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Abstract: 9 

The axisymmetric elasticity problem of crack combo containing an externally circular crack 10 

(ECC) and a coplanar concentric penny-shaped crack (PSC) is mathematically equivalent to 11 

the annular contact problem. This problem has been attempted by using Love’s strain potential 12 

approach, which eventually comes down to solving a pair of simultaneous Fredholm integral 13 

equations. Finding the closed-form solutions to the integral equations is difficult, if not 14 

impossible. Approximate solutions have been proposed in power series representations, which 15 

suffer from two major deficiencies. First, the solutions apply only to a special loading case in 16 

which uniform pressure is applied to the whole surface of the interior PSC. Secondly, the 17 

accuracy of the solution becomes unsatisfactory when the interior PSC tip is close to the ECC 18 

tip. To address these issues, in this paper we revisit this problem by considering a more general 19 

loading case in which uniform pressure is applied to a circular region of any size at the center 20 

of the PSC’s surface. To overcome the lower accuracy caused by power series with limited 21 

terms, we numerically solve the pair of simultaneous Fredholm integral equations based on the 22 

Gauss-Lobatto quadrature. The high accuracy of our solution in the whole size spectra of the 23 

PSC and ECC is verified by finite element simulations. Our paper provides a generalized and 24 

more accurate solution to the annular contact problem or the combo crack problem, which 25 

deserves to be included in the updated library of the solutions to basic crack problems. 26 
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33 

1. Introduction34 

In linear elastic fracture mechanics (LEFM), the penny-shaped crack (PSC) and externally35 

circular crack (ECC), as two basic axisymmetric crack configurations in a three-dimensional 36 

medium, have been well studied (Barenblatt, 1962; Sneddon, 1946, 1951). For both problems, 37 

closed-form solutions to the stress intensity factors (SIFs) under regular loading are present 38 

and well archived in the solution handbook of cracks (Tada et al., 2000). However, when an 39 

elastic solid contains both PSC and ECC, finding the closed-form solutions to the SIFs at the 40 

crack tips turns to be quite challenging, if not impossible, even though the PSC and ECC are 41 

coplanar and concentric and the load is uniform and symmetric (see Figure 1a). It is noteworthy 42 

that such a combo crack problem is mathematically equivalent to the annular contact problem, 43 

in which an elastic half-space is in adhesive and frictionless contact with a rigid substrate 44 

through an annular ligament (see Figure 1b). Therefore, in our discussion below we do not 45 

distinguish them unless stated otherwise. 46 

As a typical axisymmetric elasticity problem, the combo crack problem depicted in Figure 47 

1 has been attempted by researchers using Love’s strain potential approach (Gladwell, 1980; 48 

Sneddon, 1951), resulting in a pair of simultaneous Fredholm integral equations. Finding the 49 

closed-form solution to the simultaneous integral equations is mathematically difficult and 50 

probably impossible. Selvaduri and Singh proposed an approximate solution by using power 51 

series representations (Selvadurai and Singh, 1987). However, besides a missing factor of 52 

2/√𝜋  in their solutions to the SIFs, their results have two major issues which significantly 53 

affect their application. First, the loading they considered was uniform pressure applied to the 54 

whole surface of the interior PSC. Secondly, significant error occurs when the tip of the interior 55 

PSC is close to that of the ECC (e.g., 𝑎 → 𝑏 in Figure 1). This is essentially attributed to the 56 

limited terms of the truncated power series which fail to capture the singularity of the SIFs as 57 

two crack tips are getting closer. To address these issues, in this paper we revisit the combo 58 

crack problem by considering a more general loading case, in which the uniform pressure is 59 

applied to a circular region of any size at the center of the PSC surface (see Figure 1). Moreover, 60 

we simplify the pair of simultaneous Fredholm integral equations further to be a single 61 

inhomogeneous Fredholm integral equation of the second type, which can be easily solved by 62 

using a Gauss-Lobatto quadrature-based approach. Our attention in this paper is mainly 63 

focused on the SIFs at the tips of PSC and ECC. The remaining paper is structured as follows. 64 

In Section 2, we briefly introduce the Hankel transform-based representations of the solution 65 
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to axisymmetric elasticity problems, whereby the present annular contact problem can be 66 

expressed as a pair of simultaneous Fredholm integral equations with mixed boundary 67 

conditions. Then, in Section 3 we follow the power series-based representation as proposed by 68 

Selvadurai and Singh (1987) to obtain the approximate solutions to the SIFs under the 69 

generalized loading case. To obtain more accurate solutions to the SIFs, in Section 4 we 70 

develop a Gauss-Lobatto quadrature-based approach to solve the problem. Finally, in Section 71 

5, we apply the obtained solutions to predict the critical pressure load for breaking the annular 72 

bonded ligament and extend the solutions to more complex loading cases exemplified by the 73 

annular pressure load. 74 

75 

Figure 1. (a) Cross-sectional illustrations of the axisymmetric combo crack problem which 76 

contains an externally circular crack (ECC) of radius 𝑏 embracing a coplanar concentric penny-77 

shaped crack (PSC) of radius 𝑎. A self-balanced uniform pressure 𝑝0 is applied to the central 78 

circular region of radius 𝑑 on the surface of the PSC. (b) Cross-sectional illustration of the 79 
equivalent annular contact problem between an elastic half-space in adhesive and frictionless 80 

contact with a rigid substrate through an annular ligament region (𝑎 ≤ 𝑟 ≤ 𝑏) . External 81 

uniform pressure load 𝑝0 is applied to a circular region of radius 𝑑 at the center of the interior 82 
free surface. 83 

84 

85 

2. Hankel transform-based solution to axisymmetric half-space problems86 

In classical elasticity theory, the solution to an axisymmetric problem of a half-space,87 

including the displacement components and Cauchy stress components, can be given in terms 88 

of a single biharmonic function called Love’s strain function Φ(𝑟, 𝑧) as (Gladwell, 1980) 89 

2

2 rGu
r z

 
 

 
(1a) 90 

2
2

2
2 2(1 )zGu

z


 
   


(1b) 91 

2
2

2rr
r r

 
   

   
  

(2a) 92 



4 
 

2 1

z r r
 

  
    
  

 (2b) 93 

2
2

2
(2 )zz

z z
 

   
    
  

 (2c) 94 

2
2

2
(1 )rz

r z
 

   
    
  

 (2d) 95 

where G is shear modulus and ∇2≡
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+

𝜕2

𝜕𝑧2
 is the axisymmetric form of Laplace’s 96 

operator in a cylindrical polar coordinate system. By considering the condition that the stresses 97 

and displacement vanish at infinity (𝑧 → ∞), it was demonstrated that the biharmonic Love’s 98 

strain function should be given in the following form 99 
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where 𝐽0(∙) is the 0-th order Bessel function of the first kind, 𝐴1(𝜉) and 𝐴2(𝜉) are two arbitrary 101 

functions to be determined according to the specific boundary conditions of the problem of 102 

interest. For any function 𝜓(𝑟), it can be demonstrated that (Yao, 2006) 103 
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where 𝐻0[𝜓(𝑟); 𝑟 → 𝜉] ≡ ∫ 𝑟𝜓(𝑟)𝐽0(𝑟𝜉)𝑑𝑟
∞

0
 represents the 0-th order Hankel’s transform of 105 

function 𝜓(𝑟). Replacing 𝜓(𝑟) in Eq. (4) with Φ(𝑟, 𝑧) given by Eq. (3) yields 106 
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Substituting Eqs. (3) and Eq. (5) into Eqs. (1b), (2c) and (2d) and then taking 𝑧 = 0, we have 108 

the normal displacement and stresses on the top surface of the half-space (𝑧 = 0) as follows: 109 
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In Eq. (6c), the relationship between the 0-th order and 1-st order Bessel functions, 
𝜕𝐽0(𝜉𝑟)

𝜕𝑟
=113 

−𝜉𝐽1(𝜉𝑟), has been applied. Due to the frictionless contact in the contact problem (Figure 1b)114 

or geometric symmetry about the plane of 𝑧 = 0 in the crack problem (Figure 1a), the shear 115 

stress component (𝜎𝑟𝑧) on the surface (𝑧 = 0) vanishes, which according to Eq. (6c) implies 116 

that  117 

   2 12 A A    (7) 118 

Inserting Eq. (7) into Eqs. (6a) and (6b) yields 119 
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where 𝐸∗ ≡
2𝐺

1−𝜈
≡

𝐸

1−𝜈2 is the plane-strain modulus of the material with 𝐸  and 𝜈  being 122 

Young’s modulus and Poisson’s ratio, respectively. In the above equations, the unknown 123 

function 𝐴2(𝜉)  is to be determined by applying the mixed (displacement and normal stress)124 

boundary conditions on the surface (𝑧 = 0) which, for the combo crack problem depicted in 125 

Figure 1, are given in terms of the following set of triple integral equations 126 
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Similar equations have been obtained by Selvadurai and Singh (Selvadurai and Singh, 130 

1987), in which the unknown function they used, 𝐴(𝜉) , is related to our 𝐴2(𝜉) through 𝐴(𝜉) =131 

−𝜉2𝐴2(𝜉). To make an easy comparison with their results, in the following discussion, without132 

loss of generality, we will replace 𝐴2(𝜉)  with  −𝜉−2𝐴(𝜉) and the triple integral equations133 

above are rewritten as134 
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0 ;  0,     H A r a r b         (10b) 136 
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0 ;  0,     H A r b r          (10c) 137 

By following the same analytical techniques adopted by Selvadurai and Singh (1987), the 138 

above triple integral equations regarding the unknown function 𝐴(𝜉) can be converted to be a 139 

pair of simultaneous Fredholm integral equations (see Appendix A for detailed derivation) 140 
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where 𝐹1(𝑠) and 𝐹2(𝑠)  are two unknown functions defined in the domains of 𝑠 ∈ [0, 𝑎] and 143 

𝑠 ∈ [𝑏, ∞), respectively. If 𝐹1(𝑠) and 𝐹2(𝑠) are solved, the function 𝐴(𝜉) can be determined 144 

through 145 
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and the normal stress in the contact region of the surface (𝑧 = 0) is given by1 147 
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where 1 ( )F s  and 2 ( )F s  stand for the derivatives of functions 1 ( )F s  and 2 ( )F s respectively. 149 

The SIFs (mode I) at the crack tips of the PSC (point A) and ECC (point B) are given by 150 
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By now, the original problem comes down to solving the simultaneous Fredholm integral 153 

equations of Eqs. (11a, 11b). For easy analysis and identification of the scaling law, we 154 

                                                           
1 The expression of the normal stress 𝜎𝑧𝑧 given by Selvadurai and Singh (1987) contained a couple of 

typos and missed a factor of 2/𝜋. 
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introduce nondimensional variables �̅� ≡ 𝑢/𝑏, �̅� ≡ 𝑠/𝑎 in Eqs. (11a) and �̅� ≡ 𝑢/𝑎, �̅� ≡ 𝑠/𝑏  in 155 

Eq. (11b). Both equations are thus normalized to be 156 
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where �̅� = 𝑑/𝑎, 𝑐 ≡ 𝑎/𝑏, �̅�1(�̅�) ≡ 𝐹1(𝑎�̅�)/𝑎𝑝0, �̅�2(�̅�) ≡ 𝐹2(𝑏�̅�)/𝑎𝑝0. The normal stress in 160 

the contact region and the SIFs can also be given in terms of the nondimensional functions  161 
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In the following, two different approaches will be applied to solve functions �̅�1(�̅�) 165 

and �̅�2(�̅�), followed by the determination of the SIFs 𝐾A and 𝐾B via Eqs. (17a) and (17b). 166 
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3. Power series-based approximate solution 168 

Since function 
1

1−𝑥
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By comparing the coefficients of like terms 𝑐𝑖 on both sides of the above equations, functions 177 

𝑚𝑖(�̅�) and 𝑛𝑖(�̅�) are determined (see Appendix B for the detailed expressions). Then, the SIFs 178 

at crack tips A and B are given by 179 
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where 𝜙𝑖(�̅�) (𝑖 = 1,2, ⋯ ,6) are functions of �̅� (see Appendix B for the detailed expressions).  184 

Eqs. (19a) and (19b) provide power series-based approximate solutions to the SIFs for any 185 

�̅� ∈ [0,1]. As �̅� → 1, the solutions above are reduced to those given by Selvadurai and Singh 186 

(1987). Figure 2 shows the variations of 𝐾A  and 𝐾B with 𝑎/𝑏 (or 𝑐) for 𝑑/𝑎 =0.25, 0.5, 075, 187 

1.0, respectively. It can be seen that 𝐾A > 𝐾B irrespective of 𝑎/𝑏, implying that the condition 188 

for crack propagation will be met first at the tip of PSC as the pressure load 𝑝0 increases. 189 

Consequently, the interior PSC grows while the external crack keeps stationary always. To 190 

examine the accuracy of our results of the SIFs, we carried out finite element computations 191 

(ABAQUS, Dassault Systèmes) to calculate the SIFs numerically, as shown by the scattered 192 

symbols in Figure 2. Our series-based approximate solutions agree well with the FE results 193 

when 
𝑎

𝑏
< 0.7. However, as 

𝑎

𝑏
 increases further (e.g., 

𝑎

𝑏
> 0.8), our series solutions exhibit large 194 
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deviations from the FE results which asymptotically approach infinity as 
𝑎

𝑏
→ 1.0 . Such 195 

singularity of the SIFs at 
𝑎

𝑏
→ 1 is essentially attributed to the vanishing bonded area and 196 

therefore infinite stress at the limit of 
𝑎

𝑏
→ 1. Increasing the number of the terms of the power 197 

series in Eqs.(18a) and (18b) can only defer the occurrence of such deviation of the solutions. 198 

To address this problem, an alternative approach to solving the simultaneous Fredholm integral 199 

equations in Eqs. (15a) and (15b) is developed.  200 

 201 

Figure 2. Series-based approximate solutions to the SIFs of the PSC (𝐾A)  and the ECC (𝐾B)  202 

in comparison to the corresponding FE results for cases with (a) 𝑑/𝑎 = 0.25, (b) 𝑑/𝑎 = 0.5, 203 

(c) 𝑑/𝑎 = 0.75  and (d) 𝑑/𝑎 = 1.0. 204 
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4. Numerical quadrature-based solution 206 

The integral in Eq. (15a) is defined in an infinite interval [1, ∞). For the convenience of 207 

performing numerical integration, we substitute integration variable �̅� by 1/𝑡 in Eq. (15a) and 208 

yields 209 

  
 

 

 

1
2

1/21 2 2 2 2 20

, 0(1/ )2
( )     

(1 ) , 1

s s dF t dtcs
F s g s

t s c s s d d s

  
   

     
   (20) 210 



10 
 

Meanwhile, from Eq. (15b) we have 211 
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Insertion of Eq.(21) into Eq.(20) to eliminate the unknown function �̅�2 gives 213 
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Exchanging the order of two integrations in Eq. (22) gives rise to an inhomogeneous Fredholm 215 

integral equation of the second type 216 
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which further approaches 0 as �̅� → 0. Therefore, the kernel function �̅�1(�̅�, �̅�) in Eq. (23) is 221 

nonsingular.  222 

Although we have converted a pair of simultaneous Fredholm integral equations about two 223 

unknown functions �̅�1 and �̅�2 into a single inhomogeneous integral Fredholm equation about 224 

one single unknown function �̅�1, finding its analytical solution remains challenging. In the 225 

following, a numerical approach is adopted to solve the unknown functions �̅�1. 226 

Substitution of 𝑥 = 2�̅� − 1 in Eq. (23) changes the integration interval to [−1, 1] 227 
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Applying the Gauss-Lobatto quadrature (Kovvali, 2013) to calculate the integration in Eq. 229 

(25) gives 230 
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where n is the number of integration points and 𝑥𝑗  (𝑗 = 2, ⋯ , 𝑛 − 1) are the integration points 232 

except ±1 and 𝑤𝑗  are the corresponding weights. In Eq. (26), taking �̅� as values of �̅�1 = 0, 233 
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�̅�𝑖 =
𝑥𝑖+1

2
 (𝑖 = 2, ⋯ , 𝑛 − 1)  and �̅�𝑛 = 1 , we will obtain n equations about n unknown 234 

�̅�1 (
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2
) (𝑖 = 1, ⋯ , 𝑛). These equations can be written in a matrix form as follows: 235 
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Solving Eq. (27) for the unknown array 1F  by left multiplying the inverse matrix of 
2

1
( )


I K  239 

on both sides of Eq. (27) gives rise to 240 

 
1

1 2

1
( )



 F I K g  (28) 241 

Then, applying Gauss-Lobatto quadrature in Eq. (15b) with the obtained �̅�1 (
𝑥𝑖+1

2
) gives  242 
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  (29) 243 

where �̅�2 (
𝑥+1

2
, �̅�) ≡

(𝑥+1)/2

[�̅�2−(𝑥+1)2𝑐2/4]
 and 𝑥𝑗  (𝑗 = 2, ⋯ , 𝑛 − 1)  are the integration points except 244 

1  and 𝑤𝑗  are the corresponding weights. The SIFs at the crack tips A and B thereby are 245 

determined via 𝐾A = −
2

√𝜋
√𝑎𝑝0�̅�1(1), 𝐾B =

2

√𝜋
√𝑎𝑝0√𝑐�̅�2(1). The above algorithm can be 246 

easily implemented with MATLAB (R2015a, The MathWorks Inc.). Figure 3 shows the results 247 

we calculated by adopting 50 integration points in comparison with the FE results (ABAQUS, 248 

Dassault Systèmes). Further increase of the integration points will not bring too much  changes 249 

to  the results. It can be seen that our numerical quadrature-based solutions agree with the FE 250 

results very well, implying that this approach successfully captures the featured singularity of 251 

SIFs as 𝑎/𝑏 → 1.0. Moreover, the SIFs especially that at the tip of the interior PSC vary little 252 

with the ratio of 𝑎/𝑏 in the range of 0 < 𝑎/𝑏 < 0.6, but its value strongly relys on the size of 253 

the load region (𝑑) which determines the net force load. As expected, when 𝑏 → ∞ (or 𝑎/𝑏 →254 
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0), our numerical solution to 𝐾A is reduced to the solution of a single penny-shaped crack case, 255 

which can be analytically expressed as 𝐾 =
2𝑝0√𝑎

√𝜋
(1 − √1 − 𝑑2/𝑎2) (Tada et al., 2000). 256 

257 

Figure 3. Numerical quadrature-based solutions to the SIFs at the PSC tip (𝐾A) and the ECC 258 

tip (𝐾B)  in comparison to the FE results for cases with (a) 𝑑/𝑎 = 0.25, (b) 𝑑/𝑎 = 0.5, (c) 259 

𝑑/𝑎 = 0.75  and (d) 𝑑/𝑎 = 1.0. The hollow star symbols represent the analytical solution for 260 

the limiting case (𝑏 → ∞) in which 𝐾/𝑝0√𝑎 =
2

√𝜋
(1 − √1 − 𝑑2/𝑎2). 261 

262 

5. Discussion and conclusion263 

Our preceding results show that the normalized SIFs (𝐾/𝑝0√𝑎) at tips of the PSC and ECC264 

depend on two independent nondimensional parameters, which are chosen as 
𝑎

𝑏
and 

𝑑

𝑎
 in Figure 265 

3. It can be seen that in the whole spectra of both parameters (0 <
𝑎

𝑏
< 1.0, 0 <

𝑑

𝑎
≤ 1.0), the 266 

SIF at the PSC tip (𝐾A) is always higher than that at the ECC tip (𝐾B), implying that breakage 267 

of the bonded ligament, if happens, should start from the interior PSC while the ECC tip keeps 268 

stationary always. During this process, the radius of the PSC (𝑎) is increasing while the radius 269 

of the ECC (𝑏) remains constant. To examine the variation of SIF at the PSC tip with the 270 

increasing crack size, we adopt the radius of the load region (𝑑) as an alternative length scale 271 
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for normalization. The normalized SIF at the PSC tip (�̅�A ≡ 𝐾A/𝑝0√𝑑) is shown in Figure 4a 272 

as a function of two normalized crack sizes �̅� ≡ 𝑎/𝑑 and �̅� ≡ 𝑏/𝑑. For a given �̅�, the stress 273 

intensity factor �̅�A initially decreases and then increases as �̅� varies from 1 to �̅�, as shown in 274 

Figure 4b. There exists a critical �̅� , at which (
𝜕�̅�A  

𝜕�̅�
)

�̅�
= 0 and �̅�A reaches the least value for 275 

that given �̅�. Griffith’s criterion (Griffith, 1921) for crack propagation indicates that crack will 276 

propagate when the SIF reaches a critical value of 𝐾c ≡ √𝐸′∆𝛾, where modulus 𝐸′ = 2𝐸∗ and 277 

∆𝛾 is the work of adhesion2 (Israelachvili, 1992). Equating 𝐾A  with √𝐸′∆𝛾 determines the 278 

equilibrium pressure (𝑝0
eq

) as a function of �̅� and �̅�, as shown in Figure 4c in a normalized 279 

fashion. As expected, for a given  �̅�   the normalized equilibrium pressure (�̅�0
eq

)  initially 280 

increases and then decrease with the increasing �̅�, as shown in Figure 4d. At the critical �̅�, 281 

(
𝜕�̅�0

eq

𝜕�̅�
)

�̅�
= 0 and 𝑝0

eq
 reaches its peak value denoted by 𝑝pf . This peak pressure is called push-282 

off pressure because the equilibrium state after this moment is unstable and catastrophic 283 

fracture between two solids would happen spontaneously. The push-off pressure and the 284 

corresponding radius of the PSC (𝑎pf) depend on the radius of ECC, as shown in Figure 4e and 285 

Figure 4f, respectively. Interestingly, 𝑎pf  exhibits an almost linear proportionality to 𝑏 , 286 

implying that the catastrophic fracture happens at an almost constant ratio of 𝑎/𝑏 ≈ 0.87 287 

unless 𝑏 is quite close to 𝑑 (e.g., 𝑏/𝑑 < 1.5), as shown by the second y-axis in Figure 4f.  288 

                                                           
2 For an analogous crack problem shown in Figure 1a, 𝐸′ = 𝐸∗ and ∆𝛾 is fracture toughness of the material. 
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 289 

Figure 4. (a) Dependence of the normalized SIF at the PSC tip (�̅�A ≡ 𝐾A/𝑝0√𝑑) on the 290 

normalized crack radii (�̅� ≡ 𝑎/𝑑) and �̅� ≡ 𝑏/𝑑. The black profile curves on the 3D surface 291 

depict the evolution of �̅�A with �̅� for given values of �̅�. The while dash line indicates the point 292 

at which (
𝜕�̅�A

𝜕�̅�
)

�̅�
= 0 . (b) Calculated variaitons of �̅�A  with �̅� for �̅� = 2.0, 5.0, 10.0  in 293 

comparison with the analytical solution of the limiting case (𝑏 → ∞) in which 𝐾A/𝑝0√𝑑 =294 
2

√𝜋
(√𝑎/𝑑 − √𝑎/𝑑 − 𝑑/𝑎) . (c) Dependence of the normalized equilibrium pressure 295 

(�̅�0
eq

≡ 𝑝0
eq

/√𝐸′∆𝛾/𝑑) on the normalized crack radii (�̅� ≡ 𝑎/𝑑 ) and �̅� ≡ 𝑏/𝑑 . The black 296 

profile curves on the 3D surface depict the evolution of �̅�0
eq

 with �̅� for given values of �̅�. The 297 

while dash line indicates the point at which (
𝜕�̅�0

eq

𝜕�̅�
)

�̅�
= 0. (d)  Calculated variaitons of �̅�0

eq
 with 298 

�̅� for �̅� = 2.0, 5.0, 10.0 in comparison with the analytical solution of the limiting case (𝑏 → ∞) 299 

in which �̅�0
eq

 =
√𝜋

2
(√𝑎/𝑑 − √𝑎/𝑑 − 𝑑/𝑎)

−1
. (e) Variation of the normalized push-off 300 
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pressure (�̅�pf ≡ 𝑝pf/√𝐸′∆𝛾/𝑑) with the normalized radius of the ECC (𝑏/𝑑). (f) Variations of 301 

the radius of PSC at the push-off moment and its ratio to the radius of ECC with 𝑏/𝑑. 302 

Although our solutions to the SIFs are developed only for the uniform pressure applied to 303 

a circular region (0 ≤ 𝑟 ≤ 𝑑 ≤ 𝑎), we can apply the results to calculate the SIFs for other 304 

complex loading cases by using the superposition method. For example, the SIFs caused by 305 

uniform pressure 𝑝0  applied to an annular region (𝑑 ≤ 𝑟 ≤ 𝑎)  (see Figure 5a), which are 306 

denoted by 𝐾A
′   and  𝐾B

′ , can be obtained through  307 

  𝐾A/B
′ = 𝑝0√𝑑 [√

𝑎

𝑑
�̅�A/B (1.0,

𝑏

𝑎
) − �̅�A/B (

𝑎

𝑑
,

𝑏

𝑑
)] (30) 308 

where �̅�A/B (
𝑎

𝑑
,

𝑏

𝑑
) represents the normalized SIF at point A or B caused by pressure applied to 309 

the circular region 0 ≤ 𝑟 ≤ 𝑑  and �̅�A/B (1.0,
𝑏

𝑎
) represents its value at 

𝑎

𝑑
= 1.0. Figures 5b 310 

shows the variations of  𝐾A/B
′  with  

𝑎

𝑑
  for selected values of  

𝑏

𝑑
= 2.0, 5.0, 10.0 together with 311 

the analytical solution to 𝐾A
′  for the limiting case of 𝑏 → ∞ (Tada et al., 2000). It can be seen 312 

that for a given �̅�, both SIFs increase monotonically with �̅�. When 
𝑎

𝑑
< 0.7, the ECC has little 313 

effect on  𝐾A
′ . The panoramic dependences of the �̅�A

′  and  �̅�B
′  on 

𝑎

𝑑
 and 

𝑏

𝑑
 are shown in Figure 314 

5c and Figure 5d, respectively. Once again, under annular pressure load, the SIF at the PSC tip 315 

is also higher than that at the ECC tip, irrespective of the values of 
𝑎

𝑑
 and 

𝑏

𝑑
.  316 



16 
 

  317 

Figure 5. (a) Illustration showing the case with uniform pressure load 𝑝0 applied to an 318 

annular region (𝑑 ≤ 𝑟 ≤ 𝑎) on the surface of PSC. (b) Variations of the SIFs caused by 319 

annular pressure load with 𝑏/𝑑 for selected 𝑏/𝑑 = 2.0, 5.0, 10.0 in comparison with the 320 

analytical solution for the limiting case (𝑏 → ∞) when 𝐾A
′ /𝑝0√𝑑 =

2

√𝜋
√𝑎/𝑑 − 𝑑/𝑎 . (c-d) 321 

Dependences of the SIFs �̅�A
′  and  �̅�B

′  caused by annular pressure load on 𝑎/𝑑 and 𝑏/𝑑. The 322 

profile curves on the 3D surfaces depict the evolution of �̅�A/B
′  with �̅� for given values of �̅�. 323 

To summarize, in this paper we revisited the classical combo crack problem which is 324 

mathematically equivalent to the annular contact problem. Our attention was mainly focused 325 

on the SIFs at both crack tips. On the top of the existing results especially the power series-326 

based solution to the problem, we made two major extensions. First, we considered a more 327 

general loading case, in which uniform pressure load is applied to a circular region of any size 328 

at the center of the PSC surface. More importantly, we developed a numerical quadrature-based 329 

technique, which enabled us to obtain more accurate results of the SIFs as compared to the 330 

power series-based solutions, in the whole spectra of the sizes of the PSC and ECC. In 331 

comparison to the other numerical approaches such as the finite element method, our method 332 

provides results with comparable accuracy but requires no pre-processing and post-processing 333 

and therefore is much more efficient. With the obtained solutions, we successfully predicted 334 
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the critical pressure to break the annular ligament between the combo cracks. The results of 335 

this paper should be of general value to solving the related fracture and contact problems in a 336 

more precise and efficient way and deserve the inclusion by the updated solution handbook of 337 

cracks. 338 

 339 

Appendix A. Determination of the simultaneous Fredholm integral equations 340 

For the annular contact problem shown in Figure 1b, the pressure load is expressed as a 341 

piecewise function 342 
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We follow the approach developed by Selvadurai and Singh (1987), in which the following 344 

auxiliary function 𝑝1(𝑟) is introduced 345 
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Substitution of Eq. (A1) into Eq. (A2) gives rise to 347 
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 (A3) 348 

Inserting the above 𝑝1(𝑟)  into the general expression developed by Selvadurai and Singh 349 

(1987), the first equation of the pair of simultaneous Fredholm integral equations for our 350 

problem in Figure 1b is then given by 351 

  
 

 

 

0
2

1/21 2 22 2
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p s
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      (A4) 352 

while the second one is the same as that given by Selvadurai and Singh (1987) which is simply 353 

duplicated below for easy reference 354 
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2 2 20
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s u
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Appendix B. Building functions of the power-series solutions to �̅�𝟏 and �̅�𝟐 356 
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In the above equations,  371 
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  377 

The functions 𝜙𝑖 (𝑖 = 1,2, ⋯ ,6) above reflect the effect of the size of the load region �̅� on 378 

the results. It can be easily verified that 𝜙𝑖 = 1 (𝑖 = 1,2, ⋯ ,6) when �̅� → 1. 379 
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