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Abstract: This paper proposes a multi-level multi-energy management framework for the coordinated and 

interactive operation of heterogeneous multi-microgrids (MMGs) based on many-criteria optimality. With 

the proposed framework, the highly nonlinear and complex MMG multi-energy management (MMGMEM) 

problem is formulated into tri-level scheduling subproblems with multi-energy couplings and multi-level 

interactions, in which the multi-energy trading with energy networks and multi-energy couplings within 

MGs are optimized in the upper and middle level, and a middle level is added to correct scheduling decisions 

of the upper level for coordinating the MMG multi-energy sharing. Then, a multi-step matrix decomposition 

technique is developed to decompose the high dimensional multi-energy coupling matrix of MMGs into 

the sum of three linear and sparse submatrices for improving the computation efficiency and scalability. 

Furthermore, a many-criteria decision making (MCDM) model is proposed for the multi-energy sharing 

problem to achieve an optimum tradeoff in which all microgrids (MGs) can benefit from electricity-gas 

exchanges, and an evolutionary many-objective optimization based on hyperplane transformation algorithm

is used to solve the MCDM problem. Simulation results verify that the proposed framework can achieve a 

cost saving for each MG (over 19%), and validate its scalability in solving large-scale MMGMEM problems. 
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Nomenclature 
    

Sets, Indices and Function  Variables 

m Index of MGs  𝑃𝑚
BESS/ 𝑉𝑚

Tank Output of BESS (kW)/gas tank (m3) in MG m 

𝑓WT/ 

𝑓PV  

Power generation function of wind turbine (WT)/ 

photovoltaics 

 𝑣𝑚
E /𝑣𝑚

H/𝑣𝑚
G  Dispatch factor of input energy resources to 

electrical/thermal/ gas load in MG m 

𝑰𝑚,1/𝑰𝑚,2/𝑰𝑚,3/

𝑰𝑚,4/𝑰𝑚,5 

Sets of P2G/boiler/CHP/furnace/BESS/gas tank 

in MG m 

 𝑣𝑚
CHP/𝑣𝑚

Boi/

𝑣𝑚
Fur/𝑣𝑚

P2G 

Dispatch factor of input energy resources to 

CHP/boiler/furnace/ P2G in MG m  

𝑖𝑡𝑒𝑟 Index of iteration number of EMOHT  𝑉𝑚,𝑡
short,Gas

/

𝑉𝑚,𝑡
sur,Gas

 

Amount of shortage/surplus gas at time slot t in 

the MG m (m3)    

Parameters 𝑃𝑚,𝑡
short,E

/ 

𝑃𝑚,𝑡
sur,E

 

Amount of shortage/surplus electricity at time 

slot t in the MG m (kW) 𝜂CHP,H/𝜂CHP,E Gas-to-thermal/gas-to-electric efficiency of CHP 

𝜂ch, 𝜂dis Charging/discharging efficiency of BESS  𝑄𝑚,𝑡
Boi Output of the electric boiler in the MG m (kW) 

𝜂Boi/𝜂Fur/𝜂P2G Conversion efficiency of boiler/furnace/P2G 𝑄𝑚,𝑡
Fur Output of the furnace in the MG m (kW) 

𝑄Gas Heat value of gas (MJ/m3) 𝑉𝑚,𝑡
P2G Output of the P2G system in the MG m (m3) 

𝑊𝑚
WT/𝐺𝑚

PV Input of wind speed/solar irradiation in MG m 𝑃𝑚,𝑡
CHP Output of the CHP in the MG m (kW) 

𝐶𝑡
buy,Gas

/

𝐶𝑡
sell,Gas 

Purchase/sale price of gas at time slot t ($/m3) 
𝜇𝑡/𝑣𝑡/ω𝑡,/τ𝑡 Start-up indicators for energy converters 

 𝑃𝑚,𝑖,𝑡
BESS,dis

/

𝑃𝑚,𝑖,𝑡
BESS,ch 

Charging/discharging power of BESS i at time slot 

t in the MG m (kW) 𝐶𝑡
buy,E

/𝐶𝑡
sell,E Buying/selling price of electricity at time slot t 

($/kWh) 

 

𝑆𝑂𝐶𝑚,𝑖,𝑡
BESS/

𝑆𝑂𝐶𝑚,𝑖,𝑡
Tank 

SOC of the BESS/the gas storage tank  𝐶𝑚,𝑖
CHP/𝐶𝑚,𝑖

Boi/

𝐶𝑚,𝑖
Fur 

Unit start-up cost of the CHP/boiler/furnace i in 

MG m ($) 

 

𝑃𝑚,𝑖,𝑡−∆𝑡
BESS,ch

/

𝑃𝑚,𝑖,𝑡−∆𝑡
BESS,dis

 

Charging/discharging power of BESS i at time slot 

t-Δt in the MG m (kW) T The prediction horizon in rolling optimization 

𝑉𝑚,𝑖
P2G,min

/

𝑉𝑚,𝑖
P2G,max

 

The lower/upper bound of ith P2G output in MG 

m (m3) 

𝛿𝑚,𝑖,𝑡/ 

𝜑𝑚,𝑖,𝑡 
Binary variables that are used to indicate the state 

of BESS charging/discharging 

𝑃𝑚,𝑖
BESS,ch,max

/

𝑃𝑚,𝑖
BESS,dis,max

 

Maximum charging/discharging power of BESS 

i in MG m (kW) 

 𝑉𝑚,𝑖,𝑡−∆𝑡
Tank,ch

/

𝑉𝑚,𝑖,𝑡−∆𝑡
Tank,dis 

Rate of gas charging/discharging for the gas 

storage tank (m3/h) 

𝐸𝑚,𝑖
𝑅 /𝑉𝑚,𝑖

𝑅  Rate capacity of BESS/gas storage tank i in MG 

m (kWh) 
𝜓𝑚,𝑖,𝑡/𝜙𝑚,𝑖,𝑡 Binary variable representing the state of tank 

charging/ discharging 

𝑉𝑚,𝑖
Tank,ch,max

 

𝑉𝑚,𝑖
Tank,dis,max

 

Maximum charging/ discharging rate of the gas 

storage tank i in MG m (m3/h) 

𝑃𝑚,𝑡
CBESS,dis

/

𝑃𝑚,𝑡
CBESS,ch

 

Discharging/charging power of the CBESS at time 

slot t in the MG m (kW) 

𝑆𝑂𝐶𝑚,𝑖
Tank,min

/

𝑆𝑂𝐶𝑚,𝑖
Tank,max

 

Minimum/maximum SOC value of gas storage 

tank i in MG m 

 𝑉𝑡
buy,Gas

/

𝑃𝑡
buy,E

 

Total amount of gas (m3)/ electricity (kW) 

purchased from energy networks 

𝑃𝑚,𝑖
CHP,min

/

𝑃𝑚,𝑖
CHP,max 

The allowed minimum/maximum output of CHP 

i in MG m (kW) 

 𝑉𝑡
sell,Gas

/ 

𝑃𝑡
sell,E

 

Total amount of gas (m3)/electricity (kW) that is 

sold to the energy networks 

𝑄𝑚,𝑖
Boi,min

/

𝑄𝑚,𝑖
Boi,max 

The allowed minimum/maximum output of 

boiler i in MG m (kW) 

∆𝑃𝑚,𝑖,𝑡/

∆𝑉𝑚,𝑖,𝑡 
Increased energy output of energy devices i at time 

slot t in MG m  

𝑄𝑚,𝑖
Fur,min

/

𝑄𝑚,𝑖
Fur,max 

The allowed minimum/maximum output of 

furnace i in MG m (kW) 

 𝑉𝑚,𝑡
sell,Gas

/ 

𝑃𝑚,𝑡
sell,E

 

The amount of gas/electricity sold to energy 

networks for MG m at time slot t 

𝐶𝑚,𝑖
Increase,P

/

𝐶𝑚,𝑖
Increase,G 

Unit cost of energy device i for increasing energy 

generation in MG m  

 𝑉𝑚,𝑡
buy,Gas

/

𝑃𝑚,𝑡
buy,E

 

Gas/electricity purchased from external energy 

networks 

𝑃CCDG,min/

𝑃CCDG,max 

The allowed minimum/maximum output of 

CCDG (kW) 

𝑃𝑡
CCDG Outputs of CCDG (kW) 

𝑓𝑚,min Minimum value of objective of mth MG 

𝑅CCDG,down/

𝑅CCDG,up 

Lower/upper bound of the ramp rate of CCDG 

(kW/h) 

𝑖𝑡𝑒𝑟max Maximum iteration number of EMOHT 

  

𝐸CBESS,R The rated capacity of CBESS (kWh) Vectors and Matrix 

𝑆𝑂𝐶min/

𝑆𝑂𝐶max Lower/Upper bound of SOC for CBESS 
L Column vector of the input energy 

 S Column vector of the output energy 

∆𝑃𝑚,𝑖,𝑡
max/ 

∆𝑉𝑚,𝑖,𝑡
max 

Maximum value of increasable capacity of the 

energy storage/conversion device i in MG m 

 M Coupling matrix 

Ssys System dispatchable capacities 

𝑃max
line Maximum capacity of electrical lines (kW) I Identity matrix 

𝑉max
pipeline

 Maximum capacity of gas pipelines (m3)   

M the total number of MGs   
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1 Introduction  

Nowadays, microgrids (MGs) have been increasingly recognized as an important and effective way to 

facilitate the integration of various distributed renewables, local loads and energy storage systems (Dey et 

al., 2021). It is reported by the United States Department of Energy that up to 13000 MW of loads can be 

supplied by MGs until 2020, with a growth rate of 15.8% over the last few years (Karimi and Jadid, 2020). 

The increasing penetration of solar and wind energy at the consumption premises can provide MGs with 

an environmentally friendly, free and abundant share of renewable energy supply. Due to the inherent 

intermittency and undispatchability of renewable energy resources, the entire output of renewable 

generators in an individual MG may exceed its load demand during low load periods, resulting in the 

curtailment of wind and solar generation. On the other hand, other MGs with high demand have to purchase 

electricity from energy networks at a high price to fulfill their load demand, leading to expensive operating 

costs (Yang et al., 2019). In general, multiple heterogeneous MGs can be connected to form a multi-

microgrid (MMG) system. Compared with the individual MG, the MMG system is recognized as an 

effective measure to promote the utilization of renewable energy and minimize MGs’ operation costs by 

sharing the surplus renewables among MGs (Daneshvar et al., 2020). 

In a traditional MMG system, various loads are generally supplied by electricity generated with steam 

turbines using fossil fuels, wind turbines, and solar photovoltaic (PV) systems. With the rapid growth of 

electrical and thermal demands, the natural gas-fired combined heat and power (CHP) units, and power-to-

gas (P2G) systems have been extensively employed to provide electricity, thermal energy, and combustible 

gas for multi-energy MGs (Zeng et al., 2021). Consequently, the electrical MMG gradually transforms 

towards a MMG system with multi-carrier energy forms, and multi-energy couplings and interactions 

among various types, qualities, and quantities of energy carriers have strengthened the complexity of the 

energy management problem of MMGs (Xu et al., 2020). Recent advancements on power electronics, smart 

meters, and communication technologies have offered great potential for the interactive multi-energy 

management within MMGs (Arefifar et al., 2017). The energy management of MMGs is a challenging 

nonlinear optimization problem due to multi-energy couplings within MGs, multi-energy exchanges among 

MGs, and multi-energy trading with external energy networks (Zhou et al., 2021). Furthermore, as 

heterogeneous MGs often exhibit different profit-seeking behaviors from the benefits of multi-energy 

sharing and trading, the multi-energy exchanges among MGs without coordination may cause competitive 

behaviors and thus degrade the system-wide performance. Therefore, a new generation of MMG multi-

energy management (MMGMEM) strategy to coordinate the operations of heterogeneous MGs is becoming 

a pressing need for the overall economic efficiency enhancement. 
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So far, the energy management of electrical MMGs has been investigated extensively from the 

perspectives of economy, security and environment (Zhou et al., 2020a). To name a few, Bui et al. (2016) 

proposed a multi-agent based energy management strategy for MMGs to obtain a reduction of the operation 

cost and ensure the reliability of electricity supply. In our previous work (Zhou et al., 2020b), a bilevel 

house-aggregator-grid framework based on many-criteria optimality was developed to coordinate the multi-

house demand response and mitigate the transformer damages during peak-load hours. Aghdam et al. (2020) 

employed a chance-constrained programming based approach for the day-ahead energy management of 

MMGs to reduce emissions of greenhouse gases. Khalili et al. (2021) proposed an original optimization 

framework for the risk-based scheduling of MGs to maximize the MG’s profit and minimize the risk in 

profit from the demand response program, while the uncertainty of renewable energy is considered. 

Nonetheless, other energy forms were neglected. To effectively manage different energy forms in MMGs, 

recently, some efforts have been devoted to developing MMG multi-energy management frameworks, 

models, and strategies (Zhou et al., 2021). In (Shams et al., 2019), the optimal scheduling of thermal energy 

and electricity in MMGs was formulated as a stochastic model. In (Yang at al., 2021), a transactive energy 

mechanism-based energy sharing strategy was proposed for the economic operation of multi-energy MMGs. 

With the increasing number of interconnected MMGs, the large-scale MMG multi-energy management 

problem was formulated as a hierarchical optimization model to reduce the computation complexity. For 

instance, in (Yazdani-Damavandi et al., 2018), a bi-level multi-energy management strategy was proposed 

to maximize profits of multi-energy players and to optimally determine the amount of multi-energy 

exchange between players and MGs. A hierarchical energy management system was applied in (Bui et al., 

2019) for the optimal multi-energy sharing among building MGs to minimize the system operation cost. 

Wang et al. (2018) presented a two-stage energy management strategy for networked MMGs, where the 

first stage minimized the MMG operation cost, and the second stage minimized the imbalance cost due to 

the deviations between the real-time and day-ahead markets. In (Yuan et al., 2020), a bi-level optimization 

framework was developed, in which the upper level optimality determined the electrical price for increasing 

the profit of suppliers, and the lower level optimized the energy scheduling to maximize the MMG welfare. 

However, for all these works on the hierarchical framework, the upper level makes optimized decisions 

from the perspective of global MMGs without considering the optimization objective of each MG at the 

lower level, and thus the scheduling decisions from the upper level may not be optimum for each MG. 

In most cases, the multi-energy MG can be formed as an energy hub to map input energy sources to 

multi-energy demands (Moeini-Aghtaie et al., 2014), and a coupling matrix is usually formulated to model 

the multi-energy conversion and storage (Liu et al., 2019). Based on the energy hub, operation state 
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calculations (Xu et al., 2020), power flow optimizations (Shao et al., 2017), and investment analyses (Xuan 

et al., 2021) for MGs were investigated. In the matrix modeling, a comprehensive input-output matrix 

approach was presented in (Chicco and Mancarella, 2009) to model a small-scale tri-generation system, 

and a standardized modeling method based on graph theory was developed in (Liu et al., 2019) to reduce 

the difficulty of formulating the coupling matrix of a complex energy hub model. In (Wang et al., 2019), a 

matric modeling method was proposed to cast characteristics of energy converters and topologies of the 

multi-energy system into matrix form automatically. Besides, various matrix calculation methods, 

including the path searching method (Chicco and Mancarella, 2009) and the variable substitution method 

(Shao et al., 2017), have been used to address the nonlinearity of the coupling matrix or solve it. However, 

all mentioned methods are well applied in a single MG, and the multi-energy coupling matrix for describing 

multi-energy interactions among MMGs is not involved yet. Moreover, the multi-energy coupling matrix 

for MMGs is a high dimensional and strongly nonlinear matrix, which is hard to be solved with existing 

methods. Therefore, an advanced matrix decomposition technique is required to reduce its computational 

complexities in the optimum iterative procedure. 

The MMG multi-energy management problem involves the coordinated operation of multiple MGs 

with various multi-energy converters and storages. Various multi-objective optimization models for MGs 

have been developed for efficient renewable energy utilization, operation cost reduction, and reliability 

improvement (Jafari et al., 2020a). For example, a multi-objective energy management model for MMGs 

was presented in (Tan and Chen, 2020) to minimize the operating costs, transmission losses, and carbon 

emissions of MMGs. A bi-level multi-objective optimization model for MGs was formulated in 

(Dissanayake and Ekneligoda, 2020) to reduce power losses, improve voltage profiles and minimize 

investment costs. In (Huang et al., 2019), a multi-objective optimization model for hybrid energy systems 

was proposed to reduce system costs, losses of power supply and potential energy wastes. Nevertheless, 

these models can’t guarantee the optimum coordination for competitive and interactive behaviors among 

MMGs considering multi-energy couplings. Furthermore, different utility functions, including the cost 

function of energy consumptions (Li et al, 2018), the cost function of generator and storage investment, the 

cost function of pollutant treatment (Lu et al., 2018), have been presented for MMGs, while satisfying the 

supply-demand balance target. In (Jafari et al., 2020b), a novel techno-economical objective function was 

proposed for guaranteeing the profits of all individual MGs, reducing the energy that is not supplied, and 

improving the reliability of MMGs. Nevertheless, existing investigations mainly focus on maximizing the 

economic benefits of MMGs or individual MG, and few works have attempted to coordinate the operation 

of MMGs for the best tradeoff of their benefits from multi-energy sharing. 
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To sum up, although different aspects of energy management for MMGs have been investigated in 

previous works, none of the aforementioned investigations modeled the multi-energy coupling matrix of 

MMGs to describe multi-energy interactions among MMGs, and an advanced matrix decomposition 

technique for reducing its computational complexities was not involved. Furthermore, the coordinated and 

interactive operation of MMGs for achieving an optimum trade-off of MMG benefits from the multi-energy 

sharing was also neglected. Hence, this paper endeavors to fill these gaps by proposing an interactive tri-

level multi-energy management strategy to coordinate the operation of heterogeneous MGs based on many-

criteria optimality. With the proposed strategy, the optimum multi-energy management problem of MMGs 

can be decomposed into multi-energy trading with energy networks in the upper level, multi-energy sharing 

among MGs in the middle level, and the multi-energy coupling within MGs in the lower level, and thus the 

interactions of multiple levels can facilitate the coordinated operation of MMGs and the local integration 

of renewable energy. The key contributions of this paper are summarized as follows: 

1. A tri-level interactive multi-energy management framework is proposed for optimum synergies of 

MMGs to minimize the overall system operation cost and enhance the utilization of renewable energy. The 

upper level minimizes the global MMG operation cost, and the lower level aims to optimize the multi-

energy conversion and storage pathways within each MG for reducing its operation cost. Compared with 

previous hierarchical frameworks, a middle level is added to further correct the multi-energy scheduling 

decision from the upper level for ensuring the impartial allocation of the total sharing amount of multi-

energy sources among MMGs. 

2. A MMG multi-energy coupling matrix is developed to model and exploit inherent multi-energy 

couplings within individual MGs and external electricity-gas interactions among MMGs. Furthermore, a 

multi-step matrix decomposition technique is proposed to decompose the high dimensional and nonlinear 

coupling matrix of MMGs into the sum of three linear and sparse submatrices, and the proposed technique 

can significantly improve the efficiency of computational iterations and exhibit high flexibility for the 

scalability with MMG interconnections. 

3. The multi-energy sharing process among multiple heterogeneous MGs is formulated as a many-

criteria optimality model to achieve an optimum tradeoff for ensuring the coordination and equilibrium of 

all MGs’ benefits. Then, an evolutionary many-objective optimization based on hyperplane transformation 

(EMOHT) algorithm is presented to solve the many-criteria decision making (MCDM) problem of multi-

energy sharing, and the flexibility of multi-energy conversion and interaction can be utilized to determine 

the optimum amount of electricity-gas exchanges among MMGs for the reduced operation cost of each MG. 

The rest of this paper is organized as follows: The problem formulation is presented in Section 2; The 
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proposed tri-level multi-energy management strategy for MMGs is formulated in Section 3; The 

performance of the proposed model is demonstrated through simulation studies in Section 4; Finally, 

conclusions are drawn in Section 5. 

2 Problem Formulation 

2.1 Configuration of multi-energy MMGs 

BESS

RDG Load

MG-EMS 1

MG 1

CHPBoiler

MG-EMS m

MG m

MG-EMS M

Central BESS CCDG

Gas Network
Electrical Network

CEMS

Gas Flow Communication Link Electricity Flow Heat Flow

FurnaceTank

BESS

RDG Load

CHPBoiler

FurnaceTank

BESS

RDG Load

CHPBoiler

FurnaceTank

MG M

P2G P2G P2G

 

 Fig. 1 Multi-level framework for the coordinated MMGMEM.  

This study investigates the optimum multi-energy management problem of a MMG system composed 

of multiple heterogeneous MGs. Each MG contains renewable distributed generators (RDGs), P2G systems, 

CHPs, battery energy storage systems (BESSs), and other various energy converters and storages. The 

MMG system devices are comprised of central BESSs (CBESS) and central controllable distributed 

generators (CCDG). The schematic diagram of the MMGMEM is shown in Fig.1. In each MG, energy 

resources derived from renewable energy and energy networks can be converted and conditioned by energy 

converters and storages to satisfy the multi-energy demands. Besides, the MG having surplus electricity 

and gas can directly trade with the energy networks or share with other MGs, while the MG with shortage 

energy can buy energy from energy networks or receive energy from other MGs. The communication and 

control for MMGs and each MG are performed by the central energy management system (CEMS) and the 
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MG-EMS, respectively, through the advanced metering infrastructure and optical fiber deployed at the 

participation premises (Bui et al., 2016). During the energy exchange process, competitive events appear 

among different MGs for deriving their profits. 

2.2 Multi-energy interactions within MMGs 
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Fig. 2 Multi-energy interactions within MMGs. 

The multi-energy interactions within the MMGs are described in Fig. 2. At the lower level, a message 

is sent by CEMS to the energy companies for querying about market prices, and companies send their 

buying and selling price signals to reply to queries of CEMS. These price signals are then destined to MG-

EMSs. Based on the information received from their energy devices and CEMS, MG-EMS performs the 

local optimization to optimally schedule multi-energy conversion and storage devices for satisfying its load 

demand with minimal operation cost, and decides whether it participates in global optimization. Then, if 

MGs participate in global optimization, MGs with surplus energy will inform CEMS about their surplus 

and increasable energy, while other MGs with shortage energy make a purchase request to the CEMS. At 

the upper level, after receiving request signals from all MG-EMSs, CEMS will perform the global 
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optimization to determine outputs of system devices, amounts of energy traded with energy networks, and 

amounts of energy generation to be increased for each MG. At the middle level, CEMS will further correct 

the scheduling decisions from the upper level to coordinate the multi-energy sharing among MMGs, and 

then control signals about energy trading and sharing are delivered to each MG-EMS. For information 

privacy issues (Gansterer and Hartlm, 2018), in this process, each MG-EMS only shares the information in 

terms of the surplus/shortage amount of energy and the increasable energy with CEMS, while the sensitive 

private information of each MG, including operational parameters of energy devices, generation data of 

RDGs and multi-energy demands, is confined to the respective MG-EMS. 

2.3 MMG multi-energy coupling matrix 

To explicitly exhibit the multi-energy couplings within the MG, an energy hub model is developed to 

map the input energy sources to local multi-energy demands, while the conversions and storages of different 

energy carriers are modeled and characterized by a multi-energy coupling matrix 𝑴𝑚,𝑚, as shown in (1). 

Each element of the matrix is termed as a coupling factor to represent conversion efficiencies and 

connection topologies among energy converters and storages. Then, a MMG energy coupling matrix (2) is 

developed to model multi-energy couplings within MGs and multi-energy interactions among MMGs. 

WT E PV E E Gas CHP,E CHP E

E

Gas CHP,E CHP Boi Boi

H WT Boi Boi H PV Boi Boi H Boi Boi H

CHP,H CHP Fur Fur H
Gas

WT P2G P2G G PV P2G P2G G P2G P2G G Gas

(
=

)

m

m m m m m

m

m m

m m m m m m m

m m m
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f v f v v Q v v
L

Q v v
L f v v f v v v v

v v v
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PV
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TankCHP,E CHP P2G P2G

m
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m

m

m

G
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W

G

P

Vv v v 

   
   
   
   
   
     

SM

   (1) 

where 𝐿𝑚
E , 𝐿𝑚

H
 and 𝐿𝑚

Gas
 denote electricity, heat, and gas loads of MG m; 𝑓WT

 and 𝑓PV are the generation 

functions of wind turbine (WT) and PV (Murty and Kumar, 2020); In Eq. (2), the off-diagonal element 𝑴𝑖𝑗  

indicates the multi-energy resources delivered from the MG i to MG j and is equal to diag{𝑣𝑖𝑗
E , 0, 𝑣𝑖𝑗

G }𝑴𝑖𝑖. 

1 11 12 1 1

2 21 22 2 2

1 2

m

m

m m m mm m

     
     
     
     
     
     

L M M M S

L M M M S

L M M M S

                            (2) 

In most cases, a MMGs contains various system dispatchable capacities, and these capacities can be 

utilized as external energy sources to provide energy for MGs’ load. In this situation, the system 

dispatchable capacities can be considered as the external input terminals and integrated as an augmented 

column vector into the MMG coupling matrix. Thus, an extended coupling matrix for expressing the multi-
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energy couplings and interactions within the whole MMG system is formulated as, 

1

11 12 1 1,sys1

2

21 22 2 2,sys2

1 2 ,sys

sys

m

m

m

m m mm mm

 
    
    
    
    
    
      

 

S
M M M υL

S
M M M υL

S
M M M υL

S

                        (3) 

where vm,sys is equal to diag{𝑣𝑚,sys
E , 0, 𝑣𝑚,sys

G }, and 𝑣𝑚,sys
E  and 𝑣𝑚,sys

G  are dispatch factors of electricity 

and gas from system devices to MG m. The coupling matrix (3) is strongly nonlinear and high dimensional 

due to involving a large number of dispatch factors and controllable variables. Thus, a multi-step matrix 

decomposition technique is proposed to realize the linearization and dimensionality reduction of the 

coupling matrix. The first step is to decompose the matrix (3) into the MMG multi-energy coupling 

submatrix and dispatch submatrix of system capacities, as follows, 

1 1
1 sys1 11 12 1

2 2

2 sys2 21 22

1 2 sys
sys sys

,

,

,

0 0 00

0 0 00

0 0 0 0

   
        
        
         
        
        
         

   

S S
υL M M M

S S
υL M M M

S S
L M M M υ

S S

m

m

m m

m m m mm m

            (4) 

Reorganizing (4), it can be rewritten as, 

1,sys sys1 11 12 1 1

2,sys sys2 21 22 2

,sys sys1 2

m

m

mm m m mm m

      
      
       
      
      
        

υ SL M M M S

υ SL M M M S

υ SL M M M S

                      (5) 

The second step aims to decompose the MMG multi-energy coupling matrix into the multi-energy 

coupling submatrix and the multi-energy exchange submatrix. In a MMG system, the energy exchanging 

with other MGs can be equivalent to virtual energy sources in the MG’s input side, and thus the off-diagonal 

element 𝑴𝑖𝑗 is substituted with the input vector 𝑺𝑖
ex. Eq. (5) can be reformulated as, 

 
 

 

1

ex

1

1 sys sys111

1

2 sys sys222 ex

2

sys sys

1

ex

mmm m

m

  
  
                                              
  
   

S

S
υ SM IL

S
υ SM IL

S

M IL υ S
S

S

,

,

,

0 0

0 0

0 0 0

           (6) 
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where 𝑺𝑚
ex = [𝑷𝑚,𝑡

rec,E − 𝑷𝑚,𝑡
send,E, 0, 𝑽𝑚,𝑡

rec,G − 𝑽𝑚,𝑡
send,G]T ;    𝐏𝑚,𝑡

send,E
  and 𝑽𝑚,𝑡

send,G
  denote energy carries 

delivered from MG m to other MGs;  𝐏𝑚,𝑡
send,E = [𝑃𝑚,1,𝑡

E , 𝑃𝑚,2,𝑡 
E , ⋯ , 𝑃𝑚,𝑀,𝑡 

E ]T  and 𝑽𝑚,𝑡
send,G =

[𝑉𝑚,1,𝑡
E , 𝑉𝑚,2,𝑡 

E , ⋯ , 𝑉𝑚,𝑀,𝑡 
E ]

T
 ; 𝑷𝑚,𝑡

rec,E
  and 𝑽𝑚,𝑡

rec,G
  indicate energy sources purchased from other MGs; 

𝑷𝑚,𝑡
rec,E = [𝑃1,𝑚,𝑡

E , 𝑃2,𝑚,𝑡 
E , ⋯ , 𝑃𝑀,𝑚,𝑡 

E ]T and 𝑽𝑚,𝑡
rec,G = [𝑉1,𝑚,𝑡

E , 𝑉2,𝑚,𝑡 
E , ⋯ , 𝑉𝑀,𝑚,𝑡 

E ]
T
. 

The third step utilizes a state variable-based approach in (Shao et al., 2017) to reduce the nonlinearity 

caused by dispatch factors. The outputs of the electric boiler, furnace, CHP and P2G system would be 

represented as 𝑄𝑚,𝑡
Boi , 𝑄𝑚,𝑡

Fur , 𝑃𝑚,𝑡
CHP , 𝑉𝑚,𝑡

P2G  without introducing dispatch factors. Combining these state 

variables with the original input vector 𝑺𝑚 in (1), an extended variable vector 𝑺𝑚
′

 is formulated, and the 

matrix 𝑴𝑚,𝑚 is further extended to a sparser and linear coupling matrix 𝑴𝑚,𝑚
′

, as shown in (7). The 

detailed process of this step is shown in Appendix A. 
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            (7) 

Combining (6) and (7), the coupling matrix of the whole MMGs system can be decomposed into the 

sum of three linear and sparse submatrices for efficient computational iterations, where the first submatrix 

represents the multi-energy coupling within MGs, the second submatrix indicates multi-energy exchanges 

among MMGs and the third submatrix represents the allocation of system capacities. Based on the obtained 

(8), an interactive tri-level multi-energy management strategy is proposed to coordinate the operation of 

the MMG system. 

ex
1,sys sys1 11 1 1

ex
2,sys sys2 22 2 2

ex
,sys sys

submatrix 1 submatrix 3submatrix 2

mm mm m m

        
       
        
      
      

          

υ SL M S IS

υ SL M S IS

υ SL M S IS

                     (8) 

3 Interactive tri-level multi-energy management strategy 

3.1 Assumptions 

Before formulating the proposed strategy for MMGs, several assumptions are made as follows: 
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 Transients in energy networks and their components are not considered, since the duration of transient 

is extremely short compared with the hourly time resolution over a 24-hour scheduling horizon. 

 The capacities of external energy networks are large enough to meet the electricity and gas demand of 

MMGs during the necessary time, and the surplus energy sources of MMGs can also be integrated into 

energy networks without other stability issues. 

 The communication network is assumed to be reliable, scalable and fast to ensure the real-time data 

exchange among MMGs. 

3.2 Lower level of MMGMEM 

1) Objective Function: This level aims to optimally manage the multi-energy conversion and storage 

in each MG considering the volatility of RDG outputs and time-varying multi-energy demands. The 

optimization objective of this level is to minimize the operation cost of each MG 𝑆𝐶𝑚,𝑡, including energy 

procurement costs, start-up/shut-down costs, and battery degradation costs, as follows: 

+
,3 ,2 ,4

buy,Gas short,Gas sell,Gas sur,Gas buy,E short,E sell,E sur,E

, , , , ,

CHP Boi Fur BESS BESS,dis B

1 , 1 , 1 , , , , ,

( ) ( )

( (1 ) + (1 ) (1 ) (
m m m

m t t m t t m t t m t t m t

t t m i t t m i t t m i m i t m i t

i i i

SC C V C V t C P C P t

v v C C C P P      

  

      

      
Ι I I ,5

ESS,ch )
mi

t



I

 (9) 

where  𝜇BESS is the amortized cost of BESS charging/discharging over the lifetime which is related to the 

capital cost of batteries, the reference depth-of-discharge, and the number of cycles (Xu et al., 2020). In 

this paper, a scenario-based stochastic scheduling with rolling horizon procedures is performed to tackle 

the uncertainties (Langer and Volling, 2020). Every rolling optimization step makes decisions for the 

current time slot and also looks forward to the remaining time slots considering uncertainties of renewable 

generations and multi-energy loads in future time slots. The objective function is to minimize the MG’s 

operation cost of the current time slot t plus the expected cost of all future scenarios, as follows, 

0

0

0

, , ,

1

min
sN t T

m t s m t s

s t t t

SC SC


  

   
   

   
                              (10) 

where Ns is the total number of scenarios; 𝜌𝑠  denotes the probability of scenario s, and ∑ 𝜌𝑠
𝑁𝑆
𝑠=1 = 1. 

𝑆𝐶𝑚,𝑡,𝑠 represents the operation cost of MG m under scenario s at the current time slot t. The prediction 

horizon T represents the length of future time slots, and the control horizon ∆𝑡 indicates the length of time 

slot over which the previous scheduling decision was executed before starting a new optimization run. 

2) Energy balance constraints: The amount of multi-energy demand for each MG should be equal to 

the sum of the corresponding energy supply, as follows, 

, , , ,m t mm t m t m t
  L M S E                                 (11) 
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where 𝑴𝑚,𝑚
′

𝑺𝑚,𝑡
′

 is the energy hub model in submatrix 1, as described in (8). The shortage/surplus amount 

of energy in the current time slot is 𝑬𝑚,𝑡 = [𝑃𝑚,𝑡
short,E − 𝑃𝑚,𝑡

sur,E, 0, 𝑉𝑚,𝑡
short,Gas − 𝑉𝑚,𝑡

sur,Gas]T. 

3) Converters and Storages constraints: Objective (10) is subjected to constraints of multi-energy 

conversion and storage devices. Eq. (12) shows the lower and upper bounds of P2G outputs. (13)-(16) 

indicate constraints for the state of charge (SOC) and outputs of BESS. (17)-(20) show constraints for the 

SOC and outputs of the gas storage tank, and (21)-(23) denote the constraints of CHP outputs. (24) and (25) 

show constraints of thermal power outputs of the electric boiler and furnace. 

P2G,min P2G P2G,max

, , , , ,1m i m i t m i mV V V i I                                    (12) 
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P t P t
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                         (13) 

BESS,min BESS BESS,max

, , , , ,5m i m i t m i mSOC SOC SOC i I                               (14) 
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 , , , , , , , , ,51 , 0,1m i t m i t m i t m i t mi I      ，                             (16) 
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Tank,min Tank Tank,max

, , , , ,6m i m i t m i mSOC SOC SOC i I                              (18) 
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 , , , , , , , , ,61 , 0,1m i t m i t m i t m i t mi I      ，                            (20) 

CHP,min CHP CHP,max

, , , , , , , , ,3m i t m i m i t m i t m i mv P P v P i I                               (21) 

CHP CHP,H

, , ,CHP,min CHP,max

, , , , , , ,3CHP,E

,

m i t m i

m i t m i m i t m i m

m i

P
v H v H i I




                            (22) 

CHP,ramp CHP CHP CHP,ramp

, , , , , , ,3m i m i t m i t t m i mP P P P i I                               (23) 

Boi,min Boi Boi,max

, , , , ,2m i m i t m i mQ Q Q i I                                   (24) 

Fur,min Fur Fur,max

, , , , ,4m i m i t m i mQ Q Q i I                                    (25) 

After completing local optimization by each MG-EMS, the surplus/shortage amount of energy is 

determined, and the upper bounds of increasable energy for each MG will also be calculated. Then, these 

determined values from the current time slots t0 to the future time slot 𝑡0 +T, and the unit cost of 

increasable energy will be transmitted to the CEMS. Moreover, CEMS will contract with MG-EMSs 
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participating in global optimization to ensure that each MG-EMSs report its true information, and the third 

party inspection namely random audit in (Zhang and Zhao, 2012) is introduced into the contract. If the MG-

EMS reports the untruthful data to CEMS, it will face a risk of being levied a hefty fine. 

3.3 Upper level of MMGMEM 

1) Objective Function: Based on the information obtained from each MG-EMS, this level performs 

global optimization for the optimal scheduling of system dispatchable capacities, and then the amount of 

energy to be traded with multi-energy networks is determined. The objective function is developed to 

minimize the sum of the system operation cost at current time t0, the accumulated system operation cost 

determined by previous multi-energy scheduling, and the future operation cost from time slot 𝑡0 + ∆𝑡 to 

the end of time slot 𝑡0 +T, as follows, 

0 0

0

01

min ( ) ( )
t t t T

t t t

t t t t

CSC CSC CSC
 

  

                       (26) 

t t t tCSC CDC CBC CAC                           (27) 

CCDG 2 CCDG CCDG CBESS CBESS,dis CBESS,ch

1( ) ( ) (1 ) ( )t t t t t t tCDC a P b P c u u C P P t      +   (28) 

buy,Gas buy,Gas sell,Gas sell,Gas buy,E buy,E sell,E sell,E( ) +( )t t t t t t t t tCBC C V C V t C P C P t              (29) 

Increase,P Increase,G

, , , , , ,

1 1

( )
M I

t m i m i t m i m i t

m i

CAC C P C V t
 

                      (30) 

where the energy consumption cost of CCDG is related to outputs of CCDG 𝑃𝑡
CCDG, and a quadratic 

function in (Hao et al., 2018) is adopted. CDCt is the sum of the generation cost of CCDG and the 

degradation cost of CBESS; CBCt is the energy procurement cost, and CACt denotes the cost for increasing 

energy outputs. 

2) System constraints: The outputs of CCDG are limited within its allowed capacities and ramp rates. 

The charging/discharging power of CBESS should be limited within the maximum threshold 

𝑃CBESS,ch,max/𝑃CBESS,dis,max, and the SOC of CBESS shall be limited in an allowable range. Besides, The 

CEMS ensures that the energy adjustment is less than the maximum constraints of increasable capabilities. 

 CCDG,min CCDG CCDG,max 0,1t t t tu P P u P u                            (31) 

CCDG,down CCDG CCDG CCDG,up

1t tR P P R                                 (32) 

ch CBESS,ch CBESS,dis
CBESS CBESS - -

- CBESS,R dis CBESS,R

t t t t
t t t

P t P t
SOC SOC

E E




 



 
                        (33) 

CBESS

min , maxm tSOC SOC SOC                                   (34) 
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CBESS,ch CBESS,ch,max

CBESS,dis CBESS,dis,max

0

0

t t

t t
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P P





  


 

                                (35) 

 1 , 0,1t t t t                                          (36) 

max

, , , ,0 m i t m i tP P                                       (37) 

max

, , ,0 m i,t m i tV V                                      (38) 

Besides, the equality constraints for power and gas flow balance are enforced as, 

CCDG CBESS,dis CBESS,ch buy,E sell,E short,E sur,E

, , , ,

1 1 1

( )
M I M

t t t t t m i t m t m t

m i m
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          (39) 

buy,Gas sell,Gas short,Gas sur,Gas

, , , ,

1 1 1

( )
M I M

t t m i t m t m t

m i m

V V V V V
  

                  (40) 

After completing the global optimization of the MMG system, the amount of energy trading with 

electricity and gas networks, generation outputs of system devices and the amount of energy generation to 

be increased are determined, and then they are submitted to the middle level.  

3.4 Middle level of MMGMEM 

During the energy allocation period, each MG wants to exchange as much energy as possible with the 

connected MGs rather than trading with the energy networks to pursue its benefits, and thus competitive 

behaviors appear among MMGs. The competitive behaviors often are contrary to the best benefits of global 

MMGs, and the overall benefits may be unfairly distributed among MMGs. In this way, the willingness of 

some MGs to proactively participate in multi-energy sharing will be significantly decreased (Jafari et al., 

2020b). Besides, due to self-interest competitive behaviors, the flexibility of multi-energy conversion and 

interactions within MMGs will be hard to fully leverage for achieving the best load balancing performance, 

and the extremely non-uniform energy demand may also occur resulting in energy networks failure, as all 

MGs buy energy at a low price and sell energy at a high price (Zhou et al., 2020a). This level will further 

correct the energy scheduling decisions from the upper level to allocate electricity and gas from system 

capacities and multi-energy networks to each MG, and the multi-energy sharing among MGs can be 

coordinated based on the many-criteria optimality model (Farina and Amato, 2004). 

1) Many-objective Optimization Function: To schedule the benefit-maximal operation of each MG, 

the MMG multi-energy sharing problem in this level is formulated to simultaneously maximize benefits of 

heterogeneous MGs with different multi-energy converters and storages, as follows, 

1 2 Mmax ( , ,... ,..., )mF f f f f                            (41) 
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where 𝑓𝑚  indicates its benefit, including current benefits, accumulated benefits from previous multi-

energy scheduling, and future benefits from time slot 𝑡0 + ∆𝑡 to the end of scheduling horizon, as follows, 

0 0

0 0 0

0

, , , , , , , , ,

1

( ) ( )
t t t T

m m t m t m t m t m t m t m t m t m t

t t t t
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           (42) 

G sell,Gas sell,Gas G buy,Gas buy,Gas E sell,E sell,E E buy,E buy,E
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sr,e T send,E T T rec,E sr,g T send,G T T rec,G

, , , , ,( ) + ( )m t m m t m m t m m t m m tRTC C t C t    e AP e A P e BV e B V        (44) 

,3 ,5 ,1 ,6

Increase,P Increase,G

, , , , , , ,

, ,m m m m

m t m i m i t m i m i t

i I I i I I

RAC C P C V
 

                    (45) 

where 𝑅𝐵𝐶𝑚,𝑡 is the benefit of energy trading with the energy networks; 𝑅𝑇𝐶𝑚,𝑡 represents the benefit 

from the energy exchange with other MGs; 𝑅𝐴𝐶𝑚,𝑡 denotes the cost for increasing energy generation; 

𝒆𝑚
T 𝑨𝑷𝑚,𝑡

send,E
, 𝒆𝑚

T 𝑨T𝑷𝑚,𝑡
rec,E

, 𝒆𝑚
T 𝑩𝑽𝑚,𝑡

send,G
 and 𝒆𝑚

T 𝑩T𝑽𝑚,𝑡
rec,G

 are the total amount of power and gas 

sold/purchased to/from other MGs at time slot t for MG m, respectively; 𝒆𝑚 is the mth column of the 

𝑀 × 𝑀 identity matrix; A and B are adjacency matrix [𝑎𝑚,𝑛]𝑀×𝑀 and [𝑏𝑚,𝑛]𝑀×𝑀, where element 𝑎𝑚,𝑛 

represents the power line connecting MG m and MG n, and 𝑏𝑚,𝑛 indicates a gas pipeline between MG m 

and MG n; If there exists an electrical line connection between MG m and MG n, element 𝑎𝑚,𝑛 is equal 

to 1, and 0 otherwise; It is noted that prices of energy exchange 𝐶sr,e and 𝐶sr,g play an important role 

to encourage MGs with excess energy to send energy to neighboring MGs, and their values are obtained 

from (Jadhav et al., 2019). The problem in (41)-(45) with four or more objectives is generally defined as 

many-objective optimization (Zhou et al., 2020b). As each MG pursues its benefit maximization, the 

utility functions of MMGs are always contradictory and competitive. Hence, a many-criteria optimality 

model is developed to identify the best compromise solution with well-distributed tradeoff benefits for all 

MGs’ objectives, and thus benefits from multi-energy sharing can be impartially allocated among MMGs. 

2) Energy Balance Constraints: The constraints of power and gas balance in MG m are expressed as 

(46) and (47), while (48) and (49) express that the sum of the exchanged electricity and gas among MMGs 

should be equal zero. Moreover, the total amount of energy trading and outputs of system devices 

determined by the upper level should be considered in constraints, and the electricity and gas purchased/sold 

from/to energy networks and system devices for all MGs should satisfy (48)-(51). 

,3 ,5
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buy,E buy,E CCDG CBESS,dis

,m t t t t

m M

P P P P


                                 (50) 

sell,E sell,E CBESS,ch

,m t t t

m M

P P P


                                    (51) 

buy,Gas buy,Gas

,



 m t t

m M

V V                                         (52) 

sell,Gas sell,Gas

,



 m t t

m M

V V                                          (53) 

3) Energy security Constraints: The constraints for the capacity of gas pipelines are described as (54)-

(55), and the limitation of electrical line capacity is denoted as (56)-(57). Especially, the amount of 

electricity and gas in a MMGs that can be traded with energy networks is assumed to be unlimited as follows, 

T send,E E line

, , max0 m m t m tx P e AP                                      (54) 

T T rec,E E line

, , max0 (1 )m m t m tx P  e A P                                   (55) 

T send,G Gas pipeline

, , max0 m m t m tx V e BV                                    (56) 

T T rec,G Gas pipeline

, , max0 (1 )m m t m tx V  e B V                                 (57) 

where 𝑥𝑚,𝑡
E  and 𝑥𝑚,𝑡

Gas  denote the direction of transmission of energy. 𝑥𝑚,𝑡
E =1 represents that MG m 

exports its surplus electricity to other MGs; otherwise, 𝑥𝑚,𝑡
E =0. The definition of gas flow is the same. 

4) Many-Criteria Optimality Methodology: The MMGMEM in the lower and upper level is modeled 

as a mixed-integer linear programming problem and a mixed-integer quadratic programming problem 

respectively, which can be solved by the CPLEX solver in the freely available YALMIP toolbox (Xu et al., 

2020). In the middle level, the EMOHT algorithm in (Zhou et al., 2020b) is used to solve many-objective 

optimization problems. At each iteration of EMOHT, the corner sort is employed to identify H extreme 

non-dominated solutions, and a set of extreme points is used to construct a hyperplane, as follows, 

1 1 2 2 ... ... 1m m M Mf f f f                                       (58) 

where (𝛾1, 𝛾2, …, 𝛾𝑀) is the unit normal vector of the hyperplane; 𝑓1, 𝑓2, …, 𝑓𝑀 are the coordinates of 

extreme points to indicate many-objective functions, and z=(𝑓1,min, 𝑓2,min, … , 𝑓𝑀,min) is the ideal point. 

Therefore, each solution can be normalized with 𝑓�̅� = (𝑓𝑚−𝑓𝑚,𝑚𝑖𝑛) (𝐼𝑚 − 𝑓𝑚,𝑚𝑖𝑛)⁄ . Here, the ideal point 

is normalized to z* = (0, 0, …, 0). The coordinates of solutions can then be projected from many-objective 

hypercube to the hyperplane by using 𝑓𝑚
′

= 𝑓�̅�/(𝑓1̅ + 𝑓2̅ + ⋯ + 𝑓�̅�). 

On the hyperplane, a set of symmetric reference points is generated by leveraging the normal boundary 

intersection. The solution projection and classification for a three-objective problem is illustrated in Fig. 3. 
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solution X is projected to the solution 𝑋′ on the normalized hyperplane. The projected solutions can be 

divided into several groups according to these generated reference points. Then, two independent distance 

measures are utilized by EMOHT to select and store elitist solutions in the population, and the two distances 

are linearly combined into an integrated measure, as follows, 

2

1

1

( )
M

m

m

d f


                                          (59) 

2

2 ,

1

( )
M

m m n

m

d f x


                                       (60) 

1 1,min 2 2,min

1,max 1,min 2,max 2,min

(1 )
d d d d

d
d d d d

 
    

 
                         (61) 

where 𝑑1  is the distance between the solution and ideal point for controlling the convergence of the 

algorithm, while 𝑑2 is the Euclidean distance between the reference point and the projected solution for 

controlling the population diversity. Weighting factor 𝜔 represents the trade-off between convergence and 

diversity, and the value of 𝜔 is set as 1-(𝑖𝑡𝑒𝑟/𝑖𝑡𝑒𝑟max)2. 
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Fig. 3 Solution projection in a normalized hyperplane for a three-objective problem. 

Fig.4 illustrates the flowchart of the proposed multi-level management strategy with EMOHT. In each 

time slot, the local optimization model in (9)-(25) is executed by MG-EMS. Based on the local optimization 

results, MG-EMS will provide its surplus, shortage and increasable amounts of electricity and gas to the 

CEMS. After gathering all the information from the lower level, CEMS will run the global optimization 

model in (26)-(40), and the scheduling decisions will be sent to the middle level. Then, EMOHT is utilized 

in the middle level to solve the many-criteria optimality model in (41)-(57), and the many-objective Pareto 

front solutions can be obtained by using (58)-(61). Subsequently, to obtain the optimum solution among 

the resulting Pareto front solutions by using the hyperplane projection mechanism, the solution whose 
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projected point is nearest to the centroid of hyperplane is selected as the energy scheduling decision. 

Formulate the local optimization objective function (10), the coupling matrix (11) and  constrains (12)-(25)

Update the set of possible scenarios of RDG outputs and multi-energy loads in the rolling horizons for MG m

The lower level 

 t0 = 1, Δt =1

Start

Determine the optimal amount of electricity and gas traded with external energy networks, outputs of CCDG 

and CBESS, and increased energy of each MG

m=m+1
No

Yes

Receive the information from all MG-EMSs, and input the parameters of CCDG and CBESS

The upper level

Formulate the global optimization model of MMGMEM problem from (26)-(40)

The middle level

Build the many-criteria optimality model of MMG multi-energy scheduling problem based on (41)-(57)

Iter = 1; Initialize the population members of EMOHT

Evaluate parent population members using many-objective function (41)-(45)

Implement the penalty-parameterless constraint handling, mutation and crossover operations to obtain trial 
population

Construct a hyperplane from extreme nondominated points by (58), and generate uniform reference points

Normalize and project the combined set of parent and trial population on the hyperplane

Sort the combined population by nondomination comparisons

Select elitist solutions into an archive set based on the nondomination levels and the integrated distance in 

(59)-(61)

Iter=Iter+1

Yes

No

Extract the nearest individual to the centroid of hyperplane as the best solution of energy scheduling decision

 t0=  t0+ Δt 
No

End

Yes

MG-EMS m runs local optimization to minimize its operation cost, and determine the surplus/shortage  

energy as well as the amount of increasable energy for all scenarios

Inform CEMS about the information of shortage, surplus, and increasable electricity and gas

m > Number of MGs?

Input the data of market  prices for electricity and gas 

Input the data of  RDGs, multi-energy load profiles, and characters of energy devices for MG m

CEMS performs the  global optimization to minimize the operation cost of  MMGs 

Iter>Itermax?

 t0 =24 ?

Inform the coordinated scheduling results to all MG-EMSs

Update the state variables including the energy generation of CHP and P2G, SOC of BESS and gas storage 

tank for MG m at current time slot t0

 

Fig 4 Flowchart of the proposed tri-level MMG multi-energy management strategy with EMOHT. 
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4 Case Studies  

4.1 System Data 

The proposed multi-energy management strategy is tested on a MMG system consisting of six 

interconnected MGs to corroborate its effectiveness. The detailed characteristics of system devices are 

given in Table 1, which are taken from Bui et al. (2016) and Yang et al. (2021). In this study, heterogeneous 

MGs are equipped with different quantities and capacities of multi-energy devices and have diverse load 

characters, resulting in different willingness for multi-energy exchange among MMGs, and the model 

parameter settings of energy devices in these MGs are listed in Table 2. The power price of electrical utility 

is derived from Arefifar et al. (2017), and the gas price is set at 0.5 $/m3. The feed-in prices of power and 

gas are set as 0.01 $/kWh and 0.25 $/m3 (Xu et al., 2020), and the unit prices of power and gas exchange 

among MGs are set to 0.031 $/kWh and 0.4 $/m3, respectively (Jadhav et al., 2019). Furthermore, the rolling 

horizon optimization of MMG multi-energy scheduling is implemented. The control horizon is 1 hour, and 

the prediction horizon T is set as 24 hours. The predicted daily load profiles and renewable outputs are 

adopted from the historical data in (Yang et al., 2019) and (Xu et al., 2020), and their forecasting errors are 

assumed to follow Gaussian probability distributions. Then, a Monte Carlo sampling approach is utilized 

to form the initial scenario tree with 2000 scenarios for capturing forecasting uncertainties, and the 

occurrence probability of each scenario is 1/2000. To decrease the computational cost, a scenario reduction 

technique in (Heitsch and Romisch, 2003) is further adopted, and only 20 scenarios that have a satisfactory 

approximation of uncertainties are retained for MMG multi-energy management. 

The EMOHT algorithm is compared with state-of-the-art evolutionary many-objective optimization 

(EMO) algorithms including non-dominated sorting genetic algorithm II (NSGA-II) (Deb et al., 2002), 

multi-objective evolutionary algorithm based on decomposition (MOEA/D) (Zhang and Li, 2007), NSGA-

III (Deb and Jain, 2014), and MOEA/D with a two-phase strategy and a niche-guided scheme (MOEA/D-

TPN) (Jiang et al., 2016). These algorithms have been extensively utilized to solve multi-objective 

optimization or many-objective optimization problems with excellent performance in convergence and 

solution searching. For each algorithm, 50 independent runs are executed to obtain fifty different optimum 

solutions by using the concept of solution pools in (Wichmann, 2019). Then, fifty sets of non-dominated 

solutions are combined and ranked by the dominance comparisons, and the top-ranked solution is selected 

to further compare and analyze. The settings of parameters have been heuristically well-tuned according to 

numerous benchmarked tests and simulations. For a fair comparison of results of all algorithms, the 

maximum iteration and population size are the same and are set to 500 and 200, respectively. Besides, the 

crossover probability is set as 0.9, and the mutation probability of 1/n is used, which is inversely related to 

the number of decision variables (Deb et al., 2002). Also, the number of reference points is set to 200. 
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Table 1 Characteristics of energy devices in the MMG system. 

CCDG 
a=0.00111 b=0.462 c=25 

𝑃CCDG,min=0 𝑃CCDG,max=600 kW 𝑅CCDG,up = 𝑅CCDG,down=200 kW/h 

CBESS 
𝑆𝑂𝐶min=0.1 𝑆𝑂𝐶max=0.9 𝑃𝑚,𝑡

CBESS,ch
=𝑃𝑚,𝑡

CBESS,dis
=80 kW 

𝐸CBESS,R=500 kWh 𝜇CBESS=0.01 $/kWh 𝜂ch=𝜂dis =0.95 

Line Capacity 𝑃max
line =2000 kW 𝑉max

pipeline
=200 m3  

Table 2 Characteristics of six MGs in the studied MMG system. 

CHP 
𝑃𝑚

CHP,max
=[250, 200, 300, 350, 180, 280] kW 𝑃𝑚

CHP,min =[0, 0, 0, 0, 0, 0] kW 

𝜂𝑚
CHP,H

=[0.44, 0.45, 0.43, 0.45, 0.45] 𝜂𝑚
CHP,E =[0.41, 0.39, 0.4, 0.41, 0.4] 

BESS 

𝜇𝑚
BESS=[0.01, 0.01, 0.01, 0.01, 0.01, 0.01] $/kWh 𝜂𝑚

ch =[0.97, 0.95, 0.93, 0.91, 0.94, 0.9] 

𝐸𝑚,𝑖
𝑅 =[330, 400, 350, 420, 380, 200] kWh 𝜂𝑚

dis =[0.91, 0.95, 0.93, 0.91, 0.94, 0.9] 

𝑆𝑂𝐶𝑚,𝑖
BESS,min

=[0.1, 0.1, 0.1, 0.1, 0.1, 0.1] 𝑆𝑂𝐶𝑚,𝑖
BESS,max

=[0.9, 0.9, 0.9, 0.9, 0.9, 0.9] 

𝑃𝑚
BESS,ch

=[96, 110, 80, 70, 90, 100] kW 𝑃𝑚
BESS,dis

=[85, 100, 80, 90, 95, 115] kW 

Gas 

Tank 

𝑉𝑚
Tank,ch,max

=[55, 60, 70, 65, 55, 80] m3/h 𝑆𝑂𝐶𝑚
Tank,min

=[0, 0, 0, 0, 0, 0] 

𝑉𝑚
Tank,dis,max

=[55, 60, 70, 65, 55, 80] m3/h 𝑆𝑂𝐶𝑚
Tank,max

=[1, 1, 1, 1, 1, 1] 

𝑉𝑚
𝑅=[80, 90, 85, 70, 75, 90] m3  

Boiler 𝑄𝑚
Boi,max

=[220, 300, 400, 350, 490, 390] kW 𝜂𝑚
Boi=[0.79, 0.78, 0.75, 0.7, 0.7, 0.77] 

Furnace 𝑄𝑚
Fur,max =[280, 290, 330, 410, 425, 470] kW 𝜂𝑚

Fur=[0.78, 0.75, 0.7, 0.8, 0.75, 0.77] 

P2G 𝑉𝑚
P2G,max =[87, 80, 55, 85, 70, 90] m3 𝜂𝑚

P2G=[0.63, 0.6, 0.61, 0.62, 0.58, 0.63] 

4.2 Scheduling results of MMGs   

In the lower level, each MG-EMS optimally schedules its components to determine the surplus/ 

shortage amount of electricity and gas for each MG. Fig. 5 illustrates the surplus/shortage energy of MMGs, 

where a positive value denotes a shortage of energy, and a negative value means energy is surplus. It is 

observed in Fig. 5 that MG3 and MG4 have surplus energy, while other MGs suffer from an energy shortage. 

Then, MG-EMSs inform their surplus/shortage amount of energy to C-EMS in the upper level. The outputs 

of system devices are determined by the C-EMS, as shown in Fig. 6. It can be found from Fig. 6 that, to 

minimize the total operation cost and maintain the MMG energy balance, CBESS charges in off-peak hours 

and discharges during peak hours. CCDG operates at peak hours to meet MMG energy demands. 
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Fig. 5 Shortage and surplus amounts of energy for each MG a) electrical power, b) natural gas. 
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Fig. 6 The output power of CCDG and CBESS. 

In the middle level, based on the optimized results from the upper level, the many-criteria optimality 

model is implemented to coordinate the multi-energy sharing among MMGs. The electricity and gas 

balance of MG1 and MG4 are illustrated in Fig. 7. It can be found that MG1 with a shortage of energy not 

only buys electricity and gas from energy networks but also actively receives energy from other adjacent 

MGs. In MG4, the surplus electricity from PVs and WTs is shared with other MGs for relieving their load 

burden during hours 8-22. Because the electrical loads are low and renewable outputs are relatively high 

during hours 2-5, MG4 converts surplus power into synthetic natural gas by P2G and then transmits these 

gas products to other MGs. Besides, MGs with feasible capacities, such as MG4, can increase their electrical 

and gas production and then share energy resources with other MGs to obtain the corresponding incomes. 
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Fig. 7 Electrical power and gas distribution situation of MG1 and MG4 a),b) MG1, c),d) MG4. 
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Fig. 8 shows the internal power and gas interaction within MMGs. It can be found from Fig. 8(a) that 

all MGs interactively exchange energy sources with each other. During hours 7-22, MG3 and MG4 have 

relatively higher renewable outputs than other MGs, and then sell their surplus electricity to other MGs 

with energy demand. From Fig. 8(b), the shortage of gas for MG1 and MG2 is fulfilled by energy sharing, 

while MG3 and MG4 send their redundant gas to other MG with gas needs. MG 5 and MG6 can switch 

their role based on their amount of surplus or shortage gas. For instance, MG5 participates in gas sharing 

as a sender during hours 2 and as a receiver during hours 6-22. It is observed in Fig. 8 that the sum of 

exchanged energy is equal to zero, which validates that the supply-demand balance constraints (48) and 

(49) are well satisfied. Fig. 9 presents the amount of increasable energy for MMGs. It can be observed that 

the total amount of increasable energy can be impartially allocated to MGs with feasible capacities. 
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Fig. 8 Scheduling results of multi-energy exchanges among MGs a) electrical power, b) natural gas. 
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Fig. 9 Scheduling results of increasable energy for each MG a) electrical power, b) natural gas. 

4.3 Comparative Results 

The multi-energy management strategy proposed in this paper was compared with the other three 

strategies. The details of all the strategies are listed in Table 3. Strategy 1 is the proposed strategy 

established in Section 3. Strategy 2 is a centralized strategy in (Wang et al., 2018), where a single-objective 

model is developed to manage the multi-energy supply and demand of MMGs. Strategy 3 is a hierarchical 
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energy management strategy in (Bui et al., 2016) where multi-energy interactions are ignored. Strategy 4 

is the no-coordinated strategy in which each MG only focuses on its objective without considering multi-

energy couplings and interactions. In this paper, strategy 4 is defined as the basic strategy for comparison. 

Table 3 Characteristics of strategies 1-4 in the comparative study. 

Strategy Type Technological details (objective function=operation cost) 

1 Proposed 
Considering the multi-energy couplings and interactions, 

and a tradeoff of MMG benefits 

2 Centralized 
Optimizing the MMG multi-energy couplings and 

interactions by a single-objective model 

3 Hierarchical No gas exchanging among MMGs 

4 No-coordinated No multi-energy couplings and interactions 

Table 4 tabulates the best solution for operation cost obtained by the best optimization run of the 

proposed strategy, as well as the optimized results of other strategies, where the negative value of cost 

denotes a profit. It can be found from Table 4, compared with basic strategy 4, the proposed strategy can 

achieve a cost saving for all MGs with different energy devices and willingness of energy sharing. For 

example, MGs under energy shortage, such as MG1, MG2, MG5, and MG6, can save 21.54%, 19.07%, 

22.55% and 24.15% of operation cost, respectively, and MGs with surplus energy can also receive a profit 

increment. Thus, with the proposed strategy, an optimum and coordinated condition for MMGs is achieved 

because all MGs can benefit from the multi-energy sharing. For the centralized strategy 2, MGs with surplus 

energy and residual capacities, such as MG 3 and MG4, can receive benefits for the energy exchange 

compared with strategy 4, as shown in Table 4. However, about a third of MGs, such as MG5 and MG6, 

incur losses from energy exchange with other MGs, while MG 1 and MG 2 gain most of the benefits. In 

this case, if a centralized strategy is adopted to achieve a minimal operation cost of MMGs, the benefits of 

some MGs in the MMG system may be damaged, seriously reducing the enthusiasm of multi-energy sharing 

among MMGs. Besides, it can be found from Table 4 that, the energy trading between MGs and energy 

networks will significantly increase if the gas exchange among MGs is not considered, and thus the cost of 

each MG in strategy 3 is much higher than strategies 1 and 2. 

Fig. 10 illustrates the comparison results of the system net load curve for four comparative strategies. 

It is observed in Fig. 10 that, MMGs in strategy 1 sell their surplus energy to the electrical network during 

hours 2-5, while the surplus electricity of MMGs in strategy 1 is not sold to the electrical network. This is 

mainly because surplus renewable sources can be shared among MGs in strategy 1rather than feeding back 

to the electrical grid. Furthermore, the surplus power can be converted to gas by P2G during valley periods 

in strategy 1, and the surplus gas can be shared among MGs. Thus, with the proposed strategy, the peak 

demand of both electricity and gas in MMGs can be effectively mitigated. The system performance results 

on the renewable accommodation and system operation cost obtained with strategies 1-4 have been further 

compared, as shown in Table 5. It can be found from Table 5 that, compared with strategy 3, the system 
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operation cost and the renewable accommodation in strategy 1 are reduced by 14.8% and increased by 1.4%, 

respectively. Besides, compared with strategy 4, the system operation cost in strategy 1 is reduced by 33.2%, 

and the renewable accommodation is up by 12.2%. Moreover, the comparative studies of the proposed and 

centralized strategy on average computational time are listed in Table 6. It can be found from Table 5 and 

Table 6 that, gaps of system operation cost between the proposed strategy and the centralized strategy are 

less than 0.2%, while the running time of the proposed strategy is significantly reduced, especially for the 

large scale MMGMEM problems. The simulation results indicate the proposed strategy shows the most 

competitive overall performance on optimized results and computational time compared with other 

strategies, and it can well satisfy the real-time applicability and requirement of MMGMEM problems. 

Table 4 Comparative cost results of six MGs with strategies 1-4. 

Index 

of MGs 

Related to energy networks Related to other MGs 
Operation cost 

of devices($) 

Individual 

cost ($) 

Cost 

saving ($) Electricity 

buying cost ($) 

Gas buying 

cost ($) 

Electricity 

buying cost ($) 

Gas buying 

cost ($) 

Strategy 1: Proposed strategy 

MG 1 241.30  1,039.20  65.42  556.01  37.37  1,939.30  532.49 

MG 2 283.65  597.07  57.53  549.81  36.00  1,524.06  359.13 

MG 3 -0.40  0.000  -167.58  -794.08  515.27  -446.79  554.38 

MG 4 0.00  2.35  -197.58  -777.67  490.46  -482.44  681.20 

MG 5 431.36  293.87  87.40  218.38  65.18  1,096.19  319.07 

MG 6 529.99  1,040.38  154.81  247.56  182.22  2,154.96  686.12 

Strategy 2: Centralized strategy 

MG 1 113.19  772.70  107.27  408.97  37.52  1,439.65  1,032.14 

MG 2 195.06  78.78  96.38  724.44  36.00  1,130.66  752.53 

MG 3 -0.11  0.00  -183.66  -796.60  448.58  -531.79  639.37 

MG 4 0.00  -8.26  -194.45  -819.01  371.74  -649.98  848.74 

MG 5 267.93  238.02  147.63  505.24  319.35  1,478.17  -62.91 

MG 6 909.83  1,891.63  26.83  -23.03  105.90  2,911.16  -70.08 

Strategy 3: Hierarchical strategy 

MG 1 243.17  1,736.84  16.39  0.00  65.35  2,061.75  410.04 

MG 2 286.59  1,284.33  17.44  0.00  61.78  1,650.14  233.05 

MG 3 -0.32  -79.41  -155.19  0.00  48.00  -186.92  294.50 

MG 4 0.00  -104.04  -186.20  0.00  48.26  -241.98  440.74 

MG 5 432.58  622.97  67.39  0.00  54.70  1,177.64  237.62 

MG 6 523.88  1,627.92  240.17  0.00  20.23  2,412.20  428.88 

Strategy 4: No-coordinated strategy (basic strategy) 

MG 1 809.10  1,614.56  0.00  0.00  48.13  2,471.79  0.00 

MG 2 727.75  1,103.94  0.00  0.00  51.50  1,883.19  0.00 

MG 3 -196.10  257.29  0.00  0.00  46.39  107.58  0.00 

MG 4 -409.72  556.24  0.00  0.00  52.24  198.76  0.00 

MG 5 904.73  482.26  0.00  0.00  28.27  1,415.26  0.00 

MG 6 1,509.14  1,294.63  0.00  0.00  37.31  2,841.08  0.00 
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Fig. 10 System net load profiles optimized with different strategies a) electrical power, b) natural gas. 

Table 5 Comparative system performance results of different strategies. 

Strategy 1 2 3 4 

CBESS degradation cost ($) 11.48  16.27  10.13  22.27  

CCDG generation cost ($) 437.52  434.69  433.27  395.13  

Renewable accommodation (%) 99.48 99.50 98.12 88.66 

System operation cost ($) 6,234.28  6,228.83  7,316.23  9,335.06  

Table 6 Comparisons of the average running time between proposed and centralized strategy. 

Number of MGs 
Running time (min) 

Proposed strategy 1 Centralized strategy 2 

6 3.63 4.92 

50 14.61 18.42 

100 26.10 32.75 

200 36.51 53.62 

400 53.46 89.48 
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Fig. 11 Variation of the mean IGD value in the convergence process. 

Table 7 Average computational time of the MMGMEM with different algorithms 

 EMOHT MOEA/D-TPN NSGA-III MOEA/D NSGA-II 

Run time (min) 3.63 5.15 5.53 7.52 12.47 

Furthermore, to demonstrate the superior performance of the EMOHT algorithm, four other advanced 

EMO algorithms, including NSGA-II (Deb et al., 2002), MOEA/D (Zhang and Li, 2007), NSGA-III (Deb 
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and Jain, 2014), and MOEA/D-TPN (Jiang et al., 2016), were used to solve the MMGMEM problem, and 

further compared with the EMOHT. For comparisons, the inverse generational distance (IGD) in (Jiang and 

Yang, 2016) is adopted for measuring the solution quality on the diversity and convergence of non-

dominated solutions from different algorithms, and the smaller value of IGD represents a better 

performance of the algorithm. All the simulations were performed in MATLAB 2014a platform and ran on 

a personal computer with a 4-GHz Intel Core i7 CPU and 64 GB RAM. The results over the mean IGD 

metric and the average run time of MMGMEM with different algorithms are shown in Fig. 11 and Table 7, 

respectively. It can be found that EMOHT markedly outperforms other algorithms, and provides 

satisfactory performance on various measures. 

In order to demonstrate the solution quality of the proposed strategy, 50 different solutions obtained 

from 50 independent runs of the proposed strategy were compared with the optimal solution of the 

centralized strategy. Specifically, the solution of the centralized strategy was compared with the best 

solution (top-ranked solution), the worst solution (last-ranked solution), and the mean solution of the 

proposed strategy, and comparative results are listed in Table 8. It can be found from Table 8 that the best, 

worst, and mean solutions of the proposed strategy are all better than the solution of the centralized strategy 

because all MGs achieve a cost saving and none of them suffer a loss. Moreover, the robustness 

performance of the EMOHT algorithm was tested. The statistical analysis was performed for the 

optimization results of different algorithms over 50 runs, as shown in Table 9. Four typical statistical 

parameters, including the minimum value, maximum value, average value and standard deviation, were 

used to compare and analyze the solution performance. The resulting statistics show that, compared with 

other algorithms, results obtained by EMOHT algorithm have a lower standard deviation, and the difference 

between the minimum and maximum operation cost of each MG is the lowest among all algorithms. 

Meanwhile, simulations also prove that the average solution of 50 runs obtained by EMOHT is better than 

the average solution obtained by other algorithms. The resulting statistics demonstrate that EMOHT can 

effectively provide satisfactory solutions for each optimization run, and verify its high degree of robustness. 

Table 8 Comparative analyses of optimized cost obtained from the proposed and centralized strategies. 

Index of 

MGs 

Centralized strategy 
Proposed strategy 

Best solution Worst solution Mean solution Standard deviation 

Operation 

cost ($) 

Cost  

saving ($) 

Operation 

cost ($) 

Cost 

saving ($) 

Operation 

cost ($) 

Cost 

saving ($) 

Operation 

cost ($) 

Cost 

saving ($) 

Operation 

cost 

Cost 

saving 

MG 1 1,439.65 1,032.13 1,939.30 532.48 1,946.59 525.20 1,946.11 525.68 6.52 6.52 

MG 2 1,130.66 752.54 1,524.06 359.14 1,540.64 342.55 1,530.42 352.77 5.67 5.67 

MG 3 -531.79 639.37 -446.79 554.38 -455.75 563.33 -449.21 556.79 6.92 6.92 

MG 4 -649.98 848.74 -482.44 681.20 -491.88 690.64 -485.28 684.04 4.47 4.47 

MG 5 1,478.17 -62.91 1,096.19 319.07 1,107.57 307.70 1,098.46 316.8 5.06 5.06 

MG 6 2,911.16 -70.07 2,154.96 686.12 2,138.12 702.97 2,144.77 696.31 9.88 9.88 
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Table 9 Resulting statistics of operation cost of MGs in 50 independent runs  

Algorithm 
MG1 MG2 MG3 

Min. Max. Average Std. dev. Min. Max. Average Std. dev. Min. Max. Average Std. dev. 

EMOHT 1,939.30 1,956.62 1,946.11 6.52 1,523.81 1,540.64 1,530.42 5.67 -463.76 -441.30 -449.21 6.92 

MOEA/D-TPN 1,949.34 2,011.23 1,984.40 17.86 1,539.33 1,590.44 1,564.55 14.93 -453.03 -413.58 -428.29 11.41 

NSGA-III 1,952.46 1,997.93 1,987.34 15.62 1,537.34 1,573.81 1,558.25 11.67 -440.03 -417.87 -419.88 14.41 

MOEA/D 2,014.47 2,691.45 2,225.17 225.94 1,621.39 2,173.38 1,787.66 179.64 -398.63 -274.98 -335.75 31.47 

NSGA-II 2,042.45 3,606.54 2,573.17 505.85 1,637.60 2,912.33 2,073.30 399.61 -382.32 -238.37 -302.04 39.92 

 
MG4 MG5 MG6 

Min. Max. Average Std. dev. Min. Max. Average Std. dev. Min. Max. Average Std. dev. 

EMOHT -491.88 -479.01 -485.28 4.47 1,091.27 1,107.56 1,098.46 5.06 2,128.88 2,154.96 2,144.77 9.88 

MOEA/D-TPN -483.21 -456.31 -474.53 5.63 1,119.26 1,154.75 1,134.68 10.39 2,144.52 2,201.36 2,180.59 16.43 

NSGA-III -479.80 -441.91 -467.34 10.17 1,135.05 1,163.80 1,147.48 12.22 2,164.49 2,208.76 2,190.22 14.25 

MOEA/D -456.18 -398.47 -410.70 21.38 1,175.85 1,591.17 1,321.62 128.13 2,236.50 3,060.24 2,470.24 249.73 

NSGA-II -425.63 -250.61 -368.06 59.00 1,187.61 2,132.16 1,574.19 314.27 2,258.86 4,100.72 2,855.21 599.67 

4.4 Discussion 

In this subsection, a sensitivity analysis was conducted to evaluate the impact of the number of MGs 

on the performance of the proposed strategy. The number of MGs was assumed to be 6, 30, 50, 100, 200, 

300 and 400, respectively. The model parameter settings of multi-energy devices, load profiles as well as 

outputs of renewable energy in these MGs were randomly obtained within certain ranges on the statistical 

data from previous works in Section 4.1. Simulation results of the total operation cost of MMGs under 

various numbers of MGs are illustrated in Fig. 12. It can be found that, the system operation cost remarkably 

increases with the increased number of MGs. In addition, in the case of six MGs, the comparative studies 

were performed with various lengths of the prediction and control horizon associated with rolling horizon 

procedures, and a perfect prediction over a week (168 hours) is assumed as a base case. The results of 

system operation cost and renewable energy accommodation under different lengths of predicted and 

controlled horizon are shown in Table 10 and Table 11, respectively. It can be found from Table 10 that, 

compared with the based case (168 hours), under the case of 1-h control horizon, the rolling horizon 

procedures slightly increase the system operation cost by 0.03% at 24 h and 0.007% at 96 h, while the 

renewable accommodation is reduced by 0.16% at 24h and 0.06% at 96 h. Although the prediction accuracy 

decreases when the length of the prediction horizon increases, increasing the length of the prediction 

horizon in short-term forecasting can improve the optimized results because more future information of 

MMGs is considered. Thus, for the 1-h length of control horizon, the system operation cost slightly 

decreases as the length of the prediction horizon increases from 6 h to 96 h, while the renewable 

accommodation is slightly increased. As the length of the prediction horizon continues to increase, the 

improvement rates of optimized results decrease. For example, the gap of system operation cost between 

the 24-h and 96-h prediction horizon is close to 0.1%. However, a longer prediction horizon indicates that 

more data and longer processing time are required (Langer and Volling, 2020). It can be found from Table 

11 that, under the same length of prediction horizon, the system operation cost rises with the increased 
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length of control horizon, while the renewable accommodation is decreased. It is worth noting that, for the 

24-h prediction horizon, a large gap occurs between the optimized results of the 12-h and 24-h control 

horizon, and optimized results are improved with the reduction of the control horizon. The simulation 

results further confirm the end-of-horizon effects mentioned in (Langer and Volling, 2020). 

 
Fig. 12 System operation cost versus different number of MGs with the proposed strategy 

Table 10 The optimized results of the rolling horizon procedure under different prediction horizons 

Prediction horizon (hour) 168 6 12 24 36 48 72 96 

Control horizon (hour) 168 1 

System operation cost ($) 43,538.24 43,571.67 43,557.32 43,551.91 43,548.42 43,545.39 43,543.53 43,541.47 

Renewable  

accommodation (%) 
99.69 98.93 99.41 99.53 99.57 99.58 99.61 99.63 

Table 11 The optimized results of the rolling horizon procedure under different control horizons 

Prediction horizon (hour) 168 24 
 

48  96 

Control horizon (hour) 168 6 12 24 6 12 24  6 12 24 

System operation cost ($) 43,538.24 43,554.34 43,558.31 43,751.52  43,547.31 43,549.91 43,554.27  43,541.67 43,542.32 43,544.59 

Renewable  

accommodation (%) 
99.69 99.48 99.34 78.61  99.57 99.56 99.46 

 
99.63 99.62 99.60 

Here, the practical applicability of the proposed strategy is further briefly discussed. In a practical 

MMG system, uncertainties of energy outputs from RDGs and multi-energy loads are not fixed due to the 

time-varying weather condition and energy consumption behaviors. These uncertainties have brought 

unprecedented difficulties and challenges for maintaining the supply-demand balance and making energy 

management decisions. To tackle uncertainties in MMG operation, a scenario-based stochastic scheduling 

with the rolling procedure is introduced into the proposed strategy, as aforementioned in Section 3. Besides, 

in the proposed strategy, only a limited amount of information, such as surplus or shortage energy of each 

MG, is shared, and thus the information privacy can be well preserved. Furthermore, assumptions taken in 
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Section 3.1 are also reasonable under normal operating conditions of MMGs. These assumptions have been 

widely made in previous works, such as in (Cui et al., 2016). Hence, the introduction of the above 

assumptions will not hinder the practicability and reliability of the proposed strategy. Therefore, the 

proposed strategy can be well used in current EMS platforms for industrial, residential, and other types of 

MMGs to assist their operators with decision making and facilitate the coordinated operation of MMGs. 

5 Conclusions 

In this paper, the multi-energy coupling and interactions within MMGs are modeled as a MMG multi-

energy coupling matrix, which is further reformulated into the sum of three linear and sparse submatrices 

by the developed multi-step matrix decomposition technique. Then, an interactive tri-level multi-energy 

management strategy is proposed to solve the optimum MMGMEM problem based on many-criteria 

optimality. The MMG multi-energy scheduling problem is decomposed into reduced-complexity tri-level 

optimization sub-problems. The effectiveness and scalability of the proposed strategy have been fully tested 

on MMG systems with numerous heterogeneous MGs. The key findings are summarized as follows: 

1) By leveraging the interactions of multiple levels to coordinate the multi-energy management of the 

MMG system, the proposed strategy can outperform other MMG energy management strategies on system 

operational economy and local renewable accommodation, with a decrease in overall MMG operation cost 

by over 14.8% and an increase on renewable energy utilization by over 1.5%. Also, the system net load 

characters of electricity and gas in MMGs can be effectively improved. 

2) The many-criteria optimality model can fully exploit the flexibility of multi-energy conversion and 

interaction to coordinate the multi-energy sharing among multiple heterogeneous MGs. Thus, the MMG 

multi-energy sharing problem can obtain an optimum tradeoff in which all MGs can benefit from 

electricity-gas exchanges, saving more than 19% of operation cost for each MG than uncoordinated strategy. 

3) The average computational time of the proposed strategy is shortened significantly compared with 

the centralized strategy for MMGMEM problems. Especially for the large scale MMGs such as hundreds 

of MGs, the computational time is even reduced by more than 30%. The time performance further validates 

the superior scalability of the strategy in solving the optimum multi-energy management problem with 

numerous heterogeneous MGs. 

In MMGs, the number of MGs participating in multi-energy sharing and trading may increase 

dramatically, which will bring serious challenges to the MMG communication in respect of timeliness, 

scalability, coverage, and transmission rate. Thus, in our future work, efforts will be made to incorporate 

the impact assessment of communication reliability (such as communication delays and limited bandwidth) 

into the proposed strategy for improving its applicability in MMGMEM problems. 
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Appendix A 

At the third step of the developed multi-step matrix decomposition technique in Section 2.3, (A.1) is 

nonlinear due to the introduction of dispatch factors. In this paper, state variables are used to avoid 

introducing dispatch factors, and the detailed derivation process is provided as below. 

WT WT,E PV PV,E BESS,E Gas CHP,E Tank,CHP CHP,E

E
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(A.1) 

where values of dispatch factors, such as 𝑣𝑚
WT,E

, are limited between 0 and 1. Based on energy conversation 

principles, the following equations must be satisfied. 

WT,E WT,Boi WT,P2G

PV,E PV,Boi PV,P2G

BESS,E BESS,Boi BESS,P2G

Tank,G Tank,Fur Tank,CHP

1 1

1 1

1 1

1 1

m m m

m m m

m m m

m m m

v v v

v v v

v v v

v v v

     
     
     
     
     
      

                        (A.2) 

In order to linearize the coupling matrix, the connections and the converter inputs are selected as state 

variables (Shao et al., 2017). Thus, (A.1) can be described as the following linear equations. 

E WT,E PV,E BESS,E Gas Tank,CHP,E,L CHP,E

m m m m mL P P P Q V    
                     (A.3) 

H WT,Boi Boi PV,Boi Boi BESS,Boi Boi Gas Tank,CHP,E,Boi CHP,E Boi

Gas CHP,E Tank,CHP,E CHP,H CHP,E Gas Tank,Fur Fur         +( ) /

m m m m m

m m

L P P P Q V

Q V Q V

    

   

   


           (A.4) 

Gas WT,P2G P2G PV,P2G P2G BESS,P2G P2G Tank,G Gas Tank,CHP,E,P2G CHP,E P2G

m m m m m mL P P P V Q V        
      (A.5) 

WT WT,E WT,Boi WT,P2G

m m m mP P P P  
                            (A.6) 

PV PV,E PV,Boi PV,P2G

m m m mP P P P  
                           (A.7) 

BESS BESS,E BESS,Boi BESS,P2G

m m m mP P P P  
                        (A.8) 

Tank Tank,Fur Tank,G Tank,CHP,E,L Tank,CHP,E,Boi Tank,CHP,E,P2G

m m m m m mV V P V V V    
          (A.9) 

Tank,CHP Tank,CHP,E,L Tank,CHP,E,Boi Tank,CHP,E,P2G

m m m mV V V V  
              (A.10) 

where 𝑃𝑚
WT,E = 𝑓WT𝑊𝑚

WT , and 𝑃𝑚
PV,E = 𝑓PV𝐺𝑚

PV ; 𝑃𝑚
WT,E

 , 𝑃𝑚
PV,E

  and 𝑃𝑚
BESS,E

  represent the electricity 

supplied from WT, PV and BESS to electrical loads, respectively; 𝑉𝑚
Tank,CHP,E,L

 , 𝑉𝑚
Tank,CHP,E,Boi

  and 



32 
 

𝑉𝑚
Tank,CHP,E,P2G

  denote the input amount of gas from the gas tank to CHP, which are used for CHP 

generation to supply the electrical load, boiler and P2G, respectively. 𝑃𝑚
WT,Boi

, 𝑃𝑚
PV,Boi

 and 𝑃𝑚
BESS,Boi

 are 

the amount of electrical power that WT, PVs and BESS provide to the electric boiler for heating. 

𝑉𝑚
Tank,CHP,E

, 𝑉𝑚
Tank,Fur

 and 𝑉𝑚
Tank,G

 are the amount of gas from the gas tank to the electrical generation 

of CHP, the furnace heating and the load supply, respectively. Summing the (A.6), (A.7) and (A.8), the 

following equation can be obtained. 

WT,E PV,E BESS,E WT PV BESS Boi,1 Boi P2G,1 P2G/ /m m m m m m m mP P P P P P Q V                (A.11) 

where 𝑄𝑚
Boi,1 = 𝑃𝑚

WT,Boi𝜂Boi + 𝑃𝑚
PV,Boi𝜂Boi + 𝑃𝑚

BESS,Boi𝜂Boi  and 𝑉𝑚
P2G,1 = 𝑃𝑚

WT,P2G𝜂P2G +

𝑃𝑚
PV,P2G𝜂P2G + 𝑃𝑚

BESS,P2G𝜂P2G. Based on (A.10), the power balance of CHP can be derived, as follows, 

Tank,CHP,E,L Tank,CHP Tank,CHP,E,Boi Tank,CHP,E,P2G

m m m mP P P P                   (A.12) 

By substituting (A.11) and (A.12) into the (A.3), (A.3) can be rewritten as (A.13). 

E WT PV BESS Boi,1 Boi P2G,1 P2G Tank,CHP Boi,2 Boi P2G,2 P2G/ / / /m m m m m m m m mL P P P Q V P Q V              (A.13) 

where 𝑄𝑚
Boi,2 = 𝑃𝑚

Tank,CHP,E,Boi𝜂Boi  and 𝑉𝑚
P2G,2 = 𝑃𝑚

Tank,CHP,E,P2G𝜂p2G . Thus, (A.13) can be further 

reformulated as the linear and concise equation, as follows, 

E WT PV BESS Boi Boi P2G P2G Tank,CHP/ /m m m m m m mL P P P Q V P                     (A.14) 

where 𝑄𝑚
Boi = 𝑄𝑚

Boi,1 + 𝑄𝑚
Boi,2

  and 𝑉𝑚
P2G = 𝑉𝑚

P2G,1 + 𝑉𝑚
P2G,2

 . Similarly, by substituting 𝑄𝑚
Boi,1

 , 𝑄𝑚
Boi,2

 , 

and 𝑄𝑚
Fur = 𝑉𝑚

Tank,Fur𝜂Fur into (A.4), we can obtain 

H Boi Fur Tank,CHP CHP,H CHP,E/m m m mL Q Q P                          (A.15) 

Substituting (A.10) to (A.9), the amount of gas from the gas tank to gas load can be expressed as, 

Tank,G Tank Fur Fur Gas Tank,CHP CHP,E Gas/ /m m m mV V Q Q P Q                   (A.16) 

Then, substituting 𝑉𝑚
P2G,1

, 𝑉𝑚
P2G,2

 and (A.16) into (A.5), Eq. (A.5) can be rewritten as, 

Gas P2G Tank Fur Fur Gas Tank,CHP CHP Gas/ /m m m m mL V V Q Q P Q                    (A.17) 

Finally, Eq.(A.14), Eq.(A.15) and Eq.(A.17) can be written to the matrix form, as expressed in (7). 

References 

Aghdam, F.H., Kalantari, N.T., Mohammadi-Ivatloo, B., 2020. A stochastic optimal scheduling of multi-microgrid 

systems considering emissions: a chance constrained model. J. Clean Prod. 275, 122965. 

Arefifar, S.A., Ordonez, M., Mohamed ,Y.A.I., 2017. Energy management in multi-microgrid systems—

development and assessment. IEEE Trans. Power Syst. 32(2), 910-922. 

Bui, V.H., Hussain, A., Im, Y.H., Kim, H.M., 2019. An internal trading strategy for optimal energy management of 

combined cooling, heat and power in building microgrids. Appl. Energy 239, 536-548. 

Bui, V.H., Hussain, A., Kim, H.M., 2016. A multiagent-based hierarchical energy management strategy for multi-

microgrids considering adjustable power and demand response. IEEE Trans. Smart Grid 9(2), 1323-1333. 

Cui, H.T., Li, F.X., Hu, Q.R., Bai, L.Q., Fang, X., 2016. Day-ahead coordinated operation of utility-scale electricity 

and natural gas networks considering demand response based virtual power plants. Appl. Energy 176, 183-195. 

Chicco, G., Mancarella, P., 2009. Matrix modelling of small-scale tri-generation systems and application to 



33 
 

operational optimization. Energy 34(3), 261-273. 

Daneshvar, M., Mohammadi-Ivatloo, B., Asadi, S., Anvari-Moghaddam, A., Rasouli, M., Abapour, M., et al., 2020. 

Chance-constrained models for transactive energy management of interconnected microgrid clusters. J. Clean 

Prod. 271, 122177. 

Dey, B., Bhattacharyya, B., Garcia Marquez, F.P., 2021. A hybrid optimization-based approach to solve environment 

constrained economic dispatch problem on microgrid system. J. Clean Prod. 307, 127196. 

Deb, K., Jain, H., 2014. An evolutionary many-objective optimization algorithm using reference-point-based 

nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 

577-601. 

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. 

IEEE Trans. Evol. Comput. 6(2), 182-197. 

Dissanayake, A.M., Ekneligoda, N.C., 2020. Multiobjective optimization of droop-controlled distributed generators 

in DC microgrids. IEEE Trans. Ind. Inform. 16(4), 2423-2435. 

Farina, M., Amato, P., 2004. A fuzzy definition of ’optimality’ for many-criteria optimization problems. IEEE Trans. 

Syst. Man Cybern. A syst. Humans 34(3), 315-326. 

Gansterer, M., Hartl, R.F., 2018. Collaborative vehicle routing: a survey. Eur. J. Oper. Res. 268(1), 1-12. 

Hao, R., Ai, Q., Zhu, Y.C., Jiang, Z.Q., 2018. Decentralized self-discipline scheduling strategy for multi-microgrids 

based on virtual leader agents. Electr. Power Syst. Res. 164, 230-242. 

Heitsch, H., Romisch, W., 2003, Scenario reduction algorithms in stochastic programming. Computat. Optimiz. 

Applicat. 24, 187–206. 

Huang, Z.Y., Xie, Z.L., Zhang, C.Z., Chan, S.H., Milewski, J., Xie, Y., et al., 2019. Modeling and multi-objective 

optimization of a stand-alone PV-hydrogen-retired EV battery hybrid energy system. Energy Conv. Manag. 181, 

80-92. 

Jadhav, A.M., Patne, N.R., Guerrero, J.M., 2019. A novel approach to neighborhood fair energy trading in a 

distribution network of multiple microgrid clusters. IEEE Trans. Ind. Electron. 66(2), 1520-1531. 

Jafari, A., Khalili, T., Ganjehlou, H.G., Bidram, A., 2020a. Optimal integration of renewable energy sources, diesel 

generators, and demand response program from pollution, financial, and reliability viewpoints: A multi-

objective approach. J. Clean Prod. 247, 119100. 

Jafari, A., Ganjehlou, H.G., Khalili, T., Bidram, A., 2020b. A fair electricity market strategy for energy management 

and reliability enhancement of islanded multi-microgrids. Appl. Energy 270, 115170. 

Jiang, S.Y., Yang, S.X., 2016. An improved multiobjective optimization evolutionary algorithm based on 

decomposition for complex pareto fronts. IEEE T. Cybern. 46(2), 421-437. 

Karimi, H., Jadid, S., 2020. Optimal energy management for multi-microgrid considering demand response 

programs: a stochastic multi-objective framework. Energy 195, 116992. 

Khalili, T., Ganjehlou, H.G., Bidram, A., Nojavan, S., Asadi, S., 2021. Financial risk-based scheduling of micro grids 

accompanied by surveying the influence of the demand response program. In: 2021 IEEE/IAS 57th Industrial 

and Commercial Power Systems Technical Conference (I&CPS). IEEE, pp. 1-9. 

Langer, L., Volling, T., 2020. An optimal home energy management system for modulating heat pumps and 

photovoltaic systems. Appl. Energy 278, 115661. 

Liu, T.H., Zhang, D.D., Wang, S.Y., Wu, T., 2019. Standardized modelling and economic optimization of multi-

carrier energy systems considering energy storage and demand response. Energy Conv. Manag. 182, 126-142. 

Li, P., Li, R.X., Cao, Y., Li, D.Y., Xie, G., 2018. Multiobjective sizing optimization for island microgrids using a 

triangular aggregation model and the Levy-Harmony algorithm. IEEE Trans. Ind. Inform. 14(8), 3495-3505. 

Lu, X.H., Zhou, K., Yang, S.L., Liu, H.Z., 2018. Multi-objective optimal load dispatch of microgrid with stochastic 

access of electric vehicles. J. Clean Prod. 195, 187-199. 



34 
 

Moeini-Aghtaie, M., Abbaspour, A., Fotuhi-Firuzabad, M., Hajipour, E., 2014. A decomposed solution to multiple-

energy carriers optimal power flow. IEEE Trans. Power Syst. 29(2), 707-716. 

Murty, V.V.S.N., Kumar, A., 2020. Multi-objective energy management in microgrids with hybrid energy sources 

and battery energy storage systems. Prot. Control Mod. Power Syst. 5(2), 1-20. 

Shams, M.H., Shahabi, M., Kia, M., Heidari, A., Lotfi, M., Shafie-khah, M., et al., 2019. Optimal operation of 

electrical and thermal resources in microgrids with energy hubs considering uncertainties. Energy 187, 115949. 

Shao, C.C., Wang, X.F., Shahidehpour, M., Wang, X.L., Wang, B.Y., 2017. An MILP-based optimal power flow in 

multicarrier energy systems. IEEE Trans. Sustain. Energy 8(1), 239-248. 

Tan, B., Chen, H., 2020. Multi-objective energy management of multiple microgrids under random electric vehicle 

charging. Energy 208, 118360. 

Wang, D.X., Qiu, J., Reedman, L., Meng, K., Lai, L.L., 2018. Two-stage energy management for networked 

microgrids with high renewable penetration. Appl. Energy 226, 39-48. 

Wang, Y., Zhang, N., Kang, C.Q., Kirschen, D.S., Yang, J.W., Xia, Q., 2019. Standardized matrix modeling of 

multiple energy systems. IEEE Trans. Smart Grid 10(1), 257-270. 

Wichmann, M.G., Johannes, C., Spengler, T.S., 2019. An extension of the general lot-sizing and scheduling problem 

(GLSP) with time-dependent energy prices. J. Bus. Econ. 89(5), 481-514. 

Xu, D., Wu, Q.W., Zhou, B., Li, C.B., Bai, L., Huang, S., 2020. Distributed multi-energy operation of coupled 

electricity, heating and natural gas networks. IEEE Trans. Sustain. Energy 11(4), 2457-2469. 

Xuan, A., Shen, X.W., Guo, Q.L., Sun, H.B., 2021. A conditional value-at-risk based planning model for integrated 

energy system with energy storage and renewables. Appl. Energy 294, 116971. 

Yang, X.D., He, H.B., Zhang, Y.B., Chen, Y., Weng, G.Q., 2019. Interactive energy management for enhancing 

power balances in multi-microgrids. IEEE Trans. Smart Grid 10(6), 6055-6069. 

Yang, Z., Hu, J.J., Ai, X., Wu, J.C., Yang, G.Y., 2021. Transactive energy supported economic operation for multi-

energy complementary microgrids. IEEE Trans. Smart Grid 12(1), 4-17. 

Yazdani-Damavandi, M., Neyestani, N., Shafie-khah, M., Contreras, J., Catalao, J.P.S., 2018. Strategic behavior of 

multi-energy players in electricity markets as aggregators of demand side resources using a bi-level approach. 

IEEE Trans. Power Syst. 33(1), 397-411. 

Yuan, G.X., Gao, Y., Ye, B., Huang, R.P., 2020. Real-time pricing for smart grid with multi-energy microgrids and 

uncertain loads: a bilevel programming method. Int. J. Electr. Power Energy Syst. 123, 106206. 

Zeng, B., Liu, Y., Xu, F.Q., Liu, Y.X., Sun, X.Y., Ye, X.M., 2021. Optimal demand response resource exploitation 

for efficient accommodation of renewable energy sources in multi-energy systems considering correlated 

uncertainties. J. Clean Prod. 288, 1-20. 

Zhou, Q., Shahidehpour, M., Paaso, A., Bahramirad, S., Alabdulwahab, A., Abusorrah, A., 2020a. Distributed control 

and communication strategies in networked microgrids. IEEE Commun. Surv. Tutor. 22(4), 2586-2633. 

Zhou, B., Zou, J.T., Chung, C.Y., Wang, H.Z., Liu, N., Voropai, N., et al., 2021. Multi-microgrid energy management 

systems: architecture, communication, and scheduling strategies. J. Mod. Power Syst. Clean Energy 9(3), 463-

476. 

Zhou, B., Cao, Y.P., Li, C.B., Wu, Q.W., Liu, N., Huang, S., et al., 2020b. Many-criteria optimality of coordinated 

demand response with heterogeneous households. Energy 207, 118267. 

Zhang, Q., Li, H., 2007. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. 

Evol. Comput. 11(6), 712-731. 

Zhang, Y., Zhao Y.X., 2012. Analysis of the third party inspection strategy under asymmetric quality cost information. 

In: 2012 International Conference on Systems and Informatics (ICSAI). IEEE, pp. 1281-1286. 

 




