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We propose a novel active-flow-control strategy for bluff bodies to hide their hydro-

dynamic traces, i.e., strong shears and periodically shed vortices, from predators. A

group of windward-suction-leeward-blowing (WSLB) actuators are adopted to con-

trol the wake of a circular cylinder submerged in a uniform flow. An array of ve-

locity sensors is deployed in the near wake to provide feedback signals. Through

the data-driven deep reinforcement learning, effective control strategies are trained

for the WSLB actuation to mitigate the cylinder’s hydrodynamic signatures. Only

a 0.29% deficit in streamwise velocity is detected, which is a 99.5% reduction from

the uncontrolled value. The same control strategy is found to be also effective when

the cylinder undergoes transverse vortex-induced vibration. The findings from this

study can shed some lights on the design and operation of underwater structures and

robotics to achieve hydrodynamic stealth.
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I. INTRODUCTION

Predator-prey interactions influence ecosystem structures. In aquatic communities, these

interactions are strongly affected by disturbances in the surrounding liquid medium, espe-

cially when vision detection does not work well. One example is that harbor seals (Phoca

vitulina) use whiskers to sense hydrodynamic perturbations produced by their preys, preda-

tors or conspecifics, thus helping to forage in dark or turbid water1–3. Another example is

that fish use their lateral lines to perceive weak hydrodynamic perturbations induced by

surrounding stationary or moving bodies4. Inspired by these aquatic animals, scientists and

engineers have strived to develop sensible sensors for underwater detection5.

From the preys’ perspective, if achieving hydrodynamic stealth of a certain level by

mitigating or even eliminating their hydrodynamic traces in the form of shears and/or shed

vortices, they can significantly reduce the chance of being captured by their predators. Even

though the idea of stealth has been extensively explored and even implemented in engineer-

ing applications in various disciplines such as optics6, acoustics7, etc, it has occasionally been

tackled in hydrodynamics under a different name “hydrodynamic cloaking”. In this emerg-

ing field, existing studies are only focused on either creeping flows8–10 or water waves11,12,

both governed by linear equations. The control methods include the use of well-designed

metamaterials8,9, applying mass/momentum sources10, or varying water depth11 around an

obstacle.

In this study, we propose to apply active flow control (AFC) to mitigate or even eliminate

the hydrodynamic traces, so that preys can achieve hydrodynamic stealth on demand and

escape from their predators. Due to the unsteadiness, nonlinearity and high dimensionality

of this flow control problem, it is challenging to find effective control laws in an explicit

form. Instead, we adopt deep reinforcement learning (DRL), a machine learning technique,

to search feasible control strategies through the interactions between an intelligent agent and

environment. DRL uses a data-driven approach, i.e., artificial neural networks (ANNs), to

approximate strongly nonlinear dynamics by learning through trial-and-error13. Compared

to other popular machine learning techniques such as the genetic programming used in our

previous AFC work14, it is more suitable for multi-input multi-output (MIMO) control prob-

lems like in the present study. Besides the striking, high-profile victories in the game of Go

against the best human players15,16, DRL has recently been successively applied in automatic
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control17 and complex flow-related problems, e.g., fish schooling18, bird flying in turbulent

environment19, flow navigation of smart particles20, etc. Applications of DRL trained AFC

for drag reduction at various flow conditions have also been actively explored21–24. Success-

ful DRL applications in fluid mechanics can be found in recent review papers by Brunton

et al.25, Rabault et al.26, and Ren et al.27. All these successful applications of DRL in flow

problems especially AFC further make us feel confident to realize the above idea of applying

AFC to achieve the hydrodynamic stealth for bluff bodies.

II. PROBLEM DESCRIPTION AND METHODOLOGY

A. Problem description

We adopt a generic bluff body, i.e., a circular cylinder, for the control. As shown in FIG

1(a), a circular cylinder with mass m and diameter D is immersed in a uniform flow of

velocity U . The corresponding diameter-based Reynolds number is fixed at Re = 100, such

that asymmetric vortices will periodically shed from the cylinder, forming a Kármán vortex

street. The cylinder’s streamwise motion is refrained all the time while it is transversely

connected to a spring of stiffness K. The asymmetric vortex shedding results in a peri-

odic hydrodynamic lift (FL) exerted on the cylinder, which thus undergoes vortex-induced

vibration (VIV) governed by

mÿ = −Ky + FL (1)

Two key dimensionless parameters, i.e., the mass ratio m∗ and the reduced velocity UR, can

be used to characterize the cylinder’s dynamics

m∗ =
m

ρD2
, UR =

U

fND
(2)

where ρ is the fluid density and fN =
√
K/m/2π is the natural frequency of this mass-spring

system in vacuum. By varying m∗ and UR, the cylinder may vibrate in a “locked-in” regime

where the vibration amplitude is significantly large due to resonance, making the control very

challenging28. FIG 1(b) to (d) show the uncontrolled wake patterns behind the stationary,

locked-in vibrating, and unlocked-in vibrating cylinders, respectively, all revealing strong

hydrodynamic signatures. Due to the large-amplitude vibrations, the wake of the locked-in

VIV cylinder seems quite different from the wakes in the other two cases in terms of the

wake width and vortex orientation.
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Figure 1

(a) (b)

(c)

(d)

vorticity

FIG. 1. (a) Schematic of the AFC problem. Five pairs of WSLB actuators are adopted to control

the cylinder wake, arranged symmetrically (θ = ±80◦, ±40◦, and 0◦) about the cylinder’s centerline.

Each pair of actuators consists of a suction slot (green arc) at the windward side of the cylinder

and a blowing slot (red arc) at the leeward side. (b) to (d) Wake patterns of stationary cylinder,

locked-in VIV cylinder (m∗ = 2, UR = 5), and unlocked-in VIV cylinder (m∗ = 1.5, UR = 3),

respectively, at the same instant when the cylinder reaches its equilibrium position in the upstroke.

The wakes are colored by vorticity. The vortices are identified using the λci criterion29 and enclosed

by grey lines, where solid and dashed lines indicate positive and negative vortices, respectively.

Velocity vectors measured by the sensor array are also shown to demonstrate strong hydrodynamic

signatures in the cylinder wakes.

To mitigate the cylinder’s hydrodynamic traces, five pairs of windward-suction-leeward-

blowing (WSLB) actuators are adopted to provide control authority30,31, as depicted in FIG

1(a). In line with the streamwise direction, each pair of actuators consists of a suction slot

at the windward side of the cylinder and a blowing slot at the leeward side. The five leeward

actuators are located azimuthally at θ = ±80◦, ±40◦, and 0◦, measured from the centerline.

The actuator pair in the centerline has slots of 12◦ arc, while the other eight off-centerline

actuators have slots of 6◦ arc, altogether occupying one fifth of cylinder’s surface. For each

pair of actuators, fluid is horizontally sucked into the windward slot and injected out from

the leeward slot with an identical velocity, hence realizing zero-net-mass-flux actuation.

Since the targeted wake flow is symmetric about the centerline, to simplify the control, the

actuator pairs located at θ = ±80◦ are always operated in phase, and so are the pairs located

at θ = ±40◦. Hence only three independent controls are employed in the current study.
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To provide feedback signals to the controller, an array of velocity sensors is placed 2D

downstream of the cylinder, sensing the cylinder’s hydrodynamic signatures through mea-

suring the streamwise and transverse velocities at 33 equal-spacing locations along a vertical

line of 2D length, as depicted in FIG 1(a). This sensor array is chosen according to an

experiment setup for drag measurement32. In practice, it can be a rake of hot-wire probes

or Pitot tubes.

With the velocity information collected from the sensor array, a cost function J is defined

for the purpose of flow control

J =
NS∑
i=1

[
(ui − 1)2 + v2

i

]
+ C

NA∑
i=1

u2
a,i (3)

where NS = 33 and NA = 5 are the numbers of sensors and WSLB actuators, respectively.

ui and vi are the instantaneous streamwise and transverse velocities read by the i-th sensor,

and ua is the actuation velocity. This cost function consists of two components. The

first component, i.e., the first term of Eq. 3, quantifies the velocity deficit, namely, the

discrepancy in velocities between the wake and the uniform incoming flow (denoted as J1

hereafter). J1 = 0 when the wake is identical to the incoming flow, indicating a zero

hydrodynamic trace. The second component reflects the energy consumed by the WSLB

actuators for the control (the second term of Eq. 3), in which a small weighting coefficient

C = 10−4 is applied to prevent over fluctuation of the actuation. To avoid overloading, the

upper limit of the actuation velocity (ua) is set as five times the incoming flow velocity.

B. CFD simulation environment

The above flow control problem is studied in a computational-fluid-dynamics (CFD)

simulation environment. The details of the solver can be found in Appendix A. When

performing DRL-based AFC, hundreds or even thousands of episodes (each one representing

an independent case) are required to train the control strategy. This poses great challenges

to the computational efficiency of the flow solver. To address this issue, our flow solver is

accelerated using the GPU parallel algorithm33 and run in an NVIDIA Tesla K40c GPU

server. With this platform, the averaged computational time for each control case can be

managed within 6 minutes.
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Figure 3
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FIG. 2. Schematic of the DRL loop used in the present study

C. DRL trained AFC

In the present DRL framework, effective control strategies are learnt through interac-

tions between the controller, i.e., a smart “agent”, and the cylinder wake, i.e., the “fluid

environment”. As illustrated in FIG 2, the agent feels the “state” of the environment using

the sensor array, and exerts changes to the environment through “action”, i.e., the WSLB

actuations. To encourage the agent to keep improving its performance during the learning

process, a “reward” is defined as r = −J , such that a better action gets a higher reward.

The proximal policy optimization (PPO) model34, currently often regarded as the state-

of-the-art algorithm for performing continuous control, is adopted to train the DRL agent

through stochastic trial-and-error. In this model, two sets of ANNs are used in the agent,

known as the “critic” and “actor” networks. As depicted in FIG 2, both networks use the

state as their input. On the output side, the “critic” network estimates the reward, whereas

the “actor” network models the agent’s policy πΘ, i.e., the control strategy. By using

this PPO-based DRL framework, it is expected that the agent can learn effective control

strategies in a similar way like humans. More details about this framework are provided in

Appendix B.

The control strategies will be learnt in two scenarios. In the first scenario, the spring

stiffness K is set infinitely large, so that the cylinder is stationary. The simulation in each

episode lasts for 27T , where T = D/U , approximately 5 vortex shedding periods in the
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uncontrolled case. Here an episode is defined as a complete run with reinitialized flow

environment and a control strategy updated according to the states, actions and rewards

obtained in previous runs. In the second scenario, K is set finite, so that the cylinder

experiences VIV. The simulation lasts for 54T , doubled because the vibrating cylinder and

its wake require extra time to reach the steady state. In each episode, states are read from

the flow field 50 times in a duration of T , and accordingly, the actions are also enforced in

the same pace.

In general, appropriate choices of network width (i.e., the number of neurons in each

hidden layer) can improve the training performance, while bad choices will lead to over-

fitting or under-fitting problems. To determine suitable hyper-parameters for the current

DRL training, a number of trial learnings have been conducted on the stationary cylinder.

The tested hyper-parameters in five selected trial learnings are listed in TABLE I, and the

corresponding learning curves are presented in FIG 3. Here a learning curve describes the

variation of the averaged cost function value against episodes. It is seen that, as a successful

learning, the learning curve of Trial I not only shows a generally decreasing trend followed by

a level-off in the late stage, but also gradually becomes smoother. For other trials, however,

the learning processes have to be terminated earlier due to either large fluctuations or non-

decreasing trends. In addition, two more trial learnings with ANNs of width 1024×128 and

512×256, respectively, blow up in just the first 50 episodes, and therefore are not presented

in FIG 3.

In the DRL framework, the weights of ANNs are randomly initialized. This poses chal-

lenges in the consistency of the learning, not mentioning the discrepancies caused by differ-

ence in ANN structures. Thus, Trial V is chosen to compare with Trial I so that the effect

of different initial ANN weights can be demonstrated. It is seen from FIG 3 that, although

Trial V shows a much faster decreasing trend in the early stage, its performance is worse

off at approximately the 450th episode, reflected by the unexpected rising and violently

fluctuating learning curve. Nevertheless, its performance is still better than the other trials

using different ANN or learning rate settings. Hence we adopt the hyper-parameters used

in Trials I and V in this study.
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TABLE I. Hyper-parameters used in the DRL

Learning Neural Network
Learning Rate

Discount Factor
Critic Actor

I 512× 128 0.0002 0.0003 0.97

II 256× 128 0.0002 0.0003 0.97

III 512× 128 0.0002 0.0003 0.99

IV 512× 128 0.0002 0.0003 0.93

V 512× 128 0.0002 0.0003 0.97

0 200 400 600 800 1000
0.00

0.01

0.02

0.03

0.04

0.05

0.06

J 1

Episode number

 Trial I

 Trial II

 Trial III

 Trial IV

 Trial V

FIG. 3. Comparison of learning curves of DRL control over a stationary cylinder with different

hyper-parameter setups listed in TABLE I

III. RESULTS AND DISCUSSIONS

A. Stationary cylinder

FIG 4 presents more details of the successful learning introduced in FIG 3 (i.e., Trial

I). It is seen that the control strategy improves in general with a fast rate in the first 500

episodes, and then gradually converges. Four representative episodes, i.e., Episode 1, 256,

493 and 1000, are chosen to show details of the WSLB actuation and the control effects

at different stages of the learning process. In Episode 1, without any prior knowledge, the

DRL agent manages to break down the asymmetric vortex shedding from the cylinder by

operating the 0◦ actuator with the strongest actuation and the ±80◦ actuators with the
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weakest. As a result, the originally unsteady wake becomes nearly steady, consisting of two

strong shear layers mirrored about the cylinder’s centerline, as shown in subplot (A) on the

right. However, eminent velocity deficit in the wake can still be detected by the sensor array.

As the learning proceeds and more experience is obtained, the DRL agent gradually reduces

the 0◦ actuator’s strength while increasing the ±40◦ actuators’. The two shear layers become

less evident and the resulting velocity profile gradually approaches to a uniform one.

Once a mature control strategy is learnt, the DRL agent decides to operate the ±40◦

actuators with the greatest strength, i.e., ua,+40◦ = ua,−40◦ = 3.1, and operate the 0◦ actuator

with the smallest strength, i.e., ua,0◦ = 2.3. This strategy is somewhat consistent with

what has been revealed in previous wake/VIV control studies31,35–37: to make the control

effective and efficient at Re = 100, the jet-like actuation should be applied close to the mean

separation points, i.e., θ = ±58◦. With this control strategy, the shear layers are no longer

tangible and the measured velocity profile almost coincides with the uniform one as in the

incoming flow (the mean discrepancy is only 0.29%, reduced by 99.5% if compared with the

uncontrolled case), as shown in subplot (D) in FIG 4. A video showing the evolution of the

flow field with this well-trained control strategy can be seen in FIG 5 (multimedia view).

Through this control the cylinder’s hydrodynamic traces are almost eliminated, and any

predator just 2D downstream can hardly feel its existence. Furthermore, as revealed in the

four insets, the fluctuations in the actuation are significantly mitigated when the learning

process converges, indicating great confidence of the learnt control strategy.

Time histories of the cost function, hydrodynamic forces and velocity fields obtained

in Episode 1000 are presented in FIG 6. It is seen that the control efficiently makes J1,

the velocity deficit in the wake, reach and maintain its lowest values right after about

t = 5, slightly more than one oscillation cycle of the uncontrolled cylinder. The control also

quickly reduces the hydrodynamic forces, in both streamwise and transverse directions, to

values very close to zero, as shown in FIG 6(b). The nearly zero transverse force, i.e., lift,

reflects that the asymmetric vortex shedding has been successfully suppressed by the WSLB

actuation. The slight oscillation around zero in the streamwise force indicates that the flow

induced drag is almost balanced by the WSLB generated trust, which, from the momentum

perspective, confirms the recovery of the uniform flow in the wake.

FIG 6(c) to (d) compare the spatio-temporal distributions of the net streamwise velocity,

u− 1, and transverse velocity, v, measured by the sensor array before and after the WSLB
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FIG. 4. Left: Learning process represented by the variation of cost function values against episode

number. The four insets show WSLB actuations generated by the DRL agent at different stages of

the learning. Right: Instantaneous wake patterns and measured velocity profiles at the four selected

stages. The progressive disappearance of velocity deficit well demonstrates the effectiveness of DRL

trained wake control.

FIG. 5. Evolution of hydrodynamic traces of the stationary cylinder subject to the DRL-trained

WSLB control (Multimedia view).

control, both normalized using the freestream velocity U . It is seen that, before the control,

both the net streamwise and transverse velocities are spatio-temporally symmetric. Near

the cylinder’s centerline, the net streamwise velocity is always negative, reflecting the drag

generation characteristics. After the control is switched on, the spatio-temporal patterns

are quickly broken down, both evolving into nearly zero velocity fields.

Through the learnt WSLB control, the vortex evolution and resulting wake pattern are
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FIG. 6. Evolution of (a) J1 value and (b) force coefficients of uncontrolled and well-controlled cases

for the stationary cylinder. The control strategy learnt in Episode 1000 (see FIG 4) is adopted in

the controlled case. The force coefficients were calculated by nondimensionalizing the streamwise

and transverse components of hydrodynamic forces using ρU2D/2. (c) and (d): Evolution of the

corresponding net streamwise velocity, u–1, and transverse velocity, v, measured by the sensor

array, respectively. The control starts at t = 0.

significantly changed, indicating the change of associated wake instability. To quantify the

latter change, we perform a linear stability analysis by following similar procedures adopted

for cylinder wake flows in previous works35,38–40 (detailed in Appendix C). FIG 7 presents the

distribution of complex critical frequency of disturbance, ω0, along the downstream direction

for both the uncontrolled and controlled cases. Here the real and imaginary parts, i.e., Re(ω0)

and Im(ω0), represent the frequency and growth rate of disturbance, respectively. It is seen

from FIG 7(a) that the learnt control reduces the absolute instability region (defined by the

x range of positive Im(ω0)) by about 73%. The control also reduces the disturbance growth

rate in the convective instability region (defined by the x range of negative Im(ω0)) by about

one order of magnitude. From FIG 7(b), it is seen that the control significantly enhance the

dominant frequency of instability in the near wake, indicating that, with the control, the
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FIG. 7. Comparisons of (a) imaginary and (b) real parts of critical ω0 along the streamwise

direction between uncontrolled and controlled cases.

near wake flow becomes less sensitive to disturbance close to the original vortex shedding

frequency (i.e., Re(ω) = 1.06). All these changes in the wake instability confirm that the

learnt control is able to stabilize the cylinder wake and greatly reduce the hydrodynamic

traces.

B. VIV cylinder

The success of DRL trained control strategies for the stationary cylinder has motivated us

to further explore the control in a more complicated scenario where the cylinder undergoes

VIV in the transverse direction. In this scenario, the fixed sensor array has a relative motion

to the cylinder, generating different readings as revealed in the velocity vectors shown in

FIG 1(b) to (d). This change may cause the deterioration of the WSLB control and pose

challenges to the DRL training. Intriguingly, since the control learnt from the stationary

cylinder makes the hydrodynamic lift very close to zero (as revealed in FIG 6(b)), the

same control strategy may be effective in suppressing the VIV first and then mitigating

the hydrodynamic traces. Hence, the control strategy learnt in Section III A, i.e., the well

trained ANNs, is directly applied as the starting point in the new learning. This is a machine

learning technique called transfer learning where the knowledge acquired from one task is

utilized in another different but related task.

To show the necessity and effectiveness of using transfer learning for the VIV cylinder, we

compare the first 250 episodes of the learning for the selected two VIV cases, i.e., a locked-in

12



(a) (b)

(c) (d)

vorticity

0 50 100 150 200 250
0.00

0.02

0.04

0.2

0.3

0.4

Uncontrolled, locked-in

Uncontrolled, unlocked-in

y
rm

s

Episode number

 Locked-in

 Unlocked-in

0 50 100 150 200 250
0.00

0.03

0.06

0.09

0.4

0.5

0.6

with transfer learning

without transfer learning

J 1

Episode number

 Locked-in     Unlocked-in

uncontrolled

FIG. 8. (a) Learning processes of DRL trained AFC on the locked-in and unlocked-in VIV cylin-

der. (b) Variation of standard deviations of the cylinder’s transverse displacement throughout the

learning process, which are evaluated using the data in the second half of each episode. (c) and

(d): Instantaneous wake patterns and measured velocity profiles for the well-controlled locked-in

and unlocked-in VIV cylinder, respectively. In both cases, the control strategies learnt in Episode

250 are adopted.

case and an unlocked-in case, as shown in FIG 8(a). It is seen that with the transfer learning,

J1 in both cases remains low with slight fluctuations. Its mean is almost constant starting

from the very beginning of the learning. Without using the transfer learning, however, the

learning curve in the locked-in case fluctuates violently and does not show a decreasing

trend. Although fluctuating mildly, J1 in the unlocked-in case also remains at a high level

and does not show an obvious decreasing trend either.

With the control strategies obtained from transfer learning, the cylinder’s VIV can be

suppressed to a large extent in both the locked-in and unlocked-in situations, as evidenced

in FIG 8(b) by the very small standard deviations in transverse displacement. As expected,

these control strategies works well as long as the VIV is suppressed. They effectively mit-

igate the cylinder’s hydrodynamic traces, reducing the mean velocity deficit by 96.5% in
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FIG. 9. Evolution of hydrodynamic traces of the VIV cylinder subject to the DRL-trained WSLB

control: (a) locked-in and (b) unlocked-in (Multimedia view).

the locked-in case and 95.9% in the unlocked-in case, respectively, compared with the cor-

responding uncontrolled cases. The controlled wakes are shown in FIG 8(c) and (d). Unlike

in the controlled case for the stationary cylinder, vortex shedding can still be observed in

these two cases, mainly due to the imperfect VIV control. However, with the learnt control,

this strong hydrodynamic signature is to a great extent constrained in the near wake, i.e.,

x < 2D, beyond which only very weak vorticities are observed. The remarkably weakened

vorticities in the mid-wake will soon disappear from the background flow. Two videos show-

ing the control effects for the VIV cylinder in the locked-in and unlocked-in situations can

be seen in FIG 9 (multimedia view).

Time histories of the WSLB velocities in the selected episodes for the two VIV cases are

presented in FIG 10, and other quantities reflecting the control effect are presented in FIG 11.

Unlike in the stationary cylinder case, the WSLB actuations still oscillate significantly even

when the learnt control achieves its steady state. The ±40◦ actuators are still strongest,

with their means slightly higher than that in the stationary cylinder case by 12% in the

locked-in case and by 5.7% in the unlocked-in case, respectively. The wake controls are not

as good as in the stationary cylinder case, as shown in FIG 8(c) and (d) as well as in FIG

11(c) and (d). All these discrepancies are probably caused by the slight vibration of the

controlled cylinder, as revealed in FIG 11(b). If comparing these two VIV cases, it is seen

that the locked-in case requires much longer time to achieve its steady state, as indicated

by the transient processes shown in FIG 10 and 11.
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IV. SUMMARY

We demonstrated that using DRL trained AFC a bluff body can achieve hydrodynamic

stealth from its predators. The well-trained WSLB control not only balances the body’s
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hydrodynamic drag during cruising, but also greatly reduces the velocity deficit in the very

near wake, hence mitigating or even eliminating the body’s hydrodynamic traces. The linear

stability analysis revealed that the control can reduce by about 73% the length of absolutely

unstable region in the cylinder wake. It was also shown that the trained WSLB control can

effectively suppress VIV, and hence can mitigate the hydrodynamic traces of VIV bodies.

Although many parameters are unexplored, e.g., the effects of Reynolds number, WSLB

actuator settings and sensor settings, the findings from this interesting study can shed some

lights on the design and operation of underwater robotics for achieving low detectability.

In the near future, we will extend the study to more realistic conditions, where the flow

can be turbulent and three-dimensional, the DRL trained AFC may be realized in experi-

mental environment, and uncertainties in measurements and actuations may be involved. To

perform efficient learning in these challenging studies, making the use of system invariances

and accelerating the DRL through a multi-environment approach41 can play vital roles.
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APPENDIX

A. CFD solver

High-fidelity CFD simulations are conducted to provide training data for DRL based

machine learning. In the simulations, the fluid is assumed incompressible. We adopt the

lattice Boltzmann method (LBM) to numerically solve the Navier-Stokes equations, using

an evolution procedure with separated collision and streaming steps. In this method, we use
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FIG. 12. Schematic of the computational domain, multiblock meshing arrangement, and boundary

conditions

the multi-relaxation time algorithm42 to enhance numerical stability, and use the He-Luo

model43 to better satisfy the fluid incompressibility condition.

FIG 12 shows a schematic of the computational domain, multiblock meshing arrange-

ment and boundary conditions. The size of the computational domain is 64D×20D. The

circular cylinder is initially located at the centerline, 20D downstream from the inlet. The

multi-block grid partition method44 is utilized to balance the computational accuracy and

efficiency. We adopt a four-level grid refinement, where the mesh resolution is doubled from

level 0 to level 3, each having 512×160 uniform mesh nodes. Around the cylinder, the

finest block (level 3) with mesh spacing δx = D/64 is used. The inlet velocity is set as

U = 0.02c, where c is the lattice speed, corresponding to a time step δt = T/3200, where

T = D/U . Unless otherwise stated, in the following discussions all velocities, lengths and

time are nondimensionalized using U , D and T , respectively.

We apply the velocity boundary condition at the inlet and top/bottom walls, which is

achieved via a modified bounce-back scheme with momentum exchange45. The convective

flow condition, i.e., ∂tu+U∂xu = 0, is utilized at the outlet to allow the vortices to smoothly

cross the boundary with the least reflection46. The WSLB actuations are realized via the

Dirichlet boundary condition at the designated slots. Regarding the vibration of the cylin-

der, we employ the double-linear interpolations for the treatment of curved boundary47,

the third-order non-equilibrium extrapolation scheme for the mesh refilling process48, and

the corrected momentum exchange method49 to calculate the hydrodynamic forces. This

combination of algorithms has been proven to be sufficiently accurate for simulating moving

boundary problems, via comparisons with groups of existing methods50. The grid partition
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and boundary setups have also been verified in our previous studies14,31,35–37.

Note that the simulations in the current study are conducted at a relatively low Reynolds

number where the flow is laminar. For simulations at high Reynolds numbers where the flow

could be turbulent and carries high-frequency information, directly solving the Navier-Stokes

equations using other algorithms may be necessary to ensure the simulation accuracy.

B. PPO-based DRL

In each episode, a DRL agent runs the policy for N times and collects a trajectory, i.e.,

a sequence of state-action-reward combinations

τ = (s1, a1, r1), (s2, a2, r2), (st, at, rt), ..., (sN , aN , rN) (A1)

To consider a long-term effect of the actions, a discounted reward is used

Rt =
∑
t′>t

γt
′−trt′ (A2)

where γ is the discount factor usually close to 1. This definition gives later rewards more

weights in calculating Rt.

In order to update the policy πΘ, properly defining the objective function for each set of

ANNs is vital. First, the objective of the “critic” network is to minimize the discrepancy

between the predicted and actual discounted rewards, using the objective function

Jcritic = Êt(−Â2
t ) (A3)

where Êt denotes the empirical expectation over time, and Ât is called “advantage” that

evaluates the difference between the predicted and actual discounted rewards

Ât = Rt − VΘ(st) (A4)

However, as learning proceeds, the agent would always wish to achieve larger reward

than its prediction, i.e., to obtain larger advantage. To achieve this, the policy-based DRL

algorithms usually utilize the second set of network, i.e., the “actor” network. By using the

PPO model, we follow the work in Schulman et al. 34 , where a clipped surrogate objective

function is used, i.e.,

Jactor = Êt[min(qt(Θ)Ât, clip(qt(Θ), 1− ε, 1 + ε)Ât)] (A5)
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where qt(Θ) = πΘ(at|st)/πold(at|st) is the ratio of the probability of current policy πΘ in

adopting action at according to state st to the probability of previous policy πold. The clip

term inside Eq. A5 indicates that Rt(Θ) is constrained to an interval [1 − ε, 1 + ε], where

ε is a hyper-parameter set as 0.2 as recommended by Schulman et al. 34 . The use of the

minimum operation is to avoid an excessively large policy update.

When updating the policy, we choose the Adam optimizer, which performs better in fast

convergence than conventional stochastic gradient descent optimizers51. In this optimizer,

two decay rates are usually fixed and only the learning rate needs to be set. In our study,

the learning rates are set as very small values, i.e., 0.0002 and 0.0003 for the actor and critic

networks, respectively, which we found can help produce stable learning curves.

When dealing with continuous control, the actor network does not directly generate ac-

tions. Instead, it generates a combination of parameters for a certain probability distribution

for actions. In this study, we choose the Gaussian distribution, from which the actions are

sampled in a predefined range. After 500 episodes, we narrow the sampling range via reduc-

ing the standard deviation of the Gaussian distribution. By this means, randomness in the

sampling process is reduced and hence the fluctuations of sampled actions are suppressed.

Meanwhile, as confirmed from the learning curves, both the trend and smoothness of the

learning process are unaffected, implying the appropriateness of this adjustment. Note that

a narrow Gaussian distribution at the early stage is not suggested, because it will lead to a

small searching space.

C. Linear stability analysis

In the linear stability analysis for the flow around a circular cylinder, the mean flows

of both uncontrolled and controlled cases are chosen, as shown in FIG 13(a), which are

assumed to be inviscid and locally parallel downstream of the cylinder, the same as in Wang

et al. 35 , Thiria and Wesfreid 40 . Introduce a disturbance stream function

Ψ(x, y, t) = ψ(y)ei(kx−ωt) (A6)

where ψ is the disturbance amplitude, k is the complex wave number, and ω is the complex

frequency. Substituting this stream function into the inviscid Orr-Sommerfeld or Rayleigh

equation gives

(kū− ω)(ψ′′ − k2ψ)− kū′′ψ = 0 (A7)
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(a)

(b)

FIG. 13. Time-averaged streamwise velocity in the (a) uncontrolled and (b) controlled cases.

with boundary conditions ψ(±∞) = 0. ū is the time-averaged streamwise velocity at a given

downstream location x, and the double prime denotes the second derivative with respect to

y.

Equation A7 defines an eigenvalue problem and yields a dispersion relation ω = ω(k) at

a selected downstream location x. By mapping a number of constant Im(k) (i.e., imaginary

part of k) lines in the complex ω plane, a “critical point”, ω0, can be identified at the edge

of a cusp-like trajectory35,38–40, as exemplified by FIG 14 at x = 1 in the uncontrolled case.

Its real and imaginary parts, Re(ω0) and Im(ω0), represent the frequency and growth rate of

disturbance, respectively. If Im(ω0) is positive, the flow is absolutely unstable, meaning that

the disturbance will grow with time and eventually affect the entire flow field. Otherwise,

the flow is convectively unstable, and the disturbance decays with time.

Usually, ω0 can also be determined when the group velocity of disturbance vanishes for

a given complex absolute wave number (k0), i.e.

∂ω

∂k

∣∣∣∣∣
k0

= 0 (A8)

Using the iterative method introduced by Deissler 52 , one can quickly obtain the k0-ω0 pair

at the critical point without repeating the above cusp map procedure many times. For

example, the k0-ω0 pair calculated at x = 1 in the uncontrolled case is k0 = 1.578 − 0.799i

and ω0 = 1.329 + 0.228i, consistent with the result shown in FIG 14.

Using the method described above, the critical frequency ω0 is determined at various

downstream locations from x = 0.625 to 3.25, as shown in FIG 7. It is seen that the Im(ω)
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FIG. 14. Constant Im(k) lines in the ω plane at x = 1 for the uncontrolled case. The critical ω0 is

identified at the edge of the cusp-like trajectory.

transition from positive to negative occurs at about x = 2.06 in the uncontrolled case, which

coincides with the length of recirculation area as can be read in FIG 13. This indicates that

the flow in the recirculation area is absolutely unstable, and the flow becomes convectively

unstable further downstream.
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