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Abstract 6 

The integration of renewable energy sources (RESs) in distribution networks has brought great challenges to the volt/var man-7 

agement due to their intermittency and volatility. This paper proposes a two-stage energy management framework of distribution 8 

networks to facilitate the accommodation of high wind energy penetration. In the proposed framework, the volt/var management 9 

problem is formulated and decomposed as a two-stage energy scheduling optimization model with different time frames consid-10 

ering the uncertainties of wind energy and load forecasts. In the first stage, a scenario-based stochastic day-ahead scheduling 11 

model is formulated to optimize the 24-hour charging/discharging scheme of energy storage system (ESS) and power generation 12 

of diesel generator (DG) in order to minimize the expected operation cost. Based on the stochastic optimal scheduling results in 13 

the first stage, the second stage implements the multiobjective volt/var optimization (VVO) to determine the optimal real-time 14 

operation of volt/var control devices, considering the costs of adjusting the control devices (CACDs). The proposed method has 15 

been fully evaluated and benchmarked on a 69-bus distribution network under various operational scenarios to demonstrate its 16 

superiority on various performance metrics and further confirm its effectiveness and efficiency for distribution networks to ac-17 

commodate a high penetration of wind energy.

 18 

Highlights 19 

A multiobjective VVO is proposed for distribution networks with RESs. 20 

A two-stage energy management framework is used to accommodate the wind energy. 21 

ESS is utilized to reduce the network loss and maximize economic benefits. 22 

ESS degradation cost and CACDs are considered in the volt/var management. 23 
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1. Introduction26 

Rapid development and advancement in smart grid technologies have enabled the renewable energy sources (RESs), especial-27 

ly the wind energy, to be grid-integrated in distribution networks with increasingly high penetration [1]. Annual wind energy 28 

production is growing significantly and has reached around 4% of worldwide energy consumption [2-4]. Now there are over two 29 

hundred thousand wind turbines (WTs) in onsite operation, with a total installed capacity of 432,000 MW at the end of 2015 [5]. 30 

Wind energy, as an alternative to the fossil fuels, is a clean and sustainable energy source without greenhouse gas emissions [6]. 31 

In general, distribution networks are normally operated as radial feeders, and various types of end-use loads are connected to the 32 
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feeders. Depending on the location of wind energy generation and the instantaneous mismatch between generation supply and 33 

load demand, the loads in the downstream of the connection points and even the total demand in the distribution network could 34 

be lower than the wind generation outputs. Therefore, the reverse power flows would be resulted as the energy is exported up-35 

stream along the feeders [7, 8]. Although wind energy may change the direction of branch power and thus reduce losses, if they 36 

are improperly managed, the reverse power flows from high penetration of wind energy can give rise to excessive losses [9]. The 37 

integration of high wind energy penetration would also cause a number of voltage quality concerns [10]. Since the X/R ratio of 38 

distribution lines is small, the wind energy has significant impact on the voltage profiles. Wind energy is accompanying with 39 

intermittency and volatility due to its dependency to the natural fluctuations, which would give rise to voltage fluctuations and 40 

deteriorate the voltage quality. This may ultimately lead to an increase in regulating times of on-load tap-changers (OLTCs) and 41 

capacitor banks, which accelerate the wear-and-tear of the volt/var control devices [11]. Consequently, it is critical to investigate 42 

an effective and feasible management scheme for distribution networks with high penetration of wind energy. 43 

Volt/var optimization (VVO), referring to the regulation of voltage levels and reactive power over the feeders, is one of the 44 

most important control schemes in distribution networks [12, 13]. Various literatures have reported the application of VVO 45 

schemes in distribution networks. A multiobjective VVO model, with the objectives of the network losses, voltage deviations, 46 

and total energy costs, was proposed in [14], and a combinatorial multiobjective VVO model based on fuzzy logics was also 47 

reported in [15]. VVO was studied in [16, 17] and the exponential load model was used to represent the load-to-voltage func-48 

tional relationship in the VVO problem. A model predictive control based VVO was proposed in [16] by scheduling the optimal 49 

tap positions of OLTCs and switch status of capacitor banks. Furthermore, a VVO framework to optimally control capacitor 50 

banks, voltage regulators and OLTCs was proposed in [18] to minimize the network loss and energy demand. However, the costs 51 

of adjusting the control devices (CACDs) have not been considered in these literatures yet. 52 

So far, with the increase of wind energy penetration in smart distribution networks, the coordinated management of VVO and 53 

wind generation has become an emergent topic. The impacts of various RESs on the volt/var control performance have been an-54 

alyzed in [19, 20]. A multi-timescale stochastic VVO was proposed in [21] to regulate the network voltages in the presence of 55 

uncertain RES outputs and load demands, and the multiobjective stochastic VVO methods for distribution networks with proba-56 

bilistic characteristics of wind farms were studied in [22] and [23]. As the influence of active power from wind energy on voltage 57 

profile is much more than its reactive power [18, 20], the coordinated scheduling optimization of energy storage system (ESS) 58 

and volt/var control devices is necessary for the distribution networks with the high penetration of RESs. Hence, the volt/var 59 

management in this paper aims to coordinately schedule the active and reactive power in the distribution networks with high 60 

wind energy penetration. 61 

The volt/var management in distribution networks is a challenging optimization problem due to the multiple objective func-62 

tions, high-dimensional variables, highly constraints, coordination of various control devices with different time frames, and un-63 

certainties of wind energy and load forecasts. This problem focuses on the coordinated optimization of daily charging/ discharg-64 

ing scheme of ESS, outputs of diesel generator (DG), and scheduling scheme of volt/var control devices. However, it is ineffi-65 

cient for conventional methods to solve such a high dimensional and highly constrained problem while simultaneously minimiz-66 

ing the multiple operational objectives (i.e. network loss, voltage deviations (VD), CACDs, demand consumption, and the deg-67 

radation cost of ESS). It should be pointed out that the dispatch of ESS and DG is based on the time-of-use (TOU) pricing and 68 

day-ahead wind and load scenarios, while the hourly scheduling of volt/var control devices is to dynamically update the real-time 69 

dispatch scheme and regulate the reactive power and voltage profile over the feeders. In this research, a two-stage multiobjective 70 

framework is proposed to solve the volt/var management problem of distribution networks. The proposed framework performs 71 

the stochastic economic generation scheduling of ESS and DG in the first stage to minimize the expected operation cost, includ-72 

ing energy procurement cost, generation cost, ESS energy loss cost and degradation cost, and the second stage implements the 73 

multiobjective VVO to facilitate the accommodation of high wind energy penetration. The effects of the proposed approach un-74 

der various penetration levels of wind energy on performance metrics have also been analyzed in the case study. 75 



The rest of this paper is organized as follows: The mathematical models of distribution networks, WT, and end-use load are 76 

presented in Section 2. In Section 3, the proposed method is discussed and each stage is explained in detail. Comparative simula-77 

tion studies under various wind energy penetrations are implemented in Section 4 to demonstrate the superiority of the proposed 78 

method. Finally, the paper is concluded in Section 5. 79 

2. Problem Formulation80 

2.1 Distribution Network Model 81 

For a typical radial distribution network as shown in Fig.1, there are   buses indexed by   =0, 1, ... ,  . The complex power 82 

flows at each bus can be described as the following equations [16], 83 
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where    is the voltage of bus  ; the apparent power from bus   to bus     is represented with         ; the load de-88 

mand at bus   is represented with ; the complex impedance in the line between bus   to bus is represented 89 

with          ;   
  and  are the active and reactive loads at bus  , respectively; is the active power generated by the 90 

RESs and DG units at bus  ; is the reactive power generated by the RESs, DG units and reactive power compensation devic-91 

es at bus  . 92 
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Fig.1  Schematic diagram of a radial distribution network 94 

2.2 Wind Turbine Model 95 

The power curve of a WT depicts the electrical power output of wind generation as a function of wind velocity [19]. As shown 96 

in Fig. 2, a WT starts generating power at the cut-in wind speed and reaches its rated power at the rated speed   . 97 

Since then, the power output remains the constant at the rated power till the cut-off wind speed      with the increase of 98 

wind velocity  . In this paper, a typical piecewise linear method in [19] is adopted to approximate the nonlinear power curve of 99 

WTs, as formulated in (5), 100 
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Fig.2  Power curve of WT (dotted) and piecewise linear approximation (solid) 102 
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(5) 103 

where    is the rated wind power; is the wind speed;    and are the slope and wind speed break-point of the piece 104 

of wind power curve, respectively; is the rated wind speed; and are the cut-in speed and cut-out speed, re-105 

spectively. Here, the parameters in (5) are assigned the values with following [19]:  =0.2         ,   =(0.96-0.2)  , 106 

=(1-0.96)        ,    = 7 m/s,    = 12 m/s,    = 14 m/s,     = 4 m/s, and  = 25 m/s. 107 

2.3 End-Use Load Model 108 

The end-use load model describes the load behaviors with the change of nodal voltage. In most previous studies of distribution 109 

networks, many load models have been developed, among which, polynomial and exponential load models have been widely 110 

used to represent the load-to-voltage relationship [16-18]. Here, the exponential load model can be formulated as, 111 
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where     and     are the active and reactive load demand at bus  , respectively; and     are the active and reactive load 114 

demand at rated voltage and frequency at bus  , respectively; and    are the rated voltage and voltage magnitude at bus  , 115 

respectively;    and are the constant parameters of the exponential load model whose values are determined by load compo-116 

sitions. Usually, the end-use loads of distribution network can be mainly characterized as residential, commercial and industrial 117 

loads, and their corresponding parameter values are shown in Table 1 [24]. It should be emphasized that a feeder contains more 118 

than one load type, and thus a load-mix requires to be implemented, as discussed in Section 4. 119 

Table 1 Parameters of different exponential load models 120 

Lode type 

Residential 1.04 4.19 

Commercial 1.50 3.15 

Industrial 0.18 6.00 

2.4 Uncertainty Characterization 121 

The day-ahead optimal scheduling of volt/var management for distribution networks with a high penetration of wind energy is 122 

performed based on the load forecasting, TOU and wind energy forecasting. The forecasting data of load profile of each bus in 123 

this distribution network is obtained with Gaussian mixture model in [25], and the wind speed forecast follows the Weibull dis-124 

tribution function using the Weibull constant and the average wind speed [23]. Due to the intermittent and randomness nature of 125 

the RESs, their generation outputs will be highly stochastic and difficult to accurately predict. The uncertainty also exists in the 126 

load because of the stochastic variations of energy usage behaviors and weather conditions. In this study, these sources of uncer-127 

tainty are modeled based on the Monte Carlo scenarios [23]. The Monte Carlo simulation is adopted to generate scenarios in 128 

which each scenario represents a possible status with wind speed and load forecasting inaccuracies. The parameters in the Monte 129 

Carlo simulation are probability distribution functions for load and wind speed forecast errors. Here, the load forecast error is 130 

assumed to follow a truncated normal distribution in [26], in which the mean is the hourly load forecast and the standard devia-131 

tion is 5% of the mean, as follows, 132 
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where  =  x; x indicates the load forecast error; and are the mean and standard deviation of the 134 

normal distribution, respectively. 135 

The wind speed forecast error is characterized by the auto-regressive moving average (ARMA) [26], and a lower order ARMA 136 

(1,1) time series is defined to simulate the wind speed data as, 137 

( ) ( 1) ( ) ( 1)X t X t Z t Z t      (9)138 

where X(t) is the wind speed forecast error in the tth hour forecast; and are constant parameters, and Z(t) is the random 139 

Gaussian variable with mean equal to zero and standard deviation . 140 

The scenario tree can be formed by several scenarios generated from historical forecasting data. If there are u scenarios, each 141 

scenario can be considered as a path with a possibility of 1/u. Since the computational requirement for solving the scenario-based 142 

scheduling problems would increase rapidly with the number of scenarios, a scenario reduction technique in [21] is adopted for 143 

the tradeoff between the computation efficiency and the modeling accuracy. After the implementation of scenario reduction, S 144 

scenarios can be obtained, and each scenario expresses a possible day-ahead profile, in which     is assigned as the weight to 145 

reflect the possibility of occurrence of each scenario. The sum of the probabilities for all scenarios is equal to 1, that is     =1. 146 

3. Proposed Two-Stage Framework147 

The voltage profile and power flow will be affected by the integration of high wind energy penetration [19]. The interaction 148 

between the dispatchable active/reactive power devices and wind energy is required for the improvements of various operational 149 

objectives. As the frequent actions of volt/var control devices could cause voltage fluctuation and wear-and-tear of management 150 

equipment in distribution networks, CACDs are considered and formulated into the objective function of conservation voltage 151 

reduction. Furthermore, the ESS degradation cost is also considered in this model as the state of charge (SOC) and ambient tem-152 

perature could cause considerable degradation to ESS [27]. It should be noted that the grid integration of ESS in distribution 153 

networks with large-capacity wind energy is economically feasible, and the ESS model proposed in [27] is applied in this study. 154 

In mathematical terms, the volt/var management problem can be formulated as the following multiobjective optimization model, 155 
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where    represents the     objective function, such as economic cost, energy conservation and VD;     and       are the 157 

number of equality and inequality constraints, respectively; X is a set of decision variables including the SOC of ESSs, outputs of 158 

DGs, tap positions of OLTCs, and reactive power outputs of shunt capacitor banks;   ,   ,   , and    are the numbers of 159 

ESSs, DGs, OLTCs, and shunt capacitors, respectively. The scheduling problem in (10) is a multi-horizon and high dimensional 160 

optimization problem with multiple objectives, wind energy and load forecasting uncertainties, and hence a two-stage scheduling 161 

framework is proposed here to solve this optimization problem. The first stage is to optimize the day-ahead stochastic generation 162 

scheduling of ESSs and DGs, and the VVO is implemented in the second stage for the efficient conservation voltage reduction. 163 

In this model, the reverse injections to the main grid is allowed without any rejection, and all active power import/export from/to 164 

the distribution companies, as well as the ESS energy loss, will be paid with the same price model [28]. 165 



3.1 The First Stage 166 

The scenario-based stochastic day-ahead economic generation scheduling is implemented in this stage to optimize the charg-167 

ing/discharging scheme of ESS and generation of DGs based on the generated wind and load scenarios. The total expected oper-168 

ation cost,   , in this model can be formulated as the sum of expected operation cost of all day-ahead scenarios, as follows, 169 
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(14) 174 

where     in (12) describes the expected procurement cost of energy supplied from main grid; in (13) represents the ex-175 

pected fuel cost of the energy generated by DGs and the environmental cost of various pollutant emissions; in (14) repre-176 

sents the expected energy loss cost and degradation cost of ESS; The first term in (14) represents the energy loss cost due to bat-177 

tery charging/discharging efficiency, and the second term expresses the cost of equipment degradation because of the wear and 178 

tear caused by frequent charging and discharging of batteries; is the number of day-ahead scenarios and   is the index of 179 

scenarios; is the number of total dispatching hours; is the unit price of energy supplied by distribution companies at the 180 

hour;  is the generation of wind energy at the hour in scenario s; is the total demand consumption during the 181 

hour;   , , and are emission factor, environmental value, and penalty of the type of pollutant respectively, and 182 

is the number of pollutant types; represents the unit fuel price of DGs, and is the generation of the  DG at the 183 

hour in scenario s;       
   and are the charging and discharging energy of the    ESS at the  hour in scenario s, 184 

respectively;   
   and  are the charging and discharging efficiency of ESS of the ESS, respectively; is the capital 185 

cost of the     ESS including replacement labor;   
  is the rated cycle life of the ESS estimated by manufactures under 186 

rated ambient temperature and SOC;     
    and          are the reference SOC and the current SOC of the     ESS at the 187 

hour in scenario s, respectively;    and are coefficients of cycle life of the ESS which are dependent on the tem-188 

perature;    and    are coefficients of cycle life of the     ESS which are dependent on the SOC;      is the ambient temper-189 

ature in degree centigrade of the     ESS at the     hour;   
  is the total energy storage capacity of the     ESS. 190 

The stochastic generation scheduling problem in the first stage is subjected to the following constrains: 191 

1) Energy storage constraints: Energy loss would occur in the charging/discharging energy conversion of ESS,192 

ch ch dis

, , , ,

, 1, , , R dis R
0 1,2,...,

i i t s i t s

i t s i t s E

i i i

P P
SOC SOC i N

E E




        (15) 193 

2) SOC constraints: The SOC should be limited to avoid the overcharging and overdischarging of ESS, as follows,194 

,min , , ,max 1,2,...,i i t s i ESOC SOC SOC i N   (16) 195 

where and are the lower bound and upper bounds of the ESS, respectively.196 

3) Charging/discharging constraints: Since the fast charging/discharging rate would degrade the performance of ESS and thus197 

shorten the lifespan, the charging/discharging energy should be limited as follows, 198 
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where      and  are binary variables to represent the state of ESS energy flow (i.e., charging or discharging ) during the 202 

hour in scenario s; and       
     are the allowed maximum charging and discharging energy of the ESS for each hour, 203 

respectively. 204 

4) DG output constraints: The output of DG should be limited within its maximum and minimum generation outputs,205 

DG DG DG

,min , , ,max 1,2,...,i t i s i DP P P i N   (20) 206 

where and are the maximum and minimum generation outputs of the DG for each hour, respectively.207 

3.2 The Second Stage 208 

In this stage, the multiobjective VVO is implemented to dispatch the volt/var control devices, outputs of ESS and DG based on 209 

the scheduled results solved in the first stage and the real-time data. Moreover, the utilization of SCADA/DMS and the growing 210 

penetration of advanced metering infrastructure can provide sufficient valuable real-time information for utilities to implement 211 

the proposed VVO scheme [29]. Consequently, the optimization objectives of VVO, including the total energy consumption and 212 

VD, can be formulated as follows, 213 
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where       in (23) is the network loss; in (24) represents the total end-use loads; in (25) is the costs of adjusting 220 

OLTCs and shunt capacitor banks; VD represents the voltage deviation; and N are the number of distribution lines and buses; 221 

and are nominal voltage and voltage magnitude of the bus at the     hour, respectively; is the conductance 222 

of the branch line connecting the     and the     bus; is the voltage angle difference between the    and the  223 

bus;  and are the unit adjustment cost of OLTCs and shunt capacitor banks, respectively;     
 and are the oper-224 

ating times of OLTC and capacitor bank, respectively. 225 

The objective functions in the second stage are subjected to the following constrains: 226 

1) Power-flow equality constraints: The load flow equality constraints include the active and reactive power balance at each227 

bus, as follows, 228 
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where     
   and are the active and reactive power of the DG at the bus during the hour, respectively; is the 231 

reactive power compensation at the bus from shunt capacitor banks at the hour; and are active and reactive 232 

power supplied from main grid during the hour, respectively; is the output of WTs at the    bus during the  233 

hour;     
  and are the active and reactive loads at the bus during the hour, respectively; and 234 



              are the active and reactive power injection at the     bus during the     hour. 235 

2) OLTC constraints: The tap position of transformer can be stepwise regulated, and should be bounded within its minimum 236 

and maximum limits, as follows, 237 

,min , ,max 1,2,...,i i t i Btap tap tap i N                                (28) 238 

where         
  and         

  are the maximum and minimum tap positions of the     OLTC for each hour, respectively. 239 

3) Capacitor bank constraints: The VAR output generated by capacitor can be stepwise changed, and should also be within 240 

its lower and upper limits, as follows, 241 
C C C

,min , ,max 1,...,i i t i CQ Q Q i N                                (29) 242 

where       
  and       

  are the maximum and minimum VAR outputs of the     capacitor bank for each hour, respectively. 243 

4) DGs reactive power constraints: The reactive power output should be limited by the capacity limitation of DG, as follows, 244 

DG DG DG

,min , ,max 1,...,i i t i DQ Q Q i N                               (30) 245 

where       
   and       

   are the maximum and minimum reactive power of the     DG for each hour, respectively. 246 

5) Distribution branch constraints: The apparent power flow of the     branch line connecting bus   and   should be lim-247 

ited within its loading limit to avoid overloading, 248 

, ,max 1,2,...,ij t ij LS S k N                              (31) 249 

where       and         are the absolute power over distribution lines and the maximum transmission power between bus   250 

and bus  , respectively. 251 

6) Nodal voltage constraints: The voltage magnitude of each bus shall be constrained between its lower and upper limits, 252 

,min , ,max 1,2,...,i i t iV V V i N                            (32) 253 

where        and        are the minimum and maximum allowable voltage of the     bus, respectively. 254 

7) Power factor constraints: The substation should be operated with a limited power factor as follows, 255 
sub

min maxtPF PF PF                                     (33) 256 

where      ,      , and    
    are the maximum, minimum and current substation power factor, respectively. 257 

8) DG output and ESS charging/discharging constraints: The output of DG and the charging/discharging rate of ESS should be 258 

bounded within their maximum and minimum limits, as formulated in (15)-(20). 259 

Fig 3 illustrates the flowchart for implementation process of the proposed two-stage scheduling framework. In this study, 260 

the energy management in the first stage is optimized by the BONMIN solver on GAMS [30], and the multiobjective differential 261 

evolution (MODE) algorithm [31] with MATLAB is adopted to solve the bi-objective VVO problem in the second stage. The 262 

implementation framework in Fig 3 can be achieved using GDXMRW for the interfacing GAMS and MATLAB [30]. For the 263 

resulting multiobjective solution set, the fuzzy logic based decision making method in [32] is applied to identify the best 264 

compromise solution from the Pareto optimal frontier. In this multi-criteria decision making method, the     objective function 265 

value of a solution in the Pareto-optimal set,   , is represented by a membership function    defined as, 266 

,min
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                        (34) 267 

where        and        are the maximum and minimum values of the     VVO objective function, respectively. For the  th 268 

nondominated solution, the normalized membership value      is formulated as follows, 269 
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where   indicates the number of nondominated solutions in the resulting solution set, and   is the number of VVO objective 271 

functions. Consequently, the best compromise solution can be derived from the solution with maximal normalized membership 272 

value. 273 

Code constraints (15)-(20) and objective function (11) in GAMS parser

Input the required differential evolution parameters; set gen =0; initialize the population and elite repository

Evaluate the VVO objective functions (21)-(22) of each individual in the population with load flow calculation (26)-(27)

Is gen > max gen?
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t >24?
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t =1
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Update the Pareto optimal set and Pareto frontier

Stop
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Yes

Store the nondominated solutions in the nondominated elite archive

Extract the best compromise solution based on fuzzy decision-making method (34)-(35)

Input network topology, capacitor bank, OLTC, and end-use load models (21)-(35)

Evaluate the VVO objective functions (21)-(22) with load flow calculation and execute the fast nondominated sorting  

Generate day-ahead wind and load scenarios and scenario reduction to S scenarios

Start

The first 

stage

The second 

stage

Input day-ahead forecast data and calculate the wind and load forecast error using (8)-(9)

274 
   Fig.3  Flowchart of the proposed two-stage energy management framework 275 

4. Case Study 276 

The proposed two-stage scheduling scheme is tested on a modified 69-bus distribution network, as shown in Fig. 4, to solve 277 

the multiobjective volt/var management problem. While the detailed network topology and data are given in [33], this scheduling 278 



problem has 9 dispatchable variables within each decision cycle, including the active/reactive power outputs of a DG installed at 279 

bus 12, the tap position of a OLTC at the substation, the charging/discharging schemes of 2 ESSs installed at buses 2 and 51, and 280 

4 shunt capacitors installed at buses 22, 30, 39 and 63. Here, the rated capacity of the DG is 1 MW and its pollutant emission 281 

parameters are obtained from [34]. The minimum generation output of DG is 0.2 MW, and the unit fuel price    is 145 $/MWh 282 

[34]. The OLTC ratios are constrained in the range of 0.95-1.05 with a step size of 0.0125, and all the VAR outputs of capacitors 283 

are within the interval of 0-0.5 with a step size of 0.1 MVar [18]. The cost coefficients of CACDs,    and   , are set to 10 kW 284 

and 6 kW per time, respectively [35]. The rated capacities of WTs installed at buses 25, 41, 48, 53 and 69 are 0.7 MW. The 285 

lead-acid battery in [27] is selected as the ESS in this study. The rated capacities of batteries are 1 MWh and the maximum 286 

charging/discharging rate is limited to 20% of their rated capacity [27]. In order to obtain prolong battery lifespan, the lower 287 

bound, initial value and upper bounds of SOC are set to 0.3, 0.3 and 0.9, respectively. The charging/discharging efficiency and 288 

the coefficients of cycle life in battery degradation cost are obtained from [27]. Besides, the nodal voltage limits,   
    and 289 

  
   , are set to 1.06 and 0.94 p.u., respectively. The network power factor limits,       and      , are set to 0.99 lag and 0.96 290 

lag, respectively [17]. The network base voltage and base power are 12.66 kV and 1 MVA. 291 
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 292 
Fig. 4 Network topology of the modified 69-bus distribution network 293 

Table 2 Nodal load types 294 

Load type Residential Industrial Commercial 

Bus No. 1-27 28-39, 59-69 40-58 

In the 69-bus distribution network as shown in Fig. 4, various types of exponential end-use load models in different buses, in-295 

cluding residential, industrial, commercial loads, are listed in Table 2. Here, 200 day-ahead scenarios are generated with the sce-296 

nario tree method in Section 2.4, and only 5 scenarios are retained after scenario reduction operation, as shown in Fig. 5(a)-(c). 297 

The curves of wind energy and load demand on a typical weekday are shown in Fig. 6(a)-(c). Furthermore, the power tariff mod-298 

el of TOU is used for charging different rates throughout the day, with the TOU pricing settings from [36], as shown in Fig. 6(d). 299 

In this case study, the following five schemes are considered for the in-depth comparisons and analyses. The proposed volt/var 300 

management is a highly nonlinear, non-differential, high-dimensional and multimodal Pareto optimization problem and thus can 301 

be solved with a highly effective and classical method, MODE [31]. The parameter settings of MODE have been heuristically 302 

well-tuned through a number of comparative studies and simulations. Thus, the population size and maximum number of algo-303 

rithm iterations in the Schemes 1-5 are set to 50 and 100, and the population size and maximum number of iterations in Scheme 304 

6 are set to 500 and 500, respectively. Besides, the algorithm crossover and mutation probabilities in all the schemes are set to 305 

0.5 and 0.9, respectively [31]. Ten independent runs of MODE algorithm in each scheme have been carried out, and the resulted 306 



sets of nondominated solutions are then combined and ranked by dominance comparisons to yield the resulting Pareto frontier of 307 

each scheme. 308 

 309 
Fig. 5 The curves of day-ahead scenarios of wind energy and load demand:  310 

(a) Total wind energy generation; (b) Total active load demand; (c) Total reactive load demand. 311 

 312 

Fig. 6 The curves of real-time data of wind energy, load demand, and power price: 313 
(a) Total wind energy generation; (b) Total active load demand; (c) Total reactive load demand; (d) TOU power price. 314 
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1) Scheme 1: This scheme is the proposed two-stage scheduling scheme as mentioned in Section 3; 315 

2) Scheme 2: On the basis of the two-stage method in Scheme 1, the ESS is not scheduled in the optimization model;316 

3) Scheme 3: On the basis of the two-stage method in Scheme 1, the ESS is considered and scheduled in the optimization317 

model of this scheme, and the battery degradation cost and energy loss cost in (14) is not considered in the objective function (11) 318 

for the first stage; 319 

4) Scheme 4: On the basis of the two-stage method in Scheme 1, CACDs in (25) are not considered in the objective function320 

(21) for the second stage;321 

5) Scheme 5: This scheme implements the volt/var management to simultaneously optimize the first stage and the second322 

stage based on the real-time load and wind generation data for each hour, determining the optimal operations of ESSs, DG, 323 

OLTC, and shunt capacitor banks for the three objective functions in (11), (21), and (22); 324 

6) Scheme 6: This scheme implements the 24-hour sequential optimization of volt/var management to jointly optimize the first325 

stage and the second stage based on the forecasting load and wind generation data for the three objective functions in (11), (21), 326 

and (22). 327 

Table 3 Comparative performance results of Schemes 1-3 328 

Capacity 

of WTs 

(MW) 

Energy procurement cost ($) Total operation cost ($) Network loss (MW) Voltage deviation (p.u.) 

Scheme 1 Scheme 2 Scheme 3 Scheme 1 Scheme 2 Scheme 3 Scheme 1 Scheme 2 Scheme 3 Scheme 1 Scheme 2 Scheme 3 

0.7 3580.521 3665.051 3554.263 4373.375 4395.285 4384.284 2.299 2.367 2.201 23.906 24.128 22.506 

1.4 3033.666 3120.139 3010.301 3826.274 3850.203 3838.631 1.969 2.001 1.901 20.298 20.446 20.653 

2.1 2488.258 2572.589 2461.641 3280.374 3305.146 3291.548 1.712 1.796 1.687 23.321 25.777 24.159 

2.8 1940.852 2025.536 1915.582 2733.121 2755.984 2744.899 1.549 1.620 1.581 22.254 21.431 19.821 

3.5 1395.126 1480.573 1370.031 2185.158 2210.529 2200.031 1.507 1.591 1.554 24.241 23.451 23.601 

4.2 846.956 933.631 821.353 1640.585 1664.961 1650.912 1.544 1.589 1.604 27.061 23.721 26.331 

4.9 300.126 385.767 275.357 1090.961 1116.215 1107.011 1.695 1.716 1.750 25.796 24.926 27.157 

329 

Fig. 7 The curves of the SOC of ESS 1 and energy procurement in Schemes 1-3: (a) SOC; (b) Injection from main gird. 330 
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The comparative simulations were performed under different penetration levels of wind energy to investigate the superiority of 331 

the proposed method. Table 3 exhibits the comparative results of Schemes 1-3 on network loss, energy procurement cost, voltage 332 

quality, and total operation cost, with the increase in the installed capacity of WTs from 0.7 MW to 4.9 MW. It can be seen from 333 

Fig. 6 that the wind generation is higher than the load demand during off-peak hours and lower than the load demand during 334 

on-peak hours. With the increase in the penetration level of WTs, the ESS in Schemes 1 and 3 can store the wind energy in 335 

excess of the load demand, and makes it accessible for later release during the peak price hours for the economic profit to reduce 336 

the energy procurement cost, as shown in Fig. 7. Consequently, the energy procurement cost in Scheme 2 without ESSs is higher 337 

than those in Schemes 1 and 3 under all the scenarios of wind penetration levels. From Table 3, with the increase of wind energy 338 

capacity, the energy procurement cost and total operation cost in Schemes 1-3 decrease gradually. On the other hand, since the 339 

ESS energy loss and degradation cost is not considered in Scheme 3, the charging/discharging actions of ESSs in Scheme 3 are 340 

more frequent than the other two schemes. For instance, during the period of hours 8-10 in Fig. 7(a), a reversal charg-341 

ing/discharging action is implemented for ESS 1 in Scheme 3. Hence, the frequent charging/discharging actions of ESSs in 342 

Scheme 3 can decrease the energy procurement cost, but it leads to the higher total operation cost compared with Scheme 1. It 343 

can also be concluded from the comparative results in Table 3 that the utilization of ESSs can enhance the economic performance 344 

for the distribution networks with wind energy. Furthermore, it can be found that the wind penetration level plays a major role in 345 

network loss. As shown in Table 3, the network loss in Schemes 1-3 decreases as the capacity penetration of WTs from 0.7 MW 346 

to 3.5 MW, and further increment in the wind energy capacity to 4.9 MW causes the reduction in the network loss. This is be-347 

cause the WTs can unload the power through the feeders and thus reduce the network losses. As the capacity of WTs gradually 348 

increases from 3.5 MW to 4.9 MW, the reverse power flow would be resulted in the radial distribution network to give rise to the 349 

excessive network losses and overheat feeders. In addition, the integration of different capacity of WTs would affect the voltage 350 

profile and load flow distribution of the distribution network, and then cause the change of voltage deviation performance. 351 

352 
Fig. 8 The curves of OLTC Tap ratio and VAR outputs of shunt capacitors in Schemes 1 and 4: (a) OLTC tap ratio; (b) VAR output of CAP 22; 353 

(c) VAR output of CAP 30; (d) VAR output of CAP 39; (e) VAR output of CAP 63.354 
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Table 4 Comparative results of the number of volt/var regulating actions in Schemes 1 and 4 355 

Regulating No. OLTC Cap 22 Cap 30 Cap 39 Cap 63 

Scheme 1 8 4 2 1 1 

Scheme 4 12 11 19 8 15 

Fig.7 illustrates the SOC curve of ESS 1 and the plot of energy procurement in Schemes 1-3 under the wind energy capacity of 356 

3.5 MW. It can be found from Fig. 7 that the ESSs in Schemes 1 and 3 can be utilized for peak shaving and load leveling 357 

compared with Scheme 2, and the ESS degradation cost and energy loss cost in Scheme 3 could not be covered by the profits 358 

from the energy procurement of bidirectional power flow. Moreover, Fig. 8 shows the scheduling curves of volt/var control de-359 

vices with Schemes 1 and 4 under the wind energy capacity of 3.5 MW. The scheduling results of OLTC tap ratio over the 360 

24-hour period are shown in Fig. 8(a), and the optimized outputs of shunt capacitors at buses 22, 30, 39 and 63 are shown in Fig.361 

8(b)-(e). The numbers of regulating actions of OLTC and shunt capacitors over the entire 24-hour period are shown in Table 4. It 362 

is clear to see from Table 4 and Fig. 8 that, compared with Scheme 4, Scheme 1 with the objective function of CACDs can 363 

greatly decrease the maneuvering operations of the volt/var control devices. As a results, this reduction in the CACDs and ESS 364 

degradation cost would give opportunities for smart distribution networks to operate more efficiently, and less maneuvering cost, 365 

less wear-and-tear, and further savings on energy would be expected. 366 

367 

Fig. 9 The curves of the SOC of ESSs and outputs of DGs in Schemes 1, 5 and 6: 368 

(a) SOC of ESS 1; (b) SOC of ESS 2; (c) DG power generation369 

Tables 5 and 6 list the comparative results of Schemes 1, 5 and 6 on total operation cost, network loss, demand consumption, 370 

CACDs, total energy consumption, and voltage quality, with the increase in the installed capacity of WTs from 0.7 MW to 4.9 371 

MW. Fig.9 illustrates the SOC curves of ESSs and outputs of DGs in Schemes 1, 5 and 6 under the wind energy capacity of 3.5 372 

MW. It can be found from the comparative results that the proposed two-stage framework in Scheme 1 implements the optimal 373 

economic generation scheduling for ESSs and DG, as shown in Fig.9, and thus can exhibit the superior performance on the total 374 
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operation cost. Meanwhile, with the increasing penetration levels of grid-integrated WTs, Scheme 1 performs better with the 375 

other schemes on the network loss, demand consumption, CACDs, total energy consumption and voltage profile, and thus further 376 

confirms the effectiveness and validity of the proposed method for energy conservation with voltage reduction. 377 

Table 5 Comparative performance results of Schemes 1 and 5 378 

Capacity 

of WTs 

(MW) 

Total operation cost 

($) 
Network loss(MW) 

Demand 

consumption (MW) 
CACDs (MW) 

Total energy 

consumption (MW) 

Voltage deviation 

(p.u.) 

Scheme 1 Scheme 5 Scheme 1 Scheme 5 Scheme 1 Scheme 5 Scheme 1 Scheme 5 Scheme 1 Scheme 5 Scheme 1 Scheme 5 

0.7 4373.375 4683.467 2.299 2.231 70.110 70.136 0.178 0.122 72.587 72.489 23.906 23.591 

1.4 3826.274 3998.156 1.969 1.901 70.169 70.204 0.162 0.176 72.230 72.281 20.298 23.797 

2.1 3280.374 3501.116 1.712 1.670 70.081 70.386 0.154 0.154 71.947 72.21 23.321 22.301 

2.8 2733.121 2907.621 1.549 1.566 70.218 70.456 0.180 0.154 71.947 72.176 22.254 22.206 

3.5 2185.158 2370.596 1.507 1.545 70.406 70.661 0.122 0.136 72.035 72.342 24.241 22.284 

4.2 1640.585 1801.171 1.544 1.671 70.496 70. 681 0.142 0.152 72.182 72.504 27.061 19.905 

4.9 1090.961 1301.465 1.695 1.775 70.673 70.891 0.122 0.22 72.490 72.886 25.796 27.904 

Table 6 Comparative performance results of Schemes 1 and 6 379 

Capacity 

of WTs 

(MW) 

Total operation cost 

($) 
Network loss(MW) 

Demand 

consumption (MW) 
CACDs (MW) 

Total energy 

consumption (MW) 

Voltage deviation 

(p.u.) 

Scheme 1 Scheme 6 Scheme 1 Scheme 6 Scheme 1 Scheme 6 Scheme 1 Scheme 6 Scheme 1 Scheme 6 Scheme 1 Scheme 6 

0.7 4373.375 4786.771 2.299 2.405 70.110 70.161 0.178 0.194 72.587 72.760 23.906 23.451 

1.4 3826.274 4081.656 1.969 1.991 70.169 70.255 0.162 0.188 72.230 72.434 20.298 20.167 

2.1 3280.374 3705.011 1.712 1.904 70.081 70.333 0.154 0.170 71.947 72.407 23.321 25.045 

2.8 2733.121 2967.135 1.549 1.696 70.218 70.405 0.180 0.186 71.947 72.287 22.254 21.999 

3.5 2185.158 2428.894 1.507 1.587 70.406 70.659 0.122 0.16 72.035 72.406 24.241 21.007 

4.2 1640.585 1990.172 1.544 1.766 70.496 70.736 0.142 0.164 72.182 72.666 27.061 21.366 

4.9 1090.961 1380.655 1.695 1.861 70.673 70.801 0.122 0.210 72.490 72.872 25.796 26.526 

A comparative study of the average computation time over 10 independent runs for different schemes is given in Table 7, and 380 

all the algorithms in Schemes 1-6 were implemented on a personal computer with 4-GHz Intel Core i7 CPU and 8GB RAM. It is 381 

quite evident that the proposed two-stage method in Schemes 1-4 requires less execution time than that of the other schemes, and 382 

thus demonstrates its high computational efficiency. Moreover, in order to further assess and compare the maximum penetration 383 

level of wind energy in the studied distribution network with all the schemes, the comparative performances of wind energy 384 

accomodation were investigated under the wind energy capacity of 13 MW, as shown in Table 8. With the grid-integration of 385 

large-capacity wind energy, the wind curtailment will be implemented in order to avoid any violation of voltage and thermal 386 

loading constraints, and WTs would be forced to decrease their outputs or disconnect from the distribution network when the 387 

corresponding nodal voltage or branch power flow drops or raises beyond the lower or upper limits. In this study, the wind gen-388 

eration outputs were curtailed with a step size of 0.1 MW in each WT once any violation of network constraint occurred, and 389 

hence the feasible decision solutions of all the schemes could be obtained through the continuous execution of wind curtailment 390 



[28, 37]. It can be found from Table 8 that the proposed two-stage method in Scheme 1 can facilitate the accommodation of 391 

higher wind energy penetration compared with other schemes. 392 

Table 7 Average computation time of different schemes 393 

Performance Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 

Average computation time (s) 791.120 790.710 790.830 791.250 830.123 14090.606 

Table 8 Wind energy accommodation with different schemes 394 

Performance Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 

Wind energy accommodation (%) 94.6 93.8 93.8 94.6 93.1 89.2 

395 
Fig. 10 The plots of Pareto frontiers and the best compromise solutions with Scheme 1 for 24-hour scheduling 396 

397 
Fig. 11 The plots of selected Pareto frontiers with Scheme 1 at: (a) hour 2; (b) hour 19. 398 
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In summary, the Pareto frontiers with the best compromise solutions resulted from the 24-hour VVO of Scheme 1 under the 399 

wind energy capacity of 3.5 MW are shown in Fig. 9, and the Pareto solution set of the proposed bi-objective VVO in each hour 400 

can also be obtained. Fig. 10 further plots the Pareto frontier at hour 2 (the period with maximum wind energy) and hour 19 (the 401 

period with peak load demand), and the best compromise solution in each Pareto frontier at each hour can be identified using the 402 

fuzzy decision making method in (34)-(35). 403 

Moreover, three previous methods, including NSGA-II [17], multiobjective θ-smart bacterial foraging algorithm (Mθ-SBFA) 404 

[19], and modified teaching-learning-algorithm (MTLA) [23], were further performed to solve the volt/var management problem 405 

and compared with the proposed two-stage method. The parameter settings of the three methods can be obtained from [17, 19, 406 

23]. All the methods were implemented over 10 independent runs, and the resulted sets of nondominated solutions are then com-407 

bined and ranked by dominance comparisons to yield the best solution of each method. Table 9 provides the comparative results 408 

of the proposed two-stage method and the three methods on total operation cost, network loss, demand consumption, CACDs, 409 

total energy consumption, and voltage quality, under the wind energy capacity of 3.5 MW. The resulting statistics demonstrated 410 

that, due to the optimal coordinated scheduling of ESS, DG, and volt/var control devices across multiple time horizons, the pro-411 

posed two-stage method can outperform the earlier methods and provide the best overall performance. 412 

Table 9 Comparative performance results of different methods 413 

Method 
Total operation cost 

($) 
Network loss(MW) 

Demand 

consumption (MW) 
CACDs (MW) 

Total energy 

consumption (MW) 

Voltage deviation 

(p.u.) 

Proposed method 2185.158 1.507 70.406 0.122 72.035 24.241 

NSGA-II [17] 2290.196 1.599 70.505 0.136 72.140 22.240 

Mθ-SBFA [19] 2358.094 1.553 70.516 0.140 70.209 23.548 

MTLA [23] 2300.165 1.533 70.485 0.142 72.16 25.413 

414 

5. Conclusion415 

The integration of wind energy in distribution networks has a significant impact on both voltage quality and network loss due 416 

to the small X/R ratio and radial configuration, and this paper proposes a two-stage framework to facilitate the accommodation 417 

of high wind energy penetration. The main contributions of the proposed approach are summarized as follows: 1) A two-stage 418 

stochastic scheduling framework is proposed for the volt/var management problem to coordinately schedule ESS, DG, and 419 

volt/var control devices across multiple time horizons for the improvement on the wind energy accommodation capability; 2) In 420 

order to yield the economic benefits, the reverse power flow with coordinated ESS scheduling scheme is integrated to accom-421 

modate the large-capacity wind energy while considering the degradation cost and energy loss cost of ESS; 3) A multiobjective 422 

VVO model is proposed for high renewable-penetrated distribution networks with the consideration of the CACDs and volt-423 

age-based exponential load models. 424 

Comparative studies have demonstrated the superiority of proposed approach on various performance objectives. The simula-425 

tion results over a 24-hour period confirmed that the network loss, VD, CACDs, demand consumption, and operation cost can be 426 

effectively reduced under various penetration levels of wind energy, and the excessive operational actions on volt/var control 427 

devices and ESS can also be avoided. Furthermore, it can be found that due to the high energy loss and degradation cost, the ESS 428 

tends to participate in the charging/discharging scheduling for economic profits during the large peak-valley energy price differ-429 

ence. Further research would focus on the application of proposed approach in principle to the unbalanced three-phase distribu-430 

tion networks with stochastic RESs. 431 
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