ( 1=m m  ). As a consequence, compared to steady-state responses, the 

amplitude ratios of the mth harmonics to the first harmonics largely increase in their 

TKE due to the EME. In light of this effect, the concept of the Q-TKE is further 

proposed: 

2( )=ψ( ( ))=ψ(ψ( ( ))).E t E t f t (9) 

In the Q-TKE, higher harmonics in ( )E t   can be further enhanced with largely 

increased amplitudes. Hence, hidden higher harmonics in ( )f t  can become noticeable 

and easy to identify, which is beneficial to the detection of the “breathing” crack. Note 

that for a discretized ( )f t , discrete forms of the TKE and Q-TKE can be expressed as, 

respectively [37] 

2[ ]=ψ[ [ ]]= [ ] [ 1] [ 1],E t f t f t f t f t   (10) 

2 2

2

2 2

[ ]=ψ[ψ[ [ ]]]=( [ ] [ 1] [ 1])

( [ 1] [ 2] [ ])( [ 1] [ ] [ 2]).

E t f t f t f t f t

f t f t f t f t f t f t

  

      
  (11) 

Thereby, on the basis of the EME, a nonlinearity-sensitive approach is proposed, 

by which the hidden harmonics can be considerably enhanced in Q-TKEs and become 

sensitive indicators for the detection of “breathing” cracks. 

3. Numerical verification

3.1 Numerical model 

To verify the EME reported in Section 2, a steel cantilever beam with a “breathing” 

crack is considered a numerical specimen. A numerical model of the beam is shown in 

Fig. 1 with dimensions in millimeters. The length, width, and thickness of the beam are 

400 mm, 10 mm, and 20 mm, respectively. One end of the beam is fixed, spanning 20 

mm in length from the edge of the fixed end. The beam is modeled by the FE software 

ANSYS with eight-node hexahedral elements whose dimensions are 10 mm × 2.5 mm 
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× 2 mm in the length, width, and thickness directions, respectively. The elastic modulus, 

Poisson’s ratio, and material density are 150 GPa, 0.27, and 7800 Kgm-3, respectively. 

A through-width perpendicular crack is modeled by inserting non-thickness interfaces 

between crack interfaces, on which the coincident nodes in adjacent but separated 

elements are distributed. Natural frequencies and mode shapes can be calculated by the 

modal analysis module in ANSYS. Note that only flexural modes are considered in this 

study. Figure 2 shows the first mode shape of the beam with a zoomed-in view of the 

crack, on whose interfaces nodes are marked in different colors (yellow and red) for 

distinction. To simulate the “breathing” behavior of the crack, contact elements are 

introduced between the two crack interfaces, which are defined as contact and target 

surfaces. The penalty algorithm in ANSYS is used to generate contact forces by virtual 

springs between the crack interfaces, by which the crack interfaces are allowed to 

separate but not to penetrate into each other. For this lightly-damped beam, the damping 

ratio 0.1   is considered according to the Rayleigh damping: 

,
2 2

 



                           (12) 

where   and   are mass and stiffness damping parameters, respectively. 

 

Fig. 1 Numerical model of the steel beam with the crack (dimensions in millimeters). 
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Fig. 2 The first mode shape of the cracked beam with a zoomed-in view of the crack (nodes 

on two crack interfaces are marked by red and yellow dots). 

A concentrated harmonic force is applied on the beam near its fixed end (30 mm 

away from the edge of the fixed end), by which single-tone harmonic excitations are 

generated in the transverse direction. Simultaneously, steady-state transverse velocity 

responses are extracted from the node located at 10 mm from the free end of the beam. 

It is noteworthy that the location of the measurement point is selected close to the free 

end of the beam for generality and repeatability; on the other hand, the node effect can 

be avoided as transverse displacements vanish in the locations of nodes. Forty points 

are sampled in each period of the steady-state response. As the beam is lightly damped, 

it can be excited at arbitrary frequencies, including flexural natural frequencies. Steady-

state displacement or acceleration responses can also be used for crack detection. In 

this study, the velocity responses are directly measured using the DLV in the experiment. 

Therefore, only velocity responses are used in the numerical simulation to keep 

consistent with the experiment. 
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3.2 Numerical results 

3.2.1 Detection of “breathing” crack 

To verify the capability of the approach for detecting “breathing” cracks subject to 

excitations at arbitrary frequencies, the beam is excited at resonance or non-resonance 

frequencies ( 1 , 11/ 2 , and 11/ 3 with 1 denoting the first natural frequency of 

the beam), denoted as numerical Scenarios I, II, and III, respectively (listed in Table 1). 

In these scenarios, the crack is located at 80x   mm (dimensionless location 0.2  ) 

with a depth of 3h   mm (dimensionless depth 0.3  ). To ensure the “breathing” 

crack can totally open and close during vibration for all numerical scenarios, the 

amplitudes of the excitation forces are set to be 100 N after trials. For numerical 

Scenarios I, II, and III, the time histories of the velocity responses with 1000 sampling 

points are shown in Figs. 3(a), (c), and (e), respectively. By the fast Fourier transform 

(FFT), corresponding frequency spectra of the velocity responses are calculated and 

shown in Figs. 3(b), (d), and (f). It can be seen that higher harmonics generated by the 

crack are almost invisible in each frequency spectrum. To enhance the higher harmonics, 

the Q-TKEs of the velocity responses for numerical Scenarios I, II, and III are obtained 

by Eq. (11), corresponding frequency spectra of which are calculated and shown in Figs. 

4(a), (b), and (c) for Scenarios I, II, and III, respectively. It can be seen from Fig. 4 that 

peaks appear at the double, triple, and quadruple excitation frequencies to indicate the 

2nd, 3rd, and 4th higher harmonics, respectively, whereby the occurrence of the crack 

can be evidently manifested. 
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Table 1. Numerical Scenarios I-VIII. 

Scenario I II III IV V VI VII VIII 

Excitation 
frequency [Hz] 1  11/ 2 11/ 3 1  1  1  1  1  

Crack depth   0.3 0.3 0.3 0.2 0.1 0.3 0.3 0.3 

Crack location   0.2 0.2 0.2 0.2 0.2 0.4 0.6 0.8 

(a) (b) 

(c) (d) 
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(e)                                 (f) 

Fig. 3 Time histories of the velocity responses for numerical Scenarios (a) I, (c) II, and (e) III 

and their frequency spectra (b) I, (d) II, and (f) III. 

·

(a) (b) 

(c) 

Fig. 4 Frequency spectra of Q-TKEs for numerical Scenarios (a) I, (b) II, and (c) III. 

1st 
2nd 

3rd 

4th 

1st 

2nd 

3rd 
4th 

4th 

1st 

2nd 3rd 
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To investigate the sensitivity of the approach to crack depth, numerical Scenarios 

IV with 0.2   and V with 0.1   are considered for comparison with numerical 

Scenarios I with 0.3   (listed in Table 1). Time histories and frequency spectra for 

the three scenarios are shown in Figs. 5(a) and (b), respectively. It can be seen that the 

steady-state responses are dominated by linear vibration, whereas the second harmonics 

are barely visible due to weak vibration caused by the crack, as shown in Fig. 5(b). On 

the other hand, amplitudes of the steady-state responses slightly increase with the crack 

depth due to the decrease in bending stiffness in the crack location. In contrast, as shown 

in Fig. 6(a), characteristics of nonlinear vibration can be clearly observed in the 

frequency spectra of Q-TKEs, in which amplitudes of higher harmonics increase with 

crack depths. As the Q-TKE for numerical Scenario V is largely overshadowed by the 

Q-TKEs for numerical Scenarios I and IV, the Q-TKE for numerical Scenario V is 

shown in Fig. 6(b) to display its details. 

   

(a)                                 (b) 

Fig. 5 (a) Time histories and (b) frequency spectra of velocity responses for numerical 

Scenarios I, IV, and V. 

 



14 

(a)                                 (b) 

Fig. 6 Frequency spectra of Q-TKEs for (a) numerical Scenarios I, IV, and V, and for (b) 

numerical Scenario V. 

The results suggest that hidden higher harmonics can be considerably enhanced in 

the Q-TKEs and become sensitive indicators to manifest the occurrence of the cracks, 

such that the cracks can be readily detected, suitable for the detection of initial fatigue 

cracks. 

3.2.2 Effects of crack locations on the approach 

To investigate the effects of crack locations on the approach, numerical Scenarios VI 

with 0.4  , VII with 0.6  , and VIII with 0.8   are considered for comparison 

with numerical Scenarios I with 0.2    (listed in Table 1). Time histories and 

frequency spectra for the four scenarios are shown in Figs. 7(a) and (b), respectively. It 

can be seen that linear vibration dominates the steady-state responses; on the other hand, 

amplitudes of the steady-state responses largely increase with the crack locations when 

crack moves towards its free end. 

4th 

1st 
2nd 

3rd 

4th 

1st 

2nd 
3rd 
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Fig. 7 (a) Time histories and (b) frequency spectra of velocity responses for numerical 

Scenarios I, VI, VII, and VIII. 

 

It is noteworthy that small random uncertainties can occur during the numerical 

simulation and cause perturbation in steady-state responses, leading to interference in 

Q-TKEs. As a consequence, steady-state responses with smaller amplitudes are 

susceptible to such interference. As shown in Fig. 8, although higher harmonics appear 

in the Q-TKEs, their magnitudes decrease and become increasingly unsmooth because 

the TKE operator can amplify small random uncertainties involved in signals [37, 39]. 

In particular, interference peaks appear in Fig. 8(c) and largely increase in Fig. 8(d). 

Such fake peaks can be mistaken for the crack-caused peaks. In Fig. 8(c), the first 

harmonic is ambiguous; and in Fig. 8(d), the first and third harmonics can hardly be 

identified. Thereby, excitation frequencies for a cracked structural component are 

suggested to be selected near its fundamental frequencies for large vibration amplitudes; 

meanwhile, excitation and measurement points need to be properly selected to acquire 

large amplitudes of vibration responses. 
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(a)                                 (b) 

   

(c)                                 (d) 

Fig. 8 Frequency spectra of the Q-TKEs for numerical Scenarios (a) I, (b) VI, (c) VII, and (d) 

VIII. 

3.2.3 Robustness of the approach against noise interference 

In practical scenarios, noise components can inevitably be contained in steady-state 

responses of structural components. To investigate the robustness of the approach 

against noise interference, different noise levels are considered for numerical Scenario 

I. Frequency spectra of the Q-TKEs associated with noise levels of 1%, 3%, 5%, and 

10% are shown in Figs. 9(a), (b), (c), and (d), respectively. It can be seen that noise-

caused interference peaks increase with noise levels. For noise level of 1% (Fig. 9(a)), 

interference peaks appear but the peaks of harmonics can still be evidently identified; 

for the noise level of 3% (Fig. 9(b)), interference peaks increase to obscure the first 

4th 

1st 
2nd 

3rd 

4th 

1st 

2nd 

3rd 

4th 
2nd 

3rd 

4th 

2nd 
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harmonic; for the noise level of 5% (Fig. 9(c)), interference peaks become intense, 

making the first and fourth harmonics ambiguous; for the noise level of 10% (Fig. 9(d)), 

noise interference dominates the Q-TKE, only the second harmonic can be clearly 

identified. Similar to the situation of random uncertainties, such fake peaks caused by 

noise can be mistaken for the crack-caused peaks. Therefore, de-noising is suggested 

for practical applications of the Q-TKE for in-service structural components. 

(a) (b) 

(c)                                 (d) 

Fig. 9 Frequency spectra of the Q-TKEs for numerical Scenario I with noise levels of (a) 1%, 

(b) 3%, (c) 5%, and (d) 10%.

4th 

1st 
2nd 

3rd 

4th 2nd 

3rd 

2nd 

3rd 2nd 
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4. Experimental validation

4.1 Experimental specimen and setup 

To validate the applicability of the EME for the detection of “breathing” cracks, a steel 

cracked beam is taken as an experimental specimen, whose dimensions are 400 mm × 

10 mm × 20 mm in length, width, and thickness, respectively. A sketch of the 

experimental specimen is shown in Fig. 10, with its dimensions in millimeters. One end 

of the beam is fixed by a vice, spanning 18 mm in length from the edge of the fixed end. 

A through-width V-shaped notch was manufactured in the beam, 92 mm away from the 

edge of the fixed end. The notch is 1 mm in depth, in the tip of which a fatigue crack 

initiates and propagates to 5 mm in depth after fatigue loadings. 

Fig. 10 Sketch of the steel beam with a notch and a fatigue crack (dimensions in millimeters). 

An electromechanical shaker is attached to the intact surface (400 mm in length 

and 10 mm in width) of the beam, 30 mm away from the edge of the fixed end. An 

arbitrary waveform generator controls the shaker to generate single-tone harmonic 

excitations in the transverse direction. The excitation force amplitudes are proportional 

to the output voltage amplitudes in the arbitrary waveform generator. The first natural 

frequency 1 of the beam is 70.63 Hz. The DLV is used to acquire the steady-state 

transverse velocity responses from the measurement point, which is located 4 mm away 

from the free end of the beam. The sampling frequency is 12.8 kHz. The schematic of 

vibration measurement is shown in Fig. 11, where the notch and crack are shown in a 

zoomed-in view. Note that the displacement and acceleration responses can be exported 

from velocity responses by means of integration and differentiation, respectively. 
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Although steady-state displacement or acceleration responses can also be used for crack 

detection, only steady-state velocity responses are used in this study because they are 

directly measured using the DLV. 

Fig. 11 Schematic of vibration measurement with a zoomed-in view of the notch and crack. 

4.2 Experimental results 

4.2.1 Detection of “breathing” fatigue crack 

Experimental Scenarios I, II, and III associated with different excitation frequencies 

(listed in Table 2) are considered for experimental validation. To ensure that the crack 

fully opens and closes during vibration, the input voltage in the shaker is set to be 1 V 

after trials. For Scenarios I, II, and III, the beam is excited at 1 , 11/ 2 , and 11/ 3 , 

whose time histories of the steady-state velocity responses in one second are shown in 

Figs. 12(a), (c), and (e), respectively. By the FFT, corresponding frequency spectra are 

obtained and shown in Figs. 12(b), (d), and (f), where higher harmonics appear to 

manifest the occurrence of the crack. Thereby, the crack can be readily detected by 
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higher harmonics due to strong nonlinearity of vibration, which is produced when the 

crack fully opens and closes subject to the excitations with large amplitudes. 

Table 2 Experimental Scenarios I-VIII. 

Scenario I II III IV V VI VII VIII 

Excitation 
frequency [Hz] 1  11/ 2 11/ 3 1  11/ 2 11/ 3 2 3

Excitation 
voltage [V] 

1 1 1 0.125 0.125 0.125 0.125 0.125 

(a) (b) 

(c) (d) 

1st 

2nd 

1st 

2nd 
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(e)                                 (f) 

Fig. 12 Frequency spectra of velocity responses for Scenarios (a) I, (c) II, and (e) III and Q-

TKEs for Scenarios (b) I, (d) II, and (f) III. 

4.2.2 Detection of partially-open “breathing” fatigue crack 

For cracked structural components subject to excitations with small amplitudes, higher 

harmonics generated by the “breathing” cracks can be too weak to indicate the cracks 

due to the partially-open motions of the cracks. In this study, the proposed approach is 

utilized to detect such partially-open “breathing” cracks. To this end, experimental 

Scenarios IV, V, and VI with small excitation amplitudes are considered, associated 

with excitation frequencies of 1 , 11/ 2 , and 11/ 3 , respectively (listed in Table 2). 

The input voltage in the shaker is set to be 0.125 V, such that the crack can fully close 

but practically open during vibration. For experimental Scenarios IV, V, and VI, the 

respective frequency spectra of the steady-state velocity responses and Q-TKEs are 

shown in Fig. 13. It can be seen from Figs. 13(a), (c), and (e) that only the first 

harmonics can be found when slight excitations apply because crack-caused weak 

nonlinear vibration can be negligible compared to the linear vibration [35]. To enhance 

the higher harmonics for the detection of the crack, the Q-TKEs of the steady-state 

velocity responses are calculated by Eq. (11), whose distributions in the frequency 

spectra are shown in Figs. 13(b), (d), and (f). It can be seen that the second, third, fourth 

1st 

2nd 
3rd 
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higher harmonics are considerably amplified, by which the crack can be evidently 

detected.  

(a) (b) 

(c) (d) 

(e)                                 (f) 

Fig. 13 Frequency spectra of velocity responses for Scenarios (a) VI, (c) V, and (e) VI and Q-

TKEs for Scenarios (b) VI, (d) V, and (f) VI. 
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2nd 

3rd 

4th 

1st 
2nd 

3rd 

4th 
1st 

2nd 

3rd 
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To prove the approach is sound and practical for arbitrary excitation frequencies, 

the second natural frequency 2 (688.70 Hz) and the third natural frequency 3

(1787.19 Hz) are used as excitation frequencies, denoted as experimental Scenarios VII 

and VIII, respectively (listed in Table 2). The input voltage in the shaker remains 0.125 

V. As shown in Figs. 14(a) and (c), higher harmonics are almost invisible; in contrast,

the corresponding Q-TKEs in Figs. 14(b) and (d) clearly show the crack-induced higher 

harmonics, whereby the crack can be evidently detected. 

(a) (b) 

(c)                                 (d) 

Fig. 14 Frequency spectra of velocity responses for Scenarios (a) VII and (c) VIII and Q-

TKEs for Scenarios (b) VII and (d) VIII. 

1st 
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3rd 

1st 

2nd 

3rd 
4th 
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It is noteworthy that the EME reported in this study can also be used to detect other 

“breathing” damage such as weak bonds or delamination [40], higher harmonics 

generated by which can also be much less pronounced compared to the first harmonics. 

Besides higher harmonics, when vibro-acoustic excitations apply, side harmonics can 

be amplified as well for the detection of “breathing” damage [41]. 

5. Concluding remarks

Higher harmonics can be efficient indicators for the detection of “breathing” cracks in 

the field of nondestructive testing. Nevertheless, if the opening-closing motions of 

“breathing” cracks are slight, the cracks can be hardly detected by the hidden higher 

harmonics that are overshadowed by the first harmonics. Addressing this problem, this 

study proposes a nonlinearity-sensitive approach for the detection of “breathing” cracks. 

In particular, this study reports a novel phenomenon of EME, based on which a new 

concept of Q-TKE is formulated to considerably enhance hidden higher harmonics. 

This study provides a physical insight into the mechanism of the EME. The approach 

is numerically verified using the FE method and experimentally validated through the 

non-contact vibration measurement using the DLV. Some conclusions can be drawn as 

follows. 

(1) The EME occurs between any two components of harmonics in steady-state

responses of structural components bearing “breathing” cracks, by which amplitudes of 

higher harmonics are associated with amplitudes of the first harmonics and the 

frequency of higher harmonics. As a consequence, hidden higher harmonics can be 

considerably enhanced with noticeable amplitudes. Thereby, such enhanced higher 

harmonics can be sensitive indicators for the detection of “breathing” cracks, suitable 

for the detection of initial fatigue cracks. 
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(2) Random uncertainties can be amplified in Q-TKEs and cause fake peaks that can be 

mistaken for the crack-caused peaks. Steady-state responses with smaller amplitudes 

are susceptible to such interference. Thereby, excitation frequencies for a cracked 

structural component need to be selected near its fundamental frequencies for large 

vibration amplitudes; meanwhile, excitation and measurement points need to be 

properly selected to acquire large amplitudes of vibration responses. 

(3) Similar to “breathing” cracks, other damage such as delamination can periodically 

open and close subject to harmonic excitations, higher harmonics generated by which 

can also be much less pronounced compared to the first harmonics, leading to 

difficulties in damage detection. Besides the detection of “breathing” cracks, the EME 

reported in this study can also be used for the detection of other “breathing” damage 

such as weak bonds or delamination by enhancing hidden higher harmonics in Q-TKEs. 
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Appendix A 

The Teager-Kaiser energy of two functions 
1a and 

2a is defined as [38] 
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in which it can be found that 
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Thus, Eq. (A4) is proved by recurrence method. 
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