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Abstract: Spatio-temporal wind speed prediction is of great significance to the grid-connected operation 8 

of multiple wind farms in smart grid. This paper proposes a spatio-temporal wind speed prediction 9 

method based on capsule network (CapsNet) for geographically dispersed wind farms over a region. In 10 

the proposed method, the historical wind speed data from the wind farms are originally converted into 11 

chronological images in a 3D space, and the spatial features implicit in the images are extracted by the 12 

convolutional operation. Then, the temporal information of wind speed spatial properties is encapsulated 13 

in multi-dimensional time-capsules and learned by the dynamic routing mechanism, thus capturing the 14 

nonlinear temporal dependencies based on the extracted spatial features. A regression layer activated by 15 

the leaky rectified linear unit (Leaky ReLU) function integrates the spatio-temporal features and generates 16 

the final prediction results. Furthermore, a two-layer iterative training approach is employed to well-tune 17 

the model parameters and accelerate the convergence speed. Finally, the real data of multiple wind farms 18 

from Ohio are collected in the case studies to demonstrate the superior performance of the proposed 19 

method compared with other forecasting methods. 20 
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1 Introduction 1 

Due to the clean and renewable environmental benefits, the number and scale of wind farms have 2 

grown considerably in recent years [1]. Wind speed prediction of multiple wind farms over a local region 3 

contributes to providing rich and valuable renewable energy information for system operators and 4 

managers, thereby facilitating the operation, management and real-time control of smart grid [2]. 5 

Nevertheless, the majority of current investigations focus on the wind speed prediction problem for an 6 

individual wind farm, which merely consider the wind speed temporal correlations, i.e., the relationships 7 

between the wind speed at a certain site and its historical values [3]. In reality, wind farms are usually 8 

clustered within a certain area with abundant wind resources, and there are interactive influences of wind 9 

speed time series among different wind farms [4]. Specifically, with the geographical and meteorological 10 

factors such as terrain, air pressure and temperature, the wind speed at different sites over a region 11 

exhibits remarkable spatial correlations [5]. Therefore, it is crucial to investigate the spatio-temporal wind 12 

speed prediction problem of multiple wind farms by capturing wind speed correlations on both time and 13 

space scales. 14 

The temporal correlations of wind speed at a certain wind site can be investigated from the historical 15 

data [4], while the spatial correlations, due to the influence of geographical factors, should be explored in 16 

connection with the wind speed information at the surrounding sites [6]. Consequently, the spatial and 17 

temporal correlations of wind speed from multiple wind farms need to be extracted in a targeted and 18 

differentiated manner to solve the wind speed prediction problem [3]. On the other hand, a large amount 19 

of spatio-temporal data from multiple wind farms increases the number of input variables and parameters 20 

to be trained in the prediction model, thereby increasing the complexity of data processing for the wind 21 

speed prediction problem [7]. Here, this paper is devoted to developing a capsule network (CapsNet) 22 

based model capable of capturing spatio-temporal features for the wind speed prediction of multiple 23 

dispersed wind farms. In the proposed model, a hybrid structure composed of convolution and capsule 24 

sub-networks is designed to hierarchically extract the underlying spatial features and intrinsic temporal 25 

dependencies of wind speed time series. Then, the wind speed prediction for multiple wind farms can be 26 

achieved using the extracted spatio-temporal features with a followed regression block. Moreover, the 27 

proposed prediction model is trained to encode spatio-temporal features with multi-dimensional vectors, 28 

offering a promising solution to handle the complex wind speed time series. 29 

So far, the commonly-used wind speed prediction methods can be classified into three categories, 30 

including physical methods, statistical methods and machine learning methods [8]. Physical methods 31 
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usually use meteorological and geographical information for wind speed prediction problems [5], but 1 

these methods are time-consuming and sensitive to initial conditions, and thereby not applicable for 2 

short-term prediction problems [9]. Statistical methods such as autoregressive integrated moving average 3 

model (ARIMA) [10] could obtain accurate short-term prediction results by capturing mathematical 4 

relationships between historical time series and future values. Nevertheless, the resulting residue of these 5 

methods will gradually accumulate when prediction steps increase [9]. Various machine learning 6 

techniques, with the strong capability of big-data training and nonlinear feature extraction, have been 7 

widely applied to the problems of renewable energy forecasting [8], [11], including support vector 8 

machine (SVM) [12], extreme learning machine (ELM) [13], stacked autoencoder (SAE) [14], deep belief 9 

networks (DBN) [15] and convolutional neural networks (CNN) [16], etc. However, most of these 10 

methods focused on the wind speed prediction problem for a single wind farm using wind speed temporal 11 

correlations. To further enhance the prediction performance, the spatial correlations of wind speed among 12 

the neighboring wind farms should also be taken into account [17], [18]. 13 

With the sufficient spatial and temporal information to be accessed from multiple wind farms, a few 14 

spatio-temporal prediction methodologies have been investigated in recent studies [19]-[24]. The wind 15 

farms were modeled as an undirected graph in [20] to extract the spatio-temporal characteristics of wind 16 

speed. In [21], a spatio-temporal forecasting model combining multi-output support vector machine and 17 

grey wolf optimizer was proposed to achieve the wind power prediction of multiple wind farms. The 18 

spatio-temporal correlations among wind farms was simulated by a joint distribution model in [22] based 19 

on the copula theory, and the Bayesian theory was used to deduce a conditional distribution of the 20 

aggregated wind power. The study in [23] adopted a computational numerical simulation approach to 21 

predict a spatial wind field under a complex terrain. A probabilistic wind speed prediction approach was 22 

presented in [24] based on a spatio-temporal neural network (STNN) and variational Bayesian inference. 23 

With feeding both the spatial and temporal information into the prediction model, these methods have 24 

achieved the better prediction performance. Nevertheless, most of these prediction models often collected 25 

all the wind speed information from different wind farms indiscriminately, and the implicit spatial 26 

correlations cannot be fully exploited in the original wind speed data to some extent. Also, the thorny 27 

multi-dimensional computing problem caused by the large amount of wind speed data at multiple wind 28 

farms needs to be solved in an effective way. 29 

In this study, a CapsNet based wind speed prediction model is developed for capturing the intrinsic 30 

spatio-temporal features of wind speed time series to indicate the interactions among geographically 31 

dispersed wind farms over a region. CapsNet algorithm was firstly introduced by Sabour et al. in [25] to 32 
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overcome the shortcomings of CNN which cannot identify objects with spatial relationships between 1 

properties. CapsNet uses multi-dimensional vector neurons as capsules to encode part-whole relationships 2 

between an object and its various properties, and a dynamic routing (DR) mechanism is utilized to allow 3 

CapsNet to learn these relationships through an iterative process of sending information from lower-level 4 

capsules to the appropriate higher-level capsules. [26]. Previous studies in [25]-[27] demonstrate that the 5 

discriminatively trained CapsNet model can offer the state-of-the-art performance in handling the high- 6 

dimensional data and extracting complex intrinsic features. In recent years, the CapsNet algorithm has 7 

been applied to various fields, such as image recognition [28]-[31], financial time series forecasting [32], 8 

human pose estimation [33], and traffic forecasting [34], etc. 9 

In this paper, a spatio-temporal prediction method based on CapsNet is proposed to simultaneously 10 

predict the wind speed from multiple dispersed wind farms. The proposed method can hierarchically and 11 

sufficiently capture spatial and temporal wind speed features to solve the wind speed prediction problem. 12 

The contributions of this paper are presented as follows: 13 

(1) The inherent spatio-temporal features of wind speed time series from dispersed wind sites are 14 

encoded with multi-dimensional vectors and learned by dynamic routing mechanism. The underlying 15 

spatial features of wind speed are extracted by convolutional implementation of sliding windows, while 16 

the temporal dependencies among the extracted spatial properties can further be captured by the capsules. 17 

(2) A CapsNet based forecasting model is proposed to cope with the spatio-temporal wind speed 18 

prediction problem for multiple wind farms. This model stacks a convolution structure with capsule 19 

sub-networks, which combines both scalar and vector computation to handle the spatio-temporal wind 20 

speed data. Furthermore, the regression layer is used to integrate the extracted spatio-temporal features 21 

and generate the prediction results through the leaky rectified linear unit (Leaky ReLU) function. 22 

(3) A two-layer model tuning approach is designed to optimize the model parameters of the proposed 23 

method. The internal training process is used for capsule sub-networks through DR iteration to adjust 24 

coupling coefficients between capsules, while the external layer training for the overall network adopts 25 

the back propagation rule embedding a trial-and-error technique so as to dynamically update the learning 26 

rate for optimizing the model parameters. 27 

The rest of this paper is organized as follows: Section 2 formulates the problem of spatio-temporal 28 

wind speed prediction; Section 3 describes the principles of the proposed CapsNet based spatio-temporal 29 

prediction method, including the extraction of wind speed features, the CapsNet structure as well as its 30 

model tuning approach; Section 4 investigates and evaluates the comparative performance of the 31 

proposed method through experimental studies. Section 5 presents the conclusions. 32 
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2 Problem formulation 1 

2.1 Spatio-temporal correlations in wind speed time series 2 

The spatio-temporal correlations of wind speed reflect the physical nature of atmospheric motion and 3 

contain valuable information for wind speed prediction [5]. Therefore, it is vital to capture the 4 

spatio-temporal correlations for achieving accurate wind speed prediction. For preliminary analysis of the 5 

spatio-temporal correlations of wind speed at multiple wind farms, mutual information (MI) [35] is used 6 

to calculate the correlation values. Suppose there is a pair of wind farms s1 and s2, and the wind speed 7 

time series of these wind farms are denoted as X and Y respectively. The MI between X and Y is 8 

computed as, 9 

( , )
( , ) ( , ) log

( ) ( )x y

p x y
I p x y

p x p yX Y

X Y
 

=                         (1) 10 

where p(x), p(y) is the marginal distribution of X and Y respectively, and p(x, y) is the joint distribution. 11 

The mutual information I(X, Y) is the relative entropy of the joint distribution p(x, y) and the marginal 12 

distribution p(x) and p(y). The geographical relationship of wind farms located in a certain region is 13 

illustrated in Fig. 1(a). Suppose s1 is the reference wind farm, and the spatial region directly adjacent to s1 14 

is defined as the I-order neighborhood. Here, neighborhood refers to the area where the wind farms 15 

adjacent to the reference wind farm are located. Likewise, the region adjacent to the I-order neighborhood 16 

is defined as the II-order neighborhood, while the III-order neighborhood is the region adjacent to the 17 

II-order neighborhood. For each neighborhood, the average value of MI between the wind speed time 18 

series of s1 and the lagged time series of each wind farm in the corresponding neighborhood is calculated 19 

and the results are shown in Fig. 1(b) with the time-lag τ ranging from 0 to 30. 20 

The spatio-temporal correlations of wind speed time series are revealed by Fig. 1, which lie in two 21 

aspects: 1) Wind speed time series at the reference wind farm show different degrees of spatial 22 

correlations with those at different neighborhood. The closer the neighborhood is to the reference wind 23 

farm, the more relevant the wind speed data will be. 2) Wind speed time series exhibit strong temporal 24 

correlations, which will reduce with the increase of the time-lag τ. It can be concluded that the wind speed 25 

time series at multiple wind farms over a certain region have significant spatio-temporal correlations, 26 

which need to be further learned and utilized to enhance the prediction performance of wind speed. 27 
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Fig. 1 (a) Geographical relationship of wind farms located in a certain region (b) Average value of MI 3 

between the wind speed time series of the reference wind farm and the lagged time series of wind farms 4 

in each neighborhood 5 

2.2 Spatio-temporal wind speed prediction problem 6 

The region where the wind farms are located can be represented by a M × N grid, as shown in Fig. 7 

1(a), and the wind speed at a certain site can be expressed by x(m,n)t, (1≤m≤M, 1≤n≤N). In time 8 

dimension, the wind speed data of each site are 1D time series with the length of T. Therefore, the wind 9 

speed time series at multiple wind farms can be represented by a 3D tensor 𝑿𝑡 ∈ 𝑅𝑀×𝑁×𝑇. At time t, the 10 

wind speed at all sites in the grid can accordingly be denoted by a spatial matrix, as follows, 11 

(1,1) (1,2) (1, )

(2,1) (2,2) (2, )

( ,1) ( , 2) ( , )

t t t

t t t M N

t

t t t

x x x N

x x x N
R

x M x M x M N



 
 
 = 
 
 
 

x                 (2) 12 

Thus, the wind speed spatial matrix at time t+𝜆 in the future can be predicted by previous spatial 13 

matrices, as follows, 14 

1 2
ˆ ( , , , )t t h t h tf+ − + − +=x x x x θ

                        
(3) 15 

where f represents the mapping between the input and output of the prediction model, h is the number of 16 

the previous time points, and 𝜽 is a set of model parameters to be learned through the training procedure. 17 

From the above analysis, the wind speed prediction of multiple wind farms can be achieved by the 18 

prediction of the wind speed spatial matrix, which is formulated as a spatio-temporal prediction problem. 19 

3 CapsNet based spatio-temporal wind speed prediction 20 

In this section, the extraction of spatial and temporal features of wind speed time series is described 21 
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in detail, and the prediction architecture based on CapsNet is formulated. Moreover, a two-layer model 1 

tuning approach for optimizing the model parameters is proposed. 2 

3.1 Spatial features captured by convolution operation 3 

With superior performance on extracting low-level spatial features, convolutional neural network 4 

(CNN) has been extensively applied in image identification [36], [37]. Conventional CNN consists of 5 

three types of layers, i.e., the convolution layer for feature extraction, the pooling layer for compressing 6 

the feature maps, and the linear layer for integrating the local features. Among them, although the pooling 7 

layer can reduce the data dimension, it loses some important information during the sampling process. 8 

Here, in order to extract wind speed spatial features more accurately, only the convolution layer and the 9 

linear layer of the convolution network are retained. 10 

The wind speed spatial matrix at a time point is originally displayed as an image, and the wind speed 11 

of the wind farms over a previous time period is correspondingly displayed as several frames of images. 12 

These input maps are first convolved with the filters, which are also termed shared weights. The local 13 

spatial features are learned by convolutional implementation of sliding windows and then passed through 14 

a non-linear activation function, as follows, 15 

= ( )tp t tp pg  +x x β b                               (4) 16 

where xt denotes the input map corresponding to the wind speed spatial matrix at time t, xtp denotes the 17 

pth feature map,   denotes the convolution operation, 𝜷𝑡𝑝 represents the shared weights connecting 18 

the input map, 𝒃𝑝  represents the bias, and ( )g   represents the activation function. Note that the 19 

activation function is selected as the Leaky ReLU function which has a strong ability to solve the gradient 20 

disappearance problem and can accelerate the convergence speed [38]. In the convolutional network, the 21 

neurons in the upper layer only need to be connected to some neurons in the lower layer to perceive the 22 

local part of the image, known as the local receptive field, which is suitable for learning the local spatial 23 

features of wind speed. 24 

Then through the linear layer, the feature maps are flattened to 1D form and passed through the 25 

activation function to form the spatial features, expressed as, 26 

= ( )t tqg +r wx b
                                  (5) 

27 

where  𝒓𝑡 = {𝑟𝑡|1, 𝑟𝑡|2, ⋯ } represents the extracted spatial features at time t, w and b denote the weight 28 

matrix vector and the bias respectively. 29 
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3.2 Temporal features extracted by dynamic routing mechanism 1 

3.2.1 Capsule computing 2 

A capsule is a multi-dimensional vector neuron encapsulating important information about the 3 

features of an object [25]. Specifically, the length of an output vector represents the detection probability 4 

of an object, while the direction characterizes the state of the features such as the size, location and 5 

orientation. CapsNet is a novel deep neural network characterized by using vector computation between 6 

the capsules instead of conventional scalar operation between the scalar neurons. The capsule 7 

computation can detect the presence of a particular object, which is illustrated in Fig. 2 by using the 8 

detection of wind speed spatio-temporal feature as an example. 9 
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Fig. 2 Capsule computing process in the detection of wind speed spatio-temporal features 11 

Considering that the wind speeds at adjacent time points exhibit strong correlations, the historical 12 

time period is divided into several parts with an hourly basis, and children time-capsules are 13 

correspondingly formulated, i.e., t1-capsule, t2-capsule, etc. Each child time-capsule is a 14 

multi-dimensional vector represented by 𝝁𝑖. The child time-capsule encodes the temporal features of the 15 

extracted wind speed spatial properties over a period of time, and each dimension of the vector represents 16 

an abstract temporal feature. Then, they predict the parent capsule vj, i.e., the spatio-temporal capsule, 17 

which characterizes a wind speed spatio-temporal feature. The part-whole relationship between the ith 18 

child capsule and the jth parent capsule is encoded by a weight matrix Wij, as follows, 19 

ˆ
ij ij i

=μ W μ                                   (6) 20 

where 𝝁̂𝑗|𝑖 is the prediction for the spatio-temporal capsule from a time-capsule  𝝁𝑖, Wij is the weight 21 

matrix, which can be learned by backward training the network. 22 

3.2.2 Dynamic routing mechanism and temporal feature extraction 23 
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As can be seen from Fig.2, the lower-level time-capsules are connected to the higher-level 1 

spatio-temporal capsules through the coupling coefficient cij which determines the output of a 2 

spatio-temporal capsule, namely the wind speed spatio-temporal feature to be extracted. The key of wind 3 

speed spatio-temporal feature extraction is to transfer the temporal information of the extracted wind 4 

speed spatial properties implied in the time-capsules to the spatio-temporal capsules through the 5 

calculation of cij. Dynamic routing is an iterative routing-by-agreement mechanism for information 6 

selection, and ensures that the temporal information of the extracted wind speed spatial properties from 7 

the time-capsules can be sent to the appropriate spatio-temporal capsules which agree the most with 8 

predictions of the time-capsules. The schematic diagram of dynamic routing mechanism for temporal 9 

feature extraction is shown in Fig. 3. 10 
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Fig. 3 Schematic diagram of dynamic routing mechanism 12 

The red and blue dots represent the predicted vectors from time-capsules, i.e., the wind speed 13 

spatio-temporal features. The red dots are clustered together, which represents that the predictions are 14 

similar with each other, while the blue dots are scattered indicating that the predictions are quite different. 15 

If most predictions of the time-capsules point at the red cluster centroid of the same parent capsule, it 16 

must be the spatio-temporal capsule. As shown in Fig. 3, the child time-capsule routes its prediction ˆ
iμ  17 

to the parent capsules by adjusting the coupling coefficient cij, which is calculated by the Softmax 18 

function, i.e., 19 

exp( )

exp( )

ij

ij

ikk

b
c

b
=
                                 (7) 

20 

where ∑ 𝑐𝑖𝑗𝑗 = 1 and 𝑐𝑖𝑗 ≥ 0, bij is a temporary variable and can be originally set to 0.Then the input 21 

vector of the jth spatio-temporal capsule sj can be calculated by the weight sum of all predictions from the 22 

time-capsules, as follows, 23 
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ˆ
j ij j i

i

c=s μ                                   (8) 1 

The Squash function is adopted to make the length of the output vector vj of the spatio-temporal capsule 2 

no more than 1, thus representing the detection probability of a spatio-temporal feature, as follows, 3 

2

2

1

j j

j

jj

=
+

s s
v

ss
                               (9) 4 

“Routing-by-agreement” determines the similarity of 𝝁̂𝑗|𝑖 and jv  by calculating the agreement factor 5 

aij, and then the temporary variable ijb can be updated, as follows, 6 

ˆ
ij j j i

a = v μ                                   (10) 7 

ij ij ijb b a= +                                   (11) 8 

where “  ” represents the dot product of 𝝁̂𝑗|𝑖 and vj. If the predictions of time-capsules are similar with 9 

the wind speed spatio-temporal feature, namely if 𝝁̂𝑗|𝑖 and vj agree, the agreement factor aij will possess 10 

a big internal product, thereby increasing the coupling coefficient cij using Eq. (11) and Eq. (7). The more 11 

these vectors are similar, the more wind speed information from the time-capsules will be sent to the 12 

spatio-temporal capsule. Through iteratively adjusting the coupling coefficient cij, the temporal features 13 

among the wind speed spatial properties, namely the wind speed spatio-temporal features, are captured in 14 

the spatio-temporal capsules. 15 

3.3 CapsNet based wind speed prediction for multiple wind farms 16 

Wind speed time series from multiple wind farms are represented by different spatial matrices 17 

arranged in chronological order, whereas a single spatial matrix with wind speed spatial information can 18 

be learned by convolution operation. It is necessary to further capture temporal dependencies among the 19 

extracted spatial properties with dynamic routing mechanism. Therefore, the proposed CapsNet stacks a 20 

convolution structure with capsule sub-networks to hierarchically capture spatial and temporal features of 21 

wind speed, and further integrate the extracted spatio-temporal features through a regression layer for 22 

achieving wind speed prediction of multiple wind farms. The detailed CapsNet based prediction 23 

architecture is depicted in Fig. 4. 24 
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 Fig. 4 CapsNet based prediction architecture 2 

In the input layer of CapsNet, the wind speed spatial matrices over a historical time period are 3 

displayed as images. The lower-level wind speed spatial features of multiple wind farms are first 4 

extracted by convolution operation. As revealed in the analysis of spatio-temporal correlations of wind 5 

speed time series in Section 2.1, the closer the wind farms are located, the stronger the spatial correlations 6 

of wind speed will be. Therefore, the filters only need to be connected with local regions, i.e., local 7 

receptive fields, of the input images and perform convolution operation through sliding windows. In order 8 

to extract the intrinsic spatial features such as the wind direction, the distance, etc., implied in the wind 9 

speed information, the filters are designed differently by the weight matrices. In this way, the spatial 10 

features are extracted and abstracted into network parameters. Then through the linear layer, the local 11 

features are integrated to form global wind speed spatial features of multiple wind farms. Based on the 12 

above steps, the wind speed spatial matrix xt can be represented by the extracted spatial features 𝒓𝑡 =13 

{𝑟𝑡|1, 𝑟𝑡|2, ⋯ }, and thus the prediction problem can be further expressed by, 14 

1 2
ˆ ( , , , )t t h t h tfx r r r θ+ − + − +

 =                          (12) 15 

where f   denotes the implicit function for capturing the temporal features, θ  denotes the network 16 

parameters. 17 

Then in time dimension, the extracted spatial features from different input images are 18 

chronologically encoded with multi-dimensional time-capsules, which embody multiple nonlinear 19 

temporal features among the extracted spatial features. Through an iterative process of routing the 20 

temporal information of the extracted wind speed spatial properties from the lower-layer time-capsules to 21 

the appropriate higher-layer spatio-temporal capsules, the spatio-temporal features of wind speed are 22 

captured by the spatio-temporal capsules. Subsequently, the followed linear layer reshapes the 23 
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spatio-temporal data to 1D form. The last full-connected regression layer is employed to obtain wind 1 

speed prediction results for multiple wind farms. 2 

3.4 Implementation of proposed prediction method 3 

3.4.1 Two-layer model tuning approach 4 

Three types of model parameters need to be trained in CapsNet, namely coupling coefficients, 5 

weights and bias. A two-layer model tuning approach is correspondingly proposed to adjust the 6 

parameters of CapsNet. The inner-layer training is used to tune coupling coefficients between the 7 

time-capsules and the spatio-temporal capsules, while the outer-layer training is responsible for 8 

optimizing the weights and bias. 9 

For the internal training of the capsule layers, the lower-level time-capsules predict the 10 

spatio-temporal capsules by iteratively adjusting the coupling coefficient cij. The detailed internal iterative 11 

training process between the capsule layers is illustrated in Fig.5. The temporary variable bij is initially set 12 

to be 0, and the coupling coefficient 𝑐𝑖
1 equals 1/n according to Eq. (7). In the following iterations, cij is 13 

updated using Eq. (7) and Eq. (10)-(11). The number of iterations is determined as 3, which optimizes the 14 

model fast and leads to a low loss according to the previous research experience [28]. 15 
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Fig. 5 Internal iterative training process between the capsule layers 17 

The outer-layer training process is used to optimize the weights and bias of CapsNet. These 18 

parameters are trained by the back propagation rule (BP) employing adaptive moment estimation 19 

optimization algorithm (Adam) [39]. The BP training aims at minimizing the loss function E, defined as, 20 

1 1
ˆ= t t

t F

E
M N

 + +



−



T

x x
T

                         (13) 21 

where T denotes a set of historical time points corresponding to the training sample, |𝑻| denotes the size 22 

of the training samples, ‖∙‖𝐹 represents the Frobenius norm, xt+λ and 𝒙̂𝑡+𝜆 represent the actual and the 23 
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predicted wind speed of the wind farms respectively. The error differentials are propagated in a top-down 1 

manner to adjust the weights and bias towards the optimal states. The parameters are updated based on 2 

the following rules: 3 

1 / ( )k k k k k −= − +w w m e                           (14) 4 

1 / ( )k k k k k −= − +b b m e                           (15) 5 

where wk and bk denote the weight vector and bias vector respectively; k represents the number of 6 

iterations; mk and ek indicate the first-order and second-order moment estimation vectors; αk represents 7 

the learning rate, and the parameter η is utilized to avoid zero denominator. In each iteration, mk and ek 8 

can be updated as: 9 

1 1 1(1 ) /k k k kE −= + −  m m w                          (16) 10 

2

2 1 2= (1 ) ( / )k k k kE − + −   e e w                         (17) 11 

where ϛ1 and ϛ2 represent two exponential decay rate parameters, and their values can be set as 0.9 and 12 

0.999 respectively. The periodic training process is completed when the training epoch reaches the preset 13 

value NT. In order to accelerate the convergence speed and reduce the model errors, a trial-and-error 14 

method is embedded to the training process. Concretely, every few training periods, all alternative 15 

learning rates are tested once to select the one which results in the smallest prediction error. Then the 16 

updated learning rate is adopted in the next training. 17 

3.4.2 Implementation steps for CapsNet based prediction method 18 

The proposed spatio-temporal wind speed prediction method combines various techniques such as 19 

feature extraction, dynamic routing mechanism, back propagation rule and trial-and-error technique. In 20 

summary, the detailed implementation steps for the proposed CapsNet based spatio-temporal wind speed 21 

prediction method are graphically presented in Fig. 6, where the two-layer iterative training process is 22 

also included. 23 
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Fig. 6 Implementation framework of the proposed method 2 

4 Case study 3 

In this section, the proposed spatio-temporal wind speed prediction method for multiple wind farms 4 

has been comprehensively evaluated and benchmarked using real-world data. 5 

4.1 Experimental settings 6 

In this case study, 16 wind farms, represented by a 4×4 grid, from Ohio in the middle east of the 7 

United States are selected for wind speed prediction. The data is collected from the Wind Integration 8 

National Dataset (WIND) which provides wind speed data in the United States from 2007 to 2013 with an 9 

observation interval of 5 minutes. The dataset used in this study covers the annual wind speed data of 10 

2012 and the time resolution is transferred to 15 minutes. The proportion of the training samples and the 11 

testing samples of the prediction model is set to 4:1. 12 

According to Section 3, the CapsNet based spatio-temporal prediction model is established. The time 13 
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length of the look-back period is 3 hours, and thus the previous 12 wind speed spatial matrices 1 

represented by 12 frames of images are used for prediction. Accordingly, the size of the input layer is 2 

4×4×12. The first layer is a convolution layer with 4 filters (kernel size: 3 × 3, stride: 1). Then the linear 3 

layer with the size of 16×1×12 is followed to integrate the local spatial features. There are 16 channels in 4 

the time-capsule layer, and each channel consists of 3 4D capsules. The spatio-temporal capsule layer is 5 

composed of 16 4D capsules. The next linear layer reshapes the data to 1D form. Finally, the regression 6 

layer generates the 1D prediction results for the wind farms. The model parameters including the coupling 7 

coefficient cij, the shared weights 𝜷𝑡𝑝, the weight matrix Wij and the bias 𝒃𝑝 are randomly initiated, and 8 

optimized based on the two-layer model tuning approach. To prevent over-fitting problem, early-stopping 9 

can be adopted, that is, the outer-layer iterative training is stopped when the training epoch NT reaches the 10 

pre-determined value 100. The alternative learning rates are selected from {0.5 0.1, 0.05, 0.01, 0.005, 11 

0.001, 0.0005, 0.0001, 0.00005}. The forecasting horizon   ranges from 15 minutes to 3 hours. 12 

To verify the superiority of the proposed method, various algorisms, including statistical 13 

method-ARIMA [9], machine learning methods-SVM [12], MLP [40], DBN [15], RNN [41], CNN [16], 14 

ComPonentNet (CPNet) [42], and hybrid methods-ST-GWO-MSVM [43] and CNN+MLP [44], are used 15 

as benchmarks. The prediction algorithms are implemented in Matlab R2018b and conducted on a 64-bit 16 

personal computer with Intel(R) core i7-7700 CPU/16.00 GB RAM. 17 

4.2 Performance metrics 18 

In this paper, three metrics, including mean absolute error (MAE), mean absolute percentage error 19 

(MAPE) and root mean square error (RMSE) are used to assess the prediction performance. For a single 20 

site (m, n), the MAE, MAPE, and RMSE are denoted as, 21 

1
ˆ( , ) ( , ) ( , )m t t

t

m n y m n y m n
TT

  + +



= −                      (18) 22 
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t t
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t t
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y m nTT
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

 + +

 +

−
=                   (19) 23 

21
ˆ( , ) ( ( , ) ( , ) )r t t
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m n y m n y m n
TT

  + +



= −                    (20) 24 

where 𝑦(𝑚, 𝑛)𝑡+𝜏 and 𝑦̂(𝑚, 𝑛)𝑡+𝜏 represent the observed and predicted value respectively, T denotes 25 

the set of time points corresponding to the testing samples, |𝑻| denotes the size of the testing samples. 26 

For multiple wind farms, the evaluation indices are modified as, 27 
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4.3 Results and analysis 4 

(1) Case 1 5 

To validate the effectiveness of the CapsNet based spatio-temporal wind speed prediction method, 6 

the individual prediction methods including ARIMA, MLP and CNN are employed as comparison 7 

algorithms. Note that, the individual prediction methods merely capture the temporal denpendencies of 8 

wind speed time series from a single wind site, and achieve wind speed prediction of multiple wind farms 9 

one by one. The dataset covers wind speed from August 3, 2012 to August 13, 2012, and the 15-min 10 

ahead prediction results are shown in Table 1. 11 

Table 1 15-min ahead prediction results of CapsNet and individual prediction models 12 

Performance 

metrics 

Models  

ARIMA MLP CNN CapsNet 

MAE (m/s) 0.5743 0.5629 0.5462 0.4035 

MAPE (%) 12.4619 11.2867 11.205 6.1834 

RMSE (m/s) 0.8369 0.7848 0.7063 0.6074 

From table 1, it can be clearly seen that all evaluation metrics of CapsNet are superior to those of 13 

individual prediction models. Specifically, compared to CNN, the improvements CapsNet shows in MAE, 14 

MAPE and RMSE are 26.13%, 5.02% and 14.01% respectively. Those improvements reach 28.32%, 5.10% 15 

and 22.64% when compared with MLP. By contrast, the statistical model ARIMA exhibits the worst 16 

forecasting results with the MAE, MAPE and RMSE of 0.5743 m/s, 12.4619% and 0.8369 m/s, 17 

respectively. The reasons can be explained as follows: 1) Susceptible to the over-fitting problem, ARIMA 18 

has limited capability to learn the strong randomness and nonlinearity in wind speed series. 2) Although 19 

CNN and MLP perform better results than the statistical model ARIMA due to their deep learning 20 

architectures, the lack of considering spatial correlations of wind speed leads to suboptimal predictions. 21 

Case 1 demonstrates that the proposed prediction method based on CapsNet using both spatial and 22 
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temporal correlations of wind speed can obtain more accurate prediction results than individual prediction 1 

methods which merely capture wind speed features on time scales. 2 

(2) Case 2 3 

To verify the superiority of the CapsNet based prediction method among numerous spatio-temporal 4 

prediction methods, state-of-the-art deep learning methods, including DBN, RNN, CNN, CPNet, as well 5 

as hybrid methods, i.e., ST-GWO-MSVM and CNN+MLP, are used as benchmarking algorithms. CPNet 6 

is a family of architectures, which consists of the core CPNet, the fully-fused CPNet and the bottom-fused 7 

CPNet, based on fully convolutional neural networks. Spatio-temporal wind speed prediction is achieved 8 

by processing u- and v-components of wind speed spatial information and predicting both u- and 9 

v-components of wind speed. Here, the standard CPNet, namely the core CPNet is used for comparison. 10 

Regarding to ST-GWO-MSVM, wind speed spatio-temporal (ST) correlations are analyzed, and 11 

multi-output support vector machine (MSVM) with grey wolf optimizer (GWO) is adopted to obtain wind 12 

speed for multiple wind farms. The GWO algorithm is utilized for parameters optimization of the MSVM 13 

model. In terms of the hybrid architecture CNN+MLP, CNN is used to extract wind speed spatial features 14 

while MLP is used to capture the temporal dependencies. The spatio-temporal wind speed data is 15 

flattened to 1D vectors before being fed to ST-GWO-MSVM, RNN and DBN, and reshaped as 2D 16 

images for CNN. The u- and v-components of wind speed during the historical time period are reshaped 17 

as two-branch 2D images for CPNet. The 15-min ahead wind speed prediction results are shown in Table 18 

2, and the histogram of statistical performance indices is illustrated in Fig.7. 19 

The results demonstrate that CapsNet outperforms the other six competitive models in terms of all 20 

error indices. Specifically, compared with the hybrid prediction methods, the MAE, MAPE and RMSE of 21 

CapsNet are 6.38%, 0.87% and 5.15% respectively lower than those of CNN+MLP, and 8.90%, 1.02% 22 

and 7.69% respectively lower than those of ST-GWO-MSVM. The presented results indicate that the 23 

proposed model with convolution and capsule sub-networks can more effectively capture the 24 

spatio-temporal features of wind speed time series to predict the wind speed for multiple wind farms. 25 

Also, the prediction errors of CapsNet are lower than those of CNN+MLP model, which implies that 26 

although the spatial features of wind speed can be extracted by CNN of the hybrid model CNN+MLP, 27 

MLP cannot sufficiently capture the temporal correlations due to the lack of modeling mechanism for 28 

time series. As for ST-GWO-MSVM, a multi-output wind speed prediction model is built to predict the 29 

wind speed of strong correlation, moderate correlation and weak correlation. However, the wind speed 30 

data of multiple wind farms is input as flattened 1D vectors, which weakens the spatio-temporal 31 

information implicit in the original data to a certain extent. 32 
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Compared with single-model prediction methods, CapsNet improves the MAE, MAPE and RMSE 1 

by 10.65%, 1.34% and 10.35% respectively compared to CPNet, and 17.62%, 2.13% and 12.5% 2 

respectively compared to CNN. Such improvements reach 21.51%, 3.47% and 13.24% compared to RNN, 3 

and 24.9%, 3.85% and 13.64% compared to DBN. The reason can be explained that despite taken into 4 

account both spatial and temporal information, the single models cannot directly process 3D 5 

spatio-temporal wind speed data. Either the reshaped 1D vectors of RNN and DBN, or the input 2D 6 

images of CNN lose considerably valuable spatial information originally contained in the wind speed 7 

spatial matrices to varying degrees. Although the horizontal and vertical spatial characteristics of wind 8 

speed are considered for CPNet, there is still a lack of effective mechanism for temporal features 9 

extraction. Among the single-model prediction methods, CPNet and CNN perform higher accuracy than 10 

RNN and DBN. It implies that the 1D form of wind speed data makes it difficult for RNN and DBN to 11 

handle the wind speed spatio-temporal correlations in an appropriate way. In addition, the prediction 12 

errors of RNN are lower than those of DBN because the recurrent signals of RNN can help it to capture 13 

the wind speed temporal dependencies. 14 

Table 2 15-min ahead prediction results of spatio-temporal prediction models 15 

Performance metrics 

Models 

DBN RNN CNN CPNet ST-GWO-MSVM CNN+MLP CapsNet 

MAE (m/s) 0.5373  0.5137  0.4898  0.4516  0.4429  0.4310  0.4035  

MAPE (%) 10.0309  9.6556  8.3131  7.5281  7.2068  7.0509  6.1834  

RMSE (m/s) 0.7033  0.7001  0.6942  0.6775  0.6580  0.6404  0.6074  
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(a)                                    (b) 2 

Fig. 8 (a) Wind speed prediction results of 16 wind farms in August by CapsNet (b) Actual wind speed 3 

values of 16 wind farms in August 4 
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Fig. 9 (a) Wind speed prediction results of the site (1, 2) in August (b) Wind speed prediction results of 1 

the site (2, 3) in August 2 

To intuitively verify the prediction performance of CapsNet, the wind speed prediction results and 3 

the actual wind speed values of the 16 wind farms are respectively depicted in Fig. 8 (a) and (b). The 4 

figures describe that the prediction results of the proposed method have very similar contours and 5 

variation trends to the real wind speed data. Moreover, the prediction curves of the site (1, 2) and the site 6 

(2, 3) by the benchmarking algorithms are graphically presented in Fig. 9 (a) and (b) respectively. From 7 

Fig. 9, it can be seen that the prediction curves of CapsNet are concentrated near the real wind speed 8 

curves. In contrast, there are large gaps between the prediction curve of DBN and the actual wind speed 9 

curve. This is because the one-dimensional input form and the sample size limit the capability of DBN to 10 

learn the intrinsic spatio-temporal features of wind speed time series. 11 

For a more comprehensive comparison between the prediction models, the monthly prediction 12 

results for the year of 2012 are evaluated by the three indices, as shown in Table 3. It can be seen that the 13 

MAE of CapsNet varies from 0.2596 to 0.7593 with an average of 0.4458, while the average MAE of 14 

CNN+MLP, ST-GWO-MSVM, CPNet, CNN, RNN and DBN is 0.4931, 0.5081, 0.5230, 0.5448, 0.6086, 15 

and 0.6937, respectively. Also, compared to the other algorithms, the average MAPE of CapsNet is 16 

improved from 0.93% to 4.11% with an average of 2.10%, and the improvements of the average RMSE 17 

range from 9.15% to 28.70% with an average of 16.74%. In addition, it can be found that the proposed 18 

method has a slightly worse fitting degree in July and September than that in other months, which can be 19 

explained that wind speed in these months are more irregular and unpredictable. It can be concluded from 20 

Table 3 that the CapsNet based prediction method outperforms the other four benchmarking algorithms 21 

throughout the year, proving that the proposed method can maintain strong wind speed prediction stability 22 

with different degrees of fluctuation. 23 

Table 3 Monthly MAE (m/s), MAPE (%) and RMSE (m/s) of the prediction models 24 

Month 
Evaluation 

indices 
CapsNet CNN+MLP 

ST-GWO- 

MSVM 
CPNet CNN RNN DBN 

Jan. 

MAE 0.4755  0.5276  0.5292  0.5314  0.5328  0.5727  0.9216  

MAPE 7.6050  8.4850  8.5189  8.6858  8.7450  9.1452  14.6705  

RMSE 0.8097  0.7340  0.7965  0.8118  0.8211  0.8710  1.2166  

Feb. 

MAE 0.3748  0.4113  0.4398  0.4604  0.4951  0.5355  0.6191  

MAPE 6.9574  7.2150  7.6855  8.4874  9.7226  9.8350  11.6118  

RMSE 0.5493  0.6688  0.6817  0.6832  0.7019  0.6964  0.7816  

Mar. 

MAE 0.3989  0.4439  0.4594  0.4932  0.5192  0.5239  0.5560  

MAPE 4.2733  4.7414  4.9342  5.2494  5.5359  5.5950  5.9253  

RMSE 0.5736  0.6638  0.6678  0.6783  0.6805  0.6935  0.7191  

Apr. 
MAE 0.3015  0.3627  0.3969  0.4128  0.4213  0.4577  0.4913  

MAPE 6.3550  7.5850  7.9715  8.3181  8.6650  9.2500  9.9450  
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RMSE 0.4120  0.4729  0.5062  0.5362  0.5587  0.6581  0.6656  

May. 

MAE 0.4658  0.4819  0.5015  0.5189  0.5386  0.6044  0.7402  

MAPE 8.8879  9.3350  9.8122  10.4670  10.7052  11.8591  14.2704  

RMSE 0.6950  0.7090  0.7103  0.7548  0.7019  0.8266  0.9365  

Jun. 

MAE 0.4368  0.5139  0.5242  0.5327  0.5487  0.6725  0.7247  

MAPE 5.9850  6.9307  7.1704  7.3165  7.3415  8.7423  9.4650  

RMSE 0.6337  0.7143  0.7259  0.7384  0.7465  0.8672  0.9391  

Jul. 

MAE 0.7593  0.7727  0.7708  0.7937  0.8087  0.9742  1.0224  

MAPE 18.5514  18.9650  19.1002  19.4637  19.9213  23.8050  24.9514  

RMSE 1.0972  1.2402  1.2337  1.3629  1.5109  1.5585  1.6370  

Aug. 

MAE 0.4035  0.4310  0.4429  0.4516  0.4898  0.5137  0.5373  

MAPE 6.1834  7.0509  7.2068  7.5281  8.3131  9.6556  10.0309  

RMSE 0.6074  0.6404  0.6580  0.6775  0.6942  0.7001  0.7033  

Sept. 

MAE 0.7030  0.8380  0.8445  0.8562  0.8575  0.8657  0.9978  

MAPE 10.0350  12.3197  11.8109  12.0203  11.9250  12.6450  13.2716  

RMSE 1.0438  1.0986  1.1076  1.1884  1.1159  1.2536  1.2663  

Oct. 

MAE 0.2596  0.2951  0.3127  0.3228  0.3355  0.3752  0.3980  

MAPE 7.7850  9.2350  9.4852  10.2265  10.6673  11.9047  10.5548  

RMSE 0.3611  0.4138  0.4147  0.4295  0.4296  0.4877  0.4848  

Nov. 

MAE 0.3382  0.3420  0.3537  0.3789  0.3908  0.5822  0.6968  

MAPE 6.4525  7.3150  6.7536  7.0485  6.6100  10.4173  10.6450  

RMSE 0.4391  0.4518  0.4675  0.4977  0.4989  0.7115  0.8055  

Dec. 

MAE 0.4327  0.4973  0.5220  0.5229  0.5991  0.6260  0.6192  

MAPE 6.2852  7.3329  8.6252  8.7814  9.0567  9.6227  9.3450  

RMSE 0.7389  0.8310  0.8443  0.8423  0.8614  0.8308  0.9041  

AVG 

MAE 0.4458  0.4931  0.5081  0.5230  0.5448  0.6086  0.6937  

MAPE 7.9463  8.8759  9.0896  9.4661  9.7674  11.0397  12.0572  

RMSE 0.6571  0.7233  0.7345  0.7668  0.7768  0.8463  0.9216  

(3) Case 3  1 

Case 3 is studied on the wind speed dataset of August in 2012 and the prediction horizon is extended 2 

from 15 minutes to 3 hours. The results are presented in Table 4 to Table 6. As shown in the tables, the 3 

proposed model based on CapsNet holds the dominant position over other benchmarking algorithms in 4 

terms of MAE, MAPE, as well as RMSE regarding different prediction horizons. Besides, with the 5 

extension of the prediction horizon, the prediction accuracy of all prediction models decreases, and the 6 

prediction errors of other benchmarking algorithms grow faster than CapsNet. Specifically, the RMSE of 7 

CapsNet is 5.15%, 7.69%, 10.35%, 12.50%, 13.24%, and 13.64% lower than that of CNN+MLP, 8 

ST-GWO-MSVM, CPNet, CNN, RNN and DBN respectively in 15-min ahead wind speed prediction. In 9 

3-hour ahead prediction, these improvements reach 48.19%, 50.50%, 53.26%, 54.49%, 61.02%, and 10 

62.84%, respectively. It can also be observed that the hybrid CNN+MLP has generally better performance 11 

compared to the other prediction methods over all prediction tasks. Moreover, among the single-model 12 

prediction methods, DBN generates fairly poor results when the prediction horizons are extended longer. 13 

For instance, regarding the 15-min ahead prediction, the MAE of DBN is 24.90% higher than that of 14 

CapsNet, while this value increases to 56.14% when performing 3-hour ahead prediction. 15 
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The reasons for the results of Case 3 lie in four aspects: 1) The hierarchical sub-networks of CapsNet 1 

and CNN+MLP enables these models to learn the spatial and temporal correlations of wind speed in a 2 

targeted manner, therefore achieving more accurate prediction results based on richer knowledge. 2) In 3 

CapsNet, the wind speed dependencies among the spatial properties are encoded with multi-dimensional 4 

capsules and learned through an iterative information transfer process between the capsules, and thus the 5 

intrinsic spatio-temporal features are comprehensively extracted by the discriminatively trained CapsNet. 6 

3) CapsNet adopts novel activation functions such as the Leaky ReLU function and the Squash function, 7 

which have better activation performance compared with conventional non-linear activation functions 8 

such as Sigmoid and help the proposed model to cope with complex high-dimensional wind data. 4) As 9 

the prediction horizon is extended, the temporal correlations of wind speed time series decrease, and thus 10 

it is more significant to capture the spatial correlations of wind speed for wind speed prediction. Case 3 11 

proves the state-of-the-art performance of CapsNet in handling spatio-temporal wind speed prediction 12 

problem under various prediction horizons. 13 

Table 4 MAE of the prediction models (m/s) 14 

Models 
Prediction horizons (min) 

15 30 60 120 180 

DBN 0.5373  0.8618  0.9381  1.4860  1.6857  

RNN 0.5137  0.7936  0.8151  1.2422  1.4210  

CNN 0.4898  0.6909  0.7211  0.8436  1.1405  

CPNet 0.4516  0.6238  0.7094  0.8159  1.1197  

ST-GWO-MSVM 0.4429  0.5452  0.6523  0.7922  0.9138  

CNN+MLP 0.4310  0.5257  0.6235  0.7585  0.8233  

CapsNet 0.4035  0.4970  0.5304  0.6290  0.7393  

Table 5 MAPE of the prediction models (%) 15 

Models 
Prediction horizons (min) 

15 30 60 120 180 

DBN 10.0309  11.2117  15.8245  21.2534  29.8739  

RNN 9.6556  10.5749  15.2782  20.1404  28.0984  

CNN 8.3131  9.8601  13.1329  19.2867  25.8377  

CPNet 7.5281  9.3034  12.7128  19.1085  24.6385  
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ST-GWO-MSVM 7.2068  8.9105  12.1335  18.8154  24.3931  

CNN+MLP 7.0509  8.4450  11.3574  18.6062  23.8926  

CapsNet 6.1834 7.3916 10.1939 17.2335 21.9634 

Table 6 RMSE of the prediction models (m/s) 1 

Models 
Prediction horizons (min) 

15 30 60 120 180 

DBN 0.7033 0.9208 1.702 2.151 2.4292 

RNN 0.7001 0.8799 1.6964 2.0798 2.3144 

CNN 0.6942 0.8296 1.3096 1.7428 1.9834 

CPNet 0.6775  0.8163  1.2529  1.5681  1.9313  

ST-GWO-MSVM 0.6580  0.7912  1.1553  1.3119  1.8235  

CNN+MLP 0.6404 0.7761 0.9784 1.2513 1.7422 

CapsNet 0.6074 0.7040 0.8299 0.8822 0.9026 

4.4 Discussions 2 

The model parameters of CapsNet are optimized with the two-layer iterative training process, and as 3 

suggested in previous research experience [25], [28], the number of iterations of inner-layer training is 4 

determined as 3, while the outer-layer layer training for the entire network employs BP rule with Adam 5 

optimization algorithm. Note that a trial-and-error technique is embedded in the training process for 6 

convergence acceleration. To verify the convergence of the CapsNet based prediction method, the training 7 

process for the 15-min ahead wind speed prediction is inspected by recording the loss function E. Fig. 10 8 

illustrates the values of E for CapsNet trained by the two-layer model tuning approach with different 9 

optimization algorithms including Adam, RMSprop, Adagrad, and Adam without the trial-and-error 10 

technique. It can be found that CapsNet trained by the two-layer model tuning approach with Adam 11 

optimization algorithm converges faster than the others. In addition, the trial-and-error technique 12 

considerably accelerates the convergence speed, thereby enhancing the convergence performance of the 13 

proposed prediction method. 14 

Furthermore, a comparison of training time for 15-min ahead spatio-temporal wind speed prediction 15 

with all the prediction models is shown in Table 7. It can be seen that the proposed CapsNet takes more 16 

time for training than the other models. This is because CapsNet is trained with the two-layer model 17 

tuning approach, which is relatively computational expensive due to the inner and outer iterative training 18 
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process. Owing to the complex layer-wise training and fine-tuning process of DBN, and the recurrent 1 

connections of RNN, these two methods are more time-consuming than the other comparison methods. In 2 

addition, the hybrid prediction methods including ST-GWO-MSVM and CNN+MLP, as well as the 3 

CPNet with u- and v-components processing need more training time than CNN with relatively simpler 4 

structure. Although requiring a comparatively longer computational time, CapsNet is still attractive since 5 

the training time is within an acceptable range. 6 
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Adagrad

 7 
Fig. 10 Values of E for CapsNet during the training process 8 

Table 7 Training time of the prediction models 9 

 DBN RNN CNN CPNet ST-GWO-MSVM CNN+MLP CapsNet 

Runtime/s 261.4 275.3 192.6 224.1 207.7 248.1 289.5 

5 Conclusion 10 

In this paper, a hybrid prediction method based on CapsNet is proposed to solve the spatio-temporal 11 

wind speed prediction problem for multiple wind farms. In the proposed method, the spatio-temporal 12 

features of wind speed are encoded with multi-dimensional capsules and learned by DR mechanism. The 13 

proposed method has been comprehensively tested and compared with individual prediction methods as 14 

well as other spatio-temporal prediction methods. A real-world dataset from a spatial region consisting of 15 

16 wind farms is used to verify the feasibility and effectiveness of the proposed method. Statistically, for 16 

15-min ahead wind speed prediction, compared to individual prediction methods, the highest 17 

improvements of MAE, MAPE and RMSE are 29.74%, 50.38%, and 27.42%, respectively. Also, 18 

compared with other spatio-temporal prediction methods, the highest improvements of MAE, MAPE and 19 

RMSE are 24.90%, 38.36%, and 13.64%, respectively. Moreover, the comparative results also show that 20 

the proposed prediction method outperforms other benchmarking algorithms in the whole year and under 21 

various prediction horizons. These experiment results prove that the proposed method can effectively deal 22 
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with the spatio-temporal wind speed prediction problem and has great potentials for practical applications 1 

in smart grid. 2 

Accurate wind power ramp events prediction helps system operators to make sensible scheduling 3 

decisions to mitigate impacts of drastic fluctuations in wind power, thereby facilitating secure and reliable 4 

operation of smart grid. Due to the low frequency of wind power ramp events, it is challenging to learn 5 

the mapping relationship between the historical wind power samples and wind power ramp events. 6 

Further ongoing research would focus on the application of CapsNet to wind power ramp events 7 

prediction for multiple wind farms. 8 
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