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Abstract 

In this paper, a comprehensive two-stage robust distribution system operation model is proposed by adjusting the charging of 

electric vehicle aggregators (EVAs) and curtailing loads. Because uncertainties in EVA charging demands are involved in the 

second stage of the adopted two-stage framework, distributionally robust optimization is used to improve the average economic 

performance of the proposed model, and security of distribution system operation is guaranteed by applying the Farkas lemma and 

robust optimization. The proposed model is solved by iteratively adding optimality cuts and feasibility cuts through a novel 

constraint generation algorithm, whose mathematical proof is provided. The case studies show that the proposed model is capable 

of properly handling EVA uncertainties and coordinating EVA charging and load curtailments. The optimal coordination depends 

on several key parameters including the cost coefficients of delaying EVA charging and curtailing loads, the limits on delaying 

EVA charging, the system load level, and the EVA uncertainty level. 
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Highlights: 

� A two-stage robust distribution system operation model is proposed. 

� Electric vehicle aggregator charging and load curtailments are coordinated. 

� Average economic performance is improved by distributionally robust optimization. 

� System security is guaranteed through robust optimization and Farkas lemma. 

� The proposed model is solved through a novel constraint generation algorithm. 

Nomenclature 

A. Abbreviations and acronyms

CCG Column-and-constraint Generation 

EV Electric vehicle 

EVA Electric vehicle aggregator 
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DSO Distribution system operator 

SO Stochastic optimization 

DRO Distributionally robust optimization 

AVR Automatic voltage regulator 

B. Coefficients and variables 

,
res
t ic  Cost coefficient of load curtailment reserves at Node � in Hour � 

,
cur
t ic  Compensation coefficient for load curtailments at Node � in Hour � 

,
EVA
t ic  Compensation coefficient for delayed EVA charging at Node � in Hour � 

EVA
iα  EVA power factor at Node � 
,

load
t ip  Active load at Node � in Hour � 

,
load
t iq  Reactive load at Node � in Hour � 

0v  Base voltage 

EVAS  Set of nodes with EVA 

AVRS  Set of nodes with AVR 

disS  Set of all nodes in the distribution system 

( )pS i  Parent node of Node � 
( )cS i  Set of child nodes of Node � 

,i jr  Line resistance between Node � and � 
,i jx  Line reactance between Node � and � 
,

cur
t il  Limit on maximum load curtailment reserves at Node � in Hour � 

,
delay
t il  Limit on maximum delayed EVA charging at Node � in Hour � 

AVR
il  Limit on maximum AVR output at Node � 
t∆  An hour 

,
cur
t ir  Load curtailment reserves at Node � in Hour � 

x  Vector of first-stage variables 

,
cur
t ip  Curtailed active loads at Node � in Hour � 

,
AVR
t iq  AVR output at Node � in Hour � 

,
delay
t ie  Delayed EVA charging at Node � in Hour � 

,
EVA
t ip  EVA charging power at Node � in Hour � 

, ,
p
t i jf  Active power flow from Node � to � in Hour � 

, ,
q
t i jf  Reactive power flow from Node � to � in Hour � 

,t iv  Voltage at Node � in Hour � 

y  Vector of second-stage variables 

,
EVA
t iξ  Uncertain active EVA charging demand at Node � in Hour � 

,t iµ  Statistical expectation of �����,
  

ξ  Vector of �����,
  for all � and � ∈ ���� 
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μ Vector of �,
 for all � and � ∈ ����
Σ Statistical covariance matrix of �
fξ Distribution of �
Sξ Ellipsoidal support of �

( )A ξ Ambiguity set of �

I. Introduction

As environmental issues become of more concern to the public, and electric vehicle (EV) technology continues to develop,

the number of EVs is growing rapidly. J.P. Morgan estimated that EVs and hybrid vehicles would account for 30% of all vehicle 

sales by 2025 and 60% by 2030 [1], while India plans to forbid the sales of traditional vehicles by 2030 [2]. 

The penetration of EVs results in considerable charging demands, which are influenced by uncertain EV traveling behavior 

[3],[4]. Negative impacts on the distribution system can be incurred without appropriate control measures [5],[6]. Therefore, much 

work has been done on scheduling EV charging. In [7], EVs are utilized as distributed generators to improve the characteristics of 

the distribution system operation, including voltage profile and energy production costs. [8] seeks an optimal EV charging strategy 

that minimizes the power supply costs and unmet charging demand. Imbalances in the system are alleviated by scheduling EV 

charging in [9]. [10] optimized the EV charging strategy by considering the traffic system. However, when EVs become even 

more popular in the future, it will be quite difficult for power system operators to directly coordinate a large number of EVs [11]. 

Instead, it is more viable to let electric vehicle aggregators (EVAs) each regulate a limited number of EVs [12],[13] so that system 

operators only need to dispatch several EVAs rather than numerous EVs. For example, EVAs are controlled to match uncertain 

wind power in [11], and [14] proposed a hierarchical framework to dispatch EVAs. However, [11] and [14] neglected network 

constraints. [15] coordinated generators and EVAs to minimize the total operation costs considering the network constraints, but 

ignores the EVA uncertainties. [16] established a distribution system operation model by dispatching EVAs and considering EVA 

uncertainties. However, it has the following problems: First, the probabilistic distribution of uncertain EVA charging demand is 

assumed to be known accurately, which is unrealistic because information about uncertainties is usually limited. In addition, 

although the model in [16] properly guarantees system security, it uses piecewise linearization approximations to calculate the 

average operation costs, which is inaccurate. [17] appropriately models the uncertainty in EVA charging demands and evaluates 

the costs affected by uncertainties, but no other flexible resources apart from EVAs are considered. In fact, load curtailments often 

play an important role in distribution system operation [18].  

In consideration of the research gaps in the literature, a model is proposed in this paper to coordinate the EVA charging 

strategy and load curtailments in distribution system operation. The basic assumptions of this model are as follows: (1) from the 

perspective of the distribution system operator (DSO), EVAs are loads that are always connected to the system; (2) because of 

uncertainties related to individual EVs, there are uncertainties in the overall EVA charging demands, which are the random 

variables considered in the proposed model and are represented by � according to Nomenclature; (3) as EVAs can adjust the

charging of EVs before they depart, EVAs are able to provide flexibility for distribution system operation, which means that EVA 

charging demands can be delayed by DSO to some extent; (4) the model is proposed for DSO to dispatch EVAs and does not 

study how EVAs control EVs, as this is not the concern of DSO.  

In terms of dealing with uncertainties, some studies such as [19] and [20] established single-stage models by assuming that 

recourse actions are affine functions of uncertainties. Such an assumption greatly limits the possible recourse actions and thus can 

be very conservative. Another option for problems involving uncertainties is adopting a two-stage framework, whose first and 

second stage model the operation before and after the realization of uncertainties, respectively. Unlike single-stage models, 

two-stage models have no additional limitation on recourse actions, which can be determined optimally by solving the 

second-stage problem. As a result, these models have found several applications. In [21], a two-stage model was established for 

hybrid microgrids in rural areas. [22] managed urban multi-energy systems using a two-stage framework. A two-stage operation 

model of grid-connected microgrids was proposed in [23]. To accurately model the recourse actions with respect to uncertainties, 

a two-stage framework is adopted in this paper. As the second-stage problem depends on first-stage decisions in two-stage 
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frameworks, improper first-stage decisions could lead to inferior results in the second stage. Therefore, the second-stage problem 

is considered in the first-stage problem of the proposed model to ensure that proper first-stage decisions are made. 

In terms of evaluating uncertainty-affected costs, some studies adopted stochastic optimization (SO), which represents 

uncertainties by a set of scenarios in optimization problems [24],[25]. However, a large number of scenarios are needed to 

guarantee the performance of SO, which leads to a heavy computational burden [26]. It is also difficult to generate proper 

scenarios when little information about uncertainties is available. Because of the limitations of SO, an advanced approach called 

distributionally robust optimization (DRO) is adopted to evaluate the average uncertainty-affected costs and improve the average 

economic performance of the proposed model. Considering the limited information about uncertainties, the proposed model uses 

DRO to establish an ambiguity set that contains a family of possible distributions for uncertainties according to certain available 

information, such as statistical uncertainty moments [27],[28]. The worst distribution in the ambiguity set is focused on to hedge 

against ambiguity in the uncertainty distribution [29],[30]. Unlike models using SO, the proposed model does not require an 

excessive number of scenarios and thus avoids a heavy computational burden. 

Although DRO is good at evaluating average uncertainty-affected costs because of its worst-distribution orientation, it cannot 

properly guarantee system security with respect to the worst possible uncertainty realization. In contrast to DRO, robust 

optimization focuses on the worst possible uncertainty realization [31],[32] and is used to ensure secure system operation with the 

aid of Farkas lemma under the adopted two-stage framework. By taking advantage of both RO and DRO, the proposed model 

properly handles EVA uncertainties in terms of both economic performance and system security.  

The column-and-constraint generation (CCG) algorithm is often used to solve two-stage models. For example, CCG 

algorithm is used to solve two-stage energy hub operation in the environment of energy markets in [33], decentralized 

optimization of multi-energy systems with electricity and heat using two-stage formulations in [34], and a two-stage operation 

model of integrated energy systems with gas in [35]. However, because the proposed model uses DRO to evaluate 

uncertainty-affected costs, CCG algorithm is not applicable. In the formulation of the proposed model, a tailor-made constraint 

generation algorithm is used in the solution. Further discussions about the traditional CCG algorithm and the tailor-made 

constraint generation algorithm are made in Section IV. 

The contributions of this paper are summarized below. 

(1) A two-stage robust model is proposed to coordinate EVA charging and load curtailments for distribution system 

operation considering the uncertainties in EVA charging demands. 

(2) Under the adopted two-stage framework, distributionally robust optimization is used to improve the average economic 

performance of the proposed model, and robust optimization is adopted to guarantee system security with the aid of the 

Farkas lemma. 

(3) The proposed model is solved using a novel constraint generation algorithm, and its effectiveness is illustrated through 

comprehensive case studies. 

The remainder of this paper is organized as follows. Section II presents the formulation of the proposed model. In Section III, 

the proposed model is transformed into deterministic forms. Based on the transformation in Section III, the solution algorithm is 

presented in Section IV. Case studies are presented in Section V to demonstrate the model proposed in Section II. Finally, the 

conclusions are presented in Section VI. 

II. Problem Formulation 

The first and second stages of the proposed model are before and after the realization of uncertainties in EVA charging demands, 

respectively. In the first stage, DSO purchases reserves for load curtailments at each node of the distribution system. In the second 

stage, DSO delays EVA charging, curtails loads, and determines the output of automatic voltage regulators (AVRs) according to 

uncertainty realizations. The loads curtailed in the second stage cannot exceed the reserves that DSO purchased in the first stage. 

With such an arrangement, energy users in the distribution system could know in advance the largest loads that may be curtailed and 

make corresponding preparations.  

Delaying EVA charging and curtailing loads can both ensure secure distribution system operation in peak hours with high loads, 

but they achieve it in different ways. With load curtailments, the problems caused by excessive loads can be solved, and the 
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corresponding costs are known immediately. No correlation between different hours is incurred by load curtailments. In contrast, 

delayed EVA charging demands do not vanish like curtailed loads but are shifted to later hours that have fewer loads, which means 

that operation in different hours will be correlated because of delayed EVA charging demands. In addition, depending on the specific 

circumstances, EVA charging demands may be delayed for one hour or several hours. Therefore, the cost of delaying EVA charging 

is more complicated than that of curtailing loads. With their respective features, either delaying EVA charging or curtailing loads is 

more advantageous in different situations. Therefore, the proposed model coordinates the use of both approaches to achieve the 

optimal distribution system operation. 

Because the load curtailment reserves are decided in the first stage and fixed in the second stage, the second-stage problem 

depends on the first-stage decisions. To ensure the overall optimal results in the two stages, the first-stage problem should also 

consider second-stage costs, which are influenced by uncertainty realizations. It should be noted that there is no universally optimal 

method for evaluating uncertainty-affected costs. The most appropriate method depends on the attitude of decision makers toward 

risks. In some studies, including [21]-[23], the second-stage cost under the worst uncertainty realization is considered in the objective. 

Such an approach is suitable for decision makers who cannot take any risk but is overly conservative because the worst uncertainty 

realization rarely occurs. Therefore, a more reasonable way for most decision makers is to minimize the sum of first-stage costs and 

average second-stage costs over all possible uncertainty realizations in the first-stage problem. However, as discussed in Section I, 

there is ambiguity in the uncertainty distribution, and thus the average second-stage costs cannot be obtained exactly. Some studies, 

such as [25] and [36], directly neglect such ambiguity and consider the average costs under the assumed uncertainty distribution. If 

the actual uncertainty distribution is very close to the assumed distribution, their models can exhibit good performance. If not, the 

performance of their models will be significantly degraded [37]. Therefore, to be cautious under the ambiguity in the uncertainty 

distribution, the first-stage problem of the proposed model uses DRO to calculate the worst possible expectation of second-stage costs 

with respect to all distributions in the ambiguity set ����, which is also adopted and validated in the literature, such as in [38] and 

[39].  

A. The First-stage Problem 
The first-stage problem is described by (1)-(2). The objective (1) considers the costs that DSO needs to pay in both stages. The 

first item in (1) is the first-stage cost, that is, the cost of reserves for load curtailments at all nodes in all hours, and is a linear function 

of load curtailment reserves �����,
 . Ψ��, �� in (1) is the optimal second-stage cost and needs to be obtained by solving the 

second-stage problem. � is the vector of all first-stage decision variables, that is, �����,
  for all � and � ∈ ����. E[] is the operator 

that calculates expectations. Therefore, the second part of (1) is the worst expected second-stage cost with respect to all possible 

distributions �� in the ambiguity set ����. (2) constrains the reserves for load curtailments at all nodes in all hours to be 

non-negative and smaller than their limits. 

( )
( )

dis

, ,
res cur

1,...,24

min + max E ,t i t i

f A
t i S

c r
∈= ∈

Ψ  ∑ ∑
ξ ξ

x ξ                                  (1) 

, ,
cur cur dis . .   0 , ,t i t is t r l i S t≤ ≤ ∀ ∈ ∀                                          (2) 

B. The Second-stage Problem 

The second-stage problem is given in (3)-(12). �����,
  �!"#$�,
  and �����,% &����,%  in (3) are compensations for delayed EVA charging 

and curtailed loads, respectively. (4) requires the EVA charging power &����,
  to be non-negative. Delayed EVA charging  �!"#$�,
  is 

the EVA charging demand that has not been met, that is, the difference between EVA charging demands and the energy supplied, as 

shown in (5). It is constrained to be non-negative and smaller than the limits in (6). (7) requires the curtailed loads &����,
  to be 

non-negative and smaller than the reserves �����,
  scheduled in the first stage. AVR outputs '��(�,
  are restricted to be non-negative and 

lower than the AVR capacity )��(
  in (8). According to the linearized power flow model for distribution systems in [40], (9) and (10) 

give active and reactive power flows, respectively, and the node voltage is given in (11). As shown in (9) and (10), the power flow on 

a feeder is the sum of the power flows on all its child feeders and the net load at the node connecting it to its child feeders. In (10), 

'"*#��,
 ∙ &����,
 /&"*#��,
  is the curtailed reactive load, and &����,
 -1 − 01���
 23/1���
  is the reactive EVA charging power. According to 
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(11), the difference between the voltages of two adjacent nodes is simply the voltage drop on the feeder connecting them. (12) 

constrains the node voltage within the safe range. It should be noted that �����,
  in (5) is the uncertainty involved in the proposed 

model. 

EVA dis

, , , ,
EVA delay cur cur

1,...,24

min t i t i t j t j

t i S j S

c e c p t
= ∈ ∈

 
+ ∆  

 
∑ ∑ ∑                                         (3) 

,
EVA EVA . .  0, ,t is t p i S t≥ ∀ ∈ ∀                                                     (4) 

 ( )ˆ ˆ, , ,
delay EVA EVA EVA

ˆ 1,...,

, ,t i t i t i

t t

e p t i S tξ
=

= − ⋅ ∆ ∀ ∈ ∀∑                                    (5) 

 , ,
delay delay EVA0 , ,t i t ie l i S t≤ ≤ ∀ ∈ ∀                                                (6) 

, ,
cur cur dis0 , ,t i t ip r i S t≤ ≤ ∀ ∈ ∀                                                   (7) 

,
AVR AVR AVR0 , ,t i iq l i S t≤ ≤ ∀ ∈ ∀                                                (8) 

( )

( )
{ }p

c

, , , , , , ,
p load cur EVA p dis,  / 1 ,t S i i t i t j t i t i j

j S i

f p p p f i S t
∈

= − + + ∀ ∈ ∀∑                         (9) 

( )

( )

p

c

, , , , , , , , ,
load load cur load AVR/ +t S i i t i t i t i t i t i j t i

q q
j S i

f q q p p f q
∈

= − ⋅ −∑    

( ) { }2,
EVA EVA EVA dis1 / , / 1 ,t i i ip i S tα α+ − ∀ ∈ ∀   (10) 

( )
( )

( )
( )( ) ( ) { }p p

p p p

, , , ,
, p q 0 dis, , ,/ , / 1 ,t S i i t S i i

t i S i i S i i t S iv r f x f v v i S t+ ⋅ + ⋅ = ∀ ∈ ∀                 (11) 

0 , 0 dis0.95 1.05 , ,t iv v v i S t≤ ≤ ∀ ∈ ∀                                            (12) 

Each equality constraint in (3)-(12) can be replaced by a set of two inequality constraints. For example, 

 �!"#$�,
 = ∑ 6�����7,
 − &����7,
 8 ∙ ∆��7:;,…,�  in (5) is equivalent to the combination of  �!"#$�,
 ≤ ∑ 6�����7,
 − &����7,
 8 ∙ ∆��7:;,…,�  and 

 �!"#$�,
 ≥ ∑ 6�����7,
 − &����7,
 8 ∙ ∆��7:;,…,� . Therefore, the compact form of the second-stage problem can be written as (13)-(15), where ? 

is the vector of the second-stage decision variables and is made up of  �!"#$�,
 , &����,%  and '��(�,@  for all �, � ∈ ����, � ∈ ����, and 

A ∈ ���(. Other variables in (3)-(12), including &����,
 , �B�,
,%, �C�,
,%, and D�,
 can be represented by affine functions of ?. 

min  ′ ⋅
y

a y                                                       (13) 

. .  s t ⋅ ≤ − ⋅ − ⋅B y b C x D ξ                                         (14) 

≥ 0y                                                       (15) 

III. Problem Transformation 

If there is no uncertainty in EVA charging demands, the two stages of the proposed model can be merged, and it will become a 

deterministic linear optimization problem, which can be directly solved. The contents described in Sections III and IV are then not 

required. However, with uncertainties, the second-stage problem of the proposed model becomes deterministic after uncertainties are 

realized in the second stage, while the first-stage problem is before uncertainty realizations and is not deterministic because of the 

second part of (1). 
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To rewrite (1) into explicit and deterministic forms, DRO is first used to transform the second part of (1). (16) is the adopted 

ambiguity set, which means that all possible distributions satisfying (16) are taken into consideration by DRO. The first row in (16) 

constrains all possible realizations of � within the ellipsoidal support set ��. The second and third rows in (16) depict the uncertainty 

expectation and covariance matrix, respectively. The third row in (16) is equivalent to E − E[�� − F��� − F�G] ≽ I, which requires 

E − E[�� − F��� − F�G] to be a positive semidefinite matrix. Given (16), the second item in (1) can be rewritten explicitly as 

(17)-(21) by introducing the concept of integral in mathematics. (17) corresponds to the second part of (1). (18) requires the 

probability density function ����� to be positive. (19)-(21) are rewritten versions of the three rows of (16). Because � is continuous, 

the problem (17)-(21) needs to be optimized over ����� of infinite realizations of �, which makes it impossible to handle the 

problem directly and requires further transformation. It should be noted that the proposed model is regarded as a mathematical 

problem from now on. The mathematical transformations in the following parts of Sections III and IV do not have corresponding 

physical interpretations, but all aim to solve the proposed model optimally and efficiently and thus facilitate DSO to make proper 

decisions. 

( ) [ ]
( )( )

                            

E

E

S

A f

 ∈ 
 
 ==  

  ′− −
    

Σ

ξ

ξ

ξ

ξ μ                        
ξ

ξ μ ξ μ °

                                    (16) 

( ) ( )max  ,
f

f dΨ ⋅∫
ξ

ξ
x ξ ξ ξ                                         (17) 

( ). .  0,s t f S≥ ∀ ∈ξ ξξ ξ                                          (18) 

( ) 1
S

f d⋅ =∫
ξ

ξ
ξ ξ                                           (19) 

 ( )
S

f d⋅ ⋅ =∫
ξ

ξ
ξ ξ ξ μ                                        (20) 

( ) ( ) ( )
S

f d′− − ⋅∫ Σ
ξ

ξξ μ ξ μ ξ ξ  °                             (21) 

By using the duality theory [41],[42], the dual problem of (17)-(21) can be obtained as (22)-(24), where J, K, and ℎM are dual 

variables. ���� in (22) calculates the trace of the matrix. To further transform (22)-(24), Ψ��, �� in (23) must be expressed in 

explicit forms. As the second-stage problem is a linear optimization problem, its optimal value, that is, Ψ��, ��, is equal to that of its 

dual problem, whose compact form is given in (25)-(27) according to duality theory. N is the vector of the decision variables of the 

dual second-stage problem. Because (25)-(27) is also a linear optimization problem, its optimal value must be obtained at one of the 

extreme points of its feasible set O; if the second-stage problem (13)-(15) is feasible [43]. O; is not influenced by uncertainties, 

that is, �����,
 , according to (28), so its extreme points are deterministic. Therefore, given that the second-stage problem (13)-(15) is 

feasible, Ψ��, �� can be obtained by enumerating the extreme points of O; as shown in (29), where NP
  is the �QR extreme point 

of O;, and �P is the set of all extreme points of O;. Using (29), (23) can be rewritten as (30).  

( )
0

0, ,
min  tr

h
h′ ′⋅ + ⋅ +Σ

H h
H h μ                                         (22) 

( )0. .  , ,s t h S′ ′⋅ ⋅ + ⋅ + ≥ Ψ ∀ ∈ ξξ H ξ h ξ x ξ ξ                          (23) 

0±H                                                     (24) 

( )max  ′− ⋅ − ⋅
u

b C x D ξ u                                       (25) 

. .  s t ′ ⋅ ≤B u a                                                (26) 

 ≤ 0u                                                   (27) 
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{ }1 ,U ′= ⋅ ≤ ≤ 0u B u a u                                        (28) 

( ) ( )
p

p, = max i

i S∈
′Ψ − ⋅ − ⋅x ξ b C x D ξ u                                   (29) 

( )0 p p, ,ih S i S′′ ′⋅ ⋅ + ⋅ + ≥ − ⋅ − ⋅ ∀ ∈ ∀ ∈ξξ H ξ h ξ b C x D ξ u ξ                        (30) 

According to Farkas lemma [44], the second-stage problem (13)-(15) is feasible if and only if (31) is infeasible. Obviously, the 

infeasibility of (31) is equivalent to (32). Because O3 is a polyhedral cone, every element in it can be represented by a nonnegative 

linear combination of its extreme rays [45]. Therefore, (32) can be replaced by (33), where N�
  is the �QR extreme ray of O3, and �� 
is the set of all extreme rays of O3 [46],[47]. 

{ }
( )

2

2 ,

0

U

U

∈ 
  ′= ⋅ ≤ ≤ 
 ′− ⋅ − ⋅ >  

0 0

u

u B u u  

b C x D ξ u

                                     (31) 

( ) 20, ,S U′− ⋅ − ⋅ ≤ ∀ ∈ ∀ ∈ξb C x D ξ u ξ u                                (32) 

( ) r r0, ,i S i S′− ⋅ − ⋅ ≤ ∀ ∈ ∀ ∈ξb C x D ξ u ξ                                (33) 

Now, the first-stage problem (1)-(2) can be rewritten as (34)-(38). (34) is obtained by replacing the second part of (1) with (22). 

(35) is the first-stage constraint on load curtailment reserves and is the same as (2). (37) is the same as (33) and guarantees the 

feasibility of the second-stage problem (13)-(15). (36) and (38) are derived from the transformation of the second part of (1) and 

ensure the optimality of the proposed model. (36) is the same as (24), and (38) is the same as (30), which is derived from (23). 

Uncertainties are involved in (37) and (38). As �� is an ellipsoid, (37) can be replaced by its deterministic counterpart according to 

robust optimization [48],[49], and (38) can be transformed into deterministic forms by using S-lemma [50]. After all the discussed 

transformations, the first-stage problem finally becomes a deterministic semidefinite optimization problem. 

( )
dis

, ,
res cur 0

1,...,24

min +trt i t i

t i S

c r h
= ∈

′ ′⋅ + ⋅ +∑ ∑ ΣH h μ                                (34) 

, ,
cur cur dis . .   0 , ,t i t is t r l i S t≤ ≤ ∀ ∈ ∀                                          (35) 

0±H                                                         (36) 

( ) r r0, ,i S i S′− ⋅ − ⋅ ≤ ∀ ∈ ∀ ∈ξb C x D ξ u ξ                             (37) 

      ( )0 p p, ,ih S i S′′ ′⋅ ⋅ + ⋅ + ≥ − ⋅ − ⋅ ∀ ∈ ∀ ∈ξξ H ξ h ξ b C x D ξ u ξ             (38) 

IV. Solution Algorithm 

To introduce the algorithm that solves the proposed model more clearly, it is first briefly compared with the CCG algorithm, 

which is usually applied to solve two-stage models that consider the second-stage problem under the worst uncertainty realization. 

In each iteration of CCG algorithm, the worst uncertainty realization with respect to the current first-stage decision is found. Then, 

a deterministic problem is formed by considering the potential second-stage problems under the newly found and all previously 

found uncertainty realizations in the first stage. By solving this problem, an updated first-stage decision can be obtained. This 

process continues until the optimal solution is reached. More details about CCG algorithm can be found in [33]-[35]. Because the 

proposed model considers the average second-stage objective under the worst uncertainty realization, no particular uncertainty 

realization needs to be found, and CCG algorithm is not applicable. In contrast to the CCG algorithm, the process of the algorithm 
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proposed in this section has no physical but only a mathematical interpretation. However, its convergence criterion guarantees that 

Eq. (37) and (38) in the transformed first-stage problem (34)-(38) hold, which has the following physical interpretation. With (37), 

the feasibility of the second-stage problem can be guaranteed with respect to all possible uncertainty realizations. With (38), the 

sum of the first-stage costs and the average second-stage costs under the worst uncertainty distribution can be minimized. 

After the transformation in Section III, the first-stage and second-stage problems are semidefinite and linear optimization 

problems, respectively, and can be solved by off-the-shelf solvers. However, the large numbers of N�
  and NP
  involved in (37) and 

(38) result in a large computational burden and make it impossible to solve the first-stage problem directly. Among these N�
  and NP
 , 

only a few correspond to the active constraints of the first-stage problem and thus are necessary. In other words, most N�
  and NP
  

can be ignored, which does not affect the quality of the obtained solution. To avoid the computational burden caused by these 

unnecessary N�
  and NP
 , the first-stage problem is solved by a novel constraint generation algorithm that iteratively finds all 

necessary N�
  and NP
  based on the transformation described in Section III. 

Under the constraint generation algorithm, the problem (34)-(38) is relaxed by considering only parts of N�
  and NP
  in (37) and 

(38), respectively. The optimal J, K, ℎM, and � obtained from the relaxed problem of (34)-(38) are represented by J∗, K∗, ℎM∗, 

and �∗, based on which (39)-(41) and (42)-(45) can be generated. Before the constraint generation algorithm is discussed further, two 

propositions are introduced. The proofs of the two propositions are given in the Appendix. 

( ) ( )* * * *
0,

min   h′ ′′ ⋅ ⋅ + ⋅ + − − ⋅ − ⋅
ξ u

ξ H ξ h ξ b C x D ξ u                          (39) 

. .   s t S∈ ξξ                                                            (40) 

1U∈u                                                            (41) 

( )*

,
max  ′− ⋅ − ⋅
ξ u

b C x D ξ u                                           (42) 

. .   s t S∈ ξξ                                                       (43) 

2U∈u                                                       (44) 

( )* 1′− ⋅ − ⋅ ≤b C x D ξ u                                         (45) 

Proposition 1:  

Given that J = J∗, K = K∗, ℎM = ℎM∗, and � = �∗, (37) holds if and only if (39)-(41) is bounded. 

Proposition 2:  

The optimal N solved from (42)-(45) is either at the origin point or on an extreme ray of O3. 

According to Proposition 1, if (39)-(41) is unbounded, (37) does not hold for J = J∗, K = K∗, ℎM = ℎM∗, and � = �∗, which 

indicates that some necessary N�
  are not considered in the relaxed problem of (34)-(38). If the optimal value of (39)-(41) is negative, 

it is obvious that (38) does not hold for J = J∗, K = K∗, ℎM = ℎM∗, and � = �∗, which shows that some necessary NP
  are not 

considered in the relaxed problem of (34)-(38). If (39)-(41) is bounded and its optimal value is non-negative, (37) holds according to 

Proposition 1, and obviously (38) holds as well, indicating that the optimal solution of the first-stage problem has been obtained. 

According to Proposition 2, the optimal N obtained from (42)-(45) is either at the origin point or on an extreme ray of O3. 

When (37) does not hold, (32) also does not hold, which means that the optimal value of (42)-(45) is positive. Therefore, the optimal 

N obtained from (42)-(45) must be on an extreme ray of O3 as it cannot be at the origin point, and it is just a necessary N�
  that has 

been missed by the relaxed problem of (34)-(38). Therefore, the (37) corresponding to the necessary N�
  obtained by solving (42)-(45) 

should be added to the relaxed problem of (34)-(38) and is called a feasibility cut because (37) guarantees the feasibility of the 

second-stage problem (13)-(15), as discussed in Section III. 

As (39)-(41) is a linear optimization problem over N when � is fixed, the optimal N obtained from (39)-(41) must be an 

extreme point of O; and is just a necessary NP
  that has been missed by the relaxed problem of (34)-(38) when the optimal value of 

(39)-(41) is bounded and negative. Therefore, the (38) corresponding to the necessary NP
  obtained by solving (39)-(41) should be 
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added to the relaxed problem of (34)-(38), and is called an optimality cut because (38) ensures the optimality of the proposed model, 

as discussed in Section III. 

Based on the above discussions, the constraint generation algorithm to solve the first-stage problem is shown in Fig. 1. It 

should be noted that optimality cuts will certainly be added during the constraint generation algorithm, while feasibility cuts may 

or may not be added, depending on the parameter settings. To be more specific, adding feasibility cuts ensures that sufficient load 

curtailment reserves are scheduled in the first stage; thus, the second-stage problem is feasible. However, if the second-stage 

problem is always feasible regardless of the first-stage decisions, no feasibility cut will be added. The term �T ∙ � �G ∙ N in 

(39)-(41) and (42)-(45) makes the two problems non-convex. However, when � or N is fixed, (39)-(41) and (42)-(45) both 

become convex. Therefore, a heuristic algorithm is used to solve them, as shown in Fig. 2 [51]. 

 

 

FIGURE 2.  Heuristic algorithm to solve (39)-(41) and (42)-(45) 

FIGURE 1.  Constraint Generation algorithm to solve the first-stage 

problem 

V. Case Studies 

As discussed in Section II, the proposed model coordinates load curtailment and EVA charging to achieve secure and 

economical distribution system operation. Through a series of case studies, the coordination of load curtailment and EVA charging 

strategy, as well as the effects of uncertainties in EVA charging demands, are analyzed in this section. It should be noted that 

although the content in this section seems to have little correlation with Sections III and IV, all results presented are possible because 

of the mathematics outlined in Sections III and IV. 

Add the optimality cut, i.e., the (38) 
corresponding to the NP
  obtained by solving 
(39)-(41), into the relaxed problem of (34)-(38)  

Add the feasibility cut, i.e., the (37) 
corresponding to the N�
  obtained by solving 

(42)-(45), into the relaxed problem of (34)-(38) 

Substitute J∗, K∗, ℎM∗ and �∗ into 
(39)-(41) and (42)-(45), and solve (39)-(41) 

Relax (34)-(38) by considering only parts of 
N�
  and NP
  in (37) and (38), respectively 

Solve the relaxed problem of (34)-(38), 
and represent the optimal J, K, ℎM and 
� by J∗, K∗, ℎM∗ and  �∗, respectively 

(39)-(41) is bounded? 

The optimal solution of (34)-(38) is obtained 

The optimal value of 
(39)-(41) is negative? 

Yes 

No 

Yes 

No 

Solve (39)-(41) or (42)-(45) with � fixed 

to �∗, and record the optimal N as N∗ 
and the optimal value as V; 

Solve (39)-(41) or (42)-(45) with N fixed 

to N∗, and record the optimal � as �∗ 
and the optimal value as V3 

Difference between V; and 

V3 is within the tolerance? 

The optimal solution of (39)-(41) or (42)-(45) is 

obtained 

Yes 

No 
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The 33-node distribution system from [52] is modified for the case studies conducted in this section. As shown in Fig. 3, Nodes 

15, 18, and 33 each have an EVA, and Nodes 9, 11, 13, 16, 29, and 32 each have an AVR. The parameters of the distribution network 

are provided in the Appendix. The aggregated active loads in the distribution system are illustrated in Fig. 4. The considered EVAs 

are in residential areas. By assuming that EVs start charging at the rated power once they are connected to the distribution system, a 

series of EVA charging demands are simulated, and their statistical expectations, that is, �,
, are presented in Fig. 5, where the 

curves for EVAs at Nodes 15 and 18 are very close to each other. For space-saving purposes, the value of the covariance matrix of 

EVA charging demands, that is, Σ, is not presented. The basic parameter settings are listed in Table I. In the following parts of 

Section V, the relevant parameters will take the values in Table I, unless otherwise stated. To test the proposed model, a series of 

random uncertainty realizations are generated according to normal distributions. The average performance of the proposed model is 

obtained by analyzing its results under different uncertainty realizations.  

 

FIGURE 3.  33-node distribution network 

 
FIGURE 4.  Aggregated active load in the distribution system 

 

FIGURE 5.  Statistical expectation of EVA charging demands, �,
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Cost coefficients of load curtailment reserves of all loads in all hours, ��!��,
  0.5¢/kWh 

Compensation coefficients for curtailment of all loads in all hours, �����,
  10¢/kWh 

Compensation coefficients for delayed charging of all EVAs in all hours, �����,
  6¢/kWh 

Limits on outputs of all AVRs, )��(
  500 kVar 

Limits on delayed charging demands of all EVAs in all hours, )�!"#$�,
  (times of 

the statistical expectation of EVA charging demands, �,
) 
2�,
 

A. Basic illustration of the proposed model 

Four cases are considered in this part as listed in Table II. In Case A-I to A-III, EVA charging demand �����,
  is assumed to be 

deterministic and equal to 0.75�,
, �,
 and 1.25�,
, respectively. As there is no uncertainty, the proposed model becomes a 

deterministic linear optimization problem and can be directly solved in Cases A-I to A-III. In Case A-IV, the proposed model is kept 

intact, which means that EVA charging demands are uncertain and thus their values are unknown in advance. Relevant results in 

Hour 18-22 under the four considered cases are shown in Fig. 6 to Fig. 9. Results in other hours are not included because this paper 

focuses on the coordination of EVA charging and load curtailment, and no load curtailment or delayed EVA charging is carried out 

during these hours. For a clearer illustration, only the results in hours when EVA charging is delayed or loads are curtailed are 

presented here and in the following parts of Section V. It should be noted that as the settings change, the hours with delayed EVA 

charging or load curtailment change as well. In Fig. 6 and 7, the results for Cases A-I to A-III are deterministic values, while the 

results for Case A-IV are average values with respect to uncertainties in EVA charging demands. 

TABLE II CASES CONSIDERED IN SECTION V.A 

Case A-I A-II A-III A-IV 

Deterministic model? Yes Yes Yes No 

Values of EVA charging demands �����,
  0.75�,
 �,
 1.25�,
 
Unknown 

in advance 

 

FIGURE 6.  (Average) load curtailments under different settings in Section V.A 

 

FIGURE 7.  (Average) delayed EVA charging under different settings in Section V.A 
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FIGURE 8.  Load curtailment reserves under different settings in Section V.A 

 

FIGURE 9.  EVA charging demand and power in Case A-III 

In Case A-I, EVA charging demands are relatively low, so there is no load curtailment or delayed EVA charging, as shown in 

Figs. 6 and 7. As EVA charging demands increase in Cases A-II and A-III, both load curtailment and delayed EVA charging are 

carried out to guarantee secure distribution system operation. In Cases A-I to A-III, the scheduled load curtailment reserves are the 

same as the curtailed loads because there is no uncertainty in the considered problem. However, when uncertainties in EVA charging 

demands are involved in Case A-IV, it becomes more complicated to decide how many reserves should be scheduled. If there are too 

many scheduled reserves, a part of the corresponding costs will be unnecessary under relatively low uncertainty realizations. In 

contrast, if the scheduled reserves are too few, load curtailment cannot be properly carried out under uncertainty realizations of 

relatively large values, which will result in higher operation costs. Therefore, the balancing point should be found to minimize the 

average operation cost with respect to the uncertainties. As shown in Fig. 8, the reserves scheduled by the proposed model in Case 

A-IV are fewer than those in Case A-III and more than those in Cases A-I and A-II. Because of the reduced load curtailment reserve 

in Case A-IV in comparison with Case A-III, less load curtailment can be performed; thus, more EVA charging demands need to be 

delayed in Case A-IV than in Case A-III when uncertainties in Case A-IV take the realization considered in Case A-III. For 

space-saving purposes, load curtailment reserves are not presented in some of the following parts of Section V when they do not 

reveal valuable information. As this paper focuses on the coordination of EVA charging and load curtailments, some variables 

including the AVR outputs, active and reactive power flows, and node voltage are not shown to save space. 

To further illustrate the idea of delaying EVA charging, EVA charging demands and power in Case A-III are shown in Fig. 9. It 

can be seen that some EVA charging demands in Hours 20 and 21 are delayed to Hour 22, which can be interpreted as the 

corresponding EVA charging demands in Hour 20 being delayed for 2 hours and the corresponding EVA charging demands in Hour 

21 being delayed for 1 hour. It should be noted that although the average EVA charging power in Case A-IV and all cases 

considered in the following parts of Section V can also be calculated, it does not reflect the number of hours that EVA charging 

demands are delayed for because it is not a deterministic value as in Cases A-I to A-III but rather a statistical value for a series of 

different scenarios. In some scenarios, such as the uncertainty realization considered in Case A-I, no EVA charging demand is 

delayed. In some other scenarios, such as the uncertainty realizations considered in Cases A-II and A-III, EVA charging demands 
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may be delayed in different patterns. As EVA charging power can be deduced from the delayed EVA charging demand, it is not 

presented in all other cases considered in Section V to save space. 

B. Effects of coordinating EVA charging 

In this part, the cost coefficients of load curtailment reserves of all loads in all hours, that is, �����,
 , are set to 1¢/kWh, and the 

compensation coefficients of delayed charging of all EVAs in all hours, that is, �����,
 , are set to 3¢/kWh. Two cases as shown in 

Table III are considered in this part to study the effects of coordinating EVA charging. In Case B-I, no EVA charging demand is 

delayed, as shown in Fig. 10, because coordinating EVA charging is not allowed, and load curtailments are carried out according to 

Fig. 11 to ensure secure distribution system operation during peak hours. In contrast, EVA charging demands are delayed when EVA 

charging can be coordinated in Case B-II, and no load curtailment is carried out because of the relatively low compensation 

coefficient of delaying EVA charging. In some other settings, load curtailment and delayed EVA charging may be performed 

simultaneously, as shown in the following parts of Section V. 

TABLE III CASES CONSIDERED IN SECTION V.B 

Case B-I B-II 

Coordinating EVA charging? No Yes 

 

FIGURE 10.  Average delayed EVA charging under different settings in Section V.B 

 

FIGURE 11.  Average load curtailments under different settings in Section V.B 

C. Varying compensation coefficients for delayed EVA charging 

In this part, the cost coefficients of the load curtailment reserves of all loads in all hours, that is, �����,
 , are set to 1¢/kWh, and the 

compensation coefficients of delayed EVA charging, that is, �����,
 , are set to varying values, as shown in Table IV. Relevant results 

are shown in Figs. 12 and 13. It can be seen that there is only delayed EVA charging but no load curtailment under Case C-I, which 

illustrates that delaying EVA charging is more economical than curtailing loads in this case. However, as delaying EVA charging 

becomes more expensive under Cases C-II to C-IV, the average delayed EVA charging decreases and average load curtailments 

increase to achieve the optimal overall costs. 
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TABLE IV CASES CONSIDERED IN SECTION V.C 

Case C-I C-II C-III C-IV 

Compensation coefficients for delayed 

charging of all EVAs in all hours, �����,
  

(¢/kWh) 

3 6 9 12 

 

FIGURE 12.  Average load curtailments under different settings in Section V.C 

 

FIGURE 13.  Average delayed EVA charging under different settings in Section V.C 

D.  Varying cost coefficients of load curtailment reserve 

Another four cases are considered in this part as shown in Table V. Compensation coefficients of delayed charging of all EVAs 

in all hours, that is, �����,
 , are set to 12¢/kWh. When the cost coefficients of load curtailment reserves, that is, �����,

, decrease, 

curtailing loads becomes more economical and delaying EVA charging becomes relatively less economical, which results in less 

average delayed EVA charging, as shown in Fig. 14. At the same time, the load curtailment reserves increase to enable more load 

curtailments, as shown in Fig. 15. Compared with Cases D-I to D-III, the load curtailment reserves greatly increase in Case D-IV 

because delaying EVA charging is completely abandoned in Case D-IV. According to Fig. 16, the average load curtailments increase 

as the load curtailment reserves become cheaper, but the increase in the average load curtailments in Case D-IV is not as significant 

as that in load curtailment reserves. This is because load curtailment reserves need to be scheduled for the worst uncertainty 

realization, although it rarely occurs.  

TABLE V CASES CONSIDERED IN SECTION V.D 

Case D-I D-II D -III D -IV 

Cost coefficients of load curtailment 

reserves of all loads in all hours, 

�����,
  (¢/kWh) 

1 0.75 0.5 0.25 
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FIGURE 14.  Average delayed EVA charging under different settings in Section V.D 

 

FIGURE 15.  Load curtailment reserves under different settings in Section V.D 

 

FIGURE 16.  Average load curtailments under different settings in Section V.D 

E.  Varying limits on AVR output 

Case studies are conducted in this part under varying limits on the AVR output, that is, )��(
 , as shown in Table VI. According 

to the solution algorithm presented in Section IV, the optimal first-stage decisions are obtained by iteratively generating optimality 

cuts and feasibility cuts. However, unlike optimality cuts, feasibility cuts may not be generated in some circumstances, such as Case 

E-I, as recorded in Table VII. This is because with sufficient reactive power output from AVRs under Case E-I, the proposed model 

is feasible in the second stage, even when no load curtailment reserve is scheduled in the first stage. In other words, there is no need 

to generate feasibility cuts to guarantee the feasibility of the second-stage problem. However, as the limits on the AVR output 

become tighter in Cases E-II to E-IV, the voltage drop on the distribution network could become quite significant, and thus the 

second-stage problem could be infeasible if load curtailments cannot be properly carried out. Because load curtailments in the second 

stage require corresponding load curtailment reserves to be scheduled in the first stage, feasibility cuts are generated when the 

proposed model is solved under Cases E-II to E-IV, as recorded in Table VII, to ensure that proper first-stage decisions can be made, 

and thus the second-stage problem will be feasible.  

0

5

10

15

20

25

30

35

18 19 20 21 22
A

ve
ra

ge
 d

el
a

ye
d

 E
V

A
 c

h
a

rg
in

g 
(k

W
h

)
Hour

D-I

D-II

D-III

D-IV

0

50

100

150

200

250

300

350

18 19 20 21 22

Lo
a

d
 c

u
rt

a
ilm

en
t r

es
er

ve
 (

kW
h

)

Hour

D-I
D-II
D-III
D-IV

0

20

40

60

80

100

120

140

18 19 20 21 22

A
ve

ra
ge

 lo
a

d
 c

u
rt

a
ilm

en
t (

kW
h

)

Hour

D-I

D-II

D-III

D-IV



17 

TABLE VI CASES CONSIDERED IN SECTION V.E 

Case E-I E-II E -III E -IV 

Limits on outputs of all AVRs, 

)��(
  (kVar) 
500 400 300 200 

TABLE VII WHETHER FEASIBILITY CUTS ARE GENERATED 

Case E-I E-II E -III E -IV 

Feasibility cuts generated? No Yes Yes Yes 

According to Fig. 17, the hours with load curtailments expand and more loads are curtailed on average as limits on AVR output 

become tighter. But different from average load curtailments, average delayed EVA charging increases in the later hours while 

decreases in the earlier hours as limits on AVR output become tighter, as shown in Fig. 18. This is because, unlike load curtailments, 

delayed EVA charging needs to be recovered later, and thus causes correlations between different hours. More specifically, EVA 

charging demands in the earlier hours need to be delayed for a longer time, with greater corresponding costs, when the distribution 

network becomes more congested under tightened limits on AVR output, which makes delaying EVA charging in the earlier hours 

less economical. While in the later hours, EVA charging demands do not need to be delayed for a long time because the peak of 

overall loads in the distribution system has passed and loads start to decrease. Therefore, delaying EVA charging is economical in the 

later hours. To tackle the influences of tightened limits on AVR output, more EVA charging demands are delayed, on average, in the 

later hours. Therefore, instead of expanding as the curve in Fig. 17, the curve of the average delayed EVA charging in Fig. 18 moves 

to later hours as limits on AVR output become tighter. For similar reasons, the curves of the average delayed EVA charging also peak 

at different hours in some other cases considered in Section V. It should be noted that although load curtailment does not directly 

cause correlation between different hours, it interacts with and is thus influenced by delayed EVA charging. As a result, the curves of 

average load curtailments may peak at different hours as well. When the peaking hours of the delayed EVA charging curves are the 

same, load curtailments are still influenced by delayed EVA charging and thus may still have different peaking hours. 

 
FIGURE 17.  Average load curtailments under different settings in Section V.E 

 
FIGURE 18.  Average delayed EVA charging under different settings in Section V.E 

0

100

200

300

400

500

600

700

800

900

15 16 17 18 19 20 21 22 23 24

A
ve

ra
ge

 lo
a

d
 c

u
rt

a
ilm

en
t (

kW
h

)

Hour

E-I
E-II

E-III
E-IV

0

20

40

60

80

100

120

140

15 16 17 18 19 20 21 22 23 24

A
ve

ra
ge

 d
el

a
ye

d
 E

V
A

 c
h

a
rg

in
g 

(k
W

h
)

Hour

E-I

E-II

E-III

E-IV



18 

F.  Varying load level 

Four cases are considered here by varying the loads &"*#��,
  as shown in Table VIII. According to Fig. 19 and 20, there is only 

delayed EVA charging but no load curtailments in Case F-I, which shows that delaying EVA charging is more economical than 

curtailing loads in this case. However, when the loads increase in Case F-II, there are both delayed EVA charging and load 

curtailments. It should be noted that no feasibility cut is added when the proposed model is solved under Cases F-I and F-II, which 

means that there is no need to curtail loads to guarantee the feasibility of the second-stage problem. Therefore, the load curtailments 

in Case F-II indicate that delaying EVA charging becomes less economical in Case F-II than in Case F-I. This is because some EVA 

charging demands need to be delayed for a longer time when the distribution network becomes more congested under increased loads 

in Case F-II. As the loads further increase in Case F-III, both the delayed EVA charging and load curtailments increase. However, 

when the distribution network becomes very congested under further increased loads in Case F-IV, delaying EVA charging becomes 

uneconomical in the earlier hours, which is the same as in Section V.E. Therefore, there is no delayed EVA charging but significant 

load curtailments during these hours. 

TABLE VIII   CASES CONSIDERED IN SECTION V.F 

Case F-I F-II F -III F -IV 

Loads at all nodes in all hours, 

&"*#��,
  (times of the original values) 
0.9 1 1.1 1.2 

 

FIGURE 19.  Average load curtailments under different settings in Section V.F 

 

FIGURE 20.  Average delayed EVA charging under different settings in Section V.F 

G.  Varying covariance matrix of uncertain EVA charging demands 

In this part, case studies are based on a varying covariance matrix of uncertain EVA charging demands, that is, E, as shown in 

Table IX. When the covariance matrix becomes larger, the fluctuation level of EVA charging demands increases, which means that 

the possibilities of both higher and lower EVA charging demands increase. To hedge against possible higher EVA charging demands, 

load curtailment reserves increase when the covariance matrix becomes larger, as shown in Fig. 21. With the increase in load 
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curtailment reserves, it becomes possible in Cases G-II to G-IV to reduce operation costs by curtailing more loads on average 

compared with Case G-I, as shown in Fig. 22. In other words, the task of guaranteeing system security under the worst possible 

uncertainty realization requires more load curtailment reserves to be scheduled for the more uncertain EVA charging demand, which 

thus covers the costs of load curtailment reserves for other uncertainty realizations in Cases G-II to G-IV. Therefore, curtailing loads 

becomes relatively more economical for most uncertainty realizations, and thus the average load curtailments increase in Cases G-II 

to G-IV compared with Case G-I. However, the average load curtailments in Cases G-II to G-IV are almost the same because EVA 

charging demands have the same average, although their covariance matrices vary in different cases. In addition, because of the 

increase in average load curtailments, the average delayed EVA charging decreases in Cases G-II to G-IV in comparison with Case 

G-I, as shown in Fig. 23.  

TABLE IX CASES CONSIDERED IN SECTION V.G 

Case G-I G-II G -III G -IV 

Covariance matrix of uncertain 

EVA charging demands, E (times 

of the original values) 

1 2 3 4 

 

FIGURE 21.  Load curtailment reserves under different settings in Section V.G 

 

FIGURE 22.  Average load curtailments under different settings in Section V.G 
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FIGURE 23.  Average delayed EVA charging under different settings in Section V.G 

H.  Varying limits on delayed EVA charging 

As shown in Table X, limits on delayed EVA charging, that is, )�!"#$�,
 , vary in the four cases considered in this part. The 

compensation coefficients of delayed charging of all EVAs in all hours, that is, �����,
 , are set to 2¢/kWh. Loads at all nodes in all 

hours, &"*#��,
 , are set to 1.2 times the original values. As shown in Fig. 24, as the limits become tighter, more load curtailment reserves 

are prepared so that load curtailments can increase to compensate for the reduction in delayed EVA charging when the worst 

realization of uncertain EVA charging demands occurs. According to Fig. 25 and 26, the average load curtailments and average 

delayed EVA charging are barely influenced by the tightened limits on delayed EVA charging in Case H-II. However, as the limits 

further get tighter in Cases H-III and H-IV, the average delayed EVA charging decreases, and the average load curtailments increase. 

TABLE X CASES CONSIDERED IN SECTION V.H 

Case H-I H-II H-III H-IV 

Limits on delayed charging demands of all EVAs 

in all hours, )�!"#$�,
  (times of statistically expected 

EVA charging demands, �,
) 

2 1.5 1 0.5 

 

FIGURE 24.  Load curtailment reserves under different settings in Section V.H 
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FIGURE 25.  Average load curtailments under different settings in Section V.H 

 

FIGURE 26.  Average delayed EVA charging under different settings in Section V.H 

VI. Conclusions 

In this paper, a two-stage robust model is proposed to manage distribution system operation by coordinating EVA charging and 

load curtailments. With the cooperation of distributionally robust optimization and robust optimization, the proposed model optimizes 

the average economic performance and guarantees system security with respect to uncertain EVA charging demands. Depending on 

the parameter settings, either or both of delaying the EVA charging and curtailing loads are carried out to achieve the optimal result. 

Apart from the cost coefficients, the system load level also influences the relative advantages of delaying the EVA charging and 

curtailing loads over each other. As the load level increases, EVA charging demands need to be delayed for a longer time with greater 

corresponding costs, which makes delaying EVA charging less advantageous. In addition, when more load curtailment reserves are 

scheduled to guarantee system security, curtailing loads becomes relatively more economical, and thus average load curtailments may 

increase. 

Appendix 

Proof of Proposition 1:  

Because �� and O; are not empty, (39)-(41) is feasible. As discussed in Section III, (37) is equivalent to (32). 

Let us assume that (39)-(41) is unbounded. Because �� is an ellipsoid, � is bounded and thus �GJ∗� + �K∗�G� + ℎM in (39) is 

bounded from below. Because (39)-(41) is unbounded, �] − ^ ∙  �∗ − T ∙ ��GN in (39) must be unbounded from above, which 

means that there must be a NM ∈ O;  and �M ∈ ��  such that �] − ^ ∙  �∗ − T ∙ �M�GNM > 0  and ` ∙ NM ∈ O;  for all ` > 0 . 

According to the definition of O;, as shown in (28), there must be aGNM ≤ I. So, it can be known that NM ∈ O3, which contradicts 

(32). Therefore, (32) does not hold if (39)-(41) is unbounded. Equivalently, (39)-(41) is bounded if (32) holds. 

Let us assume that (32) does not hold. Then, there is an NM ∈ O3 and �M ∈ �� such that �] − ^ ∙  �∗ − T ∙ �M�GNM > 0. 

Obviously, as ̀  goes to plus infinity, ̀ ∙ NM ∈ O; and �] − ^ ∙  �∗ − T ∙ �M�G` ∙ NM is unbounded from above. As discussed in last 
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paragraph, �GJ∗� + �K∗�G� + ℎM  in (39) is bounded from below. Therefore, (39)-(41) is unbounded if (32) does not hold.

Equivalently, (32) holds if (39)-(41) is bounded. 

■

Proof of Proposition 2: 

Let us name the set bN|�] − ^ ∙  �∗ − T ∙ ��GN ≤ 1, N ∈ O3 d by Oe  and the hyperplane bN|�] − ^ ∙  �∗ − T ∙ ��GN = 1d
by f. Obviously, Oe is polyhedral. As (42)-(45) is a linear optimization problem over N when � is fixed, the optimal N obtained

from (42)-(45) must be an extreme point of Oe.

As the only extreme point of O3 is the origin point, all extreme points of Oe, except the origin point, must be at the intersection

of f and O3. Let us assume that NM is at the intersection of f and O3.

If NM is in the interior of O3, two points N; and N3 can obviously be found at the intersection of f and O3 such that

NM = `N; + �1 − `�N3, 0 < ` < 1; thus, NM is not an extreme point of Oe. Therefore, the extreme points of Oe cannot be in the

interior of O3 and must be on the faces of O3.

If NM is on a face of O3, it will be at the intersection of f and this face of O3. If the dimension of this face of O3 is larger

than 1, the dimension of the intersection of f and this face of O3 will be larger or equal to 1. Therefore, two points N; and N3
can be found at the intersection of f and this face of O3 such that NM = `N; + �1 − `�N3, 0 < ` < 1. Thus, NM is not an extreme

point of Oe unless NM is also on a 1-dimension face of O3. Therefore, the extreme points of Oe must be at the origin point or on a

1-dimension face of O3, which is just an extreme ray of O3 because O3 is a polyhedral cone [45].

■ 

TABLE A PARAMETERS OF THE ADOPTED DISTRIBUTION NETWORK 

Line No. From Bus To Bus Resistance (Ω) Reactance (Ω) 

1 1 2 0.0922 0.0477 

2 2 3 0.493 0.2511 

3 3 4 0.366 0.1864 

4 4 5 0.3811 0.1941 

5 5 6 0.819 0.707 

6 6 7 0.1872 0.6188 

7 7 8 1.7114 1.2351 

8 8 9 1.03 0.74 

9 9 10 1.04 0.74 

10 10 11 0.1966 0.065 

11 11 12 0.3744 0.1238 

12 12 13 1.468 1.155 

13 13 14 0.5416 0.7129 

14 14 15 0.591 0.526 

15 15 16 0.7463 0.545 

16 16 17 1.289 1.721 

17 17 18 0.732 0.574 

18 2 19 0.164 0.1565 

19 19 20 1.5042 1.3554 

20 20 21 0.4095 0.4784 

21 21 22 0.7089 0.9373 

22 3 23 0.4512 0.3083 

23 23 24 0.898 0.7091 

24 24 25 0.896 0.7011 

25 6 26 0.203 0.1034 

26 26 27 0.2842 0.1447 

27 27 28 1.059 0.9337 

28 28 29 0.8042 0.7006 

29 29 30 0.5075 0.2585 
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30 30 31 0.9744 0.963 

31 31 32 0.3105 0.3619 

32 32 33 0.341 0.5302 
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