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Abstract 

This paper proposes a novel approach to solve the complex optimal train control problems 

that so far cannot be perfectly tackled by the existing methods, including the optimal control 

of a fleet of interacting trains, and the optimal train control involving scheduling. By dividing 

the track into subsections with constant speed limit and constant gradient, and assuming the 

train’s running resistance to be a quadratic function of speed, two different methods are 

proposed to solve the problems of interest. The first method assumes an operation sequence 

of maximum traction – speedholding – coasting – maximum braking on each subsection of 

the track. To maintain the mathematical tractability, the maximum tractive and maximum 

braking functions are restricted to be decreasing and piecewise-quadratic, based on which the 

terminal speed, travel distance and energy consumption of each operation can be calculated in 

a closed-form, given the initial speed and time duration of that operation. With these 

closed-form expressions, the optimal train control problem is formulated and solved as a 

nonlinear programming problem. To allow more flexible forms of maximum tractive and 

maximum braking forces, the second method applies a constant force on each subsection. 

Performance of these two methods is compared through a case study of the classic 

single-train control on a single journey. The proposed methods are further utilised to 

formulate more complex optimal train control problems, including scheduling a subway line 

while taking train control into account, and simultaneously optimising the control of a 

leader-follower train pair under fixed- and moving-block signalling systems.  
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1. Introduction 

The traditional optimal train control problem is to find the energy-efficient strategy to drive 

the train through a specific railway segment within a predetermined time, while maintaining 

specific speeds at both ends of the segment. The problem is usually formulated as an optimal 

control problem, and solved to provide the train drivers with detailed speed or control advice 

along the segment1.  

 

The shape of the energy-efficient control/speed profile has been well studied with 

Pontryagin’s maximum principle. The optimal train control strategy on level tracks with 

constant speed limit follows a sequence of (at most) four operations, which are maximum 

traction (MT), speedholding (SH), coasting (CS), and maximum braking (MB) (Asnis et al., 

1985; Howlett, 1990; Ichikawa, 1968; Milroy, 1980). On undulating tracks with variable 

speed restrictions, these four operations can still compose the optimal control strategy 

(Albrecht et al., 2016a, 2016b; Howlett, 2000; Khmelnitsky, 2000; Liu and Golovitcher, 

2003). State-of-the-art development on the optimal train control problem with continuous 

control is summarised by Albrecht et al. (2016a, 2016b), together with extension under more 

generalised assumptions. For trains with discrete control levels, the speedholding can be 

approximated by coast-power pairs (Cheng and Howlett, 1992, 1993; Cheng et al., 1999; 

Howlett, 1996; Howlett and Cheng, 1997; Pudney and Howlett, 1994). Comprehensive 

reviews of the analysis on classic single-train optimal control with continuous or discrete 

control can further be found in Scheepmaker et al. (2017) and Yang et al. (2016b). 

 

Knowing the shape of the optimal control profile is not enough to drive the train in an 

energy-efficient way. The drivers need to be advised to take appropriate action at specific 

time or location of the journey, such as the speed to follow or the engine power to set. For 

this purpose, the optimal control problem has to be solved in order to generate the optimal 

control/speed profile along the journey (for reviews of the solution methods, see 

Scheepmaker et al., 2017; Yang et al., 2016b). Efficient algorithms have been developed 

based on the so-called indirect method, which tries to solve the Hamiltonian associated with 

the original optimal control problem based on Pontryagin’s maximum principle (Albrecht et 

                                                 
1 It is possible that the suggested control advice is not able to perfectly reproduce the desired optimal speed profile in a 

practical train run due to, e.g., the inter-carriage interaction which is not considered in the optimal train control problem. It 

leads to the so-called train “cruise control” problem which deals with how to follow a prescribed speed profile. We do not 
consider the cruise control in this paper but refer interested readers to Li et al. (2014, 2015) for it. 
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al., 2016a, 2016b; Howlett et al., 2009; Khmelnitsky, 2000; Liu and Golovitcher, 2003). Still, 

the indirect method cannot perfectly solve optimal train control in more complex settings, 

such as the optimal control of a fleet of trains, or the optimal train control with extra 

intermediate constraints applied on the train run, e.g., when the trains are required to dwell at 

the intermediate stations or to pass specific track locations within specific time windows. 

Alternatively, the optimal control formulations of these complex optimal train control 

problems can be first discretised by some numerical methods and then solved by 

mathematical programming techniques such as linear programming (Wang et al., 2013), 

nonlinear programing (Wang and Goverde, 2016a, 2016b, 2016c; Wang et al., 2013, 2014; Ye 

and Liu, 2016) and dynamic programming (Effati and Roohparvar, 2006; Franke et al., 2000; 

Ko et al., 2004; Vasak et al., 2009; Zhou et al., 2017). Quality of these discretisation-based 

methods depends on the discretisation step: a larger step-size requires less computation effort 

but yields larger energy cost and/or larger violation on the constraints. In addition, as one can 

find in Effati and Roohparvar (2006), Wang and Goverde (2016a) and Ye and Liu (2016), 

these discretisation-based methods would sometimes give fluctuating control/speed profiles 

which are difficult to follow or implement for the automatic train operation.  

 

Besides the indirect methods, there are other methods built upon the pre-specified four 

operations. The driving plans based on coasting control (A̧ıkba̧ and S̈ylemez, 2008; Chang 

and Sim, 1997; Wong and Ho, 2004) are easy to implement; however, their energy saving is 

restricted by the limited searching space and the pre-specified operation rules. Mathematical 

programming methods (Gu et al., 2014; Li and Lo, 2014a, 2014b; Yang et al., 2015) are 

developed in these years, which either require simplification on the train characteristics or 

track condition, such as constant maximum traction/braking force and/or zero running 

resistance, or rely on simulation to calculate the ordinary differential equations (ODEs) and 

integrals. Such simplification restricts the general application of these methods, for example, 

when the train speed is high such that the maximum traction/braking force is not able to 

maintain constant and the running resistance is not negligible; on the other hand, the 

simulation slows the solution process. Recently, Haahr et al. (2017) proposed a method based 

on dynamic programming. Forward and backward speed profiles were pre-generated under 

the four operations at prescribed discrete speed levels and at locations where the speed limit 

or gradient changes. Neither location nor time was discretised, so the fluctuating 

speed/control profiles were avoided. As only a limited number of discrete speed levels were 

considered, the prescribed journey time constraint could be slightly violated, and the 



4 

minimum energy consumption obtained could be larger than the optimum when continuous 

speeds were considered. 

 

In addition to the constraints at the two ends of a journey, the train control problem may 

sometimes involve intermediate constraints. For example, in Haahr et al. (2017) and Wang 

and Goverde (2016a, 2016c), the train needs to pass specific track locations within specific 

time/speed windows; in Ye and Liu (2016), the leading train is required to stop at the passing 

loop to let the following train overtake. The pseudospectral method (PM) has been used to 

solve these problems but it sometimes leads to undesired violent fluctuation on the control 

profiles (Wang and Goverde, 2016a; Ye and Liu, 2016). A dynamic-programming-based 

method recently developed by Haahr et al. (2017) appears to overcome such issue. The train 

control problems with intermediate constraints also include a large group of research on the 

energy-efficient subway line scheduling, where the train needs to run through the whole 

subway line while stopping at stations for passenger boarding and alighting (see 

Scheepmaker et al., 2017; Yang et al., 2016b for comprehensive reviews). To solve the 

subway line scheduling problems, previous literature usually assumed simplified train 

characteristics such as nil running resistance and constant maximum tractive/braking force, or 

relied on simulation/discretisation to calculate the speed, travel distance and energy 

consumption (Chevrier et al., 2013; Das Gupta et al., 2016; Li and Lo, 2014a, 2014b; Yang et 

al., 2015, 2016a; Yin et al., 2016; Zhou et al., 2017). Howlett (2016) recently pointed out that, 

when no speed restriction is imposed, the different interstation journeys should share a same 

optimal speed; however, there are still no effective methods to find either this optimal speed 

or the optimal interstation running times.  

 

So far in this introductory part, we have been talking about the control of a single train. 

However, a train’s optimal driving plan may be infeasible, or not optimal from the systematic 

point of view, when it is running close to other trains on the same track in the same direction. 

For instance, a following train may have to give up its optimal strategy in order to yield to the 

safe separation to the leading train; likewise, the leading train may also need to compromise 

its optimal driving plan for the advancing and energy saving of the following trains. 

Meanwhile, the trajectories of trains running in different directions can also conflict if they 

need to use the same piece of track at the same time (Wang and Goverde, 2016b). Therefore, 

the control optimisation of all the trains under consideration should be conducted in an 

aggregate manner. For such problems, the discretisation-based numerical methods (Wang and 
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Goverde, 2016a, 2016b, 2016c; Wang et al., 2014; Yan et al., 2016; Ye and Liu, 2016) and the 

coasting control (A̧ıkba̧ and S̈ylemez, 2008; Goodwin et al., 2016; Lu and Feng, 2011; 

Yang et al., 2012) can still work; however, their shortcomings persist as in solving the classic 

single-train control problems. Alternatively, Albrecht et al. (2015) developed a method based 

on the four well-known operations to control a pair of leading and following trains in a 

fixed-block system with prescribed intermediate section clearance times, and provided the 

necessary condition for checking the optimality of the clearance times. However, their 

method requires further improvement, for example, in the generalisation on existing track 

settings of zero gradients and no speed restriction, and in the methodology for finding the 

optimal clearance times.  

 

In summary, the single-train optimal control without intermediate constraints can be perfectly 

solved now, but not the more complex problems involving multiple trains and/or intermediate 

constraints; these complex problems are what we would like to explore in this paper. We 

propose to solve the optimal train control problem with pre-specified operation sequence and 

practical train and track settings. The maximum traction force, maximum braking force and 

the train running resistance are assumed to be functions of speed. The uneven track and 

variable speed limit are explicitly considered, where the track gradient and speed limit are 

assumed piecewise-constant, so the track can be divided into subsections such that each 

subsection is of constant gradient and constant speed limit. We propose two different methods 

to solve the single-train optimal control problem as the nonlinear programming (NLP) 

problems, and then extend these two methods for the more complex optimal train control. 

The first method restricts the maximum traction and maximum braking forces to be 

decreasing and piecewise-quadratic w.r.t. speed, and the running resistance to be quadratic 

w.r.t. speed. The control on each subsection is assumed to follow the sequence of 

MT-SH-CS-MB. Given the initial speed and time duration of each operation on each 

subsection, we can get the closed-form expressions of the terminal speed, distance traversed 

and energy consumed corresponding to this operation. An NLP formulation would then be 

used to obtain the time duration of each operation on each subsection. To allow more general 

forms of maximum traction and maximum braking forces, the second method applies 

constant tractive/braking force on each subsection and uses the similar technique to formulate 

the NLP problem. Performance of these two methods is compared by numerical examples. 

The two methods are further used to solve two complex optimal train control problems. The 

first problem embeds sophisticated train control in an energy-efficient subway line scheduling 
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process. The second problem considers the optimal control of multiple trains in both 

fixed-block and moving-block signalling systems. 

 

Contributions of this paper, in comparison with exiting literature, are highlighted as follows.  

(I) We focus on offline train speed/control profile optimisation for complex optimal train 

control problems that cannot be solved by the indirect methods based on Pontryagin’s 

maximum principle, such as those with train interaction and/or intermediate constraints. 

(II)  Compared with the existing methods that solve the complex optimal train control 

problems which we are interested in, the merits and advantages of our methods lie in that: 

(i) We allow (more) realistic train and track conditions, so the resultant control/speed 

profile is feasible and close to the true optimum; 

(ii)  We can achieve better energy saving than coasting control, which is not unexpected 

since the performance of the latter is constrained by the coasting rules and the 

number of coasting operations; 

(iii)  We can obtain highly applicable control profiles which apply at most four operations 

on each subsection, therefore avoid unrealistic fluctuation; 

(iv) The closed-form expressions of speed, distance and energy can help accelerate the 

solution process. As a result, although we are focusing on offline optimisation as 

stated in Point (I), our algorithms can run fast, as demonstrated in the case studies, 

which lends their potential for online optimisation in the future. 

 

The rest of this paper is organised as follows. Section 2 reviews the classic optimal train 

control problem. To solve this problem, two NLP methods are proposed in Section 3. The 

proposed methods are then used in Section 4 to solve the energy-efficient subway line 

scheduling problem (Section 4.1) and the multi-train optimal control problem (Section 4.2), 

respectively. Section 5 demonstrates two case studies: one compares the performance of the 

two proposed methods as well as the PM in solving a classic optimal train control problem, 

and the other solves the subway line scheduling problem. Section 6 draws the conclusions 

and discusses the future research directions.  

2. Classic optimal train control problem 

We briefly review the classic optimal train control problem in this section. The movement of 

a point-mass train is described as (Jaekel and Albrecht, 2014; Rochard and Schmid, 2000): 
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where  x x t  and  v v t  are respectively the train’s location and speed at time t ; M  

is the train mass;  F F t  is the instantaneous force applied to the train, positive for 

traction and negative for braking;  R v  is the running resistance at speed v , consisting of 

mechanical and aerodynamic resistances;  G x  is the component of the gravitational force 

along the track, i.e., 

       sin arctanG xx Mg Mg x    (3) 

where g  is the gravitational constant, and  x  is the track gradient at location x , 

defined as the ratio of vertical rise to the horizontal displacement. The approximation in Eq. 

(3) holds when  x  is close to zero. 

 

The train speed and applied force are bounded as follows,  

  0 vv x   (4) 

    r rFB v T v   (5) 

where  v x  is the upper speed limit at location x ;  rT v  and  rB v  are respectively 

the maximum tractive force and maximum braking force at speed v , both of which are 

nonnegative and decreasing w.r.t. v . 

 

The goal of the optimal train control is then to drive a train from location 0X  to location 

fX  ( 0fX X ) within a time budget T , while using as little energy as possible. Assuming 

the energy is consumed when and only when the tractive force is applied, and no energy is 

regenerated from braking, then the optimal train control problem can be formulated as 

follows, 

     
0

min max ,0 d
T

F t v t t  (6) 
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 s.t.  Eqs. (1)-(5), and  

    00x X ,   fx T X ,   00v V ,   fv T V  (7) 

where 0V  and fV  are the prescribed speeds at locations 0X  and fX , respectively. 

 

We further make the following assumptions on the running resistance as well as speed limit 

and track gradient. 

 

Assumption 1. The running resistance  R v  follows the Davis formula (Davis, 1926): 

   2
0 1 2AvR v A Av   (8) 

where 0A , 1A  and 2A  are train-specific constants. As explained in Davis (1926), 0A  

comprises journal friction, rolling resistance and track resistance; 1Av  contains mainly 

flange friction but also frictions caused by concussion, swaying and oscillation; 2
2Av  

represents the air resistance. 

 

Assumption 2. Both the speed limit and track gradient are piecewise constant w.r.t. location. 

Therefore, we can divide the track segment 0, fX X    into N  subsections (which are 

sequentially numbered 1 to N  along the train’s moving direction), such that both the speed 

limit and gradient are constant on each subsection, i.e., 

 
   

   

n

n

x

v x v

  



,    1,n nX Xx    , 1,2 ,,n N  (9) 

where  nX  and  1nX  ,    1n nX X  , are the locations of the two ends of subsection n , 

 1
0X X  and  1N

fX X  , and constants  n  and  nv  are the corresponding gradient 

and speed limit. 

 

We call Eq. (9) a “subsection plan” (SP). In an SP, two adjacent subsections can be identical 

in both gradient and speed limit. An SP is called a “max-length SP” if it has no adjacent 

subsections identical in both gradient and speed limit. The max-length SP can be modified by 
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subdividing the subsections according to a predetermined length S  shown as follows. For a 

subsection n  of length      1n n nS X X  , if  nS S , then it will be cut into  nS S 
   

subsections of equal length, where  nS S 
   is the smallest integer no smaller than  nS S. 

As a result, the subsection lengths in the modified SP will be at most S . 

3. Nonlinear programming methods for solving the classic optimal train control problem 

In this section, we solve the general optimal train control problem (1)-(9) by converting it 

into the NLP problems. More specifically, we solve ODEs (1)-(2) and integral (6) analytically 

and obtain the closed-form expressions of speed, location and energy consumption. 

Consequently, Eqs. (1), (2) and (6) are replaced by these closed-form expressions, and the 

optimal control problem (1)-(9) is converted into NLP problems. Two different methods 

based on two different control strategies will be presented subsequently, which are 

respectively the four-stage strategy and the constant-force strategy. 

3.1. Method 1: four-stage strategy 

We first consider the optimal train control on a particular subsection n  with constant speed 

limit  nv  and constant gradient  n . According to existing research, the train can be 

controlled in an energy-efficient way by sequentially applying the four operations (or say 

stages) of MT, SH, CS and MB. The force applied in each stage is given as follows, 

 

 
   

 

MT

SH

0 CS

MB

r

n

r

T v

R v Mg
F

B v



   




 (10) 

where  nMg  is constant and  R v  is a quadratic function of v  given in Eq. (8). Notably, 

a speed of v  can be held if and only if    nr rB R v Mg T     . Substituting Eq. (10) 

into the speed dynamic (2), we have 
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To calculate the closed-form expressions of speed, location and energy consumption w.r.t. 

each operation, we first make the following assumption on the forms of maximum tractive 

and maximum braking forces. 

 

Assumption 3. The maximum tractive force and maximum braking force are both decreasing 

and piecewise-linear w.r.t. speed, with at most two pieces, i.e., 

   1 1
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, 1 0  , 2 0  , 1 0  , 2 0  , 1 1 2 2a av v      (12) 

and 

   1 1

2 2

, 0

,
br

b

vv v
v

v
B
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, 1 0  , 2 0  , 1 0  , 2 0  , 1 1 2 2b bv v      (13) 

Some possible shapes of  rT v  and  rB v  are illustrated in Figure 1 (Figure 1(a) for a 

continuous form and Figure 1(b) for a discontinuous form), where cv  is the critical speed at 

which the maximum tractive/braking force function switches from one piece to the other, i.e. 

c
av v  for MT and c

bv v  for MB. The pieces with speed lower and higher than cv  are 

respectively called Regime 1 and Regime 2. 

 

        
(a) Example of a continuous form        (b) Example of a discontinuous form 

Figure 1. Examples of maximum tractive and maximum braking forces. 

cv

Regime 1

Regime 2

Speed

 orr rT B

cv
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Regime 2
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 orr rT B
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Remark 1. The forms of  rT v  and  rB v  that are allowed under the four-stage strategy 

could be more complex than that assumed in Assumption 3, which could be 

piecewise-quadratic of arbitrarily many pieces. However, considering a more complex form 

would not introduce extra difficulty in modelling but only extra complexity in calculating the 

closed-form expressions. Specifically, including the quadratic term requires calculating the 

integral of cube of speed w.r.t. time for obtaining the energy consumption (see Eq. (17)), 

while allowing more pieces would complicate the discussion of switching condition in 

Appendix B for calculating the closed-form expressions w.r.t. the MT and MB stages.    ƶ 

 

Remark 2. When considering non-constant  rT v  and  rB v , the literature usually 

assumes forms more general than piecewise-linear and piecewise-quadratic. We can 

approximate the nonlinear piece(s) by the piecewise-linear function, as shown in the 

following Figure 2. We suggest using tangent lines rather secant lines so that the obtained 

control profile will always be feasible.       ƶ 

 

 

Figure 2. Approximation of a piecewise-nonlinear maximum tractive/braking function. 

 

Substituting Eqs. (12) and (13) into Eq. (11) further reads 
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Since  R v  is quadratic, the six ODEs in Eq. (14) can be expressed in a unified form 

Speed

Actual

Approximated

 orr rT B



12 

 2d

d

v
av v

t
b c    (15) 

but with different values of a , b  and c . The closed-form solution of Eq. (15) is calculated 

in Appendix A. Notably, during a MT (MB) stage, the speed is monotonically changing with 

time (proved in Appendix B), so the maximum tractive (braking) force may switch from one 

regime to the other. In this case, the closed-form expression of  v t  could be a piecewise 

function, which is discussed in detail in Appendix B.  

 

To solve the optimal train control problem (1)-(9), we adopt the four-stage strategy on each 

subsection. Notably, one can skip certain stages by assigning zero time duration to them. For 

a particular subsection n , let  
0
nv  be the initial speed on it, and  n

iv  and  n
i  respectively 

be the terminal speed and duration of stage i  ( 1i   for MT, 2i   for SH, 3i   for CS, 

and 4i   for MB). Also, let       1, ,n n n
i i iv     and       1, ,n n n

i i is v    respectively be the 

functions of terminal speed and distance traversed of stage i , given initial speed  
1

n
iv  , time 

duration  n
i  and gradient  n . Then for SH, we have         

2 1 2 1, ,n n n nv v     and 

          
2 1 2 1 2, ,n n n n ns v v  ; for the other three stages (MT, CS, MB), the closed-form 

expressions of these two functions can be calculated according to Appendix A and Appendix 

B. For energy consumption, denote       1, ,ii i
n n nE v    as the energy consumed during stage 

i  on subsection n , where 1,2i   since only the MT and SH stages are possible to consume 

energy. For the SH stage, 

                 2 2 1 121 , , max 0,n n n n n n nE v v R v Mg      (16) 

For the MT stage, if the maximum tractive force keeps in a particular Regime k , 1,2k  , 

then let    1 4

1 10 j

j
ii

n n
T



 
   be the time of entering subsection n  and we have 
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 (17) 

The closed-form expression of the second integral in Eq. (17) is provided in Appendix A. If 

the maximum tractive force switches from one regime to the other during the MT stage, then 
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the switching condition discussed in Appendix B should be considered when calculating 

      01 1, ,n n nE v   .  

 

The optimal train control problem (1)-(9) is then formulated as the following NLP problem. 
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 s.t.         1, ,n n n n
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     1
0 4
n nvv  , 2,3 ,,n N  (20) 
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0 0v V ,  

4
N

fv V  (21) 

     0 n n
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kN
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T
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S

 

     , 1,2,3,4i  , 1,2 ,,n N  (24) 

          
1

4

1

, ,n n n

i

n
i i is v S


    , 1,2 ,,n N  (25) 

           2 1 1 0n n n nrR v Mg B v      , 1,2 ,,n N  (26) 

           2 1 1 0n n n nrR v Mg T v       , 1,2 ,,n N  (27) 

Eqs. (19) and (20) require that the initial speed of each stage should be equal to the terminal 

speed of the previous stage; Eq. (21) defines the speed at the two ends of the journey; Eq. (22) 

is the speed limit constraint, where the speeds at only the two ends of each operation are 

confined since the speed is monotonically changing with time during a particular operation 

(proved in Appendix B); Eq. (23) is the total journey time constraint; Eq. (24) confines the 

time duration of each operation on each stage, where    k kS v  is the lower bound of 

running time on subsection k ; Eq. (25) requires that the sum of the distances traversed 

during the four stages of each subsection should equal the subsection length; Eqs. (26)-(27) 

are equivalent to the following feasibility condition of the SH stage, 
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in other words, the SH operation can be applied if and only if the required tractive/braking 

force is available. 

 

The following algorithm is used to solve NLP (18)-(27). 

 

Algorithm 1 

Step 1: Denote by  ,U a b  the uniform distribution on the interval  ,a b . The initial values 

of  n
iv  and  n

i  are generated according to the following rules: 
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Step 2: The initial values generated from Step 1 are used to solve the following minimisation 

problem: 

  min0 s.t. Eqs. (19)-(27) 

Step 3: The solution of Step 2 is used as the initial value to solve NLP (18)-(27). 

 

Remark 3. As we will find later in the case study in Section 5.2, the solution based on the 

four-stage strategy may contain operations of very short durations, due to either the short 

length of the corresponding subsection or the limited accuracy of the solver, making the 

resultant control profiles not easy to directly implement for train driving. Our suggestions for 

eliminating (part of) these operations are provided as follows. 
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(I) A short subsection (e.g. 10m, depending on the real situation) can be merged into its 

adjacent subsection, when the latter has the same gradient but a lower speed limit.  

(II)  An operation lasts for a very short period of time on a relatively long subsection may 

(although not always) indicate that such operation is redundant. Therefore, we can 

remove all of these operations, and then reconstruct and resolve the NLP problem by 

using the existing solution as the initial value. Generally speaking, within the total 4N  

operations, most of them are actually redundant, so the reconstructed NLP problem will 

be much easier and faster to solve. The suggested rules for determining which operations 

to remove are given as follows. 

(i) The first operation (i.e. MT) on the first subsection, and the last operation (i.e. MB) 

on the last subsection, will never be removed; 

(ii)  For each subsection, the operation with the longest time duration will not be 

removed (to guarantee that at least one operation is applied on each subsection); 

(iii)  Operations lasting less than a certain threshold (e.g. 1s, depending on the real 

situation) will be removed, except those protected by the above two rules. 

It is worth noting that, while attempting to remove the redundant operations, we might 

have a chance to remove those operations that are necessitated for constructing the 

optimal solution; however, it would not compromise the optimality too much when the 

threshold is small.        ƶ 

3.2. Method 2: constant-force strategy 

The four-stage strategy in Section 3.1 requires piecewise-quadratic  rT v  and  rB v  

functions. To allow more general forms of these two functions, in this part, we let the train 

apply constant force when traversing a subsection, so we do not need Assumption 3. By 

replacing the four-stage strategy with the constant-force strategy, the energy consumption 

may increase; however, the computation might be faster since the numbers of decision 

variables and constraints are reduced. 

 

Following Section 3.1, denote by  nu  and  n  the constant applied force and time duration 

of subsection n , and         0 , , ,n n n n
u v u    and         0 , , ,n n n n

us v u   respectively the 

functions of terminal speed and distance traversed. The optimal train control problem with 

the constant-force strategy is then formulated as the following NLP. 
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                1 1
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f fv V u VvB B T T   , n N  (36) 

Eq. (29) requires the initial speed at each subsection equalling the terminal speed of the 

previous subsection, and Eq. (30) defines the speeds at the two ends of the journey; Eq. (31) 

is the speed limit constraint, and again the speeds at only the two ends of a subsection are 

restricted since the speed is monotonically changing with time under a constant force (proved 

in Appendix B); Eq. (32) is the total journey time constraint; Eq. (33) confines the travel time 

on each subsection; Eq. (34) is the travel distance constraint; Eqs. (35) and (36) ensure the 

availability of the applied force, based on the fact that the train speed is monotonically 

changing with time on each subsection when the applied force is constant. 

 

The following algorithm is used to solve NLP (28)-(36). 

 

Algorithm 2 

Step 1: The initial values of  
0
nv ,  nu  and  n  are generated based on the following rules: 

  
    

0

0 1
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Step 2: The initial values generated by Step 1 are used to solve the following minimisation 

problem: 

  min0 s.t. Eqs. (29)-(36) 

Step 3: The solution of Step 2 is used as the initial value to solve NLP (28)-(36). 

 

Case studies will be provided later in Section 5.2 to compare the performance of the proposed 

fours-stage and constant-force methods. Before that, we will illustrate how to adopt these two 

methods in solving the more complex optimal train control problems. 

4. Complex optimal train control problems 

In this section, we illustrate how to apply the two novel methods that we have just proposed 

to solve the more complex optimal train control problems about the subway line scheduling 

(Section 4.1) and the simultaneous optimisation of a leading-following train pair (Section 

4.2). 

4.1. Energy-efficient subway line scheduling with sophisticated train control 

In this part, we show how to calculate the energy-efficient subway line schedules while 

considering the sophisticated train control, based on the methods proposed in Section 3. We 

consider the same problem as that in Section 4.2 of Ye and Liu (2016). The subway line has 

1L  stations, which are sequentially numbered from 1 to 1L  along the train’s running 

direction. The track segment between stations l  and 1l   is defined as section l . Denote 

 lN  as the total number of subsections on section l , and    
1

l

k

l kQ N


 , 1l  , as the 

total number of subsections on sections 1 to l , and  0 0Q  . The train needs to stop at each 
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station for passenger alighting and boarding. The interstation running time from station l  to 

station 1l   is bounded by    
min max,l lT T 

  , and the total interstation running time from station 1 

to station 1L  is fixed at T . To find the most energy-efficient schedule and the associated 

energy-efficient controls, we employ the four-stage strategy and formulate a new 

mathematical programming problem by adding following additional constraints (37)-(39) to 

NLP (18)-(27),  

 
  

4 0
lQ

v  , 1,2, , 1l L   (37) 

 0 0V  , 0fV   (38) 

    

 

 

 

1

4

min max
11

l

l

Q

in

i

Q

l n lT T
  

    , 1,2, ,l L  (39) 

where Eqs. (37)-(38) specify that the train should have zero speed at both ends of each 

section, and Eq. (39) constrains the interstation running times. Similarly, with the 

constant-force strategy, constraints (40)-(42) will be added into NLP (28)-(36). 

 
   1

0 0
lQ

v

 , 1,2, , 1l L   (40) 

 0 0V  , 0fV   (41) 

    

 

 

 

1
min max

1

l

l

Q

n Q

l n lT T
 

   , 1,2, ,l L  (42) 

A case study will be provided in Section 5.3 for this train scheduling and optimal control 

problem.  

4.2. Optimal control of multiple trains in fixed-block and moving-block signalling systems 

In this part, we illustrate how to optimise the control of a leading-following train pair in both 

fixed-block (Section 4.2.1) and moving-block (Section 4.2.2) signalling systems based on the 

methods proposed in Section 3. The two trains are numbered 1 and 2, respectively, where 

train 1 leads train 2. The departure and arrival times (speeds) of train k  are respectively 

denoted by ,0kT  ( ,0kV ) and ,k fT  ( ,k fV ). The functions of maximum tractive force, maximum 

braking force and resistance of train k  are given as  ·r
kT ,  ·r

kB  and  ·kR , respectively. 
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4.2.1. Fixed-block signalling system 

We consider the simplest fixed-block system where no temporary speed limit is applied on 

the blocks behind the occupied ones. Assume that the track is divided into M  block 

sections which are sequentially numbered 1 to M  along the train running direction. Same 

as Section 4.1, assume that each block section m  contains  mN  subsections, and let 

   
1

m

k

m kQ N


  be the total number of subsections on sections 1 to m , and  0 0Q  . A 

train cannot enter a block until this block is unoccupied for at least a predetermined time of 

0h . 

 

For the four-stage strategy, denote by  
,0
n

kv  and  
,0
n

kt  the speed and time moment of train k  

entering subsection n ,  
,
n

k iv  and  
,
n

k it  the speed and time of train k  finishing stage i  

(then      
, , , 1
n n n

k i k i k it t    is the time duration of stage i ) on subsection n , and 

      , , 1 ,, ,n n n
k i k i k iv     and       , , 1 ,, ,n n n

k i k i k is v     the functions of terminal speed and distance 

traversed of train k  on stage i  on subsection n . Further, let       , 1, ,, ,n n n
k i kk i iE v    , 1,2i  , 

be the energy consumed by train k  during stage i  on subsection n . The NLP for 

minimising the total energy consumption of both trains is then formulated as follows.  
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, 1 1 1

, ,min , ,
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n n n
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   (43) 

 s.t.         , , , 1 ,, ,n n n n
k i k i k i k iv v    , 1,2k  , 1,2,3,4i  , 1,2 ,,n N  (44) 

     1
,0 ,4
n n

k kvv  , 1,2k  , 2,3 ,,n N  (45) 

   1
,0 ,0k kv V ,  

,4 ,
N

k k fv V , 1,2k   (46) 

     
,0 n n

k iv v  , 1,2k  , 0,1,2,3i  , 1,2 ,,n N  (47) 

       
, , , 1
n n n

k i k i k it t   , 1,2k  , 1,2,3,4i  , 1,2 ,,n N  (48) 

     1
,0 ,4
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k kt t  , 1,2k  , 2,3 ,,n N  (49) 
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   1
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Constraints (44)-(47) and (51)-(54) are of the same meaning as their counterparts in Eqs. (19)

-(22) and (24)-(27); Eq. (48) defines the time duration of each stage; constraints (49)-(50) are 

similar to constraints (45)-(46); constraint (55) specifies the train separation requirement in 

the fixed-block system. 

 

The NLP formulation under the constant-force strategy can be easily established by referring 

to NLP (28)-(36) in Section 3.2 and NLP (43)-(55) above and thus is not explicitly provided 

here. 

4.2.2. Moving-block signalling system 

The safe train separation in a moving-block system can be expressed as the minimum 

headway in either space or time. When neither train changes the operation (MT, SH, CS, MB, 

or constant force), the two trains’ speeds are monotonically changing with time, but neither 

the distance nor the time headway between them. As a result, the minimum headway is not 

always achieved at the beginning or end of an operation. However, because our methods only 

track the train status at the two ends of each operation, we are not able to model the true 

moving-block system but only an approximate one, which is named by us a 

“quasi-moving-block system”.  

 

Assuming the minimum space headway is d . The max-length SP is first modified according 

to some S , as described in Section 2. Consequently, the lengths of the modified subsections 



21 

will not exceed S . Now, as illustrated in Figure 3, under the modified SP, given each 

subsection n  which satisfies    1 1n dX X   , the subsection 

    1max ,, ,2 ,1n jX nn dj X j     naturally satisfies    1n nd X X Sd    . If 

we forbid train 2 to enter subsection n  until train 1 leaves subsection n , then the allowed 

minimum distance is    1n nX X   . In other words, the allowed minimum space headway 

along the train journeys is not uniquely d  but varies within ,d d S   with the location of 

the leading train. Then by choosing a reasonably small S , we can approximate the true 

moving-block system without remarkable capacity loss. The NLP for this 

quasi-moving-block system with the four-stage strategy is formulated as NLP (43)-(54) plus 

the following train separation constraint (56), 

    
2,0 1,4
n nt t  ,     1max ,1,, 2n jn j X X d nj     ,     1 1 , 1,2, ,jj dn j NX X     (56) 

The quasi-moving-block system with constant-force strategy can be formulated in a similar 

way but again is not provided here. 

 

 

Figure 3. A quasi-moving-block system 

5. Case studies 

In this part, we examine the performance of the proposed methods in solving practical 

optimal train control problems based on a subway line which will be introduced in Section 

5.1. Section 5.2 compares the two proposed methods and the PM in solving the classic 

optimal train control problems, and Section 5.3 solves the subway line scheduling and 

optimal control problem.  
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The algorithms are all programmed and run in MATLAB R2016a on a desktop computer of 

8G RAM and an Intel(R) Core(TM) i5-4460 @ 3.20GHz CPU. The NLP problems based on 

Methods 1 and 2 are solved by the interior point method with the help of MATLAB’s built-in 

function fmincon, and the parameter values used are listed in Table 1. To use the PM, the 

optimal train control problems are first formulated as the multiphase optimal control (MOC) 

problems and then solved by the PM (via discretisation) with the help of GPOPS Version 5.1 

(Benson et al., 2006; Garg et al., 2010, 2011a, 2011b; Rao et al., 2010). Details of solving the 

optimal train control problems by the PM will not be provided in this paper, but interested 

readers can refer to Wang and Goverde (2016a, 2016b, 2016c), Wang et al. (2013), Ye and 

Liu (2016), and references therein. Parameter settings of GPOPS are given in Table 2, the 

explanation of which can be found in Appendix B of Ye and Liu (2016). 

 
Table 1. Parameter settings of fmincon for Methods 1 and 2 

Parameter 
Method 1 (Algorithm 1)  Method 2 (Algorithm 2) 

Step 2 Step 3  Step 2 Step 3 

‘Algorithm’ ‘interior-point’ ‘interior-point’  ‘interior-point’ ‘interior-point’ 
‘SubproblemAlgorithm’ ‘factorization’ ‘cg’  ‘cg’ ‘factorization’ 

‘TolX’ 1e-14 1e-14  1e-14 1e-14 

‘TolCon’ & ‘TolFun’ 1e-10 1e-10  1e-10 1e-10 

‘MaxIter’ 4000 4000  4000 4000 

‘MaxFunEvals’ 2e6 2e6  2e6 2e6 

 
Table 2. Parameter settings of GPOPS Version 5.1 

Parameter Column I Column II 

setup.autoscale ‘off’ ‘off’ 
limits(p).nodesPerInterval 40 (p=1,27,ڮ) 30 (p=1,13,ڮ) 

limits(p).meshPoints [-1,1] (p=1,27,ڮ) [-1,1] (p=1,13,ڮ) 

setup.mesh.iteration 0 0 

setup.derivatives ‘complex’ ‘complex’ 
setup.tolerances [1e-10,1e-10] [1e-8,1e-8] 

5.1. Track and train settings 

We use the same track and train settings as that used in Ye and Liu (2016), based on the 

22728m-long Yizhuang subway line in Beijing, China, with 14 stations. The station 

information and practical timetable is given in Table C.1 of Appendix C. The speed limit and 
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track gradient data are given in Table C.2 and Table C.3 of Appendix C, respectively. The 

train mass is 52.78 10M  kg, and the functions of resistance as well as maximum tractive 

and maximum braking forces are given below, where v  is in km/h, and  R v ,  rF v  and 

 rB v  are in kN.  
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5.2. Comparisons of Method 1, Method 2 and PM for the classic optimal train control 

problem 

We drive the train from Songjiazhuang (SJ) to Jiugong (JG) without stopping at the 

intermediate stations. The train speeds are zero at both ends, and the total journey time is 370 

seconds. The optimal train control strategies will be calculated by Methods 1 and 2 and the 

PM. For Method 1, the max-length SP (Table C.4, Appendix C) is used, which contains 27 

subsections. For Method 2, we consider both the max-length SP and three modified 

subsection plans with S  of 300m, 200m and 100m, respectively. Thus regarding Methods 1 

and 2, we have in total five cases to compare, i.e., Method 1 with max-length SP and Method 

2 with four different SPs. For each case, 100 randomly generated initial points are used in 

Step 1 of Algorithm 1/2 to solve the corresponding optimal train control problem. For the PM, 

a MOC problem of 27 phases is formulated by associating each subsection with a phase, and 

the formulation is given in Appendix D. The PM is run only once, and the parameter settings 

for GPOPS are given in Table 2 (Column I). 

 

The outputs and performance of fmincon and GPOPS are summarised in Table 3. MATLAB’s 

built-in ODE solver ode45 is further utilized to generate the train speed profiles in Figure 4 

and Figure 5, given control profiles suggested by Methods 1 and 2. The speed and control 

profiles suggested by GPOPS are shown in Figure 6. The results are discussed as follows. 

(1) In most cases, Methods 1 and 2 can converge to a feasible solution within the 
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predetermined tolerance and predetermined number of iterations. 

(2) The solution from Method 1 is globally optimal, which is evident based on two reasons. 

First, different starting points give the almost identical energy consumption (Table 3) and 

speed profiles (Figure 4). Second, as given in Figure 5 and Table 4, the journey starts with 

MT and ends with CS followed by MB; while in between, CS and MT are used in turn to 

adjust the train speed, and SH is used when reaching the speed limit. Such a driving 

pattern is consistent with the proved optimal train control rule.  

(3) For Method 2, only locally optimal solutions are found, which can be told from both the 

energy consumption (Table 3) and the speed profiles (Figure 4). However, these 

sub-optimal solutions are neither deviating too much from each other nor very far from 

the true optimum. With the max-length SP, the computation time of Method 2 is shorter 

than that of Method 1. As S  decreases to 200m, the number of subsections almost 

doubles and the computation time quadruples; however, the energy saving is only slightly 

improved. When S  is further shortened by half from 200m to 100m, the energy 

consumption significantly drops with the increase of subsection number and computation 

time. 

(4) The PM gives almost the same energy consumption (Table 3) and speed profile (except 

some fluctuation during SH, see Figure 6) as that of Method 1; however, the computation 

time is much longer (although it depends on the parameter settings), and the fluctuation 

on the control and speed profiles makes them difficult to follow or implement in the 

automatic train operating. The cause of the fluctuation during the SH was explained in Ye 

and Liu (2016), but we would like to restate it here. As we can see, the fluctuation 

happens at the expected SH operation, which corresponds to the singular arc in the 

optimal train control problem (Albrecht et al., 2016a; Howlett, 2000; Khmelnitsky, 2000; 

Liu and Golovitcher, 2003). It is known that the singular arc of an optimal control 

problem may not be perfectly realised by the so-called direct method including PM, 

unless the singular arc conditions are explicitly provided in the original optimal control 

formulation (Betts, 2010; Garg, 2011; Patterson and Rao, 2014; Rao et al., 2010). There 

are methods (Albrecht et al., 2016a, 2016b; Howlett et al., 2009) for finding such singular 

SH periods in a classic optimal train control problem; however, it is very difficult, if not 

impossible, to extend these methods for multiple trains and/or multiple intermediate 

stations discussed in this paper. 
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Table 3. Result comparison 

 Method 1 Method 2 Method 2 Method 2 Method 2 PM 

SP Max-length Max-length S =300m S =200m S =100m Max-length 

No. of subsections 27 27 37 46 78 27 

Failed trials* 2/100 0/100 1/100 1/100 3/100 - 

Computation 

time (s) 

Max**  22.4 24.2 124.2 131.7 458.4 - 

Mean**  16.2 9.6 25.8 36.3 109.6 100 

Min**  11.3 4.2 10.7 17.7 35.1 - 

Energy 

consumption 

(J/kg) ***  

Max**  313.1 326.0 (+4.1%) 325.1 (+3.8%) 326.1 (+4.2%) 322.3 (+2.9%) - 

Mean**  313.1 324.3 (+3.6%) 323.4 (+3.3%) 323.5 (+3.3%) 317.0 (+1.2%) 313.1 

Min**  313.1 324.2 (+3.5%) 323.0 (+3.2%) 323.1 (+3.2%) 316.1 (+1.0%) - 
*A trial fails if a feasible solution cannot be found within prescribed tolerance and prescribed number of iterations. 
** The failed trials are excluded. 
*** The percentages are calculated based on the energy consumption of 313.1J/kg from Method 1. 

 

 

Figure 4. Optimal speed profiles obtained by Methods 1 and 2 with all 100 starting points 

(excluding failed trials) under the max-length SP (shadowed area illustrating terrain). 
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Figure 5. Speed and control profiles obtained by Method 1 with a particular starting point 
(excluding operations lasting less than 0.01s). 

 
Table 4. Control profile in Figure 5: duration (in second) of each operation on each 

subsection 

Subsection 1 2 3 4 5 6 7 8 9 

MT 12.947 0.702 5.724 0.001 0.001 0.080 2.548 0.001 0.000 

SH 4.027 0.002 0.817 0.007 26.853 10.423 0.530 0.001 0.005 

CS 0.085 0.001 10.980 0.545 0.278 0.073 7.985 26.866 34.487 

MB 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Subsection 10 11 12 13 14 15 16 17 18 

MT 0.000 0.000 2.029 0.001 0.001 0.000 0.000 0.000 0.000 

SH 0.008 8.335 0.594 0.113 0.090 0.003 0.001 0.003 0.002 

CS 0.052 0.183 4.551 1.404 21.118 22.728 2.480 15.047 10.391 

MB 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Subsection 19 20 21 22 23 24 25 26 27 

MT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SH 0.002 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 

CS 1.695 18.036 31.802 18.914 29.959 0.409 12.505 1.444 0.000 

MB 0.000 0.000 0.000 0.000 0.000 0.000 0.001 3.612 16.510 

 

Applied
Max Tractive
Max Braking

Speed
Speed Limit
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Figure 6. Speed and control profiles obtained by PM. 

 

As one can find from Figure 5 and Table 4, the control profile suggested by Method 1 may 

contain operations of extremely short durations. We then adopt the technique in Remark 3 to 

remove operations shorter than 1s, without combining subsections. The new results are listed 

in Table 5, and for comparison the results of the original Method 1 is duplicated from Table 3 

(with one more digit). Clearly, after operation removal, the new NLP is very easy to solve; 

the energy consumption is slightly improved, which is not surprising since the removed 

operations are highly likely to be unnecessary. Particularly, the original speed and control 

profiles in Figure 5 and Table 4 are improved to Figure 7 and Table 6. 

 
Table 5. Result comparison for Method 1 

  Original Some operations removed 

SP  Max-length Max-length 

Failed trials  2/100 0/98* 

Computation time (s) **  Max 22.42 1.78 

Mean 16.16 0.93 

Min 11.32 0.87 
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Energy consumption (J/kg) **  Max 313.14 313.11 

Mean 313.13 313.11 

Min 313.13 313.11 
*Only the outputs of the successful trials in the original Method 1 are used as the input. 
** The failed trials are excluded. 

 

 

Figure 7. Speed and control profiles obtained by Method 1 (with some operations removed in 
Figure 5) 

 
Table 6. Control profile in Figure 7: duration (in second) of each operation on each 

subsection (the blank cells indicating the operations are not applied) 

Subsection 1 2 3 4 5 6 7 8 9 

MT 12.95 0.70 5.75    2.63   

SH 4.11    27.13 10.58    

CS   11.77 0.55   8.44 26.87 34.49 

MB          

Subsection 10 11 12 13 14 15 16 17 18 

MT   2.06       

SH  8.52        

CS 0.06  5.11 1.52 21.21 22.73 2.48 15.05 10.39 

MB          

Applied
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Speed
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Subsection 19 20 21 22 23 24 25 26 27 

MT          

SH          

CS 1.70 18.04 31.80 18.92 29.96 0.41 12.51 1.44  

MB        3.61 16.51 

5.3. Subway line scheduling and optimal train control 

As discussed in Ye and Liu (2016), to improve the energy efficiency of the subway line 

schedule, the PM gave a different schedule from the practical one in use, but the resultant 

energy consumption was not significantly reduced. Two possible explanations were given for 

this finding: either the original schedule is already quite energy efficient, or the solution 

obtained by the PM is only sub-optimal. With the methods proposed in this paper, we now 

have a chance to identify the true reason(s). 

 

We use Method 1 to calculate the most energy-efficient schedule of the whole Yizhuang line. 

The bounds of the interstation running times are given in Table 7, which is obtained by 

introducing ±30s offsets to the original schedule (from Table C.1) on each interstation journey, 

while taking into account the minimum interstation running time (Table 8). The minimum 

running time is calculated by replacing the objective function in Eq. (18) with journey time 

T . The output/performance of Method 1 (based on max-length SP) is summarised in Table 9; 

the max-length SP here is created by putting together the max-length SPs of all sections, so 

that the stations are at the ends of the subsections. An identical optimal schedule is obtained 

and shown in Table 10, where for comparison we also provide the original schedule as well as 

the optimal schedule obtained by PM. For the PM, the MOC formulation we use here is 

exactly the one used in Section 4.2 of Ye and Liu (2016), where each interstation journey is 

associated with a phase; however, we use a different set of parameters in GPOPS (Table 2, 

Column II) which leads to smaller feasibility and optimality tolerances. Notably, we round 

the optimised running times to integers while maintaining the total running times to be 

exactly the same as that of the original schedule. All the three values of the minimum total 

energy consumption (MTEC) listed in Table 10 is solved by Method 1 (based on max-length 

SP): given the corresponding schedule, the minimum energy consumption of each interstation 

journey is calculated by Method 1 and then added up to get the MTEC value. Based on these 

results, we can answer the question raised in the preceding paragraph. On one hand, the 

timetable in use is actually quite energy efficient, since the energy saved by Method 1 is very 
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small. On the other hand, the schedule given by PM is more energy-efficient than the 

practical one but less than the one suggested by Method 1, which means that the PM may not 

be able to give the globally optimal solution. In fact, it is quite difficult to choose appropriate 

parameters of GPOPS to ensure the convergence of the programme to a solution within 

acceptable tolerances; while for Method 1, it is easy to choose the parameters for fmincon to 

guarantee convergence to an optimal solution in most cases. 

 

Table 7. Lower and upper bounds of interstation running time 
Section l  1 2 3 4 5 6 7 8 9 10 11 12 13 

 
min

lT  (s) 160 82 127 110 68 91 80 83 134 122 117 80 84 

 
max

lT  (s) 220 138 187 165 120 144 133 134 194 180 170 132 135 

 

Table 8. Minimum interstation running time 
Section l  1 2 3 4 5 6 7 8 9 10 11 12 13 
Time (s) 150 82 126 110 68 91 80 83 133 122 117 80 84 

 

Table 9. Results of Method 1 

No. of 
subsections 

Failed trials 
Computation time (s) Energy consumption (J/kg) 

Max Mean Min Max Mean Min 

101 0/100 249.7 186.0 135.0 2160.8 2160.8 2160.8 

 
Table 10. Schedules and total energy consumption 

Schedule 
Interstation running time (s) 

MTEC (J/kg) 
1 2 3 4 5 6 7 8 9 10 11 12 13 

Original 190 108 157 135 90 114 103 104 164 150 140 102 105 2180.23 

Optimal (Method 1) 177 104 150 141 90 118 106 110 156 153 143 105 109 2160.89 (-0.89%*) 

Optimal (PM) 174 106 146 140 90 119 105 109 156 152 149 105 111 2164.87 (-0.70%*) 
* Compared with the original schedule 

6. Conclusions 

The traditional optimal train control, which seeks the energy-efficient train-driving strategy 

under a limited journey time budget, has been well formulated, solved and implemented in 

real-life train operations. The research now turns to a more complex phase involving multiple 

trains and/or intermediate constraints, e.g., simultaneously optimising the control of multiple 
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interacting trains, or combining optimal train control with the process of train scheduling. 

Existing methods all have their limitations and disadvantages in solving these practical 

problems of interest, which leads us to propose new solution methods in this paper. By 

assuming that the track is composed of subsections where each subsection has constant speed 

limit and constant gradient, and that the running resistance is a quadratic function of speed, 

our proposed two methods adopt two different operating strategies on each subsection, one is 

a sequence of four stages (MT-SH-CS-MB), and the other is constant force. The four-stage 

strategy requires the maximum tractive and maximum braking forces taking the decreasing 

and piecewise-quadratic form w.r.t. speed, while the constant-force strategy only requires 

decreasingness. For each of the five operations (MT, SH, CS, MB, and constant force), given 

its initial speed and time duration, we calculated the closed-form expressions of its terminal 

speed, travel distance and energy consumption. Based on these closed-form expressions, we 

formulated and solved the optimal train control problems as the NLP problems. Such NLP 

formulations were then used to solve the problems of energy-efficient train scheduling along 

a multi-station subway line, as well as the optimal control of a leading-following train pair 

under both fixed-block and moving-block signalling systems. A case study showed the 

difference of the two proposed methods in computational efficiency and solution optimality 

for solving a classic single-train single-journey optimal control problem, where the PM was 

also included for comparison. Another case study demonstrated the effectiveness of the 

proposed method in solving a practical subway line scheduling problem.  

 

The merits of the proposed methods lie in their effectiveness and efficiency in solving the 

complex optimal train control problems, as well as the ease in implementing the advised 

controls. The four-stage strategy will be able to yield the optimal train control since the 

MT-SH-CS-MB sequence has been proved to be energy-efficient under constant speed limit 

and constant gradient. The requirement of this strategy on the forms of maximum tractive and 

maximum braking forces may restrict its usage when facing more general forms of these two 

forces; however, such obstacle is not insuperable since the more complex force forms can 

always be approximated by piecewise-linear or piecewise-quadratic functions. Alternatively, 

the constant-force strategy allows more general forms of maximum tractive and maximum 

braking forces, and according to our case study it can achieve a stable and satisfying level of 

energy saving.  

 

For future research, it is still attractive to develop the indirect methods based on Pontryagin’s 
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maximum principle for the complex problems that are discussed in this paper. Meanwhile, as 

mentioned in Haahr et al. (2017), with the intermediate time-window (and speed-window) 

constraints, only one sequence of MT-SH-CS-MB on each subsection could be non-optimal 

or even infeasible; therefore, it is important to see how our Method 1 can be adapted to this 

scenario. We also notice that the dynamic programming method in Haahr et al. (2017) is 

efficient in solving the single-train optimal control problems with intermediate time 

constraints; however, their method on generating speed profiles is based on simulation or 

numerical methods, so there is scope for their process to be speeded up by using the 

closed-form expressions we used in this paper. Last but not least, it is also interesting to use 

the method in Haahr et al. (2017) for the optimal control of multiple trains. 
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Appendix A. Closed-form expressions of speed, distance and energy 

In this appendix, we calculate the closed-form solution to the general ODE 

 2d

d

v
av bv c

t
   , 0a  ,  0 0v t v  (A.1) 

Notably, only the key processes rather than all the tedious details will be provided. Since 

0a  , we let  2w v b a   and rewrite Eq. (A.1) as 
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, 0a  ,  0 0 0 2

b
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    (A.2) 

Defining  24 2X ac b a  , the ODE in Eq. (A.2) can be further transformed as follows. 

(1) If 24 0ac b   and 0 0w  , then d d 0w t  ; 

(2) If 24 0ac b   and 0 0w  , then 2d dw w a t ; 

(3) If 24 0ac b  , then  2 2d dw w X a t ;  
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(4) If 24 0ac b   and 0w X , then d d 0w t  ; 

(5) If 24 0ac b   and 0w X , then  2 2d dw w X a t , which further writes 

   d d 2 dw w X w w X aX t  . 

The closed-form expression of  v t  under each of the five scenarios above is calculated and 

provided in Table A.1, based on which the distance traversed  
0

d
t

t
v t t  and the integral 

  
0

2
d

t

t
v t t  for calculating the energy consumption are also calculated. 

 

Remark A.1. From Table A.1, when 24 0ac b  , since the  tan ·  function is undefined at 

2 , t  should satisfy    0 2, 2aX t t z    . This constraint is difficult to be, and 

thus is not, included in our NLP formulations. Therefore, the optimal train control profiles, 

once obtained, should be further checked against this constraint. All results in the case studies 

of this paper satisfy this constraint; however, occasionally in other scenarios, faulty results 

which violate this constraint were spotted.           ƶ 
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Table A.1. Closed-form expressions of speed, distance traversed, and integral of square of speed 
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Appendix B. Switching condition in the MT and MB stages 

According to Table A.1, the derivative of  v t  writes 
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which means the speed changes monotonically during each particular operation. Denoting ct  

as the value such that  c cv t v , then generally speaking, the maximum tractive/braking 

force will switch (i) from the low-speed regime to the high-speed regime only if the speed is 

increasing and ct t , and (ii) from the high-speed regime to the low-speed regime only if the 

speed is decreasing and ct t . Mathematically, the switching happens if and only if one of 

the following six conditions hold. 

(I) 24 0ac b  , 0 2

b
v

a
  , 0

0

1 1
2

2 2
c

c
t t t

av b av b
       

, and 

(i) 0
cv v  and 0a   (switching from Regime 1 to 2); or 

(ii)  0
cv v  and 0a  (switching from Regime 2 to 1). 
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(i) 0
cv v  and 0a   (switching from Regime 1 to 2); or 
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(ii)  0
cv v  and 0a  (switching from Regime 2 to 1). 
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Appendix C. Line and operation information of the Yizhuang line 

Table C.1. Station location and practical timetable of the Yizhuang line 
Station No. Station Name Location (m) Arrival (s) Departure (s) Dwell (s) 

1 Songjiazhuang (SJ) 0 - 0 - 
2 Xiaocun (XC) 2631 190 220 30 
3 Xiaohongmen (XH) 3905 328 358 30 
4 Jiugong (JG) 6271 515 545 30 
5 Yizhuangqiao (YZQ) 8254 680 715 35 
6 Wenhuayuan (WH) 9246 805 835 30 
7 Wanyuan (WY) 10785 949 979 30 
8 Rongjing (RJ) 12065 1082 1112 30 
9 Rongchang (RC) 13419 1216 1246 30 
10 Tongjinan (TJ) 15756 1410 1440 30 
11 Jinghai (JH) 18021 1590 1620 30 
12 Ciqunan (CQN) 20107 1760 1795 35 
13 Ciqu (CQ) 21394 1897 1942 45 
14 Yizhuang (YZ) 22728 2047 - - 

 

Table C.2. Speed limit (SL) in the form: SL (kmh-1)/start location (m) - end location (m) 
50/0-150 85/150-480 65/480-1161 85/1161-2501 60/2501-2643 85/2643-2797 

75/2797-3534 85/3534-3780 60/3780-3918 85/3918-5808 75/5808-6141 60/6141-6281 

85/6281-8122 60/8122-8265 85/8265-9116 60/9116-9259 85/9259-10655 60/10655-10797 

85/10797-11933 60/11933-12077 85/12077-13289 60/13289-13431 85/13431-14649 70/14649-15426 

85/15426-15624 60/15624-15768 85/15768-17891 60/17891-18033 85/18033-19982 60/19982-20120 

85/20120-21264 60/21264-21406 85/21406-22569 60/22569-22728   
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Table C.3. Track gradient in the form: gradient (‰)/start location (m) - end location (m) 

-2/0-160 -3/160-470 10.4/470-970 3/970-1370 -8/1370-1880 3/1880-2500 

-2/2500-2770 -3/2770-3170 8.2/3170-3570 2/3570-3940 -20.4/3940-4200 -24/4200-4800 

0/4800-5200 -2/5200-5800 -3.2/5800-6050 0/6050-6370 3.3/6370-6770 2.8/6770-7150 

-15.6/7150-7415 9/7415-7675 0/7675-8376 5/8376-8736 -2/8736-9036 0/9036-9366 

-2/9366-9806 5/9806-10126 3/10126-10606 0/10606-10866 2/10866-11426 -3/11426-11826 

0/11826-12116 3.5/12116-12736 -1.8/12736-13116 0/13116-13526 -0.5/13526-13926 1.5/13926-14546 

-1/14546-15176 6/15176-15476 0/15476-16006 -8/16006-16326 -3/16326-16696 5/16696-17136 

1.4/17136-17816 0/17816-18136 15.5/18136-18486 24/18486-19186 -3/19186-19426 10.1/19426-19776 

2/19776-20121 -3/20121-20796 3/20796-21231 2/21231-21481 20/21481-21681 3/21681-22066 

-18.9/22066-22416 2/22416-22728     

 
Table C.4. Max-length SP for case study in Section 5.2 

Subsection No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Start (m) 0 150 160 470 480 970 1161 1370 1880 2500 2501 2643 2770 2797 

End (m) 150 160 470 480 970 1161 1370 1880 2500 2501 2643 2770 2797 3170 

SL (km/h) 50 85 85 85 65 65 85 85 85 85 60 85 85 75 

Gradient (‰) -2 -2 -3 10.4 10.4 3 3 -8 3 -2 -2 -2 -3 -3 

Subsection No. 15 16 17 18 19 20 21 22 23 24 25 26 27 
 

Start (m) 3170 3534 3570 3780 3918 3940 4200 4800 5200 5800 5808 6050 6141 
 

End (m) 3534 3570 3780 3918 3940 4200 4800 5200 5800 5808 6050 6141 6271 
 

SL (km/h) 75 85 85 60 85 85 85 85 85 85 75 75 60 
 

Gradient (‰) 8.2 8.2 2 2 2 -20.4 -24 0 -2 -3.2 -3.2 0 0 
 

Appendix D. The MOC formulation used in Section 5.2 for solving the classic optimal 

train control problem 

In this appendix, we provide the MOC formulation used in Section 5.2 for solving the classic 

single-train optimal control by the PM. Similar to Wang and Goverde (2016a), we associate 

each subsection with a phase, therefore the resultant MOC problem for a train journey 

passing N  subsections will have N  phases. The independent variable is time. Denote  
0

pt

/  
0

px /  
0

pv  and  p
ft /  p

fx /  p
fv  respectively as the start and end time/location/speed of a phase 

p , i.e., the time/location/speed of entering and leaving a subsection p . Meanwhile, let 

    p px t ,     p pv t ,     p p
rT t  and     p p

rB t  respectively be the location, speed, applied 

tractive force and applied braking force at time  pt  during phase p . Then the classic 
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single-train optimal control problem (1)-(9) is reformulated to be a MOC problem as follows. 
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