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Abstract 3 

Port state control (PSC) inspections serve to guard maritime safety and the marine 4 

environment. Because port inspection resources are limited, inspection efficiency 5 

can be improved if the resources are scheduled more efficiently. Currently, ports 6 

worldwide apply a greedy inspection strategy. To improve inspection efficiency, 7 

this study proposes two coordinated inspection strategies for both liner and tramp 8 

ships, i.e. a self-coordinated port strategy and a fully-coordinated central agent 9 

strategy. Extensive numerical experiments indicate that on average the self-10 

coordinated port strategy performs 2.48% better than the greedy strategy, and the 11 

fully-coordinated strategy outperforms the greedy and self-coordinated port 12 

strategies by 5.02% and 2.48%, respectively. The superiority of the two coordinated 13 

strategies is robust to different ratios of liner to tramp ships visiting the ports from 14 

0/100 to 100/0. Therefore, the feasibility and wide applicability of the proposed 15 

coordinated strategies are validated. Specifically, when liner ships outnumber 16 

tramp ships, the fully-coordinated strategy is more suitable; otherwise, both the 17 

self-coordinated port strategy and the fully-coordinated strategy can be used.  18 
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1. Introduction 24 

The shipping industry is the backbone of international trade and globalization. Although 25 

maritime transport is relatively safe, losses can be great when accidents occur (Luo and Shin, 26 

2019). For the period between 2011 and 2017, the European Maritime Safety Agency (EMSA) 27 

reported 20,616 maritime casualties and incidents causing 6,812 injured persons and 683 28 

fatalities (EMSA, 2018). Meanwhile, the shipping industry produces a heavy environmental 29 

footprint due to greenhouse gas emissions and pollutants. To improve maritime safety and 30 

reduce the negative environmental effects of shipping, numerous international maritime 31 

regulations and conventions are implemented. For example, the International Convention for 32 

the Safety of Life at Sea (SOLAS), proposed in 1974, is the principal regulation governing 33 

maritime safety. The International Convention for the Prevention of Pollution from Ships 34 

(MARPOL), which came into force in 1983, aims to minimize marine pollution. 35 

Ships that fail to follow the various international maritime regulations and conventions are 36 

called substandard ships (Xu et al., 2007a, 2007b; Gan et al., 2010). Although the flag state of 37 

a ship is the first line of defense against substandard shipping (Luo et al., 2013; Fan et al., 2014), 38 

it is believed that some flag states cannot perform their duties well (Li and Zheng, 2008; Wang 39 

et al., 2019). Under this condition, port state control (PSC) is implemented around the world 40 

(Li et al., 2009; Xiao et al., 2020). PSC refers to the inspection of foreign ships conducted by 41 

the port states to verify their condition and ensure compliance with major international maritime 42 

conventions. PSC is regarded as the second line of defense against substandard shipping, and 43 

its contribution to the IMO’s “safer shipping and cleaner oceans” goal is widely recognized by 44 

governments, industry, and academia (Li and Zheng, 2008).  45 

To allow information exchange and avoid redundant inspections, Memorandums of 46 

Understanding (MoUs) on PSC are signed by neighboring countries and regions. Policy and 47 

standards of ship selection and inspection are uniform within an MoU. Some countries and 48 

regions, such as the US, establish individual PSC policies and standards without an MoU. 49 
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During an inspection, a condition found to be non-compliant with the requirements of a relevant 50 

convention is referred to as a deficiency. A ship can be detained by the port state if major 51 

deficiencies are found onboard (IMO 2017). In this context, the number of deficiencies of a 52 

ship can be viewed as an indicator of ship risk during a PSC inspection. When the port 53 

inspection resources, e.g. the number of available PSC officers (PSCOs) or the working hours 54 

assigned for PSC inspections, are fixed, inspection efficiency is considered to be improved if 55 

more ship deficiencies can be identified (Wang et al., 2019).  56 

On a daily basis, ports apply a greedy ship selection strategy to select higher risk ships for 57 

inspection among all visiting ships on a given day. This strategy completely ignores the ships’ 58 

staying time at the current port, their visits to other ports, and inspection resources at the ports 59 

over the following days. Nevertheless, ships are required to report their estimated time of arrival 60 

to the ports, sometimes several days in advance. For example, the port of Hong Kong requires 61 

all vessels to report their arrival and seek permission from the Director of the Marine 62 

Department. The report should be sent no less than 24 hours prior to entering Hong Kong waters 63 

(Hong Kong Marine Department, 2020). Furthermore, the number of available PSCOs at a port 64 

and the assigned working time for a PSC inspection are predictable over a period and can be 65 

treated as known parameters. As a ship may spend more than one day in a port and can be 66 

inspected on any of these days, port inspection decisions could potentially apply during a longer 67 

planning horizon (e.g. 7 or 10 days) by considering the visiting information and available 68 

inspection resources at the ports. 69 

In countries with multiple ports, such as China, the US, India, and Australia, PSC is usually 70 

managed by a hierarchy of authorities. In this situation, regional agents are responsible for 71 

conducting PSC inspections and a central agent is in charge of the ports in all regions. For 72 

example, China has several regional Maritime Safety Administrations (MSAs), such as Fujian 73 

MSA, Guangdong MSA, Shanghai MSA, and Shenzhen MSA, all subject to the China 74 

Maritime Safety Administration (China MSA, 2020). In the US, the United States Coast Guard 75 
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is the central PSC agent, with nine district offices in coastal areas in charge of regional PSC 76 

inspections (United States Coast Guard, 2019). In India, PSC inspections are conducted by 77 

several Mercantile Marine Departments at the ports, supervised by the Directorate General of 78 

Shipping (Directorate General of Shipping, 2020). Similarly, the Australian Maritime Safety 79 

Authority is responsible for PSC inspections at all Australian ports (Australian Maritime Safety 80 

Authority, 2020). Given that foreign liner ships may call at several ports in a country over a 81 

given period, a central agent could apply a fully coordinated strategy to maximize the number 82 

of deficiencies identified across several ports within this period. This strategy should manage 83 

the inspection tasks at all ports by considering ship visiting information and port inspection 84 

resources over the whole planning horizon.  85 

Predictive models of ship deficiency numbers have been developed in the literature based 86 

on generic factors (Cariou et al., 2007; Cariou and Wolff, 2015; Wang et al., 2019) (e.g. ship 87 

age, type, and gross tonnage), dynamic factors (Wang et al., 2019) (e.g. number of ship flag 88 

changes), and historical PSC inspection factors (Wang et al., 2019) (e.g. number of deficiencies 89 

during the last PSC inspection and detentions during previous PSC inspections). The results of 90 

these models could be used to develop optimization-based self-coordinated and fully-91 

coordinated inspection strategies to improve PSC efficiency. However, to the best of our 92 

knowledge, no port or regional coordinated ship inspection strategies considering both ship 93 

conditions and port inspection resources have yet been proposed or implemented based on 94 

mathematical optimization models. There are two main reasons for this. First, most officers in 95 

the PSC authorities may lack the relevant mathematical knowledge. Second, even they have 96 

such knowledge, the potential improvement in efficiency brought about by applying such 97 

models to PSC inspection is unclear and remains to be validated.  98 

This study represents a first attempt to develop mathematical optimization models for 99 

coordinated ship inspection strategies to improve PSC inspection efficiency at several ports by 100 

maximizing the total number of deficiencies detected. The feasibility of the proposed strategies 101 
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is verified by numerical experiments. Specifically, strategy 1 is the greedy strategy currently 102 

used in ports. The ports make their own inspection decisions each day to maximize the total 103 

number of deficiencies detected on that day. In strategy 2, a port applies a self-coordinated 104 

inspection strategy based on optimization models to make inspection decisions for the 105 

remaining days in the planning horizon. Both ship visiting information and port resources over 106 

the following days are considered in the strategy. The goal is to maximize the total number of 107 

deficiencies identified at the port for the whole planning horizon. In strategy 3, a central agent 108 

applies a fully-coordinated strategy based on optimization models to maximize the total number 109 

of deficiencies identified by all ports for the whole planning horizon.  110 

The contribution of this study is as follows. From a theoretical point of view, mathematical 111 

optimization models are proposed and validated to improve PSC inspection efficiency by 112 

coordinating the inspection resources of several ports over a planning horizon. From a practical 113 

point of view, the problems solved in this study are important for maritime policy and port 114 

management. Extensive numerical experiments are used to validate the feasibility of the 115 

proposed coordinated strategies and their superiority over the current greedy inspection strategy. 116 

We therefore believe that the proposed strategies and models may improve the PSC 117 

management of port states and central agents by better allocating limited inspection resources 118 

to identify as much substandard shipping as possible.  119 

 120 

2. Literature review 121 

A comprehensive literature review by Yan and Wang (2019) classified the large body of 122 

literature on PSC inspection into three main categories: improving inspection efficiency, the 123 

influence of PSC, and general comments on the management of PSC MoUs. As only the first 124 

category is relevant to this study, recent research on improving the efficiency of PSC inspection 125 

is reviewed in this section.  126 

Much of the literature on improving PSC inspection efficiency has proposed models for 127 
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high-risk ship selection. Yang et al. (2018a) developed Bayesian networks to predict the 128 

detention probabilities of bulk carriers in seven major European countries. The key risk factors 129 

influencing PSC inspections included deficiency number, inspection type, recognized 130 

organization, and vessel age. Based on the Bayesian networks, Yang et al. (2018b) proposed a 131 

risk-based game model to derive the optimal inspection rate at port states to improve efficiency. 132 

Yan et al. (2020b) developed a random forest-based prediction model of ship detention 133 

probability. The prediction model considered the imbalanced distribution of ships with and 134 

without detention at the port of Hong Kong. Wang et al. (2019) developed a Bayesian network 135 

model to predict the ship deficiency number to target high-risk foreign ships. Numerical 136 

experiments showed that the proposed model could identify 130% more deficiencies on average 137 

compared with the currently implemented ship selection scheme. By combining past incident 138 

and detention information, Heij and Knapp (2019) developed five vessel classification models 139 

to effectively target high-risk vessels for inspection.  140 

Some researchers have proposed association rule mining methods to improve onboard 141 

inspection efficiency. The relationships between the deficiencies of detained ships and external 142 

factors, and the relationships between the deficiencies were identified by association rule 143 

mining techniques (Tsou, 2019). Chung et al. (2020) analyzed the association rules between 144 

deficiencies detected during inspection and ship characteristics (e.g. ship type, flag, and 145 

classification society). Yan et al. (2020c) proposed two onboard inspection schemes describing 146 

detailed inspection sequences for inspector reference. The inspection sequences were based on 147 

the probable occurrence of the deficiency items and the association rule among them mined by  148 

Apriori algorithm. In addition, they proposed and validated PSCO assignment models that 149 

consider different categories of ship deficiencies and PSCO expertise (Yan et al., 2020a).  150 

Although the literature on improving PSC inspection efficiency is abundant, the proposed 151 

measures mainly focus on improving ship selection and onboard inspection efficiency. No 152 

strategies are based on mathematical optimization models to coordinate inspections at several 153 
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ports over a given period. This study aims to bridge this gap by proposing two coordinated 154 

inspection strategies considering the predicted deficiency number of visiting ships and port 155 

inspection resources.  156 

 157 

3. Materials and methods  158 

3.1 Problem description  159 

We consider a set of ports P   where PSC inspection can be conducted and a planning 160 

horizon with length T  . We set one day as a time unit, denoted by t  , 1,...,t T=  . During a 161 

planning horizon, the set of ships, including liner and tramp ships, that will call at least at one 162 

port in P   is denoted by S  . On day t  , 1,...,t T=  , the set of ships calling at port p P   is 163 

denoted by t

pS . As ships are of different types and sizes, we include the required inspection 164 

period (in hours) for each ship, denoted by ,s s S  . A ship can only call at one port or sail at 165 

sea in one time unit. The deficiency number of a ship s S  is denoted by 
sd . The deficiency 166 

number of all ships can be predicted using machine learning models based on the ship’s generic, 167 

dynamic, and historical inspection factors. We assume that there is a machine learning model 168 

that can accurately predict the deficiency number for all ships, and we can use the predicted 169 

deficiency number in the optimization models. To avoid delaying the fast turnover of maritime 170 

logistics systems, we require that a ship only be inspected once during a planning horizon, but 171 

this can take place at any port of call. As inspection resources are limited, at most t

pm  hours of 172 

inspection can be conducted at port p P  on day t , 1,...,t T= .  173 

The objective of the port states is to identify as many deficiencies as possible within the 174 

maximum daily working (inspection) hours, as the total number of deficiencies identified can 175 

be viewed as the benefit of the PSC inspection. We introduce the binary decision variable t

spx , 176 

which equals 1 if ship s S  is inspected at port p P  on day t , 1,...,t T= , and 0 otherwise. 177 

We also introduce several auxiliary decision variables. The set of inspected ships at port p  on 178 

day t   is denoted by ˆ t

pS  , ˆ { | 1, }t t t

p sp pS s x s S= =   , p P  , 1,...,t T=  . Based on the inspection 179 
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decision, the total number of identified deficiencies at port p  in period t  is denoted by t

pD , 180 

t
p

t t

p s sp

s S

D d x


=  , p P , 1,...,t T= . The set of ships that are inspected by all ports in P  on day t  181 

is denoted by tI  , { | 1, , }t t t
sp pI s x s S p P= =    , 1,...,t T=  . The notation is summarized as 182 

follows. 183 

Sets 

P  The set of ports  

S  The set of ships that visit at least one port in P  within planning horizon T  

t

pS  The set of liner ships that call at port p  in time unit t  

Indices  

t  The index for time units in planning horizon T  

p  The index for ports in P  

s  The index for ships in S  

Parameters 

T  The length of a planning horizon 

sd  The predicted number of deficiencies of liner ship s  

s   The required inspection period of ship s  

t

pm  The maximum available inspection hours at port p  in time unit t  

Decision variables 

t

spx  Binary, set to 1 if ship s  is inspected at port p  in time unit t  and 0, otherwise  

ˆ t

pS  The set of inspected ships at port p  in time unit t   

t

pD  The total number of deficiencies identified at port p  in time unit t   

tI  The set of inspected ships among all ports in P  in time unit t   

1D  The total number of deficiencies identified by strategy 1 

2D  The total number of deficiencies identified by strategy 2 

3D  The total number of deficiencies identified by strategy 3 

3.2 Models of the inspection strategies  184 

We designate the inspection strategy currently used in ports as strategy 1, and further 185 

propose two inspection strategies, strategies 2 and 3, to maximize inspection efficiency. In 186 

strategy 1, on each day t , 1,...,t T= , port p  makes its individual inspection decision for day 187 

t  by applying a greedy strategy to maximize the total number of deficiencies identified on that 188 

day. In strategy 2, on each day t , 1,...,t T= , port p  adopts a self-coordinated strategy to make 189 

the inspection decisions for the current day t  and the following days  in the planning horizon. 190 
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The aim is to maximize the total number of deficiencies identified over the period , 1,...,t t T+ . 191 

However, only the decisions for day t  are implemented. The decisions for day ˆ 1,...,t t T= +  192 

will be updated on day t̂  and then the updated decision will be implemented. In strategy 3, on 193 

each day t , 1,...,t T= , fully-coordinated inspection decisions for all ports in P  regarding all 194 

ships in S  are generated by a centralized authority. The aim is to maximize the deficiencies 195 

identified for all ports in days , 1,...,t t T+  . However, only the decisions for day t   will be 196 

executed as the visits of tramp ships may not be confirmed for days , 1,...,t t T+ ; thus strategy 3 197 

requires daily updating. The three strategies are summarized below.  198 



10 
 

 Strategy 1 Strategy 2 Strategy 3 

Who makes 

the decisions? 

Each port p , 

p P  

Each port p , p P  A central agent that coordinates 

all ports in P  

When are the 

decisions 

made? 

Every day t , 

1,...,t T=  

Every day t , 1,...,t T=  Every day t , 1,...,t T=  

What ship 

information is 

required to 

make the 

decision? 

Ships that call at 

port p  on day t  

have not been 

inspected by any 

port in P  on any 

day 1,..., 1t −  

Ships that call at port p  

on days , 1,...,t t T+  and 

have not been inspected 

by any port in P  on any 

day 1,..., 1t −  

Ships that call at any port in P  

on days , 1,...,t t T+  and have 

not been inspected by any port in 

P  on any day 1,..., 1t −  

What 

decisions are 

made? 

The set of ships to 

inspect at port p  

on day t   

The sets of ships to 

inspect at port p  on 

days , 1,...,t t T+  

The sets of ships to inspect at all 

ports in P  on days , 1,...,t t T+  

What 

decisions are 

implemented? 

The set of ships to 

inspect at port p  

on day t  

The set of ships to 

inspect at port p  on day 

t  (the decisions for day 

ˆ 1,...,t t T= +  will be 

updated on day t̂  and 

then implemented) 

The sets of ships to inspect at all 

ports in P  on day t  (the 

decisions for day 1,...,t t T= +  

will be updated on day t  and 

then implemented) 

How to solve? CPLEX CPLEX CPLEX 

3.2.1 Strategy 1: greedy strategy  199 

In strategy 1, each port p  applies a greedy strategy on day t , i.e. among all visiting ships 200 

in t

pS , 1,...,t T= , p P , a port will always select the set of ships that have not been inspected 201 

and have the largest total number of deficiencies for inspection within the maximum working 202 

hours. The main steps of strategy 1 are as follows.  203 

Strategy 1: Greedy strategy 

Input: The set of visiting ships at each port on each day t

pS , 1,...,t T= , p P ; the maximum 

working hours assigned for inspection at each port on each day t

pm , 1,...,t T= , p P ; the 

predicted deficiency number sd   for ship s S  ; the required inspection time s   for ship 

s S . 

Output: All inspection decisions ˆ t

pS  , 1,...,t T=  , p P  ; the total number of deficiencies 

identified in all ports 1D . 

Initialize 1 0D = , ˆ t

pS = , 1,...,t T= , p P . 
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for 1,...,t T=  

Initialize tI = . 

for p P  

Step 1: if 1t = : 

Set t t

p pS S= . 

else:  

Update the set of ships that have not been inspected by any port on days 

1,..., 1t −  by setting '

' 1,..., 1

t t t

p p

t t

S S I
= −

= − . 

end if 

Step 2: Make inspection decision at port p   for day t t=   by solving optimization 

model M1: 

[M1] 

 max
t
p

t

s sp

s S

d x


         (1) 

s.t. 

 ,
t
p

t t

s sp p

s S

x m t t


  =         (2) 

     {0,1}, ,t t

sp px s S t t   =                (3) 

Step 3: The optimal solution generated by M1 is denoted by *t

spx  . Denote the 

inspection decision for port p  on day t t=  by *ˆ { | 1, , }t t t

p sp pS s x s S t t= =  = . 

Step 4: Update ˆt t t

pI I S=  . 

Step 5: Inspect all ships in ˆ t

pS  and record the total number of deficiencies identified 

t

pD . 

Step 6: Update 1 1

t

pD D D= + . 

end for 

end for 

Return 
1D  and ˆ t

pS , 1,...,t T= , p P . 

 204 

3.2.2 Strategy 2: Self-coordinated port strategy 205 

Strategy 2 makes inspection decisions for each port p P  independently by coordinating 206 

the inspection of all ships that call at the port on the current and following days. On day t , 207 

port p  will make inspection decisions for the remaining days in the planning horizon (i.e. days 208 

ˆ ,...,t t T= ) by deciding which of all uninspected ships are to be inspected each day. However, 209 

the ships selected for ˆ 1,...,t t T= +   by port p   may be inspected by other ports before they 210 
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reach port p . In addition, the tramp ships that may call at port p  on days ˆ 1,...,t t T= +  are 211 

unknown on day t̂ t= . Therefore, only the inspection decision for day t  will be carried out 212 

and the inspection information will be updated and uploaded to the public website. The 213 

inspection decisions will be made on each day for each port based on the updated inspection 214 

information. The main steps for strategy 2 are presented as follows. 215 

Strategy 2: port self-coordinated strategy 

Input: The set of visiting ships at each port on each day t

pS , 1,...,t T= , p P ; the maximum 

working hours assigned for inspection at each port on each day t

pm , 1,...,t T= , p P ; the 

predicted deficiency number 
sd   for ship s S  ; the required inspection time 

s   for ship 

s S . 

Output: All inspection decisions ˆ t

pS  , 1,...,t T=  , p P  ; the total number of deficiencies 

identified in all ports 
2D . 

Initialize 
2 0D = , ˆ t

pS = , 1,...,t T= , p P . 

for 1,...,t T=  

Initialize tI = . 

for p P  

Step 1: if 1t = : 

Set t t

p pS S= . 

else:  

Update the set of ships that have not been inspected by any port on days 

1,..., 1t −  by setting '

' 1,..., 1

t t t

p p

t t

S S I
= −

= − . 

end if 

Step 2: Make inspection decisions at port p   for day ˆ ,...,t t T=   by solving 

optimization model M2: 

[M2] 

 
ˆ

ˆ

ˆ

max
t
p

T
t

s sp

t t s S

d x
= 

         (4) 

s.t. 

 
ˆ ˆ

ˆ

1,
T

t t

sp p

t t

x s S
=

           (5) 
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ˆ

ˆ ˆ ˆ, ,...,
t
p

t t

s sp p

s S

x m t t T


  =         (6) 

 
ˆ ˆ ˆ{0,1}, , ,...,t t

sp px s S t t T   =       (7) 

Step 3: The optimal solution generated by M2 is denoted by 
ˆ *t

spx  . Denote the 

inspection decision for port p  on day t̂ t=  by ˆ ˆ*ˆ ˆ{ | 1, , }t t t

p sp pS s x s S t t= =  = . 

Step 4: Update ˆt t t

pI I S=  . 

Step 5: Inspect all ships in ˆ t

pS  and record the total number of deficiencies identified 

t

pD . 

Step 6: Update 
2 2

t

pD D D= + . 

end for 

Update tI I I=  . 

end for 

Return 
2D  and ˆ t

pS , 1,...,t T= , p P . 

3.2.3 Strategy 3: fully-coordinated strategy 216 

We consider a central agent in charge of all ports in P  and responsible for coordinating 217 

ship inspections at each port p P  on each day 1,...,t T=  to maximize the total number of 218 

deficiencies identified over the whole planning horizon. As the visiting information on arriving 219 

tramp ships keeps being updated during the planning horizon, the central agent needs to make 220 

the inspection decisions for all ports on each day. The main steps for strategy 3 are presented 221 

as follows. 222 

Strategy 3: fully-coordinated strategy 

Input: The set of visiting ships at each port on each day t

pS , 1,...,t T= , p P ; the maximum 

working hours assigned for inspection at each port on each day t

pm , 1,...,t T= , p P ; the 

predicted deficiency number sd   for ship s S  ; the required inspection time s   for ship 

s S . 

Output: All inspection decisions ˆ t

pS  , 1,...,t T=  , p P  ; the total number of deficiencies 

identified in all ports 3D . 

Initialize 3 0D = , ˆ t

pS = , 1,...,t T= , p P . 

for 1,...,t T=  

Initialize tI = . 

Step 1: if 1t = : 
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Set t t

p pS S= . 

else:  

Update the set of ships that have not been inspected by any ports on days 

1,..., 1t −  by setting '

' 1,..., 1

t t t

p p

t t

S S I
= −

= − . 

end if 

Step 2: Make inspection decisions for all ports in P   for day ,...,t t T=   by solving 

optimization model M3: 

[M3] 

 max
t
p

T
t

s sp

t t p P s S

d x
=  

                     (8) 

s.t. 

 1,
T

t t

sp p

p P t t

x s S
 =

                        (9) 

 , , ,...,
t
p

t t

s sp p

s S

x m p P t t T


    =           (10) 

 {0,1}, , , ,...,t t

sp px s S p P t t T     =        (11) 

Step 3: The optimal solution generated by M3 is denoted by *t

spx  . Denote the 

inspection decision for port p  on day t t=  by *ˆ { | 1, , }t t t

p sp pS s x s S t t= =  = . 

Step 4: Update ˆt t t

pI I S=  . 

Step 5: Inspect all ships in ˆ t

pS  and record the total number of deficiencies identified 

t

pD . 

Step 6: Update 3 3

t

pD D D= + . 

end for 

Update tI I I=  . 

end for 

Return 
3D  and ˆ t

pS , 1,...,t T= , p P . 

 223 

Intuitively, the differences between strategies 1, 2, and 3 can be explained by the degree of 224 

information usage. Strategy 1 uses only the information on the visiting ships and the inspection 225 

resources for one port for the current day. The optimal inspection decision is for that port on 226 

that day. Strategy 2 takes into account the ship visiting information and port inspection 227 

resources from day t  to day T . The optimal inspection decision is for one port and for the 228 

remaining days in a planning horizon. Strategy 3 uses the ship visiting information and 229 

inspection resource information for all ports during all the remaining days of the planning 230 
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horizon.  231 

4. Numerical experiments 232 

In the numerical experiments, we consider the top eight ports for total container throughput 233 

in 2018 in mainland China (PortEconomics, 2019). From north to south, these are Dalian, 234 

Tianjin, Qingdao, Shanghai, Ningbo-Zhoushan, Xiamen, Shenzhen, and Guangzhou, as shown 235 

in Figure 1. The distance between each pair of ports is obtained from Netpas Distance1 software 236 

and shown in Table 1. We choose a 10-day planning horizon, i.e. 10T = , with a one-day time 237 

unit. Given that the cruising speed of a liner ship is usually 15–25 knots, the sailing duration 238 

between two ports (rounded up to integers) is presented in Table 1. If the sailing time has more 239 

than one value, the sailing duration is randomly selected. 240 

Insert Figure 1 here 241 

Insert Table 1 here 242 

During a planning horizon, we assume that 50 foreign liner ships and 50 foreign tramp 243 

ships will visit at least one of the eight ports. For each liner ship, the set of ports of call and 244 

staying time at each port are randomly generated. The information is known at the beginning 245 

of the planning horizon by the ports and the central agent. We assume that a liner ship can visit 246 

one to three ports during a planning horizon, with 30% of the 50 ships visiting either one or 247 

three ports, and 40% visiting two ports. Among the 70% of the liner ships visiting more than 248 

one port, 50% visit their ports of call from north to south and 50% from south to north. A liner 249 

ship can stay at a port for one, two, or three days with a probability of 20%, 40%, and 40%, 250 

respectively. As the routes and schedules of tramp ships are not fixed, their ports of call and 251 

staying time are unknown at the beginning of a planning horizon. Instead, the port of call and 252 

staying time can only be provided on the morning of the arrival day. According to China’s 253 

cabotage laws, we assume that a tramp ship can only visit one port during a planning horizon. 254 

 
1 https://www.netpas.net/ 

https://www.netpas.net/
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A tramp ship may stay at a port for one, two, three, or four days with a probability of 10%, 20%, 255 

30%, and 40%, respectively. As the duration of a PSC inspection can be influenced by ship type 256 

and size, and a typical PSC inspection usually lasts about two hours, we assume that 25%, 50%, 257 

and 25% of the 100 ships require one hour, two hours, and three hours for an inspection, 258 

respectively. Furthermore, the predicted deficiency number of a ship is randomly generated 259 

between 0 and 15. 260 

4.1 Comparison of the three strategies  261 

For each day at a port, we assume that the total working hours of the PSCO(s) for a PSC 262 

inspection range from 0 to 6 hours. As 200 hours are required to inspect all 100 ships, we 263 

assume that the total working time for the PSC inspection is 80% of the total required ship 264 

inspection time, i.e. 160 hours in a planning horizon. The detailed inspection resources at each 265 

port on each day are shown in Table 2. The total number of deficiencies of all ships is 314. The 266 

inspection decisions generated by the three strategies are shown in Table 3. 267 

Insert Table 2 here 268 

Insert Table 3 here 269 

Table 3 shows that strategy 3 can identify 256 deficiencies of the visiting ships and has the 270 

best performance, followed by strategy 2 that can identify 249 deficiencies. Strategy 1 performs 271 

worst and can identify 245 deficiencies. Strategy 2 outperforms strategy 1 by 1.63%, while 272 

strategy 3 outperforms strategies 1 and 2 by 4.49% and 2.81%, respectively. Table 3 shows that 273 

given the same port inspection resources and ship visiting information, the distribution of the 274 

number of deficiencies identified on each day is different for the three strategies. Nearly 45% 275 

of the deficiencies are identified in the first three days in the planning horizon by strategies 1 276 

and 2 (106 and 112, respectively). Meanwhile, no more than 15% and 22% of the deficiencies 277 

are identified in the last three days (36 and 54). In contrast, about one third of the deficiencies 278 

are identified in the first three days and the last three days of the planning horizon by strategy 279 

3 (78 and 79 deficiencies, respectively). As it is required that each ship can only be inspected 280 
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once, we can see that the identified deficiencies are most evenly distributed over the planning 281 

horizon by strategy 3, followed by strategy 2.  282 

The reason for the difference between strategies 1 and 3 is that, unlike strategy 3 which 283 

considers the whole situation, strategy 1 only considers visiting ships on the current day. Thus, 284 

for liner ships, strategy 1 ignores their berthing time at the current port and their visits to other 285 

ports in the following days. For tramp ships, it ignores their berthing time at the current port in 286 

the following days. Consequently, it always chooses the set of ships with the highest total 287 

number of deficiencies among all uninspected ships currently in port. The reason for the 288 

difference between strategies 2 and 3 is that strategy 2 considers the berthing/visiting of liner 289 

ships and the berthing of tramp ships in the following days at all ports in a planning horizon. 290 

However, it ignores the fact that liner ships may visit several ports in a planning horizon where 291 

they can also be inspected.  292 

In summary, strategy 2 outperforms strategy 1 by self-regulating the inspection strategy at 293 

each port in a planning horizon. Strategy 3 significantly outperforms both strategies 1 and 2 by 294 

coordinating the inspection strategies for all ports, taking into account that a ship may stay at 295 

the same port for several days and visit more than one port in a planning horizon. 296 

4.2 Performance of the three inspection strategies 297 

To further compare the performance of the three strategies, we randomly generate 10 298 

instances of visiting ships (50% liner ships and 50% tramp ships) with different ports of call 299 

and staying times based on the rules proposed in section 4. We consider five situations in which 300 

the total inspection hours are 80%, 70%, 60%, 50%, and 40% of the required inspection time. 301 

That is, a total of 160, 140, 120, 100, and 80 working hours respectively are assigned for PSC 302 

inspection at all ports in the planning horizon. The number of detected deficiencies for each 303 

instance in each situation is presented and compared in Table 4. 304 

Insert Table 4 here 305 

Table 4 shows that strategy 3 performs best and strategy 1 worst. On average, strategy 2 306 
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outperforms strategy 1 by 2.48% and strategy 3 outperforms strategies 1 and 2 by 5.02% and 307 

2.48%, respectively. In all 50 instances, strategy 2 identifies fewer deficiencies than strategy 1 308 

or the same number in five instances in total. Strategy 3 never performs worse than strategy 1, 309 

and both perform the same in one instance. Strategy 3 identifies fewer deficiencies than strategy 310 

2 in six instances, and both perform the same in two instances. The variations are mainly caused 311 

by the uncertainty introduced by the 50 tramp ships: although a tramp ship will only visit one 312 

port during a 10-day planning horizon, both the port and staying time can only be known when 313 

the tramp ship arrives at the port. As a result, the generated decisions need to be updated every 314 

day based on the visiting information of the tramp ships and the ship inspection conditions. 315 

These uncertainties adversely affect performance.  316 

4.3 Sensitivity analysis 317 

In the above analysis, we assume that the 100 visiting ships to the eight ports over the 318 

planning horizon consist of 50 liner and 50 tramp ships. In practice, however, the ratio of liner 319 

and tramp ships at different ports can vary greatly. To validate the applicability of the proposed 320 

strategies to a wider range of ports, we analyze the sensitivity of the ratio between visiting liner 321 

and tramp ships. Specifically, we fix the total number of visiting ships at 100 while setting the 322 

number of liner and tramp ships to 0/100, 25/75, 40/60, 60/40, 75/25, and 100/0, respectively. 323 

We also assume that a liner ship can visit one to three ports during a planning horizon and stay 324 

at a port for one to three days. A tramp ship can visit only one port during a planning horizon 325 

and stay at that port for one to four days. The number of ports of call and their berthing times 326 

are randomly generated. A ship deficiency number can range from 0 to 15, and the inspection 327 

period can be one, two, or three hours. The deficiency numbers and inspection periods are also 328 

randomly generated. We set the planning horizon to 10 days and assign a total of 160 working 329 

hours for PSC inspection at the eight ports in one planning horizon, as in sections 4.1 and 4.2. 330 

The performance of the three strategies is shown in Table 5.  331 

Insert Table 5 here 332 
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Table 5 illustrates that strategy 3 performs best and strategy 1 worst in all situations, 333 

regardless of the ratio between liner and tramp ships. As the ratio of liner ships increases, the 334 

superiority of strategy 3 over strategies 1 and 2 increases. Specifically, the inspection efficiency 335 

of strategy 3 over strategy 1 is doubled when the number of visiting liner ships changes from 0 336 

to 100. Strategies 2 and 3 perform almost the same when all visiting ships are tramp ships. With 337 

fewer liner than tramp ships, strategy 3 performs at most 1.5% better than strategy 2. However, 338 

when all visiting ships are liner ships, strategy 3 can identify 7.27% more deficiencies than 339 

strategy 2.  340 

Table 5 also shows that although strategy 2 always outperforms strategy 1, its advantage 341 

fluctuates as the ratio between liner and tramp ships changes. Therefore, we can conclude that 342 

1) under any ratio of liner and tramp ships, the performance of the two proposed coordinated 343 

strategies is always better than the current greedy inspection strategy. Thus, they are suitable 344 

for a wide range of ports; and 2) when there are more liner than tramp ships, strategy 3 is 345 

preferable. Even with more tramp than liner ships, strategy 3 is still the best choice. 346 

Nevertheless, as strategy 2 is much easier to apply because it requires less coordination, and 347 

strategy 3 has only a slight advantage over it, strategy 2 is also suitable in this situation.  348 

 349 

5. Conclusion  350 

PSC inspections contribute to the IMO’s “safer shipping and cleaner ocean” goal by 351 

providing a second line of defense against substandard ships. Currently, port states use a greedy 352 

approach to maximize inspection efficiency for the current day, while ignoring ship berthing 353 

time and future visiting information over a multi-day period. Furthermore, countries with 354 

several ports usually have a central agent in charge of PSC inspections at all ports.  355 

Motivated by the aforementioned facts, two coordinated strategies to schedule port 356 

inspection resources for foreign ship inspection are proposed and validated in this study. More 357 

specifically, strategy 1, used as a benchmark, is the greedy approach currently used in ports to 358 
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maximize the total number of deficiencies identified on the current day. Strategy 2 is a self-359 

coordinated mathematical optimization approach for an individual port. The inspection 360 

decisions are made for all days in a planning horizon but only the decision for the current day 361 

is implemented. Strategy 3 is also based on mathematical optimization. It is proposed for a 362 

central agent to maximize the total number of detected deficiencies at all of its ports over a 363 

planning horizon.  364 

In the numerical experiments, eight main ports in China and 100 visiting ships (50 liner 365 

and 50 tramp ships) are considered with a 10-day planning horizon. The results show that 366 

strategy 3 performs best, followed by strategy 2. On average, strategy 2 outperforms strategy 1 367 

by 2.48%, while strategy 3 outperforms strategies 1 and 2 by 5.02% and 2.48%, respectively. 368 

The performance of the strategies are validated under different ratios of liner and tramp ships 369 

during extensive sensitivity analysis. Based on these results, it is recommended that when liner 370 

ships outnumber tramp ships, strategy 3 should be used; otherwise, both strategies 2 and 3 are 371 

suitable.  372 

This study represents a first attempt to apply mathematical optimization models to improve 373 

PSC inspection efficiency. The results suggest that the performance of the coordinated 374 

inspection strategies is superior to the current greedy strategy at ports, regardless of port 375 

inspection resources and the ratio of liner to tramp ships. The proposed strategies and extensive 376 

numerical experiments offer valuable managerial insights for ports and central PSC 377 

management agents.  378 
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