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Abstract 

As the local energy sources are mostly uncertain and fluctuating in nature, the energy risk due to discrepancies between com-

mitted transactions and metered measurements is prominent in peer to peer (P2P) markets. To lower the aforementioned risk, 

this paper proposes an energy risk adjusted welfare maximization problem to trade-off the benefits of buyers and sellers in the 

P2P market. The risk is modeled using Markowitz portfolio theory and the best point where energy return per unit risk is 

maximum is obtained from the efficient frontier by using modified Sharpe ratio. The energy portfolio thus obtained is used as 

a constraint while optimizing the conflicting prosumer benefits using multi-objective stochastic weight trade-off chaotic non-

dominated sorting particle swarm optimization (SWTC-NSPSO). In effect, only a reliable proportion of total energy demand 

submitted in the bid is cleared in the market, foreseeing the real time fluctuations. The proposed market settlement mechanism 

also gives room to the existing distribution system operators by assigning them the duty of 1) optimally allocating energy 

among buyers and sellers in accordance with their competitive bids 2) providing the infrastructure, managing the market and 

charging for the service and 3) checking the technical feasibility by performing load flow and monitoring power transfer sen-

sitivities to encourage short distance transactions. The energy allocation is done in CIGRE LV benchmark microgrid with ten 

peers having solar and wind generation. The allocated energy is found to be closer to the metered measurements and hence the 

reserve cost is observed to be low. 
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SWTC-NSPSO Stochastic Weight Trade-off Chaotic Non-dominated Sorting Particle Swarm Optimization 

BFS Backward Forward Sweep  

SEB State Electricity Board 

MNRE Ministry of New and Renewable Energy 

FiT Feed-in-Tariff 

MCP Market Clearing Price 

UoS Use of Service charge 

RAWM Risk Adjusted Welfare Maximization 

WM Welfare Maximization 

MAPE Mean Absolute Percentage Error 

MAD Mean Absolute Deviation 

RMSE Root Mean Square Error 

PTDF Power Transfer Distribution Factor 

Nomenclature 

𝑬𝒈𝒊, 𝑬𝒅𝒊 Generation and demand of ith peer in offer/bid 

𝑬𝒈𝒊
∗  Optimal local generation of ith peer 

𝑮𝒑𝒗, 𝑮𝒘𝒊𝒏𝒅 Total solar and wind generation submitted in the offer/bid  

𝑬𝑫, 𝑷𝑫 Total energy and power demand met during transaction time slot t 

𝒏𝒅 Total number of peers  

𝑬𝒌
𝒑𝒗
, 𝑬𝒌

𝒘 Energy generation in kth minute from solar and wind respectively  

𝝁𝒑𝒗, 𝝁𝒘 Average hourly energy generation from solar and wind respectively 

𝝁𝜴 Hourly average energy output from the wind-solar portfolio 𝜴  

𝝈𝜴 Standard deviation of energy outputs from the wind-solar portfolio 𝜴  

𝒘𝒑𝒗, 𝒘𝒘 Proportion of solar and wind generation from the total 

𝒘𝒑𝒗
∗ , 𝒘𝒘

∗  Optimum weights that maximizes modified Sharpe ratio 

𝑬𝒔,𝒊, 𝑷𝒔,𝒊 Surplus energy and corresponding power transacted by ith seller 

𝑬𝒃,𝒋, 𝑷𝒃,𝒋 Energy and power transacted by jth buyer 

𝑺, 𝑩 Total number of sellers and buyers respectively 

𝑴𝑪𝑷𝒑𝟐𝒑 Market Clearing Price (MCP) in P2P market 

𝑬𝒊𝒋, 𝑷𝒊𝒋 Committed energy and power transfer between ith seller and jth buyer 



 

 

𝑼𝒐𝑺𝒊𝒋 Use of service charge for energy transfer from ith seller to jth buyer 

𝑪 Grid power price/tariff 

𝑷𝒍𝒐𝒔𝒔𝒊𝒋 Active power loss due to power transfer from ith seller to jth buyer 

𝑷𝒓𝒔,𝒊,𝑷𝒓𝒃,𝒋 Welfare of ith seller and jth buyer respectively 

𝑼𝒋(𝑬𝒃,𝒋) Utility function representing satisfaction level of jth buyer 

𝑾𝒔𝒆𝒍𝒍𝒆𝒓𝒔 Total welfare of sellers 

𝑾𝒃𝒖𝒚𝒆𝒓𝒔 Total welfare of buyers 

𝑷𝒈𝒓𝒊𝒅 Power transacted with grid 

𝑷𝒍𝒐𝒔𝒔 Total active power loss in the network 

𝑽𝒏𝒐𝒅𝒆 Nodal voltage  

𝑰𝒏𝒐𝒅𝒆 Nodal current injection 

𝑺𝒏𝒐𝒅𝒆 Nodal complex power injection 

𝑵𝒍 Number of distribution lines 

𝑷𝒍 Active power flow in line l 

𝒅𝒍 Utilization charge of line l 

𝑷𝑻𝑫𝑭𝒙𝒚
𝒍  Power Transfer Distribution Factor of lth line due to transaction between xth node and yth node 

𝒏𝒑𝒐𝒑 Number of particles generated in SWTC-NSPSO 

𝒎 Total number of historical minute-wise average generation data  

𝑾𝒖 Membership function for uth objective function 

𝑾𝒐𝒃𝒋,𝒖
𝒎𝒊𝒏 , 𝑾𝒐𝒃𝒋,𝒖

𝒎𝒂𝒙  Minimum and maximum values of uth objective function in non-dominated front 

𝑾𝒗 Function used for selection of optimum particle  

𝑵𝒐𝒃𝒋 Number of objective functions 

nF1 Number of particles in non-dominated front 

𝑹𝑴𝟏 Risk index derived from Mean Absolute Percentage Error 

𝑹𝑴𝟐 Risk index derived from Mean Absolute Deviation 

𝑹𝑴𝟑 Risk index derived from Root Mean Square Error 

𝑬𝒄𝒐𝒎 Total local generation committed at time t 

𝑬𝒂𝒗𝒍 Total generation from actual resource available at transaction time t 

n Number of uncertain samples 



 

 

𝑬𝒎𝒆𝒕,𝒒 Metered generation of qth sample at time t 

𝒕𝒅 Duration of energy transaction in hours  

1. Introduction 

Power networks are under a transition from passive distribution systems to active ones with the penetration of local energy 

sources. Thus, modern-day consumers have become prosumers by which they satisfy their own demand and with the surplus, 

they either give back to the grid or deliver to one or more peers. Consequently, local energy trading among peers subscribed to 

a common market framework is encouraged, leading to a P2P transactive environment [1] - [3]. To facilitate this framework, 

local energy networks incorporate bidirectional power flow and smart metering, information & communication technology, 

cyber-physical interaction, decentralized control and trading platforms [4] and [5]. However, these technologies cater to attain 

different social, environmental and technical objectives based on the extent of liberalization of market in the country of deploy-

ment. The review of literature is organized into two groups: 1) Modelling risk and 2) Microgrid prosumer consortium.     

Modelling Risk: Regardless of type of the market framework, optimal energy planning is essential in the pre-installation and 

pre-operational time horizons considering financial and technical risks involved in it. Risks due to different sources of uncertain-

ties are modelled in the literature. Financial risk of the operator due to uncertainties in renewable generation is modelled using 

affine arithmetic in [6]. The same risk is modelled as the measure of ‘profit per unit risk’ using Sortino ratio in [7]. However, the 

authors focused only on the market model ‘DSO-Monopoly’, where the risk and return were defined in respect of the system 

operator only. In [8], the effect of fuel price variations on the cash flow risk of GenCo is studied using artificial neural network. 

Risk in operational cost due to uncertainties in wind speed and dependence of multiple wind farms in economic dispatch problem 

using mean-variance model is discussed in [9]. In [10], income risk on GenCos due to spot price fluctuations and component 

failures is modelled using bi-level optimization. Simulation of market behaviour with changing bidding strategies and its effect 

on GenCo’s benefit is modelled using conditional value at risk in [11]. In summary, the aforesaid literature modelled return and 

risk in terms of financial quantities and were restricted to a single stakeholder. Also, the risk in allocated energy and peer welfare 

in P2P market due to temporal and spatial variations of renewable energy is unexplored.  

Microgrid Prosumer Consortium: Another body of literature focused on a more liberalized market model, the prosumer consor-

tium, where the technical and economic challenges posed by the active distribution networks were addressed by framing a suit-

able localised market. Several such frameworks including P2P transactions are put forward based on individual and collective 

welfare, giving rise to new settlement procedure [12], bidding mechanisms [13] and [14], ancillary services market [15], energy 

management and optimization algorithm [16] etc.  However, [12], [13] and [15] did not consider network feasibility, [16] was 

silent about collective benefits and all of them discarded the conflicting nature of profits. On the other side, there is a moving 

trend towards decentralized markets with distributed ledger and Blockchain technologies, eliminating the third party for improv-

ing security and transparency [17] and [18]. A P2P-ready consensus based distributed algorithm that fully discards the role of 



 

 

the central controller and fully compatible to prosumer preferences, for economic operation of distribution grid is proposed in 

[19] and [20]. Authors in [17] - [22] viewed the P2P market from prosumers’ perspective only, without considering operators’ 

technical preferences. In contrast to the above propositions, some of the recent papers dealt with network constraints also, using 

sensitivity factors and line flow constraints [23], [24].  Still, an attempt is not made in any of the papers to narrow down the gap 

between committed and metered energy transactions of peers by modelling risk and return in terms of energy (kWh). In addition, 

there are contextual challenges with respect to the scale and coverage of deregulation in the country where P2P transactive energy 

market is envisaged, which is discussed in the following paragraph. 

Challenges in Indian Scenario: In a semi-deregulated environment like India [25], [26], the responsibility of meeting the network 

constraints combined with the enhancement of prosumer benefits should be ideally taken care by the existing operator/third party.  

In India, the distribution of power at low voltage levels is largely done by state electricity boards (SEBs). However, The Ministry 

of New and Renewable Energy (MNRE) has proposed various business models where grid-connected solar panels can be either 

fully owned by a consumer or owned, operated and maintained by the utility. By this, the consumer can feed to grid with his 

local generation and earn revenue through net metering or renting out his space for PV installations. Still, the consumers lack 

avenues for local energy trading among neighbors in the present scenario [27], [28]. Hence, the implementation of P2P transac-

tions among the end consumers may not happen all at once, rather the SEBs may be given a different role in the newly designed 

transactional framework.  However, as we move from conventional distribution system to P2P market framework, too many 

short-term contracts/commitments targeting on individual benefits/welfare would be involved. In such a framework, each market 

subscriber’s sole objective would be to make commitments resulting in maximum profit. As a result, the committed energy 

transactions will not be in line with the metered measurements in real time. The mismatch is more profound if the relied sources 

are renewable energy based.  

To sum up, when targeting on individual or collective welfare, the contracted volume of energy (typically with renewable 

energy sources) may be far away from reality and hence the metered measurements would be largely deviating from the com-

mitted or cleared energy. Thus, the allocated energy may pose both financial and energy risk to the subscribers/operator based 

on reserve considerations. An optimal generation mix (different energy technologies in right proportion) that minimizes the 

energy risk is thus essential for clearing the market depending on the location and time of availability of energy resources. At the 

same time, conflicting welfares of prosumers should be taken into consideration. In addition, the role of existing operator/owner 

of the active distribution system cannot be totally discarded from a semi-deregulated viewpoint. Hence, they can serve as a 

service & infrastructure provider and charge for it based on the network-congestion. Further, the final allocation should be net-

work-feasible and contingent to the competitive bids/offers. In the forerunning context, this paper proposes an energy risk con-

strained welfare maximized P2P market settlement framework where the main contributions are as follows.  



 

 

i. Finding the optimal energy portfolio for hourly market clearing using Markowitz mean-variance theory and modified 

Sharpe ratio which maximises the energy returns and minimizes the energy risk due to lack of firmness in hourly gen-

eration. In effect, the risk due to the difference between committed and metered transactions in P2P market is taken care 

of. 

ii. Maximising the conflicting welfares of prosumers (sellers and buyers) using SWTC-NSPSO to determine the peer to 

peer energy allocation subject to the risk adjusted portfolio obtained in (i). That is, a reliable proportion of energy 

submitted in the bids/offers is only cleared in the market. The welfare function is designed by considering traded energy, 

network losses, buyers’ comfort level and use of system and service charges. 

iii. Checking the network feasibility by conducting backward-forward sweep load flow and thereby calculating the use of 

service (UoS) charge earned by the third party in accordance with the line flow sensitivities to encourage short distance 

transactions.  

iv. The whole process is carried out in CIGRE LV benchmark microgrid with ten peers having solar/wind generation. The 

risk adjustment is validated using risk metrics derived from MAPE, MAD and RMSE.   

Potential application in Indian context: A local P2P market can be realized in the existing distribution infrastructure with subtle 

modifications carried out by the SEBs themselves. Keeping them as a third party for managing the market and ensuring the 

network feasibility, the prosumers/consumers can involve in local energy trading as market subscribers. Before every trading 

hour, the SEB collects the willingness of subscribers regarding the quantity and price of the energy to be transacted. The SEB 

then clears the market and arrive at the optimal energy to be allocated among peers considering social welfare maximization, 

network feasibility checks and energy risk constraints. These services are charged under the UoS component.    

The paper is organized as follows. The methodology is given in Section 2. Test system, results and discussions are described 

in Section 3. The paper is concluded in Section 4. 

2. Methodology 

The role and responsibility of the third party in conduction of the P2P market is shown in Fig.1. The trading starts with the 

submission of bids by prosumers which has the information on maximum local generation, load demand, desired selling and 

buying prices for the time period t. From the bids/offers submitted till time t-1, the third party clears that proportion of load 

demand which can be met from the optimal solar-wind generation portfolio. Then, energy is allocated among sellers and buyers 

corresponding to their maximum traded-off welfare, subject to the network constraints, keeping the wind-solar mix intact.  In 

real time, any deviation from the committed energy is met from the grid. The financial settlement for the traded energy is then 

processed within a month. 



 

 

 

Fig. 1. The proposed P2P market settlement    

2.1 Processing bids and optimising energy portfolio 

The peers willing to participate in trading hour t are allowed to submit offers/bids till gate closure (an hour prior to the actual 

trading). Let (𝐸𝑔,𝑖 , 𝐸𝑑,𝑖 , 𝑜𝑓𝑓𝑒𝑟𝑖/ 𝑏𝑖𝑑𝑖) be the willingness submitted by the ith peer where 𝐸𝑔,𝑖 and 𝐸𝑑,𝑖 represent the maximum 

possible generation and the load demand in kWh during time t. The terms 𝑜𝑓𝑓𝑒𝑟𝑖  and  𝑏𝑖𝑑𝑖  represent the desired selling and 

buying prices respectively. As the peers are to be lured for P2P trading compared to the conventional (as per the existing monop-

olistic framework) grid power trade at tariffs/FiTs, the offer is kept higher than feed-in-tariff (FiT) and the bid is lower than the 

tariff.     

Here, the inherent temporal variation of solar and wind generation over an hour is modelled using Markowitz mean-variance 

theory [28], [29].  Instead of taking financial assets into consideration, wind and solar energy are considered here. Now, the 

expected value of hourly energy output for various generation mix proportions is calculated to obtain the return of portfolio and 

the portfolio standard deviation represents the risk. The historical minute-wise average generation of the given sources for the 

month under consideration is used to model the energy risk and return. 𝐸𝑘
𝑝𝑣

 and 𝐸𝑘
𝑤 represent the total energy produced at kth 

minute by the PV and wind sources respectively. The expected hourly generation is then calculated using equations (1) and (2).  

𝜇𝑝𝑣 =
1

𝑚
∑ 𝐸𝑘

𝑝𝑣𝑚
𝑘=1   (1) 

𝜇𝑤 =
1

𝑚
∑𝐸𝑘

𝑤

𝑚

𝑘=1

 (2) 

𝑤𝑝𝑣 , 𝑤𝑤 ∈ [0,1] be the weights of solar and wind generation respectively. The expected hourly energy return from the portfolio 

is calculated using equation (3) and the portfolio risk (standard deviation) is obtained using equation (4). The matrix 𝐶𝑜𝑣 repre-

sents the covariance between wind and solar generation. The efficient frontier as shown in Fig. 2 is then drawn by varying the 

weights, satisfying equation (5). For the same energy risk level D in Fig. 2, expected energy return is more for the upper part 

(point A) compared to the lower part (point B) of the curve. Hence, the upper portion (efficient frontier) of the curve is the 

searched for the optimal point. 



 

 

𝜇𝛺 = 𝑤𝑝𝑣𝜇𝑝𝑣 +𝑤𝑤𝜇𝑤  (3) 

𝜎Ω
2 = [𝑤𝑝𝑣 𝑤𝑤][𝐶𝑜𝑣] [

𝑤𝑝𝑣
𝑤𝑤
] (4) 

𝑤𝑝𝑣 +𝑤𝑤 = 1 (5) 

 

Fig. 2. Efficient frontier 

The total load demand submitted in the bid is fully or partially met from the optimal mix of solar-wind generation obtained 

from the efficient frontier as shown in equation (6). The best point from the efficient frontier is then selected by using the concept 

of Sharpe ratio. The ratio in finance represents the average excess return earned per unit of total risk [30]. Here, it is modified by 

replacing the ‘excess’ financial return by expected energy return (kWh) for the portfolio. The optimal weights are obtained by 

maximizing the modified Sharpe ratio 
𝜇Ω

𝜎Ω
 using equation (7).   

(𝑤𝑝𝑣 × 𝐺𝑝𝑣) + (𝑤𝑤 × 𝐺𝑤𝑖𝑛𝑑)⏟                  ≤

𝐸𝐷

∑𝐸𝑑𝑖

𝑛𝑑

𝑖=1

 

 

(6) 

[𝑤𝑤
∗  𝑤𝑝𝑣

∗ ] = 𝑎𝑟𝑔 (𝑚𝑎𝑥 {
𝜇Ω
𝜎Ω
}) 

(7) 

A proportion 𝑤𝑤
∗  of total energy demand 𝐸𝐷 is cleared from wind and 𝑤𝑝𝑣

∗  from solar. These weights serve as energy risk con-

straints in the P2P market settlement process.  

2.2 Peer energy allocation 

From the bids and offers submitted by the peers, the power surplus/deficit available for trading is determined and the market-

clearing price (MCP) is derived using double auction with average mechanism [21] as shown in equation (8). 

𝑀𝐶𝑃𝑝2𝑝 =
∑ 𝑜𝑓𝑓𝑒𝑟𝑖 +
𝑆
𝑖=1 ∑ 𝑏𝑖𝑑𝑗

𝐵
𝑗=1

𝑆 + 𝐵
 

(8) 



 

 

Now, the sellers are arranged in the ascending order of their offer prices and the buyers are arranged in the descending order of 

their bids. Then, energy allocation is done by the market operator, starting from the seller with lowest offer (i=1) and the corre-

sponding buyer with highest bid (j=1), as shown in algorithm-1, satisfying the power balance constraints 𝐸𝑠,𝑖 = ∑ 𝐸𝑖𝑗
𝐵
𝑗=1  and 

𝐸𝑏,𝑗 = ∑ 𝐸𝑖𝑗
𝑆
𝑖=1 .  

Algorithm 1 

Input 𝐸𝑠,𝑖, 𝐸𝑏,𝑗 

abc: for i = 1 to S 

               for j = 1 to B 

         𝐸𝑖𝑗 = 𝑚𝑖𝑛 (𝐸𝑠,𝑖, 𝐸𝑏,𝑗) 

                        𝐸𝑠,𝑖 = 𝐸𝑠,𝑖 − 𝐸𝑖𝑗 

                           𝐸𝑏,𝑗 = 𝐸𝑏,𝑗 − 𝐸𝑖𝑗  

                         if (𝐸𝑠,𝑖 = 0) // seller i is cleared 

                                    goto abc 

                          end if 

                  end for 

          end for 

2.3 Modeling the welfare of prosumers 

The P2P Energy transactions are not assumed to be one-to-one. The welfare of sellers and buyers are modelled as the difference 

between revenue and expense in equations (9) and (10) respectively. The seller earns revenue from the sale of surplus generation 

(1st term of equation (9)) and the buyer’s revenue is the monetary representation (1st term of equation (10)) of his satisfaction 

level while consuming power. The response of the buyer for different amounts of power consumption at different time intervals 

and climatic conditions is modelled as a quadratic utility function satisfying properties related to consumer’s choice [21], [31]. 

For every transaction between ith seller and jth buyer, they should pay UoS charge (2nd term of equations (9) and (10)) to the 

network owner/third party for utilizing the distribution network and availing the service of managing the P2P market. Also, an 

additional amount for network losses involved in the transaction is equally shared among buyer and seller (3rd term of equations 

(9) and (10)). Finally, the 4th term of equation (10) represents the cost of power purchase at MCP.  

𝑃𝑟𝑠,𝑖 = (𝑀𝐶𝑃𝑝2𝑝 × 𝐸𝑠,𝑖) −
1

2
(∑ 𝐸𝑖𝑗 × 𝑈𝑜𝑆𝑖𝑗

𝐵
𝑗=1 ) −

1

2
(∑ 𝑃𝑙𝑜𝑠𝑠𝑖𝑗 × 𝐶

𝐵
𝑗=1 × 𝑡𝑑)  (9) 

𝑃𝑟𝑏,𝑗 = 𝑈𝑗(𝐸𝑏𝑗) −
1

2
(∑ 𝐸𝑖𝑗 × 𝑈𝑜𝑆𝑖𝑗

𝑆
𝑖=1 ) −

1

2
(∑ 𝑃𝑙𝑜𝑠𝑠𝑖𝑗 × 𝐶

𝑆
𝑖=1 × 𝑡𝑑 )  − (𝑀𝐶𝑃𝑝2𝑝 × 𝐸𝑏,𝑗)  (10) 

 

The objective is to maximise the conflicting welfares (see equation (11)) of buyers and sellers. Hence, the problem is modelled 

as a multi-objective optimisation problem where the optimum energy allocation trades off the welfare of sellers and buyers (see 

equations (12) and (13)).  

𝑚𝑎𝑥{𝑊𝑠𝑒𝑙𝑙𝑒𝑟𝑠 ,𝑊𝑏𝑢𝑦𝑒𝑟𝑠}                      (11) 



 

 

𝑊𝑠𝑒𝑙𝑙𝑒𝑟𝑠 =∑𝑃𝑟𝑠,𝑖

𝑆

𝑖=1

 (12) 

𝑊𝑏𝑢𝑦𝑒𝑟𝑠 =∑𝑃𝑟𝑏,𝑗

𝐵

𝑗=1

 (13) 

2.4 Network feasibility check  and calculation of service charge 

The network feasibility is checked by performing Backward Forward Sweep (BFS) load flow during the energy allocation pro-

cess, satisfying the voltage and power balance constraints as shown in equations (14) and (15) respectively. The generation and 

demand at each node is updated for every updation of allocated energy. The major steps involved are as follows. 

1) Input line data and 𝑃𝑖𝑗  

2) Initialize the bus voltages with 1 p. u. 

3) Update power injections at seller node x and buyer node y for every transacted power 𝑃𝑖𝑗; +ve for buyer node and -ve 

for seller node 

4) Calculate branch currents from nodal current injections, 𝐼𝑛𝑜𝑑𝑒 = (
𝑆𝑛𝑜𝑑𝑒

𝑉𝑛𝑜𝑑𝑒
)
∗

 

5) Update nodal voltages through forward sweep.  

6) Repeat steps (4) and (5) until tolerance limit is reached. 

𝑉𝑛𝑜𝑑𝑒
𝑚𝑖𝑛 ≤ 𝑉𝑛𝑜𝑑𝑒 ≤ 𝑉𝑛𝑜𝑑𝑒

𝑚𝑎𝑥  (14) 

𝑤𝑝𝑣
∗  𝑃𝐷 + 𝑤𝑤

∗  𝑃𝐷 + 𝑃𝑔𝑟𝑖𝑑 = 𝑃𝐷 + 𝑃𝑙𝑜𝑠𝑠 (15) 

The use of service charge for a transaction from ith seller to jth buyer is calculated using the Power Transfer Distribution Factor 

(PTDF) as shown in equation (16).  

Where,  𝑑𝑙 and 𝑃𝑙  are the utilization charge and the total power flow in the line 𝑙, respectively. The term 𝑃𝑇𝐷𝐹𝑥𝑦
𝑙  represents the 

change in active power in line l due to a transaction from seller node x to buyer node y. The 𝑃𝑇𝐷𝐹𝑥𝑦
𝑙  takes the value zero if the 

line l is not involved in the transaction. For every new energy allocation/transaction, the new line flows corresponding to updated 

nodal power injections are calculated using BFS load flow.  

2.5 SWTC-NSPSO based welfare maximization 

The variation of welfare of buyers with respect to optimization of sellers’ welfare is shown in Fig.3. As the objectives are found 

to be conflicting in nature, multi-objective SWTC-NSPSO is used to find the pareto-optimal solution.   

𝑈𝑜𝑆𝑖𝑗 =∑
𝑃𝑇𝐷𝐹𝑥𝑦

𝑙 × 𝑑𝑙

𝑃𝑙

𝑁𝑙

𝑙=1

 (16) 



 

 

 

Fig. 3. Variation of welfare of buyers with welfare of sellers 

Although the maximum local energy that can be generated is included in the willingness submitted by the peers (𝐸𝑔𝑖), it is 

updated to the optimal value 𝐸𝑔,𝑖
∗  after maximizing the welfare subject to energy constraints i.e., peer power generation is the 

decision variable contained in the particle vector. Fig.4. shows energy corresponding to bid/offer values, optimal local generation 

and the final commitment in the market. (𝐸𝑔𝑖
∗ − 𝐸𝑑𝑖) and (𝐸𝑑𝑖 − 𝐸𝑔𝑖

∗ ) are the final commitments of seller and buyer in the P2P 

market respectively. 

 

Fig. 4. Energy in bid/offer, optimal local generation and committed transaction in P2P market for seller and buyer 

In normal PSO, the velocity and position of the particles are updated to streamline the search for global optimum. Still, there are 

instances where the solution is trapped in the local optima due to premature convergence and paucity of global best exploration 

or/and local best utilization. To avoid this, stochastic weight trade-off and chaotic mutation technique involving freak and leth-

argy factors are incorporated in SWTC-NSPSO [33], [34] by diversifying the search. Also, the swarm members are prioritized 

in descending order of crowding distance (See Fig. 5) in each iteration to obtain the local best-compromised solutions.  
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𝑾𝒖 =

{
 
 

 
 

𝟎                                       𝑾𝒐𝒃𝒋,𝒖 = 𝑾𝒐𝒃𝒋,𝒖
𝒎𝒊𝒏

𝑾𝒐𝒃𝒋,𝒖
𝒎𝒂𝒙 −𝑾𝒐𝒃𝒋,𝒖

𝑾𝒐𝒃𝒋,𝒖
𝒎𝒂𝒙 −𝑾𝒐𝒃𝒋,𝒖

𝒎𝒊𝒏
        𝑾𝒐𝒃𝒋,𝒖

𝒎𝒊𝒏 < 𝑾𝒐𝒃𝒋,𝒖 < 𝑾𝒐𝒃𝒋,𝒖
𝒎𝒂𝒙

𝟏                                         𝑾𝒐𝒃𝒋,𝒖 = 𝑾𝒐𝒃𝒋,𝒖
𝒎𝒂𝒙

 

 

(17) 

𝑊𝑣 =
∏ 𝑊𝑢

𝑣𝑁𝑜𝑏𝑗
𝑢=1

∑ ∑ 𝑊𝑢
𝑣

𝑁𝑜𝑏𝑗
𝑢=1

𝑛𝐹1
𝑣=1

 (18) 

The normalized variable values of uth welfare, 𝑊𝑢 ranges from 0 to 1 as the objective value in the pareto front moves from 

minimum to maximum (See equation (17)).  Then, from the pareto optimal front (See Fig. 6) the global best-compromised 

solution is found from equation (18), which represents the measure of trade-off among welfares 1 and 2. That is, higher the value 

of 𝑊𝑣, better the solution is. 

 

      Fig. 5. Crowding distance calculation      Fig. 6. Non-dominated sorting concept 

The major steps involved in the SWTC-NSPSO based welfare optimization algorithm is shown below. 

Algorithm 2   

Input 𝑤𝑤
∗ , 𝑤𝑝𝑣

∗  

Initialize population with 𝑛𝑝𝑜𝑝 particles 

Function Calculate Welfare 

       Calculate MCP 

       Do energy allocation 

       Perform BFS load flow 

       Calculate use of system charge 

       Determine welfare of Sellers and Buyers 

End function 

Initialize 𝑝𝑏𝑒𝑠𝑡 

Initialize 𝑔𝑏𝑒𝑠𝑡  

 

For each iteration 

       For each particle 

                     Update velocity and position       

       End for 

        Call: Calculate Welfare  

        Update 𝑝𝑏𝑒𝑠𝑡 and gbest 

        Merge parent and offspring populations 

        Perform non-dominated sorting 

        Select best 𝑛𝑝𝑜𝑝  particles  

        Plot non-dominated front 

End for 

Select optimum solution from the front 

Obtain optimum energy allocation 𝐸𝑖𝑗
∗  



 

 

2.6 Metrics for validating energy risk 

 Let 𝐸𝑎𝑣𝑙  be the maximum energy that can be generated during the actual transaction period in accordance with the resource 

availability. If 𝐸𝑎𝑣𝑙  is greater than or equal to the committed energy generation (𝐸𝑐𝑜𝑚), then the metered measurement is con-

sidered to be equal to 𝐸𝑐𝑜𝑚 else, the metered energy is equal to 𝐸𝑎𝑣𝑙 . That is, the scenarios in which 𝐸𝑎𝑣𝑙  is less than 𝐸𝑐𝑜𝑚 are 

considered to be ‘risky’. To validate the risk in deviation of metered energy measurements from the committed transactions, 

the metrics 𝑅𝑀1, 𝑅𝑀2 and 𝑅𝑀3 are used as shown in equations (19), (20) and (21). These indices are derived from Mean Ab-

solute Percentage Error (MAPE), Mean absolute Deviation (MAD) and Root Mean Square Error (RMSE) respectively. Metered 

measurements are generated from possible uncertainties of wind and solar energy profiles which will add-up to n samples. 

𝑅𝑀1 =
100%

𝑛
∑ |

𝐸𝑐𝑜𝑚−𝐸𝑚𝑒𝑡,𝑞

𝐸𝑐𝑜𝑚
|𝑛

𝑞=1   (19) 

𝑅𝑀2 =
1

𝑛
∑ |𝐸𝑐𝑜𝑚 − 𝐸𝑚𝑒𝑡,𝑞|
𝑛
𝑞=1   (20) 

𝑅𝑀3 = √
∑ (𝐸𝑐𝑜𝑚−𝐸𝑚𝑒𝑡,𝑞)

2𝑛
𝑞=1

𝑛
  

(21) 

 

3. Results and Discussion 

The modified CIGRE LV network [35] shown in Fig.7. is used as the test system. A total number of 10 peers are assumed in 

the system where one of them is a consumer and the remaining nine are prosumers with wind or solar generation. The generation 

and demand of each peer are given in Fig.7.  

 

Fig. 7. Modified CIGRE LV system 



 

 

The hourly load and generation profiles of the system are given in appendices A and B. The time of use tariff and FiTs are 

shown in Appendix C. The location considered for the study is Cochin, India. Hours 11 to 15 (10:00 AM to 3:00 PM) at which 

sufficient solar and wind generation is available, is considered for modelling.  The maximum possible generation from wind and 

solar corresponding to the bids (𝐺𝑤𝑖𝑛𝑑  and 𝐺𝑝𝑣) and the total demand are shown in Fig.8.  

 

Fig. 8.  Maximum possible generation from wind and solar along with load demand 

Figures 9 and 10 show the energy return versus energy risk plots for the locations Cochin and Tiruchirappalli in the 15th hour. 

The points 𝑂 and 𝑂′ represent optimum portfolio corresponding to the maximum value of modified Sharpe ratio given in equa-

tion (7) subject to the constraint in equation (6). The corresponding optimum weights for solar and wind generation for Cochin 

are found to be 0.65 and 0.35 respectively, with a Sharpe ratio of 4.27. But, for Tiruchirappalli, the optimum share of solar is 

91% whereas the proportion of wind is as meagre as 9% with a Sharpe ratio of 5.18. Also, the length of efficient frontier for 

Cochin is more, giving the possibility of better mixing of resources against complete dominance of one of them in Tiruchirappalli 

as shown in Fig. 10. Though there is a reasonable mix of resources in Cochin, the corresponding portfolio energy return for unit 

risk is found to be lower (based on modified Sharpe ratio). Hence, for locations like Tiruchirappalli, there should be a dominant 

solar penetration for energy risk adjusted operation.  That is, with the right mix of distributed energy resources, we expect more 

realistic energy commitments from the prosumers adhering to the real time measurements. Henceforth, in this paper, the P2P 

market studies and settlements are conducted with the data of Cochin only, as it goes better with the generation data given in Fig. 

8. 

 

      Fig. 9. Efficient frontier for Cochin at 15th hour        Fig. 10. Efficient frontier for Tiruchirappalli at 15th hour 
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Table. 1. shows the welfare maximized energy portfolio committed in P2P market with and without risk adjustments. Without 

risk constraints, the total share of solar and wind energy settled is completely governed by the welfare maximization algorithm. 

Hence, the riskier wind happens to be more (50% - 57%) weighted than solar (43% - 50%) from welfare point of view.  With 

risk constraints, the proportion of less risky solar is found to be increased.  

TABLE. 1. WEIGHTS OF SOLAR AND WIND GENERATION 

Hour 
Without risk constraint With risk constraint 

Weight of solar Weight of wind Weight of solar Weight of wind 

11 0.4991 0.5009 0.6869 0.3131 

12 0.4896 0.5104 0.6651 0.3349 

13 0.4277 0.5723 0.6501 0.3499 

14 0.4699 0.5301 0.6278 0.3722 

15 0.4736 0.5264 0.6552 0.3448 

 

Figure 11 shows that the total local generation in the system is always less when considering risk. Without risk consideration, 

the higher amount of total energy settled in the market gives a larger welfare to sellers and lower welfare to buyers as seen from 

the pareto fronts in Fig. 12. In other words, the welfare of sellers is capped and welfare of buyers is imposed a lower limit by the 

risk constraint.  

 

Fig. 11. Total committed generation with and without risk constraint 

 

Fig. 12. Pareto fronts with and without risk constraints 
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The three risk metric values with and without risk consideration is shown in Table. 2. With the incorporation of risk constraint, 

all the metric values defined in equations (19), (20), (21) have improved significantly. RM1, RM2 and RM3 are reduced by almost 

70 percentages when considering energy risk. Consequently, the cost incurred for balancing the deviations is reduced as seen 

from the lower reserve costs in Fig. 13.  

TABLE. 2. COMPARISON OF RISK METRICS 

Hour 

Without risk constraint With risk constraint 

RM1 RM2 RM3 RM1 RM2 RM3 

(%) (kWh) (kWh) (%) (kWh) (kWh) 

11 21.3 6.67 8.05 6.49 1.59 2.34 

12 23.59 9.94 11.51 9.32 3.15 3.97 

13 22.84 8.54 10.18 8.86 2.11 2.41 

14 18.18 5.92 6.87 7.50 2.21 2.72 

15 13.02 4.17 5.32 5.71 1.79 2.19 

 

Though the value of RM2 at 13th hour is higher than that at 11th hour (Table. 2), the reserve cost is more for 11th hour (Fig. 

13) because of the higher tariff rate of Rs. 13/kWh against Rs. 7/kWh (See Appendix C).  

 

Fig. 13. Reserve cost incurred with and without risk constraints 

The peer willingness on expected generation, demand and price is communicated to the third party as shown in Table. 3. This 

is based on the wind/solar and load profiles shown in appendices A and B. It is evident that peers 1,3,5,6,8 and 10 are sellers and 

peers 2,4,7 and 9 are buyers during this hour depending on their energy surplus and deficit shown in Fig. 14. Negative energy 

represents deficit and positive energy amounts to surplus. Now, based on simple welfare maximization (WM) or energy risk 

adjusted welfare maximization (RAWM), the final allocated energy would be a proportion of this surplus/deficit. However, a 

lower proportion is obtained from RAWM.  
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TABLE. 3. INPUT FROM PEERS FOR 13TH HOUR 

Peers 

Generation 

(kWh) 

Demand 

(kWh) 

Offer Price 

(Rs/kWh) 

Bid Price 

(Rs/kWh) 

Peer 1 7.652 1.729 2.17 - 

Peer 2 1.913 6.498 - 6.96 

Peer 3 4.254 3.282 2.29 - 

Peer 4 - 2.831 - 6.27 

Peer 5 3.826 1.469 3.76 - 

Peer 6 3.061 2.448 2.11 - 

Peer 7 1.148 5.822 - 6.88 

Peer 8 12.763 1.635 2.83 - 

Peer 9 11.479 14.887 - 5.02 

Peer 10 17.017 2.453 3.68 - 

 

Fig. 14. Surplus/deficit energy of peers 

The market clearing price is calculated from the submitted offers/bids as Rs 4.2/kWh using equation (8). The P2P optimal 

energy allocation among sellers and buyers in the 13th hour under WM and RAWM is shown in Table. 4. Peer-5 who submitted 

the highest offer is discarded in WM and peers 4 and 9 with lowest bids are discarded in RAWM based on the energy allocation 

algorithm given in Section 2.2. Difference is seen in the commitments among peers in accordance with the type of source owned 

as well. It is seen from Fig. 15 that the shares of peers 1 and 5 with less risky PV dominate in RAWM whereas peers 8 and 10 

with riskier wind dominate in WM. Also, the total energy cleared in P2P market is less in RAWM compared to WM, ensuring 

minimum deviation between committed and metered transactions. That is, a proportion of total generation is only reliable with 

respect to actual availability of resources. For example, in Fig. 16, the willingness submitted by peer-10 (wind powered) is 17.01 

Peer 1

Peer 2

Peer 3

Peer 4

Peer 5
Peer 6

Peer 7

Peer 8

Peer 9

Peer 10

-10

-5

0

5

10

15

20

S
u

rp
lu

s/
d

ef
ic

it
 (

k
W

h
)



 

 

kWh (his expectation) but his local generation is 8.43 kWh after WM whereas it is 2.64 kWh after RAWM. Finally, the energy 

committed in P2P market after meeting his own load is only 200Wh with RAWM. Obviously, a portion of energy from the wind-

based peer would be shifted to PV-based peers (1 & 5) with RAWM as shown in Fig. 15.   

TABLE.4. PEER TO ENERGY ALLOCATION WITHOUT RISK CONSTRAINT 

 

Sellers             Buyers 

         

Peer 2 Peer 7 Peer 4 Peer 9 

Peer 6 
RAWM 0.1284    

WM 0.3841    

Peer 1 
RAWM 4.5998 0.7968 - - 

WM 2.7767    

Peer 3 
RAWM - 0.4911 - - 

WM 0.4250    

Peer 8 
RAWM - 0.2947 - - 

WM 2.3127 5.3052   

Peer 10 
RAWM - 0.1911 - - 

WM  0.2094 2.8313 2.9362 

Peer 5 
RAWM - 1.9639 - - 

WM     

 

Fig. 15. Committed P2P transactions with and without risk constraint 

Fig. 16. Energy in offer, optimal local generation and commitment in P2P market of peer-10. 

-8

-6

-4

-2

0

2

4

6

8

10

C
o
m

m
it

te
d

 e
n

er
g
y
 i

n
 P

2
P

 m
ar

k
et

 

(k
W

h
)

without risk constraint

with risk constraint

Local generation by 

the peer including load 

Maximum generation 

submitted in the bid 

Committed generation 

in P2P market 

5.97 kWh (WM)

0.2 kWh (RAWM)

8.43 kWh (WM)

2.64 kWh (RAWM)

17.01 kWh (WM)

17.01 kWh (RAWM)



 

 

Figures 17 and 18 depict the change in welfare and energy of peers with and without risk consideration. The contribution of 

welfare from wind-based peers (3, 8 and 10) is found to be 81% under WM but its share is drastically dipped to 10% under 

RAWM. This is compensated by the welfare of solar-based peers (1 and 5) by about 70%. The corresponding shift in energy is 

evident from Fig. 18 (red color represents solar energy and green represents wind). The shares of total local generation after 

trading-off the welfare is shown in Fig.18. Peers 4 and 9 are discarded in RAWM where the total energy cleared is less because 

their incompetent bids couldn’t find suitable sellers. With RAWM, the updated energy cap for total wind generation has affected 

the welfares of peers 8 and 10 compared to peer-3 (See Fig. 17) because of the competent offer price submitted by peer-3 (See 

Table. 3).  

 

Fig. 17. Welfare of peers with and without risk constraint 

 

Fig. 18. Local generation from peers in WM and RAWM 

The comparison of nodal voltage profiles when the same amount of energy is cleared through P2P as well as from the main 

grid (without local generation) is shown in Fig. 19. In general, the voltage profile is almost nominal because of enough local 

generation in the system under P2P settlement. For example, the voltage of farthest node 8 is 0.97 p.u. when fed from the grid 

whereas it is improved to 0.998 p.u. with P2P settlement. With P2P transactions, peer-2 buys 54% of its energy from peers 2 and 

3 located at the same node-8 and remaining from the nearby node-12.  
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Fig. 19. Nodal voltage profiles with and without local generation 

The non-dominated pareto fronts obtained after welfare maximization using SWTC-NSPSO are shown in Fig. 20. It is evident 

that the pareto front under RAWM is much smaller compared to WM due to lower amount of cleared energy. The global com-

promised solution shown in the figure is obtained from the criteria given in equations (17) and (18).  

 

Fig. 20. Pareto fronts obtained after welfare maximization under WM and RAWM 

4. Conclusion 

 

An energy risk adjusted welfare maximization problem is formulated to obtain more realistic energy commitments from 

prosumers in the P2P market. The risk model is derived from Markowitz mean-variance portfolio theory and Sharpe ratio. The 

committed energy in P2P market is found to be closer to metered measurements based on the defined risk measures derived from 

mean absolute percentage error and deviation. Consequently, the reserve cost is found to be lower with risk adjusted commit-

ments. Also, the conflicting welfares of sellers and buyers are found to be traded-off, subjected to risk and network feasibility 

constraints, by using SWTC-NSPSO and backward-forward sweep load flow. The optimal peer energy allocation thus obtained 

is in line with the competence of bid/offer prices submitted, prescribed voltage limits, nature of risk involved in type of source 

owned and location of the peer in the network. Further, the service of market conduction and network utilization is charged by 

the third party based on power transfer sensitivities and total energy cleared. Although the total energy cleared in the P2P market 

is found to be less with risk adjustments, the energy return per unit risk is found higher. The model also recommends having an 

optimal mix of energy sources in the distribution system to facilitate clear-sighted conduction of P2P market.  
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Appendix A – 24-hour wind and solar generation profile  

 

Fig. A.1. Sample solar and wind generation profile of a day 

Appendix B – 24-hour load demand profile 

Fig. B.1. Load profiles for peers 1 to 5 

Appendix C - Tariff and FiT rates 

Fig. B.2. Load profiles for peers 6 to 10 

 

Fig.C.1. 24-hour grid power price and FiT rates 
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