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Abstract—For power grids with high penetration of intermittent renewable generations, 7 

energy storage system (ESS) is a key enabling device for the grid to accommodate the 8 

uncertainties of renewables. However, the installation of ESS at a suboptimum size not only 9 

increases the one-off installation cost, but also leads to higher long-term operation and 10 

maintenance costs. With the concern of capital costs outweighing ESS operating profits, this 11 

paper established a stochastic model to determine the optimal size of ESS for the planning of 12 

power grids with intermittent wind generations. In the model, the uncertain wind generations 13 

were first derived from long-term historical data as 24 hourly-based probabilistic 14 

distributions, and then a stochastic model with consideration of the generation fuel expected 15 

costs plus the ESS amortized daily capital costs was formed. Compared with the day-by-day 16 

time-series deterministic approach, the proposed probabilistic model is general and flexible 17 

for long-term power system planning with uncertain wind generations. A hybrid solution 18 

approach consisting of the point estimated method and the parallel branch and bound (BB) 19 

algorithm was then designed to effectively solve this model. In the case study, the cost-20 

benefits were thoroughly investigated using two modified test systems with 10-unit and 26-21 

unit including four typical ESSs with various key parameters. Simulation results confirmed 22 

that the proposed model and solution approach are effective to determine the optimal ESS 23 

size in power grids with intermittent wind generations. 24 
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1. INTRODUCTION27 

Energy conservation is always a popular and timeless issue in power industries, and 28 

various energy saving techniques with peak-load shifting capability [1-3] have attracted wide 29 

range of interests. With the premise of instantaneously balancing power generations and 30 

consumptions, energy storage system (ESS) is often operated to store surplus energy in off-31 

peak hours and release it during energy-deficiency hours such that temporal arbitrages can be 32 

obtained via economical scheduling of stored energy. 33 

While extensive researches have been conducted on ESS, they are mainly focused on the 34 

following two aspects [4]: 1) the optimal operation of ESS, and 2) the size determination of 35 

ESS.  36 

For ESS optimal operation, ESS is usually coupled with conventional generators and 37 

renewables to pursuit the maximum benefits for frequency regulation [5-7], oscillation 38 

damping control [8,9], voltage control support [10,11], etc. In addition, there are large 39 

amount of literatures focusing on conducting effective generation scheduling by using ESS 40 

[12-14]. For example, the energy shifting strategy was adopted in [15,16] to effectively 41 

dispatch an integrated thermal photovoltaic battery generation system for short-term 42 

economic resources allocation. An ancillary service model was proposed in [17] to enable 43 

electric vehicle aggregators to provide power utility with load regulation and spinning 44 

reserves via V2G such that the maximization of aggregator’s profit is inline with enhanced 45 

system flexibility. In [18], a demand response scheme with hybrid electric vehicles was 46 

designed for peak load shaving, and the game theory was adopted to solve the Nash 47 

equilibrium point to minimize customers’ charging cost. In [19], a security constrained unit 48 

commitment (UC) model was presented to arrange the energy and ancillary services of 49 

compressed air energy storages with given capacity ratings. Complementary to optimal 50 

operating ESS with these deterministic solutions in [15-19], the two-stage stochastic 51 

programming model was also developed [20-23] for ESS operation. In [21,22], the joint 52 

operation of a hydro pumped-storage and a wind farm was compared with their separated 53 

operations in a day-ahead uncertain market. The results indicated that the integrated operation 54 



3 

 

could earn more profits than their separated operations, while the impacts of the pumped-55 

storage size on power market profits were discussed without including any storage capital 56 

cost. In [23], a bi-level robust scheduling model was researched for virtual power plant (VPP) 57 

considering the wind power uncertainty, price-based and incentive-based demand response, 58 

and the results illustrated the model was effective to overcome the influence of uncertainty on 59 

VPP operations. In [24], a stochastic approach was presented to determine the optimal energy 60 

and reserve bids of a storage unit in a day-ahead and hour-ahead market with random wind 61 

generations. The approach deemed the storage unit owned by an independent investor instead 62 

of a Generation Company (Genco), and the target was to maximize the independent 63 

investor’s expected profit for two different biding strategies. While the cost of ESS capacity 64 

was roughly discussed in terms of energy biding from independent investors’ aspect, the 65 

complete cost related to ESS sizing (in terms of both power and capacity) has not been fully 66 

considered in its objective. 67 

With concerns on ESS high capital costs outweighing its profits, the determination of ESS 68 

size has become an important issue for its practical utilization. In [25], a deterministic 69 

approach was proposed to analyze the economic benefit of an ESS during its entire life cycle, 70 

and a tabu-search evolutionary algorithm was used to find the appropriate ESS size for a 71 

thermal power system. In [26], a Distributed Energy Resources Customer Adoption Model 72 

was introduced to determine the optimal size and operating schedules of thermal energy 73 

storages, results indicated that thermal energy storages with proper size can be effective to 74 

reduce annual electricity costs and peak electricity consumptions. In [27], the price-maker 75 

and price-taker approaches were proposed to figure out the optimal planning and 76 

management of distributed energy resources with consideration of its participation in the 77 

electricity market and its impact on the market price, and the results suggested that the 78 

aggregation of distributed energy resources can be very profitable for both aggregators and 79 

prosumers. In [28], the feed-forward neural network was used to forecast the solar radiation, 80 

then a conventional UC problem was solved to optimize the ESS deployments in micro grids 81 

for both grid-connected and islanded operation modes. For micro-grid in [29], a UC 82 

formulation including multiple PEM-Fuel Cell power plants was presented to determine the 83 
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optimum size of typical energy storages with practical constraints satisfied over one day with 84 

15-minute time step. In [30], a mixed integer linear programming model was developed to 85 

optimize the area of roof mounted photovoltaic thermal collectors and thermal energy storage 86 

volume, and then the model was decomposed into two sub-modules and solved iteratively to 87 

minimize the overall energy system cost. [31] adopted the particle swarm optimization (PSO) 88 

based frequency control method to evaluate an optimum size of ESS to prevent the micro-89 

grid from instability and system collapse. In [32], a MILP model integrating the daily energy 90 

plan with the generation expansion plan was introduced to determine the optimal capacity 91 

additions, electricity market clearing prices and daily operational schedules for the Greek 92 

power system. In particular, for power grid planning with wind generations and ESS, [33] 93 

established a three-stage approach to fix ESS sizing and siting to alleviate transmission 94 

network congestions. In the first two stages, the conventional security constrained UC was 95 

solved day-by-day for three years based on deterministic hourly wind generation predictions. 96 

The optimal size of storage unit was then derived from the average of the daily power and 97 

capacity ratings over three years. Since a large series of day-by-day optimizations spanning 98 

over many years was conducted to determine the ESS optimal size, this approach would be 99 

cumbersome for long-term power system planning with many years’ wind generation data. 100 

Because of the inherent stochastic characteristics of wind power, the uncertainties of wind 101 

generations should be take into account for determining ESS size in power systems planning 102 

problem, and a stochastic model needs to be researched correspondingly [25]. For this 103 

purpose, a stochastic cost-benefit model capable of effectively optimizing ESS size coupled 104 

with uncertain wind generations is proposed in this paper. Specifically, the probabilistic 105 

distribution curves of wind generations are first produced by fitting its historical data over 106 

multiple years, then a UC-based stochastic planning model is proposed. In the model, ESS is 107 

assumed to be owned by a Genco with objective to minimize Genco’s generation fuel costs 108 

expectation plus ESS amortized daily capital cost. The proposed stochastic model is then 109 

transformed into a deterministic UC problem using Point Estimated (PE) method, and solved 110 

by a parallel Branch and Bound (BB) algorithm. The main contributions of the paper are as 111 

follows: 112 
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1) The probabilistic distributions of hourly wind generations are easily derived from multiple 113 

years of wind generation data and readily extended for long-term stochastic power system 114 

planning. Compared with the three-stage planning for ESS in [33] based on the day-by-115 

day deterministic optimization over multiple years, in this paper the probabilistic 116 

distributions of hourly wind generations are firstly derived from historical data to enable a 117 

stochastic cost-benefit model to be proposed to directly optimize ESS size for power 118 

system planning.  119 

2) The proposed stochastic cost-benefit model, simultaneously considering the generation 120 

fuel cost expectation plus the amortized daily capital cost, is general and flexible for 121 

power system planning coupled with intermittent wind generations of various probabilistic 122 

characteristics. 123 

3) A parallel Branch and Bound algorithm with Point Estimated strategy incorporated is 124 

designed to efficiently solve the proposed model. 125 

4) The effectiveness of the proposed stochastic model and solution approach to determine 126 

ESS optimal sizing for power systems with uncertain renewables is demonstrated by two 127 

case studies, and the impacts of ESS key parameters on power system cost-benefits are 128 

also comprehensively investigated. 129 

The rest of this paper is organized as follows: Section 2 first derives the probabilistic 130 

distributions of hourly wind generations from historical data, and then presents the stochastic 131 

model to optimize ESS size. Section 3 introduces the PE method to convert the stochastic 132 

problem into a set of deterministic UC solved by a parallel BB algorithm. Two modified 133 

multiple-unit systems with intermittent wind generations are tested for four typical ESSs, and 134 

the impacts of ESS parameters on system cost-benefits are investigated in Section 4. Finally, 135 

conclusions and remarks are drawn in Section 5. 136 

2. PROBLEM FORMULATION 137 

This section proposes the UC-based stochastic cost-benefit model to determine the ESS 138 

optimal size for power system planning in presence of uncertain wind generations. 139 

Distinguished from the rolling approach with day-by-day deterministic optimizations over 140 
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multiple years [33], in this paper the stochastic features of wind generations was first 141 

extracted from the historical data, and the probabilistic distributions of hourly wind 142 

generations would be prepared for the stochastic model as follows. 143 

2.1 Probabilistic distributions of hourly wind generations 144 

The historical wind power data collected from [34] in 2013 and 2014 are used to analyze 145 

the stochastic features of hourly wind generations. Daily wind power data in the same hour of 146 

a day over multiple years are assembled to estimate the parameters of probabilistic hourly 147 

wind generation curves. Taking the first hour as an example, all the wind generations in the 148 

hour 00:00 to 1:00 of each day during 2013 and 2014 were aggregated to estimate the wind 149 

generation probabilistic distribution at hour 1. Since the wind farm installation capacity was 150 

occasionally changed during these two years, wind generations were divided by its 151 

installation capacity and the normalized value was used to derive the probabilistic distribution 152 

as the histogram depicted in Fig. 1. It can be seen that the probability density curve for wind 153 

power pw,t during hour 00:00 to 1:00 could be well-fitted by a Weibull distribution with shape 154 

parameter λ=0.307 and scale parameter k=1.230 in (1). Likewise, the probabilistic wind 155 

generation models for the rest 23 hours from 1:00:00 to 24:00 could be derived from the 156 

corresponding historical data. It was found that they also observe the Weibull distributions 157 

with parameters detailed in Table 1. 158 

,
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w t k

w t

pk
f p k e 

 


      (1) 159 

Based on the above analysis process for hourly wind generations, a total number of 24 160 

Weibull distributions were strictly derived from wind generation historical data in [34] for the 161 

stochastic cost-benefit model proposed later. Though Weibull distributions were derived here, 162 

other probabilistic distributions of hourly wind generations could be similarly established 163 

from the corresponding historical generation data. With these 24 hourly-basis probabilistic 164 

distributions, the stochastic characteristics of wind generations during multiple years shall 165 

have been properly represented and they are ready to be incorporated in the stochastic model 166 

in the following section. 167 
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2.2 Stochastic cost-benefit model for optimal sizing of ESS 168 

For the proposed stochastic cost-benefit model of ESS with uncertain wind generations, 169 

only the temporal arbitrage of ESS is considered in Unit Commitment (UC) for simplicity to 170 

determine ESS optimal size. However, the proposed stochastic model could be further 171 

extended as security constrained UC to take into account both the temporal and spatial 172 

arbitrages for obtaining the ESS size and locations in subsequent works. 173 

The optimal size of ESS, characterized by its rated power and capacity (denoted as PES
Rated

 174 

and SOCES
installed

 here) shall be figured out by energy-scheduling over the entire planning 175 

period to justify ESS costs by its benefits. However, solving such long-term energy-176 

scheduling problem over multiple years is computationally cumbersome or even impractical. 177 

Instead, in this paper, with the amortized daily capital cost of ESS and the probabilistic 178 

distributions of hourly wind generations estimated in Section 2.1, an equivalent daily UC-179 

based stochastic model is formulated as follows.  180 

Assuming that ESS is owned by a Genco, the aim is to minimize the sum of generation 181 

fuel cost and ESS capital from the Genco’s viewpoint. As wind generation at each hour is 182 

probabilistic, the generation fuel cost resulted from the corresponding UC solution will also 183 

be stochastic; thus a mixed objective function (2) including the generation fuel cost 184 

expectation plus the amortized daily ESS investment cost is designed as the objective of the 185 

proposed model 186 

Min cos( ) Rated installed

t ES p ES socE FC P IC SOC IC       (2) 187 

where E stands for mathematical expectation calculation. In the first term, FCcost is the 188 

system fuel cost consisting of electricity generation cost, start-up cost and shut down cost of 189 

all generators over all time periods as (3) 190 

cos ( 1) ( 1)

1 1

[ ( ) (1 ) (1 )]
T N

t it it Ui it i t Di i t it

t i

FC F P x S x x S x x 

 

            (3) 191 

where 
2( ) ( )it i it i it iF P a P b P c     ; ai, bi , and ci are fuel cost coefficients of unit i, Pit is 192 

generation output of unit i at hour t. 193 

The rated power of an ESS, constrained by the power converters, determines the 194 

maximum charging or discharging capability to support instantaneous power balance, 195 

javascript:void(0);
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whereas the rated capacity of an ESS, constrained by the storage volume, reflects the energy 196 

shifting capability. The rated power and capacity are two key physical parameters for ESS 197 

performance and its capital cost evaluation [28]. Therefore, the second and third terms in (2) 198 

stand for these capital costs which is generally proportional to each of these two parameters 199 

[28], and the cost coefficients are amortized from the one-time installation cost, annual 200 

operation and maintenance cost as (4) and (5). 201 

(1 ) 1

(1 ) 1

l

p p l

days

r r
IC Inv

r N


  

 
           (4) 202 

(1 ) 1 1

(1 ) 1

l

soc c cl

days days

r r
IC Inv OM

r N N


    

 
      (5) 203 

where Invc and Invp are the one-off installation cost per MWh and MW, OMc is the ESS 204 

operation and maintenance cost per MWh-year; l is the ESS lifetime in years, r is the interest 205 

rate and Ndays is the number of days in a year. 206 

The proposed stochastic cost-benefit model for ESS size determination includes 207 

constraints of both conventional generators and ESS as follows. 208 

1) System active power balance constraints  209 

, , , ,

1

/
N

it it w t dis t dis ch t ch D t

i

P x P P P P 


         (6) 210 

2) Up and down spinning reserve constraints 211 

,max , , , , ,

1

( ) /
N

rated

i it it ES dis dis t dis t dis ch t ch t ch U t

i

P P x P u P u P SR  


           (7) 212 

,min , , , , ,

1

( ) / /
N

rated

it i it ES ch dis t dis t dis ch t ch t ch D t

i

P P x P u P u P SR  


           (8) 213 

3) Unit ramping up and ramping down limits 214 

( 1) ( 1) ( 1) ,min[1 (1 )] (1 )it i t it i t i it i t iP P x x UR x x P              (9) 215 

( 1) ( 1) ( 1) ,min[1 (1 )] (1 )i t it i t it i i t it iP P x x DR x x P              (10) 216 

4) Unit generation limits 217 

,min ,maxi it it i itP x P P x         (11) 218 

5) Unit minimum ON/OFF time limits 219 
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( 1) ( 1)( )( ) 0on

i t i i t itT MUT x x        (12) 220 

( 1) ( 1)( )( ) 0off

i t i it i tT MDT x x         (13) 221 

Besides the above constraints of traditional generators, the constraints of ESS could be 222 

described as follows. 223 

6) ESS charging and discharging power limits 224 

, ,0 Rated

ch t ch t ESP u P          (14) 225 

, ,0 Rated

dis t dis t ESP u P          (15) 226 

7) Coupling constraints for ESS charging and discharging state variables  227 

, , 1ch t dis tu u              (16) 228 

8) ESS State Of Charge (SOC) energy constraints at time t 229 

( 1) , ,t t ch t dis tSOC SOC P t P t              (17) 230 

1 2

installed installed

ES t ESSOC SOC SOC           (18) 231 

9) ESS SOC energy at the end of each day shall be ready for continuous utilizations in 232 

the next day 233 

0TSOC SOC            (19) 234 

where Pit                generation output of unit i at time t 235 

Pi,max              maximum generation output of unit i  236 

Pi.min             minimum generation output of unit i 237 

xit                on/off status of unit i at time t 238 

SUi                  startup cost of unit i  239 

SDi                shutdown cost of unit i 240 

installed

ESSOC       ESS installed capacity 241 

ICSOC             daily investment cost $/MWh related to ESS capacity 242 

Rated

ESP             ESS rated power  243 

ICp                  daily investment cost $/MW related to ESS power 244 

Pw,t                 wind power output at time t 245 

ηch, ηdis           charging and discharging efficiencies of ESS 246 
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η1, η2             lower and upper limit coefficients of ESS energy capacity 247 

Pch,t, Pdis,t      charging and discharging power of ESS at time t 248 

PD,t                load demand at time t 249 

SRU,t              up spinning reserve requirement at time t 250 

SRD,t               down spinning reserve requirement at time t 251 

URi                ramp-up rate limit of unit i 252 

DRi                ramp-down rate limit of unit i 253 

MUTi            minimum up time of unit i 254 

MDTi           minimum down time of unit i 255 

on

itT                on period of unit i at time t 256 

off

itT                off period of unit i at time t 257 

uch,t                 charging state variable of ESS, 1 for charge, otherwise 0  258 

udis,t                discharging state variable of ESS, 1 for discharge, otherwise 0 259 

SOCt              ESS SOC Energy at time t  260 

It is clear that the physical meaning of the proposed model is to minimize Genco’s mixed 261 

cost which consists of both the daily fuel cost expectation and amortized daily ESS capital 262 

cost with conventional generators’ and ESS’ constraints. Compared with the rolling 263 

deterministic day-by-day optimization approach over multiple years in [33], the proposed 264 

stochastic model first summarizes the uncertain features of wind generations from their long-265 

term historical data, and then directly takes into account these uncertainties, therefore the 266 

proposed model is more suitable and flexible for system planning coupled with long-term 267 

uncertain wind generations. 268 

With wind generation uncertainties incorporated in the model, how to effectively handle 269 

uncertain generations Pw,t in the constraint (6) and conduct the expectation calculation E in 270 

the objective (1) becomes a critical challenge. In the following section, a hybrid approach 271 

based on the Point Estimated method embedded into the branch and bound algorithm is 272 

presented to address this challenge. 273 
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3. METHODOLOGY 274 

As an effective tool to address stochastic problems, the point estimated (PE) method 275 

solves these problems generally in three steps: 1) with information of the raw moments of 276 

input variables, a few sampling points with weighting factors are firstly concentrated from the 277 

probabilistic distributions of input variables with their original statistical information retained; 278 

2) afterwards the deterministic analysis procedures are conducted for these sampling points to 279 

obtain the deterministic solutions; 3) finally the stochastic characteristics of concerned 280 

outputs, such as the expectations or standard variations, would be calculated based on these 281 

deterministic solutions and their coupled weighting factors [35]. Among different versions of 282 

PE method such as 2m, 2m+1 and 4m+1 PE, 2m+1 PE scheme was reported as the best one 283 

with not only satisfactory accuracy of results but also relatively low computational burden 284 

[36,37]. This paper would therefore adopt the 2m+1 PE scheme to deal with wind generation 285 

uncertainties in the proposed UC-based stochastic model. 286 

In the proposed model, the wind generation at each hour is one uncertain variable, and a 287 

total number of T uncertain wind generations for T hours are denoted by a vector (pw1, pw2,…, 288 

pwt ,…, pwT ) here. According to the PE theory [36,37], a set of wind power profiles is 289 

generated for (pw1, pw2,…, pwt ,…, pwT ) as follows: the uncertain wind power pwt at hour t 290 

(t=1,2,…,T) is replaced with three locations pwt,k (k=1, 2, 3), while the remaining T-1 random 291 

wind powers are fixed at their mean values μw1, μw2,…, μwT. Therefore, three wind power 292 

profiles, referred as concentrations of PE, would been produced as (μw1 , μw2,… pwt,k ,..., μwT) 293 

(k=1,2,3) for one wind generation pwt at hour t (t=1,2,…,T). In other words, there are totally 294 

3T concentrations representing the random wind power generations in a period of T hours. In 295 

detail, for probabilistic wind power pwt  at hour t, its three locations pwt,k  are determined as 296 

, ,     1, 2,3; 1,2,wt k wt t k wtp k t T           (20) 
297 

where εt,k is the standard location, μwt and σwt are the mean and standard deviation of the 298 

stochastic hourly-basis wind power at hour t, which could be easily calculated from its 299 

probability distribution function [36,37]. The standard location εt,k and weight ωt,k are 300 

furtherly calculated by the Hong’s technique as follows. 301 
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303 

where λt,3  and λt,4  are the skewness and kurtosis of stochastic wind power pwt at hour t. In 304 

(22), as the setting εt,3=0 yields pwt,k =μwt in (20), T concentrations are the same as (μw1 , μw2,…, 305 

μwt,..., μwT), and their weights would be added up as (23) for the concentration (μw1 , μw2,…, 306 

μwt,..., μwT)  307 

2 1 ,3 2
1 1 ,4 ,3

1
1 ( )

T T

T t

t t t t

 
 



 

  


       (23) 308 

thus the total number of 3T concentrations is reduced to 2T+1.  309 

In the proposed stochastic model, each concentration (μw1 , μw2,… pwt,k ,..., μwT) (t=1,2,…,T) 310 

is a deterministic profile with T hourly wind generations, which would be used for the 311 

conventional UC scheduling to calculate the generation outputs and the fuel cost in (3). Here, 312 

marked the generation fuel cost of UC solution for the concentration (μw1 , μw2,… pwt,k ,..., μwT) 313 

as 314 

, 1 2 ,( , , , , , )t k w w wt k wTFC f p                     (24) 
315 

For all the 2T+1concentrations, the deterministic UC problem would be addressed 2T+1 316 

times to evaluate the fuel cost at each concentration. If denoted FCt,k as FC
s 

and the 317 

corresponding weighting factors ωt,k as ζs (s=1, 2, …, 2T+1), the generation fuel cost 318 

expectation in (2) would be calculated as 319 

2 1

cos

1

( )
T

s

t s

s

E FC FC




       (25) 
320 

Substitute (25) into (2) with the specific expression for FC
s
, the objective of proposed 321 

stochastic model is established to minimize a mixed total cost expectation as (26) 322 

Min 
2 1

( 1) ( 1)

1 1 1

{ [ ( ) (1 ) (1 )]}
T T N

s s s s s s

s it it Ui it i t Di i t it

s t i

F P x S x x S x x


 

  

            323 
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installed Rated

ES soc ES pSOC IC P IC         (26) 324 

where 2( ) ( )s s s

it i it i it iF P a P b P c     , s

itx and s

itP  are on/off status and generation output 325 

variables of unit i at time t for the concentration s. 326 

Following the same procedures, with the uncertain wind generations substituted by the 327 

concentrations generated by the PE strategy, the original constraints (6)-(19) could be 328 

transformed into a set of constraints (A1)-(A14) shown in the appendix of this paper.  329 

As a whole, by using the PE strategy, the original stochastic cost-benefit model (1)-(19) 330 

has already been converted into a set of deterministic optimization problems consisting the 331 

objective (26) and constraints (A1)-(A14). These problems could be solved as a deterministic 332 

mix-integer nonlinear programming (MINLP) problem using many well-developed 333 

algorithms such as the branch and bound (BB) algorithm [38,39]. It is noted that this ESS 334 

sizing problem involves a significant number of control variables. For example, considering a 335 

24-hour scheduling horizon with 10 generators, the number of variables would be 336 

(2×24+1)×10×4×24 for generators with (2×24+1)×5×24 variables for ESS. Consequently, 337 

such large-scale dimensional ESS optimal sizing problem could be too time-consuming to be 338 

directly solved by the BB method. However, since the constraints for each concentration s 339 

(s=1,2,…,2T+1) are only coupled by the ESS sizing variables PES
Rated

 and SOCES
installed

 in 340 

equation (26), (A2)-(A3), (A9)-(A10) and (A13), this large-scale MINLP problem can be 341 

decoupled into 2T+1 smaller scale UC problems and readily solved in parallel for the given 342 

PES
Rated

 and SOCES
installed

 values. A divide and conquer approach is therefore adopted to 343 

efficiently address this problem with the overall flowchart shown in Fig.2. The steps are 344 

generally depicted as follows. 345 

1) Firstly, set the ESS rated power PES
Rated

 and capacity SOCES
installed

 as discrete values 346 

within the allowable range. Each discrete pair of PES
Rated

 and SOCES
installed

 , denoted as 347 

(PES
Rated

, SOCES
installed

), would resemble a point in the mesh-grid;  348 

2) Then, for each (PES
Rated

, SOCES
installed

) pair, 2T+1 deterministic UC problems 349 

corresponding to the 2T+1 concentrations generated by the PE strategy will be solved 350 

in parallel by the BB method to obtain the fuel cost FC
s 
(s=1, 2 ,…, 2T+1); 351 

3) Afterwards, calculate the generation fuel cost expectation based on FC
s
(s=1, 2 ,…, 352 
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2T+1) with weighting factors ζs (s=1, 2 ,…, 2T+1) by (25), and further add the ESS 353 

capital cost according to (26) to obtain the system total cost for ESS size at (PES
Rated

, 354 

SOCES
installed

). 355 

4) Repeat step 2) to 3) to calculate the system total cost by (26) for each pair (PES
Rated

, 356 

SOCES
installed

); 357 

5) The pair (PES
Rated

, SOCES
installed

) with the minimum system total cost is the final solution 358 

of the planning problem as the ESS optimal size. 359 

REMARKS: 360 

1)  The proposed solution approach using PE strategy to sample one set of typical 361 

concentrations to replace the original probabilistic wind generations is able to transform 362 

a complicated stochastic model into a deterministic optimization problem, which is 363 

much easier to be solved by many well-developed optimization algorithms. This is the 364 

rationale behind the proposed solution approach. 365 

2) For the proposed UC-based stochastic model with uncertain wind generations for T 366 

hours, a total number of 2T+1 deterministic optimizations are solved for calculating the 367 

objective in (2). This means that the computational burden of proposed solution 368 

approach is closely related to the length of scheduling horizon T considered in the UC 369 

problem while it is not sensitive to the amount of wind generation data to be taken into 370 

account in the planning problem, compared to the rolling day-by-day optimizations for 371 

multiple years in [33]. 372 

3) At the core of the proposed solution approach is the PE method which transforms the 373 

original probabilistic optimization problem into a deterministic one afterwards 374 

addressed by deterministic optimization algorithms. As there are no limitations for PE 375 

method to handle different probabilistic distributions, the proposed solution approach is 376 

generally applicable to the power system planning problems with various probabilistic 377 

distributions of wind generations and other typical uncertain renewable generations. 378 

4. CASE STUDY 379 

Two power system cases with 10 and 26 generating units are used here to test the proposed 380 
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model. Four typical battery ESSs, namely Lead Acid Battery ESS (LAB-ESS), Advanced 381 

Battery Zn/Br ESS (AB Zn/Br-ESS), Advanced Battery Na/S ESS (AB Na/S-ESS), and 382 

Superconducting Magnetic ESS (SM-ESS) with parameters detailed in Table 2 [40]，are 383 

investigated in the 10-unit and 26-unit systems. The investment interest rate for all ESSs is 384 

5%, and the ESS SOC energy is constrained between 10% and 90% of ESS installed capacity 385 

SOCES
installed

. The ESS rated power and capacity are set as discrete values with a step of 386 

10MW for PES
Rated

 in the range [0MW, 80MW] and a step of 10MWh for SOCES
installed 

in the 387 

range [0MWh,80MWh]. The BB algorithm embedded in CPLEX optimization tool [41] is 388 

adopted as the optimization engine to solve the proposed model. The program is coded in 389 

Matlab 2011b and executed on a notebook with a 2.7GHz Intel Core i7-4600 CPU and 8GB 390 

RAM, and a computation platform with 4 local workers was built by Parallel Computing 391 

Toolbox 5.2 for running the parallel BB algorithm. 392 

Benchmark Approach 393 

The three-stage rolling approach to fix ESS sizing and siting for alleviating transmission 394 

network congestions in [33] is slightly modified as the benchmark for testing the stochastic 395 

model. Since the first stage in [33] is particularly designed to determine ESS locations for a 396 

congestion problem, only the second and third stages in [33] are extracted as the benchmark 397 

for determining optimal ESS size, which are generally described as follows. 398 

1) A conventional UC problem without constraints on ESS power and capacity ratings is 399 

solved day-by-day for multiple years; afterwards with these UC solutions, the maximum 400 

charged or discharged power and the daily maximum energy stored are deemed as ESS 401 

power rating and capacity rating for each day. These daily power and capacity ratings of 402 

ESS are averaged over the whole multiple years and the averaged value is deemed as ESS 403 

size (PES
Rated

, SOCES
installed

). 404 

2) Afterwards the UC problem is again solved day-by-day for multiple years to evaluate the 405 

cost-benefits, but this time with ESS constraints on ESS size (PES
Rated

, SOCES
installed

) 406 

obtained in step 1). 407 
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4.1 Case A: 10-unit system with Weibull distributions for hourly wind generations  408 

A 10-unit system [42] was modified with uncertain wind generations as the first testbed 409 

for the proposed model. The wind farm was assumed with a rated power 300MW, and the 410 

hourly wind generations were modelled as a series of Weibull distributions with normalized 411 

parameters estimated in Table 1 together with 24-hour load demands. The lifetime of ESSs 412 

was assumed as 15 years with charging/discharging efficiency as 0.9. The up and down 413 

spinning reserve requirements of the system were set as eight percent of the load demands in 414 

each hour, while traditional generator parameters are given in Table 3 with startup and 415 

shutdown cost assumed as constant and zero, respectively. 416 

With no ESS installed, the system total cost, which is equal to the fuel cost expectation in 417 

this condition, amounts to $4495641.6 as shown in Table 4. With LAB-ESS installed, the 418 

proposed solution approach took 943s to find the optimal ESS size as PES
Rated

 =20 MW and 419 

SOCES
installed

= 50 MWh with fuel cost expectation $4491714.6. It can be seen that the 420 

20MW/50MWh LAB-ESS leads to a $3927 saving in generation fuel cost, which can offset 421 

the $3188.7 LAB-ESS investment cost, resulting in a net system total cost saving of $738.3. 422 

Fig. 3 also plots the change of total cost expectation at different LAB-ESS rated power and 423 

energy capacity. As indicated by point A (PES
Rated

=0MW, SOCES
installed

=0MWh), the total fuel 424 

cost $4495641.6 is quite high. With growing LAB-ESS rated power and capacity, the system 425 

total cost expectation reduces accordingly and reaches the minimum $4494903.3 at the point 426 

B where PEV
Rated

 =20MW, SOCEV
installed

=50MWh. If either the LAB-ESS rated power or 427 

capacity is increased further, the system total fuel cost expectation will increase again. 428 

Therefore, the best size of the LAB-ESS for the tested 10-unit system shall be 20MW rated 429 

power and 50MWh energy capacity for this system. 430 

When the benchmark approach with rolling day-by-day optimizations in [33] was used to 431 

search the optimal ESS size for this system, it took 1584s to obtain a solution 432 

(PES
Rated

=21.2MW, SOCES
installed

=53.3MWh) with a system total cost as $4489180.5 as shown 433 

in Table 5. Compared with the proposed stochastic model, their results are comparable while 434 

the proposed model is more computationally efficient. This is due to following reasons. The 435 
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benchmark approach first conducted day-by-day optimizations in two years for minimizing 436 

the system cost and the final ESS optimal size was obtained as the average of these daily-437 

optimized ESS size. The benchmark approach is equivalent to minimizing the average cost 438 

over two years in a series of day-by-day rolling optimal operations. While with regard to the 439 

stochastic model proposed in this paper, the model is designed to directly minimize the 440 

expected fuel cost by calculating the mathematical expectation in the objective (2). Since the 441 

approach in [33] and the one proposed in this paper have the similar physical meaning to 442 

optimize ESS size by minimizing system average cost, their solutions are therefore 443 

comparable. However, there are differences existing in the model formulations and solution 444 

processes of these two approaches. The proposed approach firstly derived the probabilistic 445 

features of wind generations based on two years’ historical data, then directly considered 446 

these features in the stochastic model to minimize the average cost by using PE strategy and 447 

parallel BB algorithm. While the benchmark approach did not summarize the features of the 448 

wind generations, but utilized day-by-day rolling optimizations for multiple years and finally 449 

average the whole results as the ESS optimal size. Thus, the approach in [33] is an indirect 450 

scheme for determining the optimal size of ESS in a sense. It is also clear that with wind 451 

generation data accumulated for more years, the proposed stochastic model would be more 452 

flexible and applicable to system planning with long-term wind generations, as the 453 

probabilistic models of wind generations could still be readily derived from the long-term 454 

generation data firstly, and then directly used in the model without any additional efforts. 455 

However, the benchmark approach with day-by-day rolling optimizations would have to 456 

conduct a large and increasing number of deterministic optimization processes for the system 457 

planning with long-term wind generations.  458 

The cost-benefit analysis is also applied to the AB Zn/Br-ESS. As shown in Fig. 4, the 459 

lowest total cost of the system is $4495641.6 with both rated power and capacity at zero, 460 

which means it is not economical to install any AB Zn/Br-ESS in this system. The optimal 461 

sizes of the rest two types of ESSs are also calculated and shown in Table 4. A total cost of 462 

$4495293.6 and $4495506.1 are incurred for the systems equipped with AB Na/S-ESS and 463 

SM-ESS, respectively, while $348 and $135.5 cost reduction per day are achieved compared 464 
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with the system without ESS. Among the four types of ESSs, as the amortized daily capital 465 

cost of LAB-ESS is the lowest one with 59.39 $/MW for power and 40.02 $/MWh for 466 

capacity, the LAB-ESS shows the best economy for the 10-unit system with the optimal rated 467 

power and capacity at 20MW and 50MWh. From these comparisons, it is evident that the 468 

amortized daily cost of ESS is a key factor affecting the optimal size of ESS, and a battery 469 

with lower amortized daily cost would be the best choice for building ESS. Meanwhile, 470 

according to (4) and (5), the amortized daily cost could be reduced by decreasing the power-471 

related and energy-rated cost, which would be achieved by adopting advanced battery 472 

materials, or cutting down the OM cost with improved ESS management.  473 

To further investigate the impacts of ESS charging/discharging efficiency on system total 474 

cost, the LAB-ESS parameters ηch and ηdis are varied from 1 to 0.8, and the resultant total cost 475 

expectations are plotted in Fig. 5. It shows that when LAB-ESS efficiency is higher than 0.80, 476 

the system total cost could be reduced by installing properly sized LAB-ESS. However, for 477 

the charging/discharging efficiency lower than 0.80, the LAB-ESS capital cost would exceed 478 

system fuel cost saving and it is more economical for the 10-unit system without any size of 479 

LAB-ESS. This result indicated that the charging/discharging efficiency shall be higher than 480 

a certain threshold such that system total cost could be reduced by installing proper size of 481 

ESS. 482 

Similarly, how the LAB-ESS lifetime would influence the system total cost is also studied 483 

and relevant results are demonstrated in Fig. 6. As shown in Fig. 6, the longer the lifecycle of 484 

ESS is, the more system cost saving can be achieved because the amortized daily investment 485 

cost of ESS would be reduced as ESS lifespan grows. These results implied that effective and 486 

periodic regular battery maintenance, which facilitates maintaining ESS healthy operation 487 

status and extending battery service life, could also create more profits for the system with 488 

ESS. 489 

4.2 Case B: 26-unit system with Beta distributions for hourly wind generations  490 

A 26-unit system with a 500MW wind farm is used as the second testbed to investigate the 491 

proposed model. The fuel cost coefficients of generators are given in Table 6, and the system 492 
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up and down spinning reserve are set as five percent of load demands in each hour. To show 493 

the capability of proposed approach for handling various probabilistic wind generations, 494 

instead of adopting the Weibull distribution as in case A, the hourly wind generations during 495 

five years in this case are modeled as a series of Beta (α, β) distributions [43] with parameters 496 

normalized by the rated power 500MW given in Table 7. The four typical ESSs with the 497 

parameters in Table 2 are also adopted for this 26-unit system. 498 

In case without any ESS, the 26-unit system has a daily fuel cost expectation of 499 

$5954752.0 as shown in Table 8. When the system is equipped with LAB-ESS, an optimal 500 

solution (PES
Rated

=40MW, SOCES
installed

=70MWh) with the system total cost expectation of 501 

$5950636.4 is obtained in 5312s by the proposed approach. Compared with system total cost 502 

without any ESS, system total cost with LAB-ESS is reduced by $4115.6 per day. At the end 503 

of the LAB-ESS service life which is assumed as 15 years in this study, the cost saving of 26-504 

unit system achieved by LAB-ESS is accumulated to $22532910. It can be seen that the 505 

benefits resulted from installing ESS in this 26-unit system is quite impressive. 506 

When the benchmark approach in [33] was used to determine the ESS optimal size of this 507 

26-unit system with wind generations available for five years, it took 24711s to find an 508 

optimal solution as (PES
Rated

=38.8MW, SOCES
installed

=73.5MWh) with a system total cost 509 

expectation $5949827.2 as shown in Table 5. Compared with the solution of the proposed 510 

approach $5950636.4, the benchmark algorithm solution is slightly better due to the 511 

continuous PES
Rated

 and SOCES
installed

 adopted in the benchmark. Nevertheless, the 512 

computational time needed by proposed approach is significantly less. This demonstrated that 513 

the proposed algorithm could obtain an effective solution with higher computational 514 

efficiency than the deterministic day-by-day optimizations in [33], at an expense of slightly 515 

increased cost. In the 26-unit system, the speed-up ratio of the stochastic approach and the 516 

benchmark approach is 24711s/5312s=4.65, while the ratio in the 10-unit system is 517 

1584s/943s=1.68. It is evident that the speed-up ratio in 26-unit system is much higher. This 518 

is because in the 26-unit system there are five years’ wind generations available while in 10-519 

unit system only two years’ wind generation data are assumed available. As a result, the 520 

benchmark approach needs to conduct much more day-by-day optimizations for 26-unit 521 
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system than that for 10-unit system. The proposed approach, however, could easily overcome 522 

such difficulty by deriving the probabilistic characteristics from five years’ wind generations 523 

and directly taking into account those features in ESS sizing process, thus the computational 524 

efficiency of proposed approach is insensitive to the amount of wind generation data 525 

available for the planning problem. 526 

Similarly, other three typical ESSs are also investigated to evaluate their costs and benefits. 527 

In specific, for systems with AB Zn/Br-ESS, AB Na/S-ESS and SM-ESS, the system total 528 

expected costs are $5953306.9, $5952595.5 and $5952779.4, respectively as shown in Table 529 

8. Compared with the total cost expectation of the original system without any ESS, the costs 530 

were reduced by $1445.1, $2156.5 and $1972.6 per day, respectively. Among these four 531 

typical ESS batteries, LAB-ESS is the most economical one. LAB-ESS as the best choice for 532 

both the 10-unit and 20-unit system indicated that a battery with a cheaper amortized daily 533 

capital cost is an economical candidate for implementing ESS in power systems with 534 

uncertain wind generations. 535 

The impacts of LAB-ESS charging/discharging efficiency and lifetime on 26-unit system 536 

total cost were also presented in Table 9. As the charging/discharging efficiency ηch /ηdis 537 

varied from 0.8 to 0.95, the system total cost expectations were reduced from $5954752.0 to 538 

$5947815.3. In particular, there is no LAB-ESS installed in the system for the efficiency of 539 

0.8, and the 26-unit system has a very high total cost. As LAB-ESS lifetime increases from 5 540 

years to 20 years, the system total cost decreases accordingly. These results indicated that 541 

high efficiency and longer service life of LAB-ESS could provide power systems with more 542 

benefits. 543 

5. CONCLUSION 544 

In this paper, with probabilistic distributions of hourly wind generations derived from 545 

historical data of multiple years, a general and flexible stochastic cost-benefit analysis model, 546 

which considered the generation fuel expected costs plus the ESS amortized daily capital 547 

costs, was proposed to directly determine the ESS optimal size for power system planning 548 

with uncertain wind generations. The stochastic model was ingeniously transformed into a 549 
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deterministic one by using the Point Estimated method, and then efficiently solved by the 550 

proposed parallel BB optimization algorithm. Four types of ESSs with varied battery 551 

parameters were analyzed in two modified multiple-unit systems, and the impacts of ESS 552 

charging/discharging efficiency and lifetime on ESS cost-benefits were also fully investigated 553 

and discussed. The simulation results have demonstrated that the proposed stochastic cost-554 

benefit model is effective to optimize ESS size in power system planning couple with 555 

intermittent wind generations. 556 
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APPENDIX 563 

The original constraints of the proposed stochastic model could be transformed into the 564 

following constraints by using PE method. 565 
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where the variables with superscript s are the corresponding value for the concentration s 580 

generated by the PE method. 581 
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Table 1 Hourly load demands and Weibull distributions of wind power in 10-unit system  

Hour 

Load  

demand 

(MW) 

Normalized Weibull  

distributions of pwt Hour 

Load  

demand 

(MW) 

Normalized Weibull  

distributions of pwt 

λ k λ k 

1 700 0.307 1.230 13 1400 0.261 1.027 

2 750 0.305 1.226 14 1300 0.265 1.028 

3 850 0.299 1.210 15 1200 0.270 1.040 

4 950 0.296 1.185 16 1050 0.277 1.064 

5 1000 0.291 1.170 17 1000 0.280 1.063 

6 1100 0.289 1.161 18 1100 0.289 1.083 

7 1150 0.287 1.157 19 1200 0.297 1.105 

8 1200 0.284 1.152 20 1400 0.303 1.146 

9 1300 0.276 1.108 21 1300 0.306 1.178 

10 1400 0.266 1.062 22 1100 0.311 1.202 

11 1450 0.260 1.046 23 900 0.315 1.229 

12 1500 0.257 1.019 24 800 0.313 1.248 

 

 

Table 2 Key parameters of various ESSs 

Parameters LAB-ESS AB Zn/Br-ESS AB Na/S-ESS SM-ESS 

Energy-rated Invc ($/kWh) 150 400 250 500 

Power-rated Invp ($/kW) 225 175 150 300 

OM-rated OMc ($/MW-year) 155 100 100 100 

Efficiency ηch=ηdis 0.90 0.85 0.85 0.92 

Lifetime l(year) 15 20 20 30 
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Table 3 Conventional Generator data for 10-unit system 

Unit 
Pmax 

(MW) 

Pmin 

(MW) 

a 

($/MW
2
 h) 

b 

($/MWh) 

c 

($/h) 

MUT 

(h) 

MDT 

(h) 
SU($) SD($) 

Initial  

(h) 

1 455 150 0.0048 161.9 1000 8 8 4500 0 8 

2 455 150 0.0031 172.6 970 8 8 5000 0 8 

3 130 20 0.0200 166.0 700 5 5 550 0 -5 

4 130 20 0.0211 165.0 680 5 5 560 0 -5 

5 162 25 0.0398 197.0 450 6 6 900 0 -6 

6 80 20 0.0712 222.6 370 3 3 170 0 -3 

7 85 25 0.0079 277.4 480 3 3 260 0 -3 

8 55 10 0.0413 259.2 660 1 1 30 0 -1 

9 55 10 0.0222 272.7 665 1 1 30 0 -1 

10 55 10 0.0173 277.9 670 1 1 30 0 -1 

 

Table 4 Cost comparisons for 10-unit system with and without ESS 

ESS Type 

Optimal Sizing Fuel Cost 

Expectation 

($) 

ESS Cost 

($) 

Total Cost 

Expectation 

($) 

Cost 

Saving 

($) 

Rated

ESP  

(MW) 

installed

ESSOC

(MWh) 

No ESS 0 0 4495641.6 0 4495641.6 - 

LAB-ESS 20 50 4491714.6 3188.7 4494903.3 738.3 

AB Zn/Br-ESS 0 0 4495641.6 0 4495641.6 0 

AB Na/S-ESS 20 20 4493529.4 1764.2 4495293.6 348 

SM-ESS 10 10 4494077.6 1428.5 4495506.1 135.5 

 

Table 5 Comparisons of solution quality and time consuming for LAB-ESS 

 
optimal Sizing Time 

(s) 

Total Cost 

Expectation 

($) 

Comparisons 
P(MW) C(MWh) 

10-unit 

system 

[33] 21.2 53.3 1584 4489180.5 Time ratio=1.68; 

Accuracy =99.9% Proposed 20 50 943 4494903.3 

26-unit 

system 

[33] 38.8 73.5 24711 5949827.2 Time ratio=4.65; 

Accuracy =99.9% Proposed 40 70 5312 5950636.4 
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Table 6 Conventional Generator data of 26-unit system 

Unit 
Pmax 

(MW) 

Pmin 

(MW) 

a 

($/MW
2
 h) 

b 

($/MWh) 

c 

($/h) 

MUT 

(h) 

MDT 

(h) 
SU($) SD($) 

Initial 

(h) 

1 400 100 0.019 75.031 311.9102 8 5 500 0 10 

2 400 100 0.019 74.921 310.0021 8 5 500 0 10 

3 350 140 0.015 108.616 177.0575 8 5 300 0 10 

4 197 68.95 0.026 232 260.176 5 4 200 0 -4 

5 197 68.95 0.026 231 259.649 5 4 200 0 -4 

6 197 68.95 0.026 230 259.131 5 4 200 0 -4 

7 155 54.25 0.049 107.583 143.5972 5 3 150 0 5 

8 155 54.25 0.048 107.367 143.3719 5 3 150 0 5 

9 155 54.25 0.047 107.154 143.0288 5 3 150 0 5 

10 155 54.25 0.046 106.94 142.7348 5 3 150 0 5 

11 100 25 0.06 182 218.7752 4 2 70 0 -3 

12 100 25 0.061 181 218.335 4 2 70 0 -3 

13 100 25 0.062 180 217.8952 4 2 70 0 -3 

14 76 15.2 0.093 134.073 81.6259 3 2 50 0 3 

15 76 15.2 0.091 133.805 81.4641 3 2 50 0 3 

16 76 15.2 0.089 133.538 81.298 3 2 50 0 3 

17 76 15.2 0.088 133.272 81.1364 3 2 50 0 3 

18 20 4 0.143 378.896 118.8206 0 0 20 0 -1 

19 20 4 0.136 377.77 118.4576 0 0 20 0 -1 

20 20 4 0.126 376.637 118.1083 0 0 20 0 -1 

21 20 4 0.12 375.51 117.7551 0 0 20 0 -1 

22 12 2.4 0.285 260.611 24.8882 0 0 0 0 -1 

23 12 2.4 0.284 259.318 24.7605 0 0 0 0 -1 

24 12 2.4 0.28 258.027 24.6382 0 0 0 0 -1 

25 12 2.4 0.265 256.753 24.411 0 0 0 0 -1 

26 12 2.4 0.253 255.472 24.3891 0 0 0 0 -1 
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Table 7 Hourly load demands and Beta distributions for wind power in 26-unit system 

Hour 

Load  

demand 

(MW) 

Normalized Beta  

distributions of pwt Hour 

Load  

demand 

(MW) 

Normalized Beta  

distributions of pwt 

α β α β 

1 2223 4.849 9.577 13 2565 3.986 1.673 

2 2052 1.284 7.755 14 2508 1.827 4.718 

3 1938 1.472 10.822 15 2479.5 6.83 8.197 

4 1881 5.953 5.274 16 2479.5 6.378 1.692 

5 1824 4.278 1.777 17 2593.5 5.772 6.304 

6 1825.5 5.95 5.002 18 2850 2.833 7.37 

7 1881 4.907 3.668 19 2821.5 2.91 9.958 

8 1995 5.374 9.295 20 2764.5 6.943 11.753 

9 2280 1.242 4.066 21 2679 6.621 7.342 

10 2508 4.84 11.393 22 2662 1.993 9.944 

11 2565 2.526 6.886 23 2479.5 6.618 9.199 

12 2593.5 3.893 8.94 24 2308.5 7.161 10.032 

 

 

Table 8 Cost comparisons for 26-unit system with and without ESS 

ESS Type 

Optimal Sizing Fuel Cost 

Expectation 

 ($) 

ESS  

Cost ($) 

Total Cost 

Expectation 

 ($) 

Cost  

Saving 

 ($) 

Rated

ESP  

(MW) 

installed

ESSOC  

(MWh) 

No ESS 0 0 5954752.0 0 5954752.0 - 

LAB-ESS 40 70 5945459.6 5176.8 5950636.4 4115.6 

AB Zn/Br-ESS 10 10 5952040.1 1266.8 5953306.9 1445.1 

AB Na/S-ESS 30 40 5949396.8 3198.7 5952595.5 2156.5 

SM-ESS 20 20 5949922.4 2857.0 5952779.4 1972.6 
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Table 9 Impacts of LAB-ESS parameters on 26-unit system total cost expectation 

LAB-ESS parameters Total Cost Expectation ($) 

Lifetime=15 years 

charging/discharging 

Efficiency=0.80 
5954752.0 

0.85 5953127.1 

0.90 5950636.4 

0.95 5947815.3 

Charging/discharging 

efficiency=0.90 

Lifetime=5 years 5954752.0 

10 years 5952632.6 

15 years 5950636.4 

20 years 5949000.9 
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Fig. 1 Histogram of nominalized wind power at hour 00:00-1:00  

Fig. 2 Flowchart of parallel BB method for solving ESS optimal size problem 

Fig. 3 Optimal size of LAB-ESS for 10-unit system 

Fig. 4 Optimal size of AB Zn/Br-ESS for 10-unit system 

Fig. 5 Total cost expectation vs. LAB-ESS charging/discharging efficiency for 10-unit system 

Fig. 6 Total cost expectation vs. LAB-ESS lifetime for 10-unit system 
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Fig. 1 Histogram of nominalized wind power at hour 00:00-1:00  
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Discrete ESS rated power and capacity as 

M and N points, respectively

Mesh the discrete ESS power and capacity 

value into M*N pairs (PES
Rated ,  SOCES

installed )

Number of mesh pair P=1

For each concentration, form a deterministic UC problem 

with pth pair (PES
Rated ,  SOCES

installed ), and evenly distribute 

in total 2T+1 UC problems on 2T+1 CPU cores

Yes

Input load and unit data, and 

specify ESS parameters

Calculate 2T+1 concentrations with weights for 

hourly uncertain wind power by PE method 

Core 1 Core K
Core 

2T+1

Collect the  fuel cost of 2T+1 UC 

problems, and calculate the total cost 

expectation using (26)

For each concentration , 

run BB method to solve 

the UC problem 

Evaluate the fuel cost 

Core K

P<M*N

P=P+1

Output the optimal sizing of ESS

No

end

 

Fig. 2 Flowchart of parallel BB method for solving ESS optimal size problem 
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Fig. 3 Optimal size of LAB-ESS for 10-unit system 
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Fig. 4 Optimal size of AB Zn/Br-ESS for 10-unit system
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Fig. 5 Total cost expectation vs. LAB-ESS charging/discharging efficiency for 10-unit system
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Fig. 6 Total cost expectation vs. LAB-ESS lifetime for 10-unit system 

 

 




