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Abstract—This paper presents a novel hierarchical correlated Q-learning (HCEQ) algorithm to solve the 8 

dynamic optimization of generation command dispatch (GCD) in the automatic generation control (AGC). 9 

The GCD problem is to dynamically allocate the total AGC generation command from the central to each 10 

individual AGC generator. The proposed HCEQ is a novel multi-agent Q-learning algorithm based on the 11 

concept of correlated equilibrium point, and each AGC generator with an agent is to optimize its regulation 12 

participation factor and coordinate its decision with others for the overall GCD performance enhancement. 13 

In order to cope with the curse of dimensionality in the GCD problem with the increased number of AGC 14 

plants involved, a multi-layer optimum GCD framework is developed in this paper. In this hierarchical 15 

framework, the multiobjective design and a time-varying coordination factor have been formulated into the 16 

reward functions to improve the optimization efficiency and convergence of HCEQ. The application of the 17 

proposed approach has been fully verified on the China southern power grid (CSG) model to demonstrate 18 

its superior performance and dynamic optimization capability in various power system scenarios. 19 

Key Words—Hierarchical multi-agent reinforcement learning; Correlated equilibrium; Automatic generation 20 

control; Dynamic generation allocation; Control Performance Standards 21 

1. Introduction22 

Automatic Generation Control (AGC) of interconnected power grids is one of the key control systems 23 

in the power dispatch centers, and its main objective is to maintain the scheduled interconnection frequency 24 

and tie-line power interchanges by regulating the generation outputs of AGC plants to accommodate the 25 

fluctuating load demands [1]. The implementation of AGC regulating commands on various AGC plants is 26 
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critical to the overall control performance of AGC schemes, and this generation command dispatch (GCD) 27 

is a real-time combination optimization problem whose complexity would increase with the number of 28 

AGC committed generators being involved [2]. Further complications are the additional considerations on 29 

adjustable margin reserve and regulating cost for each AGC unit, and hence this problem cannot be solved 30 

using conventional methods. The primary objective of GCD is to dynamically tune the optimal regulation 31 

participation factors of AGC units and thus allocate the real-time central regulating command determined 32 

from load frequency control (LFC) to each dispatchable generating unit. Consequently, this paper focuses on 33 

investigating the advanced GCD methodology to solve the dynamic optimal allocation of AGC generation 34 

among various types of AGC units. 35 

Nowadays, the control area performance of AGC in normal interconnected power system operation has 36 

been monitored and measured by area control error (ACE) and control performance standards (CPS) [3]. 37 

Over the years, extensive investigations on the AGC strategies under CPS using various mathematical and 38 

intelligent control theories, including proportional-integral (PI) control, self-tuning control, fuzzy logics and 39 

reinforcement learning (RL), and so on, have been addressed and reported in [4]-[10]. Nevertheless, the 40 

previous studies mostly focused on the optimum AGC strategies for the total regulating commands in power 41 

dispatch centers, and little attention has been paid on the GCD problem to optimally on-line distribute the 42 

total regulating command among various AGC units. So far, the existing engineering method to solve this 43 

GCD problem is called the proportional (PROP) method in which the AGC regulation participation factor 44 

for each unit is fixed and proportional to the adjustable reserve capacity of the unit [10],[11]. The PROP 45 

method has been widely adopted by most power utilities in Chinese power systems. However, this PROP 46 

method with the fixed participation factors cannot provide the satisfactory performance over a wide range 47 

of operational scenarios of power systems. For the GCD optimization problem, the authors proposed in [2] 48 

a novel hierarchical Q-learning (HQL) algorithm, which has been found to be more efficient with improved 49 

performance than the PROP method. 50 

In recent years, a new branch of RL theory, multi-agent reinforcement learning (MARL), has been 51 

growing rapidly and applied widely in a variety of fields, including collaborative decision support systems, 52 

distributed control, robotic teams and economics [12]. Previous applications have been demonstrated that, 53 

compared with the single-agent RL methods, the overall performance of MARL can exhibit the superiority 54 

and optimality on the cooperative strategic decision making problems [13]. In general, most of the MARL 55 
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algorithms concern the game theory, and the optimized payoff states in a dynamic MARL game can be 56 

solved and represented by different equilibrium points, such as Nash equilibrium [14] and Correlated 57 

equilibrium [15]. Different equilibriums express different levels of cooperation degree for the decentralized 58 

multi-agents, and a promising cooperative MARL algorithm based on the correlated equilibria point, called 59 

correlated-Q learning (CEQ), has been proposed in [15]. This paper is a follow-up research of the authors’ 60 

previous investigations reported in [2], [7], [8] and [16]. The Q(λ) learning [7] and R(λ) learning [8] were 61 

applied for optimizing the total AGC regulating command, while the single-agent Q-learning was adopted 62 

in [2] for dynamic optimal GCD scheme. Besides, a distributed Q(λ) learning is proposed in [16] to solve 63 

the large-scale optimal power flow problem. Compared with the previously published works, this research 64 

further focuses on developing a novel MARL algorithm to form a significantly improved GCD scheme 65 

under CPS standards. The proposed MARL-based hierarchical correlated Q-learning (HCEQ) considers the 66 

coordination of implemented actions and information interaction among the MARL agents to optimize the 67 

joint equilibrium actions of AGC generators for the improved overall GCD performance, and it has been 68 

thoroughly tested and evaluated on the China southern power grid (CSG) model under various operational 69 

scenarios. 70 

2. Problem Formulation 71 

2.1. Overview of AGC Implementation 72 

In modern AGC schemes, the generation dispatch strategies and control pulses for each interconnected 73 

control area are always determined and maintained by a central grid facility, called power dispatch center 74 

[11]. Usually, the control area is an electric power utility for an individual service area, taking provincial 75 

power grids in the CSG power system as an example. The control area’s AGC scheme is implemented by 76 

two main control modules in the power dispatch center, as is shown in Fig.1. The optimal AGC controller 77 

is a closed-loop feedback control to optimize the solution of total regulating generation command ∆PC∑ in 78 

response to the load disturbance ∆PL. The existing AGC controllers under CPS standards are generally 79 

based on the PI control strategies as suggested in [4],[5], and most power dispatch centers in China have 80 

adopted an improved-PI based AGC controller developed by Nanjing Automation Research Institute (NARI) 81 

[10]. The AGC command ∆PC∑ is a reference control signal and will be allocated from the central to each 82 
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AGC unit according to their regulation participation factors. On the other hand, the GCD module determines 83 

dynamically the optimized participation factors and a reference command ∆PCi will then be delivered to the 84 

ith AGC unit through Supervisory Control and Data Acquisition (SCADA) system [1]. 85 

It should be pointed out that the dynamic GCD problem in this paper is different from the economic 86 

dispatch (ED) [17] because AGC (secondary frequency control) and ED (tertiary frequency control) have 87 

different time horizons and control objectives. ED is performed to distribute the system base load amongst 88 

all dispatchable generators so that the generation costs can be minimized, and the CPS standards are not 89 

covered in ED function, while the objective of GCD function is the dynamic allocation of AGC regulating 90 

command which indicates the modification of AGC generation outputs to balance the load residuals. The 91 

implementation cycle of ED is in the range from 5 to 15 minutes, and the GCD is around from 4 to 16 92 

seconds. In the case studies, the AGC decision cycle is set to 8 second in the CSG power system model. 93 

2.2. GCD Objectives and Constraints 94 

In the proposed GCD framework, multiple objectives have been considered and designed. The primary 95 

objective is to minimize the accumulated generating error between the reference AGC command ∆PCi and 96 

the actual generation variation ∆PGi. Moreover, the AGC generators with fast regulation capability, such as 97 

hydro AGC generators, should provide sufficient adjustable spinning reserve to cope with the sudden 98 

increasing load disturbances [2]. In general, hydropower is recognized as a having the ability to provide fast 99 

and efficient generation regulation for power system secondary frequency control. The raising and lowering 100 

generation rate constraint (GRC) of hydro generators are ranged from 100% to 360% p.u./min respectively, 101 

while the typical GRC of thermal generators is in the range of 3%-10% p.u./min [18],[19]. As for different 102 

types of thermal plants, the liquefied natural gas (LNG) turbine can provide faster regulation capability 103 

than oil-fired and coal-fired turbines, and hence the LNG plants could be considered as the fast-ramping 104 

generators for thermal-dominated power systems without hydropower. Lastly, the regulating cost of AGC 105 

plants should also be concerned. The three GCD objectives above can then be formulated as follows, 106 
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where T is the number of iterations in the assessment period; N is the number of AGC units; max

GFP  is the 108 

total maximum capacity of AGC units with fast regulation capability; F denotes the set of AGC units with 109 

fast regulation capability; PGi(k) is the actual generation output of the ith AGC unit at the kth iteration; Ci 110 

denotes the linear cost function of the ith AGC unit, and the mechanical wear-and-tear cost caused by the 111 

maneuvering movements of AGC units has been neglected in this application; ∆Pei(k) represents the power 112 

error between the actual generation output and reference command for the ith AGC unit at the kth iteration, 113 

and it can be represented as follows, 114 

( 1) ( ) ( 1)ei ci GiP k P k P k                                                           (2) 115 

In this paper, the linear weighted method is adopted to formulate the multiobjective GCD problem 116 

because of its simplicity of use and clarity of definition, and the method is applicable to solve the optimal 117 

correlated equilibrium (CE) solution with the efficient computational time for real-time applications. For 118 

Pareto optimization based RL in [20], each MARL agent has several Q-function matrices to represent 119 

different objective functions respectively. It is much more time-consuming for each agent to solve a family 120 

of Pareto front solutions [21], so that the real-time requirement of AGC decision cycle, 4~16 seconds, 121 

cannot be satisfied. For most of real-time control applications, the multiple objectives cannot be optimized 122 

simultaneously for Pareto optimality due to the real-time requirement. Here, the linear weighted method [7] 123 

is adopted to transform multiobjective GCD functions in (1) into an integrated objective function, and each 124 

MARL agent has only a Q-function matrix for the optimal state-action policy of multi-objective GCD 125 

scheme. Consequently, the integrated objective function of each AGC unit can be represented as follows, 126 
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where μ1, μ2 are the optimum weight coefficients for GCD objectives in (3); max

GiP  represents the maximum 128 
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capacity of the ith AGC unit. 129 

In the optimal GCD problem, four generator constraints are considered with following the problem 130 

constraints in [2], including: 1) power generation equality constraint; 2) adjustable capacity constraints of 131 

AGC units; 3) ramp rate limit constraints; and 4) generation time-delay response. The first GCD constraint 132 

requires that the sum of all reference commands of AGC units should be equal to the total AGC regulating 133 

command [22]. 134 

3. Hierarchical Correlated Q-learning for GCD Problem 135 

3.1. Correlated Equilibrium 136 

In a Markov game, a CE is a matrix of probability distribution over the joint space of actions from 137 

which no agent is motivated to deviate unilaterally [13]. For an action assigned from the joint action policy 138 

to every possible observation of the ith agent in state sk, the CE action policy π can be determined by the 139 

following CE inequality constraints, 140 
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where a
 = [a1, …, ai, …, an], ai is the ith agent’s action (the regulation participation factor of AGC unit i), 142 

and n is the number of agents in MARL; sk is the state of MARL at the kth iteration; A(sk) is the agents’ set 143 

of available joint actions in state sk; Ai is the ith agent’s set of pure actions, and A-i is agents’ set of joint 144 

actions except agent i; aiAi, ia A-i express the ith agent’s action and other agents’ joint actions in the 145 

current state; ia is the ith agent’s any other action except ai to indicate the non-CE action; ( , )k

i kQ s a  is the 146 

estimated Q-function of agent i for joint action a
 
and state sk at the kth iteration [23]; ( , )ks a  is a vector of 147 

probability distribution over joint action set A(sk) to represent the optimal CE action policy of agent i in 148 

state sk, and it can be uniquely derived from the CE point model with an equilibrium selection function [15]. 149 

Furthermore, it has been proven in [13] that there is at least a correlated equilibrium point for any Markov 150 

game. 151 

It can be found from (4) that there may be several CE solutions with joint action policies satisfying the 152 

CE constraints. Consequently, an equilibrium selection criterion shall be designed to determine uniquely the 153 
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optimum CE point from the set of CE solutions for a desirable action policy [14]. Four typical variants of 154 

equilibrium selection functions based on different equilibrium objectives, including utilitarian, egalitarian, 155 

plutocratic and dictatorial, have been designed and analyzed in [15] using comparative experiments. In this 156 

paper, further analysis on (1)-(3) show that the utilitarian function is more suitable and would be adopted 157 

for the design of optimal GCD scheme to maximize the sum of all agents’ long-term objective payoffs. On 158 

the other hand, for a Markov game with n agents and m actions for each agent, the number of joint actions 159 

in MARL is mn and the number of the CE constraints (4) is nm(m-1) [13]. 160 

3.2. Correlated Q-learning 161 

The correlated Q-learning is a newly-emerged MARL algorithm based on the CE principle to find the 162 

optimal equilibrium policies in cooperative Markov games [15]. MARL can be characterized by four basic 163 

elements: a model of the environment, a reward function, value functions and an action policy [23]. In this 164 

paper, the model of the environment can be described as a set of operating states including different ranges 165 

of AGC regulating commands as in [2], called state space S. The reward function is to map each perceived 166 

state-action pair of the MARL to a single value so as to express the desirability of the GCD performance. 167 

The value function (Q-function) of each state-action pair is defined to estimate the discounted sum of the 168 

future sequence of rewards starting from the current state and action policy thereafter. Finally, the action 169 

policy specifies a stimulus-response rule to select and implement a joint action from action space A based 170 

on value functions to maximize the expected long-term rewards in each state. Here, the joint action space A 171 

consists of a finite set of discrete vectors of joint AGC participation factors for generation allocation. 172 

CEQ defines a state-value function using the linear combination of Q-functions on the basis of the CE 173 

action policy, and it expresses the CE cooperative degree of multi-agents in this state [15], as follows, 174 
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where ( )k

i kV s  represents the state value-function of agent i for state sk at the kth iteration; 1( , )k

i kQ s a is the 176 

estimated Q-function of agent i for joint action a  and state sk at the (k-1)th iteration. In the proposed HCEQ, 177 

the λ-return mechanism [16] is introduced to update the Q-function of each agent, as follows, 178 
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where α is the learning factor, and γ is the discount factor; k

i  is the estimated Q-function error of the ith 181 

agent at the kth iteration; 1 1( , , )i k k kR s s a   is the ith agent’s reward function of transition from state sk-1 to sk 182 

under the selected joint action; ( , )k

ie s a is the ith agent’s eligibility trace for state-action pair ( , )s a  at the kth 183 

iteration. The eligibility trace is a temporary record of the occurrence of taking actions and state trajectory 184 

[23], and it can be updated with the following policy, 185 

1

1

( , ) 1   ( , ) ( , )
( , )

( , )         otherwise

k

i k kk

i k

i

e s a s a s a
e s a

e s a









  
 


                                           (8) 186 

where λ is the trace-decay factor. After the updation of Q-functions in each iterative step, the optimal CE 187 

solution can then be solved using the following linear programming model, 188 
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                     (9) 189 

It can be found from (9) that the joint action policy of MARL agent can consider the other agents’ 190 

decisions and Q-functions to maximize the received rewards of all MARL agents. For each iterative cycle, 191 

a list of equilibrium values can be readily obtained from (9) using linear programming solver [15], and this 192 

state-action equilibrium expresses the selection probability of joint action in a given state under the optimal 193 

CE action strategy. As a result, MARL agents will implement the joint action strategy for GCD scheme 194 

based on the probability distribution of equilibrium point, while HCEQ will recursively optimize the joint 195 

probability distribution for optimal cooperative action strategy. Rigorous proofs in [15], [23] and [25] have 196 

demonstrated that the optimal action strategy would converge to the best state-action pair with probability 1 197 

once the action values are represented discretely and all actions are sufficiently sampled in state space. 198 

In each iterative decision cycle, the HCEQ observes the current operating state, updates the Q-functions, 199 

solves the optimal equilibrium action policy, and then chooses and executes a joint action profile based on 200 

the optimal CE policy, as shown in Fig. 2. After the implementation of the joint action in each AGC cycle, 201 

the MARL agent will receive a reward value based on the resulting GCD performance, and the Q-functions 202 

for all the state-action pairs can then make an iterative update from the selected action and received reward 203 
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while the agent’s value function estimator would consider the action decisions of other cooperative agents. 204 

Therefore, the design of MARL-based GCD involves the definitions of reward function, state-action space 205 

and parameter settings to fully explore the coordinated operations among AGC generators. 206 

3.3. MARL-based Hierarchical GCD Framework 207 

1) Multi-layer GCD structure: The GCD problem is to optimally on-line allocate the LFC regulating 208 

commands to each individual AGC units, and this is a real-time optimal combination problem with high-209 

dimensional complexity. Therefore, the proposed approach employs a hierarchical optimization framework 210 

to solve this real-time high dimensionality problem. In this hierarchical framework, the GCD problem can 211 

be modeled as a multi-layer hierarchy and decomposed into several multi-task MARL problems, as shown 212 

in Fig. 3. In each MARL subtask, the AGC generation command from the upper layer would be optimally 213 

assigned among various AGC units or unit groups. Firstly, the AGC committed generators are classified 214 

into different unit groups in terms of their LFC characteristics, such as coal-fired units, LNG, hydro units, 215 

and so on. The unit classification can then be further carried out based on the ramp rate, LFC time delay, 216 

adjustable capacity or unit regulating cost in the lower layers. 217 

As illustrated in Fig. 3, the total AGC regulating commands derived from the central AGC controller 218 

can be allocated vertically from the first layer to each AGC generator in the bottom layer. Hence, the GCD 219 

problem can be transformed into several MARL subtasks, and thus the variable dimensionality of GCD can 220 

be evidently decreased through the proposed hierarchical framework. For the optimal generation allocation 221 

in each MARL subtask, the regulation participation factor of each AGC unit or unit group can be optimized, 222 

and its AGC reference command can then be determined. For example, if there are nc AGC participation 223 

factors for coal-fired unit groups in the 2nd GCD layer as shown in Fig. 3, the AGC reference command for 224 

the ith coal-fired unit group, PC2-i, can be calculated as follows, 225 
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where PC2 denotes the AGC reference command for coal-fired unit groups from the 1st layer, and aCi is the 227 

optimized AGC participation factor of the ith coal-fired unit group from the MARL joint action policy. 228 

For each MARL subtask with n agents, the control variable vector to optimize the AGC participation 229 
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factors is [a1, a2, …, an-1], and the remaining participation factor can then be determined from the generation 230 

balance equality constraint. Here, AGC unit or unit group with the maximum adjustable capacity is chosen 231 

as the balancing agent, in each MARL problem. Hence, as shown in Fig. 2, the AGC participation factor of 232 

the balancing agent can be calculated as follows, 233 

1

1

1
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In addition, if the sum of AGC participation factors from MARL is greater than 1, the corresponding action 235 

equilibrium value should be set to 0, as indicated in the following constraint: 236 
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Consequently, in each iterative step, equality constraint (11)-(12) should be included in the CE point model 238 

(9) to solve the optimal joint action policy using linear programming. 239 

2) Parameter settings: In the proposed algorithm, three parameters γ, α, and λ in (6)-(8) are critical to 240 

implement the learning control and should be set with following the generic guidelines [15],[16],[23],[24]. 241 

The discount factor, 0 < γ < 1, is defined to exponentially discount the future received rewards in the Q-242 

functions. Since later rewards in the GCD optimization process are important, a value close to 1 should be 243 

set [23]. Simulation studies indicate that a value in the range of 0.7-0.9 is recommended in this application. 244 

Here, an intermediate value of 0.8 is used. 245 

The learning factor, 0 < α < 1, determines the amount of update in the Q-functions. A larger α tends to 246 

accelerate the convergence of algorithm but may lead to local optimum, while a smaller value can enhance 247 

the algorithm stability. In this investigation, α is set to 0.1 in the initial stage of interactive self-learning for 248 

the global exploration, and its value will decrease linearly to 0.001 after the pre-learning process for control 249 

stability of onsite application. 250 

The trace-decay factor, 0 < λ < 1, in eligibility traces is used to allocate the credit throughout sequences 251 

of state-action pairs and improve the algorithm optimization efficiency. While larger values of λ mean that 252 

more of farther backward information can be used to optimize the Q-functions, smaller ones imply that less 253 

reward will be assigned to the previous state-action pairs to estimate the Q-function errors. Our experiences 254 

show that a value in the range from 0.3 to 0.7 can work well for the dynamic performance of algorithm, and 255 

the factor is set to 0.5 in this paper. 256 
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Moreover, the learning step Tstep of HCEQ is determined by the AGC decision cycle. In the case studies, 257 

the state-action space of GCD scheme can be specified and discretized following the space discretization in 258 

[2]. Since both state space S and action space A are finite, the values of Q-functions and eligibility traces 259 

can be stored as finite matrices and implemented in the lookup tabular forms. Following the initialization 260 

rules in [15],[23], the initial values of eligibility traces, Q-functions, and state-value functions for all MARL 261 

agents are set to zero matrices or vectors. 262 

3) Reward function: MARL reward function determines the control objective of the GCD scheme, and 263 

has a critical influence on the algorithm performance and value function iterations. Based on the objective 264 

functions of GCD in (1)-(3), a multi-criteria reward function can be designed for the ith agent except the 265 

balancing agent in the MARL, as follows, 266 
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where Rb(k) represents the received reward for the balancing agent, and it can be formulated as follows, 268 
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R k

P k μ C P k b F

     
 

   

                  (14) 269 

where subscript b represents the balancing agent in a GCD subtask. In each MARL, the action as well as 270 

GCD performance of the balancing agent is determined by the joint action of other agents, as expressed in 271 

(11), and hence the reward value of the balancing agent obtained from (14) should be evenly assigned in 272 

the reward functions (13) of other agents in order to evaluate the joint action policy of HCEQ. 273 

4) Coordination factor: With the proposed multi-layer GCD framework, the AGC generation allocation 274 

problem with various types of AGC units can be divided into several MARL optimization subproblems, and 275 

each subproblem can be solved using CEQ algorithm. Furthermore, the earlier hierarchical RL studies have 276 

demonstrated that the coordination mechanisms should be designed between adjacent layers to improve the 277 

learning efficiency and optimality of the proposed HCEQ [24]. In this paper, a time-varying coordination 278 

factor (CF) [2] is introduced and supplemented in the reward function (13) of each MARL agent for the 279 

overall coordination of the multi-layer control structure. As depicted in Fig. 3, expect for the bottom layer, 280 

the coordination factor is introduced to the MARL reward functions in other control layers. Therefore, the 281 
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corresponding reward function CF

iR for the ith MARL agent can be reformulated as follows, 282 

1 1 1 1( , , ) ( ) ( , , )

( ) 1 | ( ) |

CF

i k k k i i k k k

CF

i j

j L

R s s a CF k R s s a

CF k R k

   



  

 



                                        (15) 283 

where CFi(k) is the coordination factor of the ith agent in the upper layers at the kth iteration; L denotes the 284 

set of MARL agents in the next lower layer under the ith unit group; CF

jR represents the jth agent’s rewards 285 

collected from the MARL agents in the lower layer through (13)-(15). The purpose of CF is to transmit the 286 

reward with control effects from the lower layers to the upper layer, and thus can implement a bottom-up 287 

reward flow in the proposed hierarchy. Normally, CF is a positive value less than 1, and CF would decrease 288 

with the reduction in the rewards from the lower layer. Therefore, the formulation of CF in reward function 289 

(15) can evaluate the overall control performance of the GCD strategy achieved in the top layer. 290 

3.4. Execution Steps of the Proposed HCEQ Approach 291 

The proposed hierarchical MARL framework provides a performance-adaptive means to implement the 292 

GCD scheme with high flexibility in specifying the equilibrium objectives, and the AGC generators would 293 

operate an optimum equilibrium state with high energy utilization under this multi-agent paradigm. To sum 294 

up, the execution steps of the HCEQ-based GCD approach for each MARL subtask can be illustrated in 295 

Table 1. 296 

4. Simulation Studies 297 

4.1. Simulation Environment 298 

For the in-depth investigation of the proposed HCEQ scheme in a realistic simulation environment, the 299 

CSG power system model [26], which was previously developed by utilities for Guangdong power dispatch 300 

center projects [7],[8], is used as the benchmark system to evaluate and analyze the performance of GCD 301 

approaches. The CSG is one of the most complicated large-scale interconnected power grids over the world, 302 

the peak load of which reaches 131 GW in 2013, and the total installed capacity is approximately 174 GW 303 

[26]. Moreover, the CSG power system consists of 93 AGC generators, 1836 buses, 4519 branches, and 304 

four provincial control areas, Guangdong, Guangxi, Guizhou, and Yunnan, inter-connected by the parallel 305 

HVDC-HVAC transmission systems. All of the buses can be classified into five voltage levels, i.e. 220 kV, 306 
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230 kV, 400 kV, 500 kV, and 525 kV, respectively. In this LFC simulator, the AGC generator models for 307 

fossil-fuel-fired, LNG and hydroelectric generators are included, and each generator output is determined 308 

by the governor and the setpoint of regulating commands from AGC controller according to their 309 

regulation participation factors. Taking the Guangdong power grid as the study area, Table 2 provides the 310 

LFC parameters of AGC committed units in the studying power grid. It can be found from Table 2 that the 311 

fast regulation capability of hydro plants is obviously much higher than other AGC plants in Guangdong 312 

power grid. In the case studies, the generation capacity of hydropower in Guangdong power grid is 313 

insufficient, and thus the studied control area only consider the hydro plants as the fast regulation units in 314 

(1) for reserve requirements of fast adjustable capacity. Here, Ts represents the time delay of AGC 315 

generator in the secondary frequency control loop; URi and DRi are the upper and lower ramp limits of the 316 

ith AGC unit; min

GiP  and max

GiP  denote the minimum and maximum adjustable capacity of the ith AGC 317 

unit, respectively. In this paper, the AGC controller, as shown in Fig. 3, adopts the NARI’s improved-PI 318 

controller [10]. Moreover, all the simulations are implemented in Matlab/Simulink 7.1 by a personal 319 

computer with 3.1-GHz Core i5 Quad CPU and 4 GB of RAM, and the proposed HCEQ-based GCD 320 

scheme is built using S-function module. 321 

As illustrated in Section 3.3, the AGC units can firstly be divided into 4 types of plant groups in the 1st 322 

layer, and then further classified into different unit groups in the 2nd layer based on their LFC response 323 

characteristics. In the bottom layer, since the AGC units have the similar LFC regulating characteristics, the 324 

PROP method can be utilized to unit groups for determining the regulation participation factor of each 325 

AGC committed unit. Therefore, the hierarchical GCD scheme can be formulated as a three-layer control 326 

structure with four MARL subproblems, and the proposed HCEQ is applied in each subproblem to optimize 327 

the AGC participation factors in real-time operation. 328 

4.2. Study on Pre-learning Process 329 

MARL algorithms should be scheduled to experience a series of pre-learning processes before its onsite 330 

operation, and this process is an offline preconditioning technique involving numerous exploration iterations 331 

in the state space to optimize the Q-functions and state-value function [27]. Based on the sample-average 332 

theory in [23], this pre-learning process should be carried out with a great variety of load disturbances to 333 

experience enough system scenarios for iterative policy evaluation [2] to optimize the joint equilibrium 334 
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GCD strategy. Furthermore, the termination criterion of the pre-learning process for the ith agent can be 335 

determined by the matrix 2-norms of Q-function differences || ( , )k

iQ s a – 1( , )k

iQ s a ||2 ≤ ς (ς is a given small 336 

precision factor). With the algorithm getting converged, the Q-function would be stable, and the optimal 337 

joint CE policy at various states can be gradually learned. This pre-learning phase will end once the 338 

termination criterions for all the MARL agents are satisfied. 339 

Thereafter, all the priori knowledge obtained from the pre-learning processes would be stored and used 340 

for onsite operation in the practical AGC system, as illustrated in Fig. 4. The HCEQ-based GCD scheme, 341 

which has already benefited from the pre-learning knowledge, will continue to make steady online learning 342 

with an iterative policy evaluation during each AGC cycle, and could still improve its control behaviors by 343 

interaction with real power system. 344 

Here, a typical sequence of square-wave load disturbances, as shown in Fig. 5b, is added in Guangdong 345 

power grid to illustrate the pre-learning process. The simulation results of the proposed multi-layer HCEQ 346 

in the convergence process have been illustrated in Fig. 5. Fig. 5a shows the regulation participation factors 347 

of two typical AGC units, oil-fired unit 1 and hydro unit 1-1, in the algorithm convergence process. It can 348 

be found from simulations that the agents in each MARL gradually converges to their deterministic GCD 349 

policy, while the AGC generation outputs and CPS compliances also tend to become stable. Furthermore, 350 

the convergence process for LNG groups and coal-fired groups of Q-function differences are given in Fig. 351 

6. It can be found that the Q-functions tend to be stable, and the optimal CE action policy in each area can 352 

then be obtained for online optimization in real power systems. 353 

Moreover, Table 3 provides the comparisons of average convergence time of the proposed HCEQ with 354 

other RL algorithms over 10 independent runs in the pre-learning process. It is clear to see that, the 355 

proposed approach exhibits its superiority and higher efficiency on the convergence rate than the HQL and 356 

improved HQL [2], and the time-varying CF can effectively improve the learning efficiency and optimality 357 

of GCD dispatch. 358 

4.3. Study on Weight of Hydro Capacity Margin 359 

For the thermal-dominated power systems, taking Guangdong power grid in the CSG as an example, 360 

the hydro power plants play an important role in the AGC performance. In general, the more the generation 361 

commands allocated to hydro units, the better the resulting AGC performance and regulating cost will be, 362 
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since the hydro plants can provide fast regulating capability with less generation cost. However, the GCD 363 

scheme should maintain sufficient adjustable margin of hydro AGC capacity to cope with the potential 364 

incremental load disturbances. Consequently, Table 4 and Fig. 7 illustrate the effects of different weight μ1 365 

in reward function (13) on the hydro capacity margin and AGC performance. 366 

In this case study, a series of incremental load disturbances was set in Guangdong power grid to test the 367 

dynamic behaviors of HCEQ with typical values of weight μ1. Fig. 7 shows the plots of the total generation 368 

output of hydro plants corresponding to the prespecified load disturbances, in which ∆PGh1, ∆PGh2, ∆PGh3 are 369 

the hydro generation outputs with μ1 set to 0, 10, 50, respectively. It can be observed that a smaller weight 370 

of μ1 will increase the generation output of hydro plants, and thus lead to less hydro capacity margin for the 371 

AGC spinning reserve. Table 4 tabulates the simulation results of AGC performance under different values 372 

of weight μ1. Here, the weight μ2 in (13) is set to 0, and CPS1 and ∆PGh are the average values of 10-min 373 

CPS1 metric and hydro generation output over the entire simulation period in Fig. 7. As shown in Table 4, 374 

the increased participation of hydro generation in AGC regulating commands can improve the performance 375 

metrics and reduce AGC regulating cost. In this paper, the weight μ1 can be set to an intermediate value, 10 376 

or 50, to maintain sufficient AGC hydro reserves, while the CPS compliances can also be ensured. 377 

4.4. Study on Weight of Regulating Cost 378 

The weight of regulating cost in (13), μ2, is also critical for the GCD performance of HCEQ. In order to 379 

validate the effects of weight μ2 on the algorithm performance, Table 5 lists the statistical simulation results 380 

with different weights of μ2 corresponding to the step load disturbances in Fig. 7. It can be concluded that 381 

the weights μ1 and μ2 are equivalent to the weight parameters in linear quadratic regulator (LQR) [7], and a 382 

larger value of μ2 would expect more fuel saving in the AGC generation costs. Thus, the weights μ1 and μ2 383 

should be thoughtfully set for the trade-off and coordination among the multiple GCD objectives based on 384 

the LQR rules and system operational requirements. In the following case studies, as a compromise among 385 

the AGC cost, hydropower reserve and CPS compliances, the weight μ1 and μ2 are selected to 10 and 0.1 in 386 

this paper, respectively. 387 

4.5. Statistical Experiments on CSG System 388 

The long-term GCD performance should be thoroughly evaluated with the data statistical comparative 389 
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experiments in which the CSG simulators have been implemented with the preset disturbance scenarios 390 

over a 24-hour period [7]. The adaptability and dynamic optimization of the proposed approach can be 391 

examined and analyzed under the representative stochastic load disturbances [28] and system parameter 392 

perturbations, as addressed in [2]. Furthermore, the performance of HCEQ has been benchmarked and 393 

compared with PROP method, genetic algorithm (GA), HQL and the improved HQL [2]. The resulting 394 

statistics with assessment period of 10 minutes for the studying control area on various AGC performance 395 

metrics are listed in Table 6 and 7, where |∆F| and |ACE| are the averages of absolute values of frequency 396 

deviation and ACE over the entire simulation period; CPS1, CPS2 and CPS metrics are the daily compliance 397 

percentages. Here, the hydroelectric AGC capacity in the studying area is set to 1424 MW in July (rainy 398 

season) and it will drop to 712 MW in December (dry season). Hence, different AGC allocation strategies 399 

are required for the rainy and dry seasons in order to adapt to the load disturbances and changing hydro 400 

capacity. In this case study, the presented performance results of AGC strategies based on the RL and 401 

MARL algorithms correspond to AGC performance after the pre-learning process with sufficient training 402 

iterations for the rainy season. 403 

It can be found from Table 6 and 7 that the dynamic optimization of GCD with the three RL methods 404 

can provide the better performance than GA and PROP with fixed AGC participation factors. On the other 405 

hand, compared with the HQL algorithm, the multi-layer coordination mechanism in HCEQ and improved 406 

HQL can also effectively enhance the optimality of GCD schemes. Also, as supported by the comparative 407 

simulation results, the MARL-based HCEQ can outperform the improved HQL in [2], and has exhibited its 408 

superior performance and dynamic optimization capability with less regulating cost. Furthermore, the above 409 

five algorithms were then implemented on the CSG power system model with a drop of hydro capacity, and 410 

the resulting statistics have been listed in Table 7. It can be seen that the AGC performance and regulating 411 

costs of all the algorithms deteriorate as the reduction in the hydro power capacity in dry season. Last but 412 

not least, in comparison with the improved HQL, the proposed HCEQ shows the fast online optimization 413 

capability to perform the best under system parameter perturbations, and the corresponding reductions on 414 

the AGC regulating costs in Table 6 and 7 are 11.17 and 8.33%, respectively. 415 
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5. Conclusion 416 

In this paper, a novel MARL based HCEQ algorithm is proposed to solve the dynamic optimization of 417 

multi-layer GCD problem. The following are the main advantages of the proposed GCD approach. 418 

(1) A novel hierarchical MARL algorithm based on the correlated equilibrium is proposed to optimize 419 

the regulation participation factor of each generator for the overall AGC performance enhancement, and the 420 

proposed HCEQ algorithm can adapt well to various system operation scenarios with superior adaptability 421 

and dynamic optimization capability. 422 

(2) A multi-layer AGC generation allocation framework is also developed to overcome the curse of 423 

dimensionality in the GCD problem with the increased number of AGC plants involved. Besides, the time-424 

varying coordination factors have been formulated among control layers to improve the convergence and 425 

optimality of dispatch solutions. 426 

(3) The multi-criteria reward functions have been designed in the HCEQ algorithm for multiobjective 427 

equilibrium dispatch of GCD optimization problem. Simulation studies on the CSG power system model 428 

have demonstrated that, compared with the previous GCD methods, the proposed approach can effectively 429 

enhance the AGC tracking performance with less AGC regulating costs, while the reserve requirements of 430 

fast regulation capacity are ensured. 431 
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