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ABSTRACT

Renewable energy producers such as wind power producers (WPP) and electric vehicle (EV) aggregators are 

playing an increasingly important role in the electricity market as their large capacity could strategically influence 

the electricity price. This paper proposes a bi-level stochastic optimization model of offering strategy for an 

aggregated WPP-EV hybrid power plant (HPP) as a price maker in the day-ahead (DA) market while considering 

the uncertainties of the energy production and spot price in the real-time (RT) market. While the HPP’s profits is 

maximized in the upper level of the proposed model with the use of conditional-value-at-risk (CVaR) to manage 

the risk of expected revenues, the social welfare from the perspective of the grid is maximized in the lower level. 

The formulated bi-level model is first transformed into a single-level mathematical program with equilibrium 

constraints (MPEC) and then further transformed into a mixed integer linear programming (MILP) problem for 

solution. Simulation results have demonstrated the effectiveness of the proposed HPP model with strategically 

bidding price to increase profits and reduce volatility of profits by considering the risk-metric. 

HIGHLIGHTS 

 EV aggregators with both V2G and G2V services and WPPs are integrated as a HPP.

 A bi-level model of offering strategy for a HPP in the DA market is proposed.

 Renewable energy production and real market prices are considered as uncertainties.

 EVs and elastic loads as DR sources are price makers and price takers respectively.
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NOMENCLATURE 

Indices: 

l Loads 

g Traditional generation units 

k EV aggregator units 

  WPP units 

h HPP units 

n Nodes 

  Real-time market scenarios 

Sets: 

 Loads at node n 

Traditional generation units at node n 

EV aggregator units at node n 

WPP units at node n 

HPP units at node n 

All nodes connected to the node n 

The number of time periods 

The number of scenarios for RT market prices 

The number of scenarios for WPPs’/ EV aggregators’ energy productions 

Parameters： 

The weight of RT market prices 

The weight of WPPs’/ EV aggregators’ energy productions 

The RT market price based on scenario 

The EV capacity for the kth EV aggregator at time t based on scenario  , in MW 

The wind capacity for the  th WPP based on scenario  , in MW 

The maximum energy bought or sold for the kth EV aggregator in the RT market, in MW 

The maximum energy bought or sold for the  th WPP in the RT market, in MW 

The minimize state of charge for EVs, in % 
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       The maximum state of charge for EVs, in % 

   
    The maximum total charging energy of the aggregator k at time t, in MWh 

        The charging efficiency, in % 

           The discharging efficiency, in % 

     The maximum charging/discharging rate at time t, in % 

  
   The offer price for the gth traditional generation unit located at node n in the DA market 

  
   The bid price for the lth load unit located at node n in the DA market 

          The charging/discharging price between EV aggregators and EV owners at time t 

      The susceptance of the transmission line between nodes a and b 

   
    The maximum capacity of the transmission line between nodes a and b 

  
    The maximum energy production for the gth traditional generation unit  

  
    The maximum consuming for the lth load unit 

        The demand factor 

         The battery lifetime 

         The capital cost for battery  

ξ The parameter to weigh the expected revenue and CVaR   

      The confidence level 

Variables： 

             The clearing LMP price at node n and time t 

    
     

    The kth EV aggregator’ energy production for the DA market at time t, in MW  

    
       

 The  th WPP’ energy production for the DA market at time t, in MW 

    
      

 The  th HPP’ energy production for the DA market at time t, in MW 

      
      

 The kth EV aggregator’ energy bought or sold for the RT market in scenario   at time t, in MW  

      
        

 The  th WPP’ bought or sold for the RT market in scenario   at time t, in MW 

      
       

 The  th HPP’ energy bought or sold for the RT market in scenario   at time t, in MW  

      
      The kth EV aggregator’ energy production in scenario   at time t, in MW  

      
     The  th WPP’ energy production in scenario   at time t, in MW 

      
    The  th HPP’ energy production in scenario   at time t, in MW 
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       The state of charge for EVs connected to the aggregator k at time t, in % 

    
      

 The kth EV aggregator’ energy from EVs to the grid for the DA market at time t, in MW 

    
      

   The kth EV aggregator’ energy from the grid to EVs for the DA market at time t, in MW 

    
         

 The offer price for the  th HPP in the DA market at time t 

    
    

 The energy scheduled to be produced in the DA market for traditional generation units located at 

node g and time t, in MW 

    
    

 The energy scheduled to be consumed in the DA market for fixed and reduced loads located at 

node l and time t, in MW 

    
     The voltage angle at node n and time t in the DA market  

    
         

 The energy scheduled to be offered in the DA market for the  th HPP at time t, in MW 

    The value-at-risk in the DA market  

    
   The auxiliary variable to calculate the CVaR in the DA market  

  The expected revenue of the HPP unit 

I.  INTRODUCTION 

Towards low carbon emission and conservation of fossil fuels, the integration of various renewable energy 

resources to the grid has been actively researched in the past few decades for sustainable electricity [1]. 

Renewable energy generation has been predicted to account for 80% of the total electricity production by 2030 

and 100% by 2050, of which 37% will be provided by wind energy [2]. With significant growth in installed 

capacity of wind turbines and greatly improved wind generation technologies, WPPs have played a major role in 

some electricity markets such as in Denmark, in which it could bid strategically to influence the electricity price 

according to its own interest [3]. Traditional demand side management considers industrial, commercial and 

residential consumers as price-takers to make demand response (DR) for peak shaving [4]. EVs are new DR 

resources which not only could buy the electricity as consumers in G2V (Grid-to-Vehicle) mode but also sell the 

electricity back to the grid in V2G (Vehicle-to-Grid) mode. With the number of EVs dramatically increased, such 

price taker consumers are expected to supply energy as a virtual price maker on a large scale [5]. As EVs cannot 

directly engage in the market, an intermediary EV aggregator existed in the electricity market dispatches 

aggregated EVs and exchanges information between the ISO (independent system operator) and individual EV 

owners [6]. The flexible charging and discharging characteristic of EVs motivates EV aggregators to cooperate 

with WPPs to form a HPP. The aggregated HPP is promising for taking part in the electricity market and 
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strategically bidding to fix electricity prices and increase their overall profits. 

Previously, WPPs and EVs could not affect electricity prices as their proportions in the market were small and 

negligible [7]. As installed wind capacity and the number of EVs increased, WPPs and EVs become large-scale 

market participants and make bidding strategies as price takers [8, 9]. Offering strategies for energy suppliers as 

price makers are initially researched for traditional thermal generators [10-12]. Then traditional energy producers 

are extended to the hydro-generator combined with the pumped storage plant as a price-maker in [13]. However, 

models of these traditional energy producers have not yet considered the uncertainty of the renewable energy 

production. Offering strategies for renewable energy suppliers such as WPPs acting as price makers in the 

electricity market have been proposed and researched in recent years [14-16]. WPPs combined with hydro units to 

make an offering strategy was proposed in [17]. Utilizing storage devices to manage wind fluctuations was 

proposed in [18]. Optimal strategies for WPPs considering gas turbines and compressed air storage devices to 

compensate fluctuations of WPPs are proposed in [19]. As the development of DR resources in recent years, 

aggregated DR resources were suggested to balance the volatility of the wind energy production. The effect of DR 

resources on the wind generation is studied in [20] and [21]. Trading DR loads in a separate intra-day market 

increases revenues of WPPs was presented in [22]. A few researchers studied profits of DR sides from the 

perspective of WPPs [23]. An offering strategy only considered the DR aggregator as a price maker is developed 

in [24]. For combining aggregated EVs with WPPs, [25] increased profits by considering unidirectional G2V 

services (night residential EV charging) to manage energy deviations and [26] investigated the coordination of 

unidirectional V2G units and traditional generating units and wind generating units for effecting market prices and 

outcomes. However, little researches have been done for the EV aggregator with both G2V and V2G services 

cooperating with WPPs as a price maker in the electricity market to increase their overall profits. In the future 

smart grid, EVs will be increasingly important to affect the electricity price, and flexible EV sources used in DR 

programs would bring more profits to the society [27, 28]. However, renewable energy resources involve a lot of 

uncertainties, which would cause fluctuations and lead to economic losses for renewable energy producers [29]. 

Therefore, a risk-constrained offering strategy for the aggregated HPP with consideration of WPP and EV 

aggregator in oligopoly electricity market to be price-makers is proposed here. 

The main contributions of this paper include: (1) The effective integration of WPPs and EV aggregators is 

performed as a HPP to improve their conjunct interests, in which EV aggregators cooperating with WPPs for 

satisfying high energy offered in V2G mode and using wind energy to meet EVs' charging requirement in G2V 

mode at moments of low energy offered; (2) A bi-level stochastic model of the offering strategy in the pool-based 
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market is proposed to maximize the aggregated HPP’s revenues and manage expected revenues’ risks with 

uncertainties of renewable energy productions and real market prices; (3) The aggregated EVs and elastic loads, as 

the price maker and the price taker in the market respectively, are implemented as flexible DR sources in the 

proposed model. Case studies are implemented to illustrate the validity of the proposed approach. 

II.  PROBLEM DESCRIPTION 

The electricity market consists of the offering stage and clearing stage in both DA and RT markets. Most of the 

energy trading is completed in the DA market, while the energy deviations are compensated in the RT market. In 

a pool-based electricity market shown as Fig.1, all participants provide optimal offer prices and energy to the ISO 

in the offering stage. Then ISO uses the collected data for market clearing to obtain locational marginal prices 

(LMP) paid to energy providers in the clearing stage [30]. This paper focuses on developing a stochastic offering 

strategy for the proposed HPP considering uncertainties of renewable energy in the offering stage of the DA 

market. 

In a pool-based DA market, all participants have to submit their sales or purchases offer to the ISO for each 

hour of the next day and several hours in advance. Participants could be categorized into two different groups, 

which are energy sellers such as traditional generators and multiple renewable energy providers, and energy 

buyers such as various consumers. In a fully competitive market environment, all participants could participate in 

setting prices. However, the actual market is closer to an oligopoly market. It means energy providers with 

large-scale capacities are easier to alter electricity prices according to their interests, while other small-scale 

participants are just price takers. The increasing installed capacities of WPPs and growing numbers of EVs 

connected to the grid results in these two distributed renewable resources to be aggregated to strategically affect 

the market prices [31]. It could be beneficial to cost and price reduction for EV aggregators and WPPs bidding 

separately in the electrical market. These EV aggregators may not be able to compete with WPPs for bidding 

prices as the battery capacity of aggregated EVs is much less than WPPs. As a result, the aggregated EVs are 

expected to cooperate with WPP to offer in the DA market. Meanwhile, interests of the gird should not be ignored 

with price-maker participants strategically offering to bring their economic benefits. Consequently, this paper 

focuses on the coordination of WPPs and EV resources as a HPP to develop the optimal offering strategy for 

improving their own interests. This would be solved by peak shaving as flexible charging or discharging 

characteristics of EVs. To be specific, EV owners may provide energy by V2G in due time to compensate with the 

WPP for satisfying the high energy offered, then use the wind energy to meet charging demand for EV owners 

when the energy offered is relatively low. In this way, EV owners could help the WPP to sell more electricity and 
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earn more money at the high energy offered time while the wind energy would not be wasted during periods of the 

low energy offered, which is beneficial to both the HPP and the grid. 

Therefore, EV aggregators and WPPs are collaborated as a price-maker HPP in this paper. This central planner 

makes decisions based on collecting necessary information from WPPs and EV aggregators, and then uniformly 

schedules their individual energy. Other participants including traditional generators and DR loads are set as 

price-takers. They would offer productions at their marginal costs, and offer prices are known for strategic energy 

providers [2]. In this study, the transmission network is represented by a DC model without losses, and 

uncertainties of actual energy productions and real-time market prices are modeled by corresponding scenarios 

based on the stochastic approach [32]. Scenarios of actual energy productions for the WPP and EV aggregator are 

represented by the maximum output energy derived from historical wind speeds and historical data for the number 

of EVs connected to the aggregator, respectively with    and    represented their probabilities, respectively. The 

expected profit is finally characterized by corresponding probability distribution for these uncertainties. As 

uncertainties will take high volatility for energy providers’ revenues, a well-established risk management measure 

CVaR is added in problem formulation to evaluate the expected profits according to offering decisions [33]. 

III.  MATHEMATICAL FORMULATION 

Aiming at the market described above, a stochastic optimization model of risk-constrained offering strategy for 

the aggregated HPP including the WPP and EV aggregator in the DA market is proposed. It is further developed as 

a bi-level model as shown in equations (1)-(2-h), in which the upper level is used to maximize profits of the 

strategical HPP while the lower level aims to maximize the social welfare from the perspective of ISO in the grid. 

A. HPP Model 

In this model, the HPP in the upper level first provides energy offered     
         

 and offer price     
         

 to 

the ISO in the lower level. Then ISO clears market combining this information with offers and bids from 

non-strategical traditional generators and DR loads separately by using the optimal power flow (OPF). After that, 

scheduled energy production in the DA market     
      

 and LMP      are provided to the HPP in the upper level 

to maximize profits. Lastly, optimized offer results     
          

 and     
         

 for the WPP,     
        

 and 

    
         

for the EV aggregator could be obtained and provided to the DA market. These optimized price-energy 

production curves are the offering strategies in this research. 
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1) Upper level 

By combining the WPP and EV aggregator to be a HPP, the offering strategy model corresponding to the 

expected profit function can be expressed as follows: 
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    ，  (1-q) 

The objective function in the upper level is to maximize the HPP’s profit. It should be noticed that an EV 

aggregator is unable to produce energy by itself. It takes part in the electricity market as an agent for buying 

electricity from individual EV owners and selling electricity to the grid. The payoff function (1-a) consists of six 

terms. The first term is the revenues of selling electricity in the DA market          
      

. The second term is EV 

aggregator’ cost of energy production in DA and RT market                     
  , which is followed by EV 

aggregator’s incomes or expenses from selling or buying electricity in the RT market          
          

         

The next two terms are compensation cost for battery degradation  
        

        
        

      
and wind’s incomes or 

expenses from selling or buying electricity in the RT market          
          

                 is the LMP 

calculated from the lower level as a dual variable in constraint (2-a) for energy balance, which is used to pay for 

the EV aggregator and the WPP. There are two kinds of uncertainties considered in the model, which are spot 

price in the RT market   
    and actual energy production capacities     

               
      

. As actual energy 

productions       
    may be more or less than energy scheduled in the DA market     

      
, HPP needs to buy deficit 

or sell surplus energy       
       

 in the RT market to compensate the energy deviation in the DA market, and hence, 

      
       

could be positive or negative. The last term is CVaR. Here, the weight parameter   is used to weigh 

expected profit and CVaR, and to show different offering strategy. If   is zero, the proposed model will be a 

risk-neutral model, which considers the maximum profits for EV aggregator and neglects the risk. As   becomes 

larger, the EV aggregator considers not only its profit but also its risk. When   is large enough, a risk-averse 

offering model is considered, which means profits for the EV aggregator is neglected while a minimum revenue 
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should be maintained for a confidence level       [34]. 

 (1-b)-(1-q) constrain the upper level objective function (1-a). Constraint (1-b) states the relationship between 

scheduled energy productions in the DA market by the WPP, the EV aggregator, and the HPP. Constraint (1-c) 

imposes the relationship between actual energy generated by the WPP, the EV aggregator, and the HPP. 

Constraint (1-d) imposes the limit of available energy for the HPP according to each scenario. Then (1-e) gives the 

relationship between scheduled energy productions in the RT market by the WPP, the EV aggregator, and the 

HPP. (1-f) limits energy bought or sold for the HPP in the RT market. (1-g) and (1-h) state the relationship 

between scheduled energy productions in the DA market, RT market, and total energy productions for the EV 

aggregator and WPP separately. Constraint (1-i) is used to maintain EVs to avoid overcharging and 

over-discharging. Equation (1-j) gives state changes of charging/discharging for EVs connected to the EV 

aggregator. The charging / discharging rate in each hour is limited in (1-k). Equation (1-l) shows the kth EV 

aggregator’ scheduled energy in the DA market, which is equal to the energy provided in V2G minus the energy 

consumed in G2V. Besides,      and      are binary variables as (1-o). So inequalities (1-m) and (1-n) are used to 

constrain     
      

 and     
      

 not to exist at the same time. Additionally, the lower limit for     
      

 and     
      

 

is a nonzero value     
      

. It means that the EV aggregator may provide energy by V2G in due time with WPP to 

satisfy the high energy offered, and use wind energy to meet charging demand for EV owners when offered energy 

is relatively low. Finally, (1-p) and (1-q) are used to compute the CVaR [34]. 

2) Lower Level 

In the pool-based electricity market, ISO collects all producers’ offer prices and consumers’ bid prices and 

finishes market clearing. Finally, ISO provides price signals and the scheduled energy to all participants in the 

upper level. This process is finished in the lower level model. As demands are considered as elastic, the objective 

function (2) in the lower level is to maximize social welfare from the perspective of the grid. Besides, traditional 

OPF is used to clear the market transaction. 

Maximize  
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, , , ,
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h t h t h t h tP P h t     (2-f) 

, ,0 : , : ,DA DA
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, ,

, , ,- : , \ : ,DA L DA U DA

n t t t n n ref t        ，  (2-h) 

The first constraint (2-a) defines the offer price of HPP in the DA market which should be nonnegative. (2-b) 

enforces the energy balance between supply and demand, which is associated with a dual variable      to donate 

the LMP used in the upper-level. Inequality (2-c) limits the energy flow in each transmission line. Maximum and 

minimum productions of scheduled energy for traditional generation units, load consumptions and the HPP in the 

DA market are shown in (2-d), (2-e) and (2-f) individually. It shall be noted that load consumptions, including 

fixed load requirement represented by minimum load values and curtailed load as DR, are considered as variables 

in the model. Equation (2-g) sets the voltage angle at the reference node as zero and inequality (2-h) constrains 

voltage angles at nodes except the reference node. Additionally,       
          

         
         

         
         

         
      

    
         

       
         

      are the corresponding dual variables for constraints from (2-b) to (2-h). 

B. Solution methodology 

To obtain the optimal value, the proposed bi-level model is first transformed into a single-level model by 

translating the lower level model using KKT (Karush-Kuhn-Tucker) constraints [3]. Then, transformed 

constraints are added to constraints in the upper level to limit the upper objective function. In this way, the original 

bi-level model could become a single-level MPEC problem. The MPEC model contains two terms of 

nonlinearities. Replacing these two non-linear terms using strong duality theorem (SDT) and the Fortuny-Amat 

transformation respectively, this MPEC model could be further transformed into a MILP model [35].  

After the transformation above, the transformed MILP model is solved by MOSEK through YALMIP interface. 

Computing times are affected by the number of buses in the system and the number of scenarios used to represent 
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uncertainties. In addition, large numbers of binary variables are required to linearize complementary constraints in 

MEPC model, which may greatly increase the complexity of calculation. 

IV.  CASE STUDIES 

The proposed model is tested in the IEEE six-bus and thirty-bus systems for a day divided into 24 hours. While 

the traditional generation unit capacities are assumed constant throughout the day, the capacities of loads would 

change over time with the demand factor shown in Fig.2 [3]. The uncertainties of the RT market price   
    are 

represented by the same 10 scenarios in 24 hours with corresponding probabilities selected from [3]. Fig.3 and 

Fig.4 show respectively the uncertainties of maximized productions for the WPP and the number of EVs that can 

be aggregated by the EV aggregator over time [36, 37]. For the sake of simplicity, probabilities of all scenarios for 

energy productions are considered as (0.1). Additionally, the charging / discharging cost for the EV aggregator 

and the rated power for every EV are set to 20$/MWh and 10kW, respectively. Other parameters for the EV 

aggregator are listed in Table 1. 

A. Six-Bus System  

The IEEE six-bus system consists of 3 generators, 3 demands, and 11 transmission lines. A WPP and an EV 

aggregator are located at node 4 and node 5, respectively. Table 2 lists capacities, offer prices and bid prices for 

traditional generation units and load units [3].  

1) Offering curve of the HPP model 

With system settings described above, Fig.5 presents optimized offering results of the aggregated HPP. The 

blue curve and the green curve refer to energy offered and offer prices, respectively, in 24 hours for the DA 

market. As uncertainties of actual energy productions and RT market prices, the energy offered would vary 

throughout the day. Besides, the curve of offer prices would change with the curve of the energy offered. The 

energy offered in Fig.5 is relatively high in the first few hours, 9:00-15:00, and last three hours, while 

corresponding prices are comparatively low. This is because it will take an economic risk for the HPP with offer 

prices being relatively high at these moments. Specifically, if the actual energy production is lower than the 

energy offered, the HPP will have to buy the energy at a high price in the RT market for meeting the energy 

offered in the DA market. As a result, the HPP offers relatively low prices at moments of comparatively high 

energy offered, in which it could sell the surplus to the RT market with the actual production exceeding the energy 

offered. Similarly, the HPP offers a relatively high price when the energy offered is comparatively low. In this 

way, the HPP may only need to buy a small amount of deficiency at a high price in the RT market once the actual 
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production is lower than the energy offered. Conversely, the HPP could sell the surplus at a high price when the 

actual production exceeds the energy offered, which makes sense for the HPP’s profits. In general, the HPP 

adjusts the offer price and set the electricity price according to the energy offered. After the clearing process in the 

DA market, the LMP is equal to the offer price at the same node. Then energy providers at each node will be paid 

at the corresponding LMP in the RT market. Besides, all clearing LMPs are equal at all nodes in a six-bus system 

with no congestion occur. To sum up, the influence of energy quantities offered on cleared market prices shows 

how large-scale renewable resources strategically affect electricity prices in the electricity market. 

2) Optimal offering energy quantity of the HPP model 

Optimal quantities of energy offered for the HPP model in the six-bus system is shown in Fig.6. Offering 

quantities of the aggregated HPP increase at times of 9:00 to 15:00 and 20:00 to 24:00. At these moments, the 

cooperated EV aggregator calls for EV owners to discharge and provides energy to the WPP for the energy offered 

in Fig.6. Besides, the EV aggregator may use redundant wind energy to satisfy the charging demand for EV 

owners when the energy offered is relatively low. 

3) Comparison and Discussion 

In this paper, the proposed HPP model is compared to three other models. The first one has only a WPP 

strategically offering price to be price-makers and the clearing process consists of the WPP, traditional units and 

loads. The second model is similar to the first one but has only an EV aggregator strategically offering price 

instead. The third is the sum model in which a HPP and an EV aggregator offer price together but without 

cooperating. In the proposed model, EVs are required to compensate with the WPP to provide energy to satisfy the 

high energy offered and the WPP is used to meet charging demand for EV owners when the offered energy is 

relatively low. 

Fig.7 shows the comparison of revenues from these three models with the proposed one. According to revenue 

graphs in 24 hours, the HPP model takes more profits. This is due to the EV aggregator mitigates uncertainties of 

the WPP and the change of demand sides by controlling V2G and G2V flexibility, which further improves the 

profits by selling energy during high energy offered time and increasing EV owners’ consumption for storing 

more energy at moments of low energy offered. 

4) Impact of Incorporating Risk on the HPP model 

Table 3 compares the expected revenues and the CVaR for different weighting parameter   in the sum model 

and the HPP model. The confidential level       is set to 0.95. As the weighting parameter   increases from 0.01 
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to 1, the expected profit decreases while the CVaR increases. Specifically, the revenue decreases by 1.1% and 

0.64% for the sum model and the combined HPP model respectively, while the CVaR increases by 2.7% and 1.7% 

respectively. Therefore, just a small decrease in revenues could diminish the risk. Besides,  
        

    
 means the 

changing rate of CVaR relating to the change of revenue. The higher  
        

    
 implies less decrease in revenue 

and more increase in CVaR, which also means the profit volatility is better controlled. Table 3 shows this ratio is 

higher for the HPP model. Meanwhile, offering curves would change with different risk weighing parameters. The 

HPP reduces its profit’s volatility caused by uncertainties with introducing the CVaR to offer strategically. 

B. Thirty-Bus System 

The IEEE thirty-bus system consists of 6 generators, 20 demands, and 41 transmission lines. A strategic WPP 

and an EV aggregator are located at node 17 and node 26, respectively. 

Offer results for the HPP model are plotted in Fig.8. As uncertainties of actual energy productions and RT 

market prices, the energy scheduled to offer would vary throughout the day. Besides, the curve of offer prices 

would change as the curve of the energy offered. In Fig.8, the energy scheduled to offer are relatively high in the 

first few hours, 13:00-19:00 and last two hours. During these periods, corresponding prices are comparatively 

low. The analysis for this case is similar to the IEEE six-bus system. 

Optimal energy quantities of the HPP model offered in this case system is shown in Fig.9, in which offering 

quantities increase at 13:00, 14:00 and from 23:00 to 24:00. At these moments, the cooperated EV aggregator calls 

for EV owners to discharge for the energy offered in Fig. 8. Then the EV aggregator could use the wind energy to 

satisfy the charging demands from EV owners during periods of low energy offered such as 11:00-12:00 and 

21:00-22:00. Fig.10 shows the comparison of combined HPP revenues with the sum model, in which the EV 

aggregator and the WPP participates in the electricity market offer separately. According to revenue curves in 24 

hours, the HPP model takes more profits. 

V.  CONCLUSION 

This paper proposes a stochastic optimization model to derive the offering strategy for the aggregated HPP to be 

a price maker in the DA pool-based market. The model consists of two levels, with offering decisions to make to 

maximize the HPP’s profits in the upper level and market clearing to complete to maximize revenues of the grid in 

the lower level. This bi-level problem was then transformed into a MPEC problem by KKT conditions and further 

solved as a MILP problem with Strong Duality theory and the Fortuny-Amat transformation. By combining WPPs 

and EVs, several promising results have demonstrated the validity of the proposed HPP model: 1) Large-scale 
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renewable resources could be aggregated for strategical bidding and setting electricity prices according to their 

and the grid’s interests. 2) The proposed model shows cooperative energy provided by the WPP and the EV 

aggregator during different time slots. In this way, the total cost of energy consumptions and the waste of wind 

resources are reduced, which is cost-effective and more environmentally friendly. 3) The proposed HPP model 

has been demonstrated that it could take more profits by comparing with three other models. 4) With the 

consideration of risk in the HPP model, the profit volatility caused by uncertainties could be coped with more 

effective. 
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TABLES 

Table 1 DATA FOR THE EV AGGREGATOR 

EV Aggregator 
       

(pu) 
       

(pu) 
                        

   
    

(MWh) 

Value 0.9 0.3 0.9 0.85 0.2 600 

 

 

Table 2 OFFER AND BID DATA FOR GENERATORS AND LOADS 

 Traditional Generators Loads 

Bus 1 2 3 4 5 6 

Offer price($/MWh)  49 50 44 0 0 0 

Bid price ($/MWh) 0 0 0 59 50 40 

 

 

Table 3 COMPARISON OF REVENUES AND CVAR FOR DIFFERENT WEIGHTING PARAMETER   

  

Sum HPP 

Revenue ($) CVaR ($) Revenue($) CVaR ($) 

0.01 137955.70 72.29 179632.29 76.30 

0.1 137933.30 681.22 179622.87 749.25 

0.2 137730.75 1115.71 179585.16 1451.05 

0.5 137165.48 1906.29 179294.70 3160.38 

0.8 136497.45 2278.35 178877.82 3673.69 

1 136430.83 2771.84 178487.78 4514.93 

 
        

    
 1.77 3.88 
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Figure 1 Schematic representation of proposed HPP model 
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Figure 2 Demand factors over time 
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Figure 3 Scenarios data for actual maximize output of the wind energy 
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Figure 4 Scenarios data for the number of aggregated EVs 
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Figure 5 Offer results for aggregated HPP in six-bus system 
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Figure 6 Energy quantity of HPP for the DA market in six-bus system 
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Figure 7 Comparison of revenues with other three models 
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Figure 8 Offer results for aggregated HPP in thirty-bus system 
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Figure 9 Energy quantity of HPP for the DA market in thirty-bus system 
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Figure 10 Comparison of revenues from other models 

 

 

 




