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Abstract

This paper studies a dynamic optimal reinsurance and dividend-payout problem
for an insurance company in a finite time horizon. The goal of the company is to
maximize the expected cumulative discounted dividend payouts until bankruptcy or
maturity which comes earlier. The company is allowed to buy reinsurance contracts dy-
namically over the whole time horizon to cede its risk exposure with other reinsurance
companies. This is a mixed singular-classical control problem and the corresponding
Hamilton-Jacobi-Bellman equation is a variational inequality with a fully nonlinear
operator and subject to a gradient constraint. We obtain the C2,1 smoothness of the
value function and a comparison principle for its gradient function by the penalty ap-
proximation method so that one can establish an efficient numerical scheme to compute
the value function. We find that the surplus-time space can be divided into three non-
overlapping regions by a risk-magnitude and time-dependent reinsurance barrier and
a time-dependent dividend-payout barrier. The insurance company should be exposed
to a higher risk as its surplus increases; be exposed to the entire risk once its sur-
plus upward crosses the reinsurance barrier; and pay out all its reserves exceeding the
dividend-payout barrier. The estimated localities of these regions are also provided.
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1 Introduction

A fundamental goal of an insurance company (also called insurer or ceding company) is to

improve its solvency and stability. This goal can be reached by choosing a good dividend-

payout and reinsurance strategy, that is, determining how many of the insurance company’s

reserves to be paid out as dividends to its shareholders and the proportion of its risk exposure

to be shared with other reinsurance companies (also called reinsurers or ceded companies).

The first strategy requires a trade-off between the insurance company and its shareholders.

Shareholders would react positively when the dividend payouts increase, however, paying

out dividends would also reduce the future reserves that are essential for the survival of the

company. Due to the solvency capital requirements for large losses in emergency incidents,

such as the “Black Swan” event, the outbreak of COVID-19, the insurance company tends to

cede part of its risk exposure to other reinsurance companies at the expense of reinsurance

premiums. So the second strategy comes in and it requires a trade-off between the insurance

and reinsurance companies. The reinsurance companies promise to cover certain part of

the insurance company’s risk exposure, increasing the insurance company’s survival chance;

meanwhile, the insurance company has to pay reinsurance premiums to the reinsurance

companies, decreasing the survival chance. This paper considers a single model that takes

both the dividend-payout and reinsurance strategies into consideration. Our objective is

to find the optimal strategies for the insurance company so as to maximize its expected

cumulative discounted dividend payouts until its bankruptcy or a given maturity time which

comes earlier.

The optimal dividend-payout problem and reinsurance is well studied in the mathematical

insurance literature; see, e.g., [34, 32, 36]. As the dynamic surplus process must be stochastic

and depend on the insurance company’s strategies, the problem usually boils down to a

stochastic control problem. Two types of objectives for the insurance company are widely

considered: one is to minimize the ruin probability, e.g., [12, 5, 30], and the other is to

maximize dividend payouts until bankruptcy, e.g., [1, 4, 23, 24]. Many existing studies on

this topic show that it is optimal to pay out dividends according to a band strategy; see Azcue

and Muler [2] for a complete exposition on the topic. For instance, Taksar [32] considered

a model in which the surplus of an insurance company follows a controlled diffusion process

and the insurance company pays out dividends in two different cases. In the first case,

the dividend-payout rate is constrained to a bounded interval [0, l]. The optimal dividend-

payout strategy turns out to be an “all or nothing” policy with respect to (w.r.t., for short)

the dividend rate. That is, paying out dividends at the minimum rate 0 if the surplus is

lower than a threshold, and paying out at the maximum rate ` otherwise. In the second
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case, the dividend-payout rate is unbounded. The optimal strategy is to keep the surplus

under some barrier, that is, paying out all reserves exceeding the barrier as dividends, and

doing nothing under the barrier. The optimal reinsurance strategy, which clearly depends

on the surplus level, suggests that the insurance company should be exposed to a higher risk

as its surplus increases. Along this line of research, other factors including, but not limited

to, liability, regime switching, have also been taken into account in model formulation; see

[34, 36].

When study an optimal dividend problem, people often transform it into an optimal

stopping problem where the value function is the derivative of the original problem’s value

function. For instance, De Angelis and Ekstrom [10] linked a finite time optimal dividend

problem to an optimal stopping problem for a diffusion reflected at 0. The spatial and time

regularities of the value function of the optimal stopping problem are established, so that

they can show the value function of the original optimal dividend problem is the unique

classical solution of a suitable Hamilton-Jacobi-Bellman equation. This work was extended

to the partial information case in [9]. Following the ideas developed in [9, 10], Bandini, et

al., [3] introduced the stochastic discounting into the model, leading to a two-dimensional

spatial value function. Ferrari and Schuhmann [13] linked an optimal dividend problem with

capital injections to an optimal stopping problem for a drifted Brownian motion that is

absorbed at the origin. They showed that whenever the optimal stopping rule is triggered

by a time-dependent boundary, the value function of the optimal stopping problem gives the

gradient function (i.e., the derivative function of the value function) of the optimal dividend

problem. The aforementioned paper mainly used probabilistic arguments.

Insurance market has grown furious in recent years. Insurance companies, especially the

global insurance companies, such as AIA Group Ltd., AIG, China Life Insurance Company,

operate diverse businesses and offer insurance products on various term basis, such as prop-

erty and casualty insurance, life insurance, health insurance. In this regard, it is natural

for insurance companies to consider their total risk exposure as a combination of different

types of risks. Mathematically speaking, the total risk exposure may take any, discrete

or continuous, probability distributions. Similarly, but more importantly, the reinsurance

strategies should also be based on different types of risks, resulting in non-classical compli-

cated reinsurance policies. Although the optimal reinsurance problem has been extensively

investigated, most of the existing literature analyzes only for typical reinsurance policies

such as proportional and excess of loss reinsurance; see, e.g., [32, 29, 33, 22, 20, 21, 24].

This paper investigates an optimal reinsurance and dividend-payout problem, which brings

more practical features. We do not restrict ourself to these typical reinsurance policies. We

consider a controlled diffusion surplus process, which is a good approximation of the clas-
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sical Cramér-Lundberg process as well-justified by Grandell [18]. A closest model to this

paper is considered by Guan, Yi and Chen [16], where the risk control model is relatively

simple and the type of reinsurance policy is constrained to the proportional one. It turns out

that the reinsurance scheme is restrictive. Tan, et al., [35] considered a similar infinite time

horizon problem, so the corresponding Hamilton-Jacobi-Bellman (HJB) equation is an ordi-

nary differential equation (ODE), which is much easier to handle than the partial differential

equation (PDE) as in our case.

In our model, both the drift and volatility of the controlled surplus process depend on

the reinsurance policy. The target of the insurance company is to maximize the expected

cumulative discounted dividend payouts until bankruptcy or a given maturity which comes

earlier. The problem is a mixed singular-classical stochastic control problem. The model

has the following features: First, we do not confine the reinsurance contracts to be some

particular ones such as proportional reinsurance or excess of loss reinsurance. The insurance

company can freely choose its reinsurance policy of any type subject to the expected value

premium principle. Second, the reinsurance contracts are chosen dynamically depending

on the surplus level. It turns out that the optimal reinsurance policy is a feedback one

that depends on the surplus level and time. Third, the insurance claims can admit any

probability distribution subject to a tail constraint. Especially for bounded claims, we have

a better understanding of the optimal reinsurance strategy. Finally, we consider a finite time

horizon problem leading to an extremely challenging fully nonlinear HJB equation subject

to a gradient constraint.

The PDE/ODE method (such as the viscosity solution method) is also often adopted

to study singular and classical control problems, especially for finite time horizon problems.

Compared to the probabilistic method, one of the main advantages of this method is that

one can freely transform the value function to another PDE that is easier to study. The

new PDE does not necessarily have a stochastic control background. For instance, [26] made

a standard exponential transformation to get a backward heat equation in a symmetrical

region. But his method cannot guarantee the smoothness of the function, so the author

considered approximated problems. The value functions of the approximated problems are

guaranteed to be smooth so that they can be computed by the principle of smooth fit and

Greens function methodology. Eventually ε-optimal strategies for the original problem are

constructed. The author further studied the behavior of the free boundary in [27] and

extended the model subject to a ruin probability constraint in [28].

We now highlight some mathematical contributions of this paper. Same as many exist-

ing optimal dividend models, the HJB equation of our problem turns out be a variational

inequality problem subject to a gradient constraint. However, since the reinsurance policies
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can be time-dependently chosen, there is a functional optimization problem appearing in the

operator of the HJB equation, which makes the operator a fully nonlinear one. By contrast,

De Angelis and Ekstrom [10] considered a model without such reinsurance policies, so the

operator is linear, and consequently, the gradient function can be naturally linked to an

optimal stopping problem for a diffusion process. In our case, the operator is fully nonlinear

so that we cannot find such an underlying process. This prevents us to link the gradient

function to some optimal stopping problem, so the ideas developed in [9] and [10] cannot be

applied to our problem. To overcome this difficulty, we adopt a pure PDE approach to study

the HJB equation. Inspired by [7, 8, 6], we find out that the gradient function satisfies an

obstacle PDE. The latter is then studied by the penalty approximation method. Different

from [26, 27, 28], we derive a comparison principle and establish necessary properties (such

as C2,1 smoothness and uniqueness of the value function) for the original full nonlinear HJB

equation. As a byproduct, one can compute the value function as well as the optimal strate-

gies for our problem by establishing an efficient numerical scheme to solve the approximation

PDE. Our approach requires a lot of deep results in PDE and functional analysis, such as the

Leray-Schauder fixed point theorem, the Sobolev embedding theorem, the Cα,α
2 estimation,

the Schauder estimation, and the comparison principle for nonlinear PDEs.

Our model provides a lot of economic insights as well. We show that there is a smooth,

time-dependent, dividend-payout barrier that divides the surplus-time space into a no-

dividend-payout region and a dividend-payout region. The insurance company should pay

out all its reserves exceeding the dividend-payout barrier (that is, all the reserves in the

dividend-payout region). Furthermore, we find a risk-magnitude and time-dependent smooth

reinsurance barrier that divides the no-dividend-payout region into a reinsurance-covered re-

gion and a reinsurance-uncovered region, in an increasing order of the surplus. Therefore

the reinsurance is an excess of loss reinsurance. Economically speaking, when faced with the

same magnitude of risk, the insurance companies with higher surpluses tend not to cede their

risks to other reinsurance companies. In other words, as the magnitude of the risk is getting

smaller, the reinsurance-covered region is shrinking (i.e., less insurance companies with differ-

ent surpluses tend to cover the risks of this magnitude); whereas, the reinsurance-uncovered

region is expanding. The former region disappears when the magnitude of the risk is smaller

than an explicitly given constant (namely, all the insurance companies choose to cover their

entire risks by themselves); by contrast, the latter never vanishes. The insurance company

should be exposed to a higher risk as its surplus increases in the reinsurance-covered region;

be exposed to the entire risk once its surplus falls into the reinsurance-uncovered region. We

also provide accurate estimations for the localities of these regions. Particularly, when the

claims have a bounded distribution, we show that there is a uniform non-action region, in
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which the insurance company should be exposed to the entire risk and not pay out dividends.

The reminder of the paper is organized as follows. In Section 2, we formulate an optimal

reinsurance and dividend-payout problem. Section 3 poses the corresponding HJB equation

and gives a verification theorem. The properties such as the existence and uniqueness of a

classical solution to the HJB problem are also provided. Section 4 is devoted to the study

of the reinsurance, reinsurance-uncovered region and dividend-payout region. The proofs for

our main results are given in the appendices.

2 Model Formulation

This paper investigates an optimal reinsurance and dividend-payout problem for an insurance

company. We first need to model the cash reserves of the company, let us start from the

classical Cramér-Lundberg model.

In the classical Cramér-Lundberg model, there are two components that affect the cash

reserve (also called surplus) dynamics. The first one is the receiving payments of premiums

from the policyholders at a constant rate p continuously. The other is the outgoing payments

for insurance claims. If we denote the total number of claims received until time t by Nt and

the size of the ith claim by Zi, then Rt, the company’s surplus at time t, is given by

Rt = R0 + pt−
Nt∑
i=1

Zi, (2.1)

where {Nt}t>0 is a Poisson process with intensity 1, all the claims Zi, i = 1, 2, · · · , are

independent and identically distributed random variables, and they are independent of the

Poisson process.

Sometimes, the insurance company needs to protect itself by sharing its risk exposure

with other reinsurance companies. The insurance company buys reinsurance contracts from

reinsurance companies dynamically. Given a reinsurance contract I(·), the insurance com-

pany can get a compensate I(z) when the real loss magnitude is z. This function I(·) is

known as the ceded loss function, and H(z) ≡ z−I(z) is known as the retained loss function.

The insurance company’s reinsurance policy (or strategy) consists of purchasing a series of

reinsurance contracts {It}t>0 over time, where It denotes the reinsurance contract purchased

at time t. Note that the reinsurance contracts are dynamically purchased by the insurance

company, so they are usually time and surplus dependent.

The presence of reinsurance contracts modifies the risk exposure of the insurance com-

pany. It distorts the incoming and outgoing cash flow of the insurance company’s surplus

process (2.1). As well-justified by Grandell [18], the surplus process Rt can be approximated
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by the following diffusion process

dRt =
(
p− p(It)− ERt− [Z1 − It(Z1)]

)
dt+

√
ERt− [(Z1 − It(Z1))2] dWt, (2.2)

where {Wt}t>0 is a standard Brownian motion independent of the random claims Zi, ERt− [ · ] =

E[ · | Rt−], and p(It) denotes the reinsurance premium corresponding to the reinsurance con-

tract It. Remark that the contract It may depend on the surplus level up to t, so it is

stochastic.

In this paper, we consider the expected value premium principles for both insurance and

reinsurance contracts which are given by

p = (1 + δ)E[Z1], p(It) = (1 + ρ)ERt− [It(Z1)],

where δ, ρ > 0 are called safety loadings of the insurance premium and reinsurance premium.

This is fundamental to the insurance pricing as it stipulates that the insurer/reinsurer has

a positive safety loading on the underwritten risk. In this case, we can rewrite (2.2) as

dRt =
(
− γ + ρERt− [Z1 − It(Z1)]

)
dt+

√
ERt− [(Z1 − It(Z1))2] dWt,

with γ := (ρ − δ)E[Z1]. We impose that ρ > δ, i.e., γ > 0, to ensure that the reinsurance

is non-cheap. If reinsurance is too cheap, that is ρ < δ, then the insurance company can

simply eliminate its risk exposure by ceding all the incoming claims to reinsurance companies,

reaping the profit of δ − ρ > 0 with a zero ruin probability. Thanks to time rescaling, we

will assume ρ = 1 throughout this paper.

In this paper, we assume that the insurance company will pay out part of its surplus as

dividends to its shareholders. Let Lt be the cumulative dividend extracted from the surplus

process until t, which is a non-decreasing càdlàg (i.e., right continuous with left limits)

process. It is chosen by the insurance company according to its surplus level. Then the new

surplus process {Rs}s>t− beginning at time t− with an initial value x satisfies the following

dynamicsdRs =
(
− γ + ERs− [Hs(Z1)]

)
ds+

√
ERs− [H2

s (Z1)] dWs − dLs, s > t,

Rt− = x > 0,

(2.3)

thanks to H(z) ≡ z − I(z). This is also a càdlàg process, which jumps at the same time as

L does with the same jump size in the opposite direction, namely Rs −Rs− = −(Ls − Ls−)

for any s > t. Define the ruin time of the insurance company as

θ := inf
{
s > t | Rs 6 0

}
. (2.4)
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The insurance company is not allowed to pay out dividends more than the existing surplus,

so Ls − Ls− 6 Rs− at any time s. As a consequence, Rs = Rs− − (Ls − Ls−) > 0. In

particular, it implies that the surplus of the insurance company is zero at the ruin time,

namely Rθ = 0.

The objective of our optimal reinsurance and dividend-payout model is to find a re-

tained loss policy Ht = {Hs}s>t− (or equivalently, a reinsurance policy It = {Is}s>t−) and a

dividend-payout policy Lt = {Ls}s>t− to maximize the expectation of discounted cumulative

dividend payouts until bankruptcy or a given maturity T > 0 which arrives earlier for the

insurance company. The value function of our problem is defined as

V (x, t) = sup
Ht,Lt

E

[∫ T∧θ

t−
e−c(s−t)dLs

∣∣∣∣ Rt− = x

]
, x > 0, 0 6 t 6 T, (2.5)

where c is a positive discount factor and the retained loss function (or equivalently, the ceded

function) is subject to the constraint

0 6 Hs(Z) 6 Z, s ∈ [t−, T ].

This is a mixed singular-classical control problem.

In the rest of this paper, we will investigate the value function and provide the optimal

reinsurance and dividend-payout strategies for problem (2.5).

3 The HJB equation and Verification Theorem

We now study problem (2.5) by the dynamic programming principle. To this end, we intro-

duce the following variational inequality
min

{
vt − Lv, vx − 1

}
= 0, in QT := (0,+∞)× (0, T ],

v(0, t) = 0, 0 < t 6 T,

v(x, 0) = x, x > 0,

(3.1)

where

Lv := sup
H∈H

(
vxx
2

∫ ∞
0

H(z)2dF (z) + vx

∫ ∞
0

H(z)dF (z)

)
− γvx − cv, (3.2)

H :=
{
H : [0,∞)→ [0,∞) | 0 6 H(z) 6 z

}
,

and F (·) denotes the common cumulative distribution function of the claims with F (0−) = 0

(due to the non-negativity of the claims). The variational inequality (3.1) is indeed the (time-

reversed) HJB equation for our problem (2.5).
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The classical approach to linking an HJB equation to a control problem like (2.5) is

using the theory of viscosity solution (see [38]). But this theory requires one to show the

uniqueness of the viscosity solution, which is an extremely challenging task for us. Moreover,

this approach usually cannot provide a classical solution to the HJB equation. In this paper,

we adopt a different approach. We first show that (3.1) has a classical solution by pure PDE

methods, and then show that the solution is indeed the value function of problem (2.5) by

a verification argument. The first result is shown by the penalty approximation method in

PDE, so one can compute the value function as well as the optimal strategies for problem

(2.5) by solving the approximation PDE numerically. This is an advantage of our method

compared to other probabilistic arguments or the viscosity solution approach.

Throughout this paper, we put the following technical assumption:

z3(1− F (z)) is bounded on [0,∞). (3.3)

Although this assumption may be relaxed slightly, we will not pursuit this direction in this

paper. Please note that this assumption can be satisfied even if F (·) is discontinuous.

Theorem 3.1 The variational inequality (3.1) has a unique solution v ∈ C2,1
(
QT\{(0, 0)}

)⋂
C
(
QT
)

that satisfies

vx > 1, (3.4)

vt > 0, (3.5)

vxx 6 0, (3.6)

vxxx > 0 in the weak sense, (3.7)

vxt > 0, (3.8)

λvx + vxx > 0, (3.9)

where λ is the unique positive root of the function f defined by (A.12).

The proof is based on pure PDE methods, very delicate and long, so we leave it in Appendix

A.

Theorem 3.2 (Verification Theorem) Suppose v ∈ C2,1
(
QT \ {(0, 0)}

)⋂
C
(
QT
)

is in-

creasing and concave w.r.t. x and satisfies (3.1). Then the value function of the optimal

reinsurance and dividend-payout problem (2.5) is given by

V (x, t) = v(x, T − t). (3.10)
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Moreover, the optimal ceded loss policy I∗ is given by a feedback control of the loss and

surplus:

I∗s (z,R∗s−) = max

{
0, z +

vx(R
∗
s−, T − s)

vxx(R∗s−, T − s)

}
,

and the optimal dividend-payout strategy L∗ for problem (2.5) is such that{
L∗s − L∗s− = R∗s− − d∗(T − s), if R∗s− > d∗(T − s);
L∗s − L∗s− = 0, if R∗s− 6 d∗(T − s),

where the payout free boundary d∗ is given by

d∗(s) = inf{x > 0 | vx(x, s) = 1}, s ∈ [0, T ],

with the convention inf ∅ =∞.

The proof is fairly standard and given in Appendix B.

From now on, we fix v as in Theorem 3.1. By Verification Theorem 3.2, it completely

characterizes the value function of the optimal reinsurance and dividend-payout problem

(2.5). In the next section, we study the properties of the optimal reinsurance and dividend-

payout strategies.

4 Optimal Strategies

In the previous section, we have resolved the existence and uniqueness issues for the time-

reversed HJB equation (3.1). In the following part, we investigate the optimal strategies for

problem (2.5). We will use the notation in Appendix A including the constants µ1 and µ2,

functions A(·), B(·), and the operator T that are defined by (A.1), (A.5), (A.6), and (A.11),

respectively.

If γ > µ1, then it is easy to check that v ≡ x is the solution to problem (3.1). In this case

one can see that the drift of the surplus process in (2.3) is either negative if E[It(Z1)] > 0 or

0 otherwise, which means the insurance company has no incentive to survive. Consequently,

the optimal policy is to pay out all reserves as dividends and let the company be bankrupt

immediately. This gives the optimal value x for problem (2.5). The problem is trivial in this

case. Hence, in the rest part of this section, we assume 0 < γ < µ1.

We first study the optimal dividend-payout strategy and then the optimal reinsurance

strategy in the subsequent two sections.
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4.1 Optimal dividend-payout strategy

To investigate the optimal dividend-payout strategy, we divide the whole domain QT :=

(0,+∞)× [0, T ) into a dividend-payout region

D =
{

(x, t) ∈ QT
∣∣∣ vx(x, τ) = 1

}
and a no-dividend-payout region

ND =
{

(x, t) ∈ QT
∣∣∣ vx(x, τ) > 1

}
.

Here and hereafter we use the notation τ := T − t.
Since vx > 1 and vxx 6 0, we can express them as

D = {x > d(τ)}, ND = {x < d(τ)},

where d(·) is the dividend-payout boundary, defined by

d(τ) = inf{x > 0 | vx(x, τ) = 1}, τ > 0.

In the following part, we come to show the boundary d(·) is uniformly upper bounded

by an explicit given constant. To this end, we will construct a function û(x) such that

û(x) > vx(x, t), then clearly inf{x > 0 | û(x) = 1} provides a uniformly upper bound for

d(·).
First, we show that vx(0, t) is uniformly upper bounded. For this, we construct a function

v̂(x) :=

{
C1(1− e−

x
γ ), 0 < x 6 x1,

C2 + x− x1, x > x1

where

C1 =
µ1

c
+ γ > 0, C2 =

µ1

c
> 0, x1 = γ ln

C1

γ
> 0.

It is easy to check v̂(x1−) = v̂(x1+) and v̂x(x1−) = v̂x(x1+), so v̂ ∈ C1(0,∞). It is easily

seen that v̂x is continuous and decreasing, so v̂ is a concave function. When 0 < x 6 x1,

v̂t − Lv̂ = −
∫ ∞

0

sup
06h6z

(1

2
h2v̂xx + hv̂x

)
dF (z) + γv̂x + cv̂

> − sup
06h<∞

(1

2
h2v̂xx + hv̂x

)
+ γv̂x =

v̂2
x

2v̂xx
+ γv̂x =

C1

2
e−

x
γ > 0,

and when x > x1,

v̂t − Lv̂ = −µ1 + γ + c(C2 + x− x1) = γ + c(x− x1) > 0.

Therefore, v̂ ∈ W 2,1
p (QT ) is a super solution to problem (3.1). Since v̂(0) = v(0, t) = 0, we

obtain that vx(0, t) 6 v̂x(0) = C1/γ by the comparison principle.
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Remark 4.1 We would like to provide a probabilistic representation for v̂. Consider

sup
{hs}s>t−,{Ls}s>t−

E

[∫ T∧θ

t−
dLs

∣∣∣∣ Rt− = x

]
, (4.1)

for the following new surplusdRs =
(
− γ

2
+ hs

)
ds+ hs dWs − dLs, s > t,

Rt− = x > 0.

(4.2)

By establishing an analog of Verification Theorem 3.2, one can show that v̂ is the value

function for this problem.

For any reinsurance and dividend-payout strategies {Hs}s>t− and {Ls}s>t− for the sur-

plus (2.3), we take the same dividend-payout strategy {Ls}s>t− and choose {hs}s>t− =

{
√

ERs− [H2
s (Z1)]}s>t− for the new surplus (4.2), then one can easily show the new surplus

is always higher than the surplus (2.3) by virtue of

−γ
2

+ hs = −γ
2

+
√

ERs− [H2
s (Z1)] > −γ + ERs− [Hs(Z1)].

Meanwhile, the new cost functional (4.1) is clearly no less than the one in (2.5), so we

conclude v̂ > V .

Now, we are ready to construct an upper bound function for vx(x, t). To this end, let

û(x) :=

{
C3(x2 − x)2 + 1, 0 < x 6 x2,

1, x > x2,

where

C3 =
c2

cµ2 + γ2
> 0, x2 :=

√
C2

C3γ
=

√
1

γc3
(µ1 + cγ) (cµ2 + γ2) > 0.

Clearly, û is convex and û ∈ W 2,1
p (QT ). If 0 < x < x2, then ûx 6 0. By (A.7) and using the

elementary inequality x2 − 2xy > −y2, we obtain

ût − T û > −
1

2
µ2ûxx + γûx + cû

= C3

(
−µ2 − 2γ(x2 − x) + c(x2 − x)2

)
+ c

> C3

(
−µ2 − γ2/c

)
+ c = 0.

If x > x2, then ût − T û = c > 0. As û(0) = C1/γ > vx(0, t) = u(0, t), by the comparison

principle, we conclude û > u. Therefore, x2 = inf{x > 0 | û(x) = 1} is a constant upper

bound for d(·).
Summarizing the above results, the dividend-payout boundary is completely character-

ized in the following theorem.
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Theorem 4.2 The dividend-payout boundary d(τ) is continuous and increasing in τ , and

satisfies

d(0+) = 0 < d(τ) 6 d(∞) 6 x2 =

√
1

γc3
(µ1 + cγ) (cµ2 + γ2), (4.3)

where d(0+) = lim
τ→0+

d(τ) and d(∞) := lim
τ→+∞

d(τ). Furthermore, if Z1 is a bounded random

variable, then d(τ) ∈ C∞(0, T ).

See Figure 1 for an illustration of the dividend-payout barrier d(τ) as well as dividend-payout

region D and no-dividend-payout region ND.

-

6τ

xd(∞) x2

ND D

r r

x = d(τ)

Figure 1: The dividend-payout barrier x = d(τ) divides the surplus-time space into a
dividend-payout region D and a no-dividend-payout region ND.

Proof: The monotone property of d(·) is due to (3.8). We now prove the continuity.

Suppose there exists a τ0 such that d(τ0−) < d(τ0+). Then for any x ∈ (d(τ0−), d(τ0+)), by

the continuity of vx and the monotonicity of vx and d(·),

vx(x, τ0) = lim
ε→0+

vx(x, τ0 − ε) 6 lim
ε→0+

vx(d(τ0 − ε), τ0 − ε) = 1.

Thanks to vx > 1, we have vx(x, τ0) = 1. Hence, for any x ∈ (d(τ0−), d(τ0+)), vxx(x, τ0) = 0.

Consequently, we infer from (3.1) that vt(x, τ0) = −µ1 + γ − cv(x, τ0) and thus vtx(x, τ0) =

−cvx(x, τ0) = −c < 0, which contradicts (3.8). So we conclude d(·) is continuous. Similarly,

we can prove lim
τ→0+

d(τ) = 0.

Now we prove d(·) > 0. Suppose not, then, by monotonicity, there exists a τ0 > 0 such

that d(τ) = 0 for all 0 < τ < τ0. This implies vx ≡ 1 or v ≡ x for 0 < τ < τ0. Denote

v̂(x, τ) = v(x, τ − τ0), then both v̂ and v satisfy (3.1). By the uniqueness, we get v̂ ≡ v,

namely v ≡ x for 0 < τ < 2τ0. By the mathematical induction, we have v ≡ x for all τ > 0,

which leads to

vt − Lv = −µ1 + γ + cx.

13



This contradicts (3.1) for any sufficiently small x as γ < µ1.

It is only left to show the smoothness of d(·) when Z1 is bounded. Suppose F (ẑ) = 1 for

some ẑ > 0. Then by (A.5) and (A.6),

A(y) =
1

2
µ2, B(y) = µ1, y−1 > ẑ. (4.4)

For any τ0 > 0, as vx and vxx are continuous, we have vx = 1 and vxx = 0 at (d(τ0), τ0). This

implies vx + ẑvxx > 0 in some neighborhood B of (d(τ0), τ0). By (A.16) and (4.4), we see

u = vx satisfies

min
{
ut −

µ2

2
uxx − (µ1 − γ)ux + cu, u− 1

}
= 0, (x, τ) ∈ B.

Because the coefficients are constants in the above equation, using the method in [15], we

can prove d(τ) ∈ C∞ at some neighborhood of τ0. Since τ0 is arbitrarily chosen, we conclude

that d(t) ∈ C∞(0, T ). �

In view of the original optimal reinsurance and dividend-payout problem (2.5), by Theo-

rem 3.2, the optimal dividend-payout policy L∗s is the local time of the corresponding reserve

process R∗s at the level d(T − s), namely{
L∗s − L∗s− = R∗s− − d(T − s), if R∗s− > d(T − s);
dL∗s = 0, if R∗s− 6 d(T − s).

(4.5)

Under this policy, the reserve process R∗s is always continuous and no more than d(T − s),
except for the initial time t. When the insurance surplus R∗t− is above the threshold d(T − t),
the insurance company should pay out the reserves of an amount R∗t−−d(T − t) as dividends

to its shareholders at the initial time t; otherwise, pay out nothing. Indeed the accumulated

dividends increase with the local time at the boundary.

4.2 Optimal reinsurance strategy

In this section we study the optimal reinsurance strategy. Recall that we have confirmed

V (x, t) = v(x, τ) by Theorem 3.2.

For the insurance company, if its current state is (x, t), by (3.4), (3.6) and (A.3), the

corresponding optimal retained function is

z 7→ Ĥ(z, x, τ) :=

−
vx
vxx

(x, τ), if − vxx
vx

(x, τ) > 1
z
;

z, otherwise,

(4.6)

and the optimal reinsurance function is

z 7→ Î(z, x, τ) := z − Ĥ(z, x, τ).

14



The reinsurance contract depends on both the current insurance surplus x and time t. In

this section, we will discuss the behavior of them.

For each z > 0, depending on whether Î is zero, we divide the surplus-time space into a

reinsurance-covered region

Rz =
{

(x, t) ∈ QT
∣∣∣ Î(z, x, τ) > 0

}
and a reinsurance-uncovered region

NRz =
{

(x, t) ∈ QT
∣∣∣ Î(z, x, τ) = 0

}
.

By (4.6), they can also expressed as

Rz =

{
(x, t) ∈ QT

∣∣∣ − vxx
vx

(x, τ) >
1

z

}
, NRz =

{
(x, t) ∈ QT

∣∣∣ − vxx
vx

(x, τ) 6
1

z

}
.

Our above discussion shows that D ⊆ NRz and Rz ⊆ ND.

Lemma 4.3 We have

vx, vt ∈ C2,1
(
ND

)
. (4.7)

Furthermore, vxx < 0 if (x, t) ∈ ND. Consequently, Î(z, x, τ) = max {z + vx/vxx(x, τ), 0}
for z > 0 and (x, t) ∈ ND.

Proof: The proof is given in Appendix C. �

This results implies that Î is an increasing function w.r.t z, which makes a perfect financial

meaning that the insurance company would get more compensations when a larger claim

arises. Another consequence is that

Î(z, x, τ) < z, (x, t) ∈ ND.

The optimal reserve process R∗ is always continuous and no more than the dividend-payout

barrier, except for the initial time, so we always have Î(z,R∗t−, τ) < z. In any case, the

insurance company should not cede all the risks; it has to bear some risks by itself. This is

due to our assumption that the reinsurance is non-cheap, γ > 0.

Lemma 4.4 We have (
− vx
vxx

) ∣∣∣∣∣
x=0

=
1

λ
, (4.8)

− vx
vxx

(x, τ) >
1

λ
if (x, t) ∈ ND, (4.9)

∂x

(
− vx
vxx

)
(x, τ) > 2c if (x, t) ∈ ND, (4.10)

where λ is the unique positive root of the function f defined by (A.12).
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Proof: The proof is given in Appendix D. �

From (4.9) we see that, if (x, t) ∈ ND, then

Î(z, x, τ) = max {z + vx/vxx(x, τ), 0} 6 max {z − 1/λ, 0} . (4.11)

So Î(z, x, τ) = 0 when z 6 1
λ
; the insurance company should bear all the incoming claims

below 1
λ

by itself. In other words, any arising claim below 1
λ

need not be shared with

reinsurance companies.

By (4.9) and (4.10), we have −vxx
vx

is a positive strictly decreasing function in x in ND.

Because Rz ⊆ ND,

Rz =
{

(x, t) ∈ QT
∣∣∣ x < K(z, τ)

}
, NRz =

{
(x, t) ∈ QT

∣∣∣ x > K(z, τ)
}
,

where K(z, τ) is the reinsurance boundary, given by

K(z, τ) := sup

{
x > 0

∣∣∣∣ − vxx
vx

(x, τ) >
1

z

}
.

Because Rz ⊆ ND, we see K(z, τ) 6 d(τ). Moreover, when z 6 1/λ, by (4.11) we have

Rz = ∅, so K(z, τ) = 0.

For each z > 0, define the overlapping of the reinsurance-uncovered region and non-

dividend region as non-action region

NAz = NRz

⋂
ND =

{
(x, t) ∈ QT

∣∣∣ K(ẑ, τ) 6 x < d(τ)
}
.

In this region, the insurance company should not cede risk of magnitude z or pay out

dividends. We now show this region is always non-empty. This is equivalent to showing

K(z, τ) 6= d(τ) as K(z, τ) 6 d(τ). Note that d(τ) = inf{x > 0 | vx(x, τ) = 1} and v ∈
C2,1

(
QT \{(0, 0)}

)⋂
C
(
QT
)
, so (vx+zvxx)

∣∣
(d(τ),τ)

= 1. But evidently (vx+zvxx)
∣∣
(K(z,τ),τ)

= 0,

so K(z, τ) 6= d(τ).

Combining the above results, we conclude that, for each magnitude of risk z > 0,

the reinsurance and dividend-payout barriers divide the surplus-time space into three non-

overlapping regions: a (possible empty) reinsurance-covered region, a non-action region and

a dividend-payout region, in an increasing order of the surplus. This is illustrated in Figure

2.
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Figure 2: The surplus-time space is divided into three non-overlapping regions: Rz, NAz and
D by the reinsurance barrier x = K(z, τ) and dividend-payout barrier x = d(τ). Moreover,
ND = Rz

⋃
NAz and the τ -axis can be regarded as x = K(1/λ, τ) since R1/λ = ∅.

Economically speaking, if the surplus level of the insurance company is relatively low (x <

K(z, τ)), then the company must cede risk of magnitude z to other reinsurance companies

to avoid bankruptcy. If the surplus level is medium (K(z, τ) 6 x 6 d(τ)), then the insurance

company can cover the claim of magnitude z by itself, but has not enough reserves to pay

out as dividends, so no actions will be taken. If the surplus level is very high (x > d(τ)),

the company should pay out its extra reserves as dividends to its shareholders. It is never

optimal for the insurance company to buy reinsurance contracts and pay out reserves as

dividends, simultaneously.

By Lemma 4.4, K(z, τ) is increasing and the reinsurance-covered region Rz is getting

larger as the risk magnitude z increases. Economically speaking, if a risk magnitude is

covered by reinsurance contracts, then any higher magnitude of risk should be covered as

well.

Define a uniform non-action region

NA0 =
⋂
z>0

NAz.

In this region the insurance company should not cede any risk or pay out dividends.

If ẑ = ess sup Z1 <∞, then K(z, τ) 6 K(ẑ, τ). Therefore,⋃
z>0

Rz =
{

(x, t) ∈ QT
∣∣∣ x < K(ẑ, τ)

}
= Rẑ.

As K(ẑ, τ) < d(τ), we see that

NA0 =
{

(x, t) ∈ QT
∣∣∣ K(ẑ, τ) 6 x < d(τ)

}
= NAẑ 6= ∅.

This is illustrated in Figure 3.
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Rẑ NA0 D

r

x = d(τ)

Figure 3: As z is increasing, the region Rz is extending to Rẑ and the curve x = K(z, τ) is
moving right up to x = K(ẑ, τ). The region NA0 = NAẑ is non-empty when Z1 is bounded.

Economically speaking, when the potential claims are bounded in magnitude (6 ẑ) and

the surplus level is relatively high (x > K(ẑ, τ)), then the insurance company can bear the

claims by itself.

Next, by (4.10), we have

∂xÎ(z, x, τ) 6 −2c in Rz.

This means the insurance company should significantly reduce its purchase of reinsurance

contracts as the surplus increases. If its surplus level is very high x > z
2c
− 1

2cλ
, then we

claim that there is no need to buy reinsurance which covers the risk of magnitude z, that

is, (x, t) /∈ Rz. In fact, if z 6 1/λ, then there is nothing to prove since Rz = ∅. Otherwise,

suppose (x, t) ∈ Rz. As (x, t) ∈ ND, by (4.10), (4.11) and the mean value theorem, we have

Î(z, x, τ) 6 Î(z, 0+, τ)− 2cx 6 z − 1/λ− 2cx 6 0,

which contradicts (x, t) ∈ Rz. Therefore, we conclude that

Rz ⊆
{

(x, t) ∈ QT
∣∣∣∣ x < z

2c
− 1

2cλ

}
,

and consequently,

K(z, τ) 6
z

2c
− 1

2cλ
.

This is illustrated in Figure 4.
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Figure 4: The line x = z
2c
− 1

2cλ
gives a universal upper bound for the reinsurance barrier

K(z, τ) and the reinsurance-covered region Rz when z > 1/λ.

Economically speaking, the insurance company only shares sufficiently high magnitude

of risk with other reinsurance companies.

In the rest part we assume the claims follows a discrete probability distribution given by

P(Z1 = zj) = pj > 0, j = 1, 2, ..., N,

with

0 < z1 < z2 < · · · < zi0−1 6 1/λ < zi0 < · · · < zN and
N∑
j=1

pj = 1.

Define the jth reinsurance boundary as

Kj(τ) := inf

{
x > 0

∣∣∣∣ − vxx
vx

(x, τ) 6
1

zj

}
, j = 1, 2, ..., N.

And define the jth reinsurance-covered region as

Rj
z =

{
(x, t) ∈ QT

∣∣∣ Î(zj, x, τ) > 0
}
.

Thanks to Lemma 4.4, the properties of these reinsurance boundaries are given in the fol-

lowing result.

Theorem 4.5 The reinsurance boundaries Kj(·), j = 1, 2, · · · , N , are all continuously dif-
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ferentiable in time. Moreover,

Kj(τ) = 0 for each j = 1, 2, ..., i0 − 1; (4.12)

0 < Ki0(τ) <
zi0 − 1

λ

2c
; (4.13)

0 < Kj(τ)−Kj−1(τ) <
zj − zj−1

2c
for each j = i0 + 1, ..., N ; (4.14)

lim
τ→0+

Kj(τ) = 0. (4.15)

Proof: By (4.8), (4.10) and 0 < z1 < z2 < ... < zi0−1 6 1/λ, we have (4.12). Note that(
− vx
vxx

)
(Ki0(t), t) = zi0 >

1
λ
. Since − vx

vxx
is continuous in ND, we obtain Ki0(t) > 0. Thanks

to the mean-value theorem and (4.10),

z1 −
1

λ
=

(
− vx
vxx

)
(K1(t), t)−

(
− vx
vxx

)
(0, t) > 2cK1(t).

It gives (4.13). The proof of (4.14) is similar. The fact that K1(t) < ... < KN(t) < d(t) and

lim
t→0+

d(t) = 0 gives (4.15).

Now, we prove Kj(t) ∈ C1((0, T ]) for j > i0. By Lemma 4.3 and vxx < 0 in ND, we

see that − vx
vxx
∈ C1,1(ND). Because ∂x

(
− vx
vxx

)
> 2c in ND, the implicit function theorem

implies that Kj(t) ∈ C1((0, T ]). �

Figure 5 illustrates this result.

-

6τ

xd(∞)

Ki0(τ)Ki0+1(τ) KN (τ)

· · ·Ri0
z Ri0+1

z NA0 D

r

d(τ)

Figure 5: The reinsurance boundaries Kj and reinsurance-covered regions Rj
z are increasing

in j. The uniform non-action region NA0 is NAzN .

Economically speaking, the insurance company should only cede the claims zj, zj+1, · · · zN ,

if the surplus level is in Rj
z.
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Appendix A Proof of Theorem 3.1.

Thanks to (3.3), z(1− F (z)) is dominated by z−2 near infinity, hence, by Fubini’s theorem

and the dominated convergence theorem,∫ ∞
0

z2dF (z) = 2

∫ ∞
0

z(1− F (z))dz <∞.

Therefore, the first and second moments of the claims are finite, that is,

µ1 :=

∫ ∞
0

zdF (z) <∞, µ2 :=

∫ ∞
0

z2dF (z) <∞. (A.1)

To solve (3.1), we first solve the optimization problem in the operator L, namely

sup
H∈H

(vxx
2

∫ ∞
0

H(z)2dF (z) + vx

∫ ∞
0

H(z)dF (z)
)
,

or

sup
H∈H

∫ ∞
0

(1

2
H(z)2vxx +H(z)vx

)
dF (z),

which is obviously equivalent to∫ ∞
0

sup
06h6z

(1

2
h2vxx + hvx

)
dF (z). (A.2)

Define

h∗(z, y) := argmax
06h6z

(
−1

2
h2y + h

)
=

min{z, y−1}, if 0 < y <∞;

z, otherwise.

(A.3)

Notice vx > 1 in (3.1), so (A.2) is equal to

vxx

∫ ∞
0

1

2

(
h∗
(
z,−vxx

vx

))2

dF (z) + vx

∫ ∞
0

h∗
(
z,−vxx

vx

)
dF (z). (A.4)

For y > 0, we have∫ ∞
0

1

2
(h∗(z, y))2dF (z) =

∫ 1/y

0

1

2
z2dF (z) +

∫ ∞
1/y

1

2
y−2dF (z)

= −1

2
z2(1− F (z))

∣∣∣1/y
0

+

∫ 1/y

0

z(1− F (z))dz +
1

2
y−2(1− F (y−1))

=

∫ 1/y

0

z(1− F (z))dz,
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and ∫ ∞
0

h∗(z, y)dF (z) =

∫ 1/y

0

zdF (z) +

∫ ∞
1/y

y−1dF (z)

= −z(1− F (z))
∣∣∣1/y
0

+

∫ 1/y

0

(1− F (z))dz + y−1(1− F (y−1))

=

∫ 1/y

0

(1− F (z))dz.

Similarly for y 6 0, we have∫ ∞
0

1

2
(h∗(z, y))2dF (z) =

1

2

∫ ∞
0

z2dF (z) =
1

2
µ2,

and ∫ ∞
0

h∗(z, y)dF (z) =

∫ ∞
0

zdF (z) = µ1.

Hence, (A.4) is equal to

A

(
−vxx
vx

)
vxx +B

(
−vxx
vx

)
vx,

where the two functions A(y) and B(y) are defined by

A(y) =


∫ 1/y

0
z(1− F (z))dz, if 0 < y < +∞;

1
2
µ2 =

∫∞
0
z(1− F (z))dz, if y 6 0,

(A.5)

and

B(y) =


∫ 1/y

0
(1− F (z))dz, if 0 < y < +∞;

µ1 =
∫∞

0
(1− F (z))dz, if y 6 0.

(A.6)

Thanks to (3.3), it is not hard to show that both A(y) and B(y) are decreasing Lipschitz

continuous functions, and satisfy

0 < A(y) 6
1

2
min{y−2, µ2}, 0 < B(y) 6 min{y−1, µ1}, for y > 0; (A.7)

y3A′(y) = y2B′(y) = F (y−1)− 1 6 0, for a.e. y > 0; (A.8)

A′(y) = B′(y) = 0, for y < 0. (A.9)

We now obtain

Lv = A

(
−vxx
vx

)
vxx +B

(
−vxx
vx

)
vx − γvx − cv. (A.10)
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By this, we see problem (3.1) is a variational inequality problem for a fully nonlinear elliptic

operator subject to a gradient constraint. A usual approach to study this kind of problem is

to transform it into a variational inequality problem for its gradient. Then the gradient con-

straint becomes value constraint and the new variational inequality becomes a well-studied

obstacle problem; see [7, 8, 16, 19]. In this paper, we adopt the same approach.

Below we want to find (or more precisely, conjecture) a variational inequality for the

gradient of v. Notice

∂x

[
A

(
−vxx
vx

)
vxx +B

(
−vxx
vx

)
vx

]
= A

(
−vxx
vx

)
vxxx +B

(
−vxx
vx

)
vxx +

[
A′
(
−vxx
vx

)
vxx +B′

(
−vxx
vx

)
vx

]
∂x

(
−vxx
vx

)
= A

(
−vxx
vx

)
vxxx +B

(
−vxx
vx

)
vxx,

where we used (A.8) and (A.9) to get the last equation. By this, one can easily deduce that

∂x(Lv) = T vx,

where the operator T is defined as

T u := A
(
−ux
u

)
uxx +B

(
−ux
u

)
ux − γux − cu. (A.11)

Next, we deduce a boundary condition for vx. Define a continuous function

f(y) := −yA(y) +B(y)− γ. (A.12)

By (A.7)-(A.9),

f ′(y) = −A(y) < 0. (A.13)

Hence f is strictly decreasing. Also

f(0+) = µ1 − γ > 0, f(+∞) = −γ < 0,

so f has a unique root, which is positive, denote by λ throughout this paper. See Figure 6

for an illustration of the function f .
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Figure 6: The function f is continuous and strictly deceasing, and admits a unique positive
root λ.

On the other hand, owing to the boundary condition v(0, t) = 0 and that vt − Lv = 0

near {x = 0}, we should have(
A

(
−vxx
vx

)
vxx +B

(
−vxx
vx

)
vx − γvx

) ∣∣∣∣∣
x=0

= 0. (A.14)

Dividing by vx, it yields f
(
−vxx

vx

) ∣∣∣
x=0

= 0. So −vxx
vx

∣∣
x=0

= λ by the strictly monotonicity of

f . This leads to a boundary condition(
λvx + vxx

)∣∣∣
x=0

= 0. (A.15)

Combining the above results, we suggest the following variational inequality for u = vx
min{ut − T u, u− 1} = 0 in QT ,(
λu+ ux

)
(0, t) = 0, 0 < t 6 T,

u(x, 0) = 1, x > 0.

(A.16)

This is an obstacle problem for a quasilinear elliptic operator with mixed boundary condi-

tions. We study it by the penalty approximation method; see [8, 16, 37]. We first prove

the existence of a solution to problem (A.16), and then construct a solution to problem

(3.1) from it. In the last part of this section, we show the uniqueness, which is indeed not

necessary as the verification theorem also guarantees the uniqueness.

For each sufficiently small ε > 0, let βε(·) be a penalty function satisfying

βε(·) ∈ C2(−∞,+∞), βε(0) = −c, βε(x) = 0 for x > ε,

βε(·) 6 0, β′ε(·) > 0, β′′ε (·) 6 0, lim
ε→0+

βε(x) =

0, if x > 0,

−∞, if x < 0.
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See Figure 7 for an illustration of the penalty function βε.

-

6

x

y

ε

−c r
r

Figure 7: The penalty function βε.

Because the left boundary condition and initial condition in (A.16) are not consistent at

(0, 0), in order to show the existence of a solution, we choose fε ∈ C2([0,+∞)) to satisfy

fε(t) =


λ, t = 0,

decreasing, 0 6 t < ε,

0, t > ε,

and consider the following penalty approximation problem,

uεt − T uε + βε(u
ε − 1) = 0 in QL,T := (0, L)× (0, T ],(

λuε + uεx
)
(0, t) = fε(t), 0 < t 6 T,

uε(L, t) = 1, 0 < t 6 T,

uε(x, 0) = 1, 0 < x < L.

(A.17)

where L is any fixed large positive constant and T is defined by (A.11).

The following result is useful for us to handle the above problem.

Lemma A.1 Let A and B be defined by (A.5) and (A.6), respectively, and define

F (y, z) := A
(
−y
z

)
, G(y, z) := B

(
−y
z

)
.

Then F and G are uniformly Lipschitz continuous in (−∞,∞)× [1,∞).

Proof: As A(y) is a Lipschitz continuous function, F is continuous in (−∞,∞) × [1,∞).

For any z > 1,

∂yF (y, z) = A′
(
−y
z

) −1

z
=


(
− z
y

)3 (
1− F

(
− z
y

))
1
z
, if y < 0;

0, if y > 0,
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and

∂zF (y, z) = A′
(
−y
z

) y

z2
=


(
− z
y

)2 (
1− F

(
− z
y

))
1
z
, if y < 0;

0, if y > 0.

Thanks to (3.3) and z > 1, we see ∂yF and ∂zF are bounded, so F is uniformly Lipschitz

continuous in (−∞,∞)× [1,∞). In the same way, we can show G is also uniformly Lipschitz

continuous in (−∞,∞)× [1,∞). �

We first establish a comparison principle for problem (A.17).

Lemma A.2 Suppose u1, u2 ∈ C2,1
(
QL,T

)⋂
C
(
QL,T

)
satisfy

∂tu1 − T u1 + βε(u1 − 1) 6 ∂tu2 − T u2 + βε(u2 − 1) in QL,T ,(
λu1 + ∂xu1

)
(0, t) >

(
λu2 + ∂xu2

)
(0, t), 0 < t 6 T,

u1(L, t) 6 u2(L, t), 0 < t 6 T,

u1(x, 0) 6 u2(x, 0), 0 < x < L.

If u1, u2 > 1, then

u1(x, t) 6 u2(x, t), (x, t) ∈ QL,T . (A.18)

Proof: Let

w1(x, t) = ex/λu1(x, t), w2(x, t) = ex/λu2(x, t).

Then

∂tw1 − ex/λT (e−x/λw1) + ex/λβε(e
−x/λw1 − 1) 6 ∂tw2 − ex/λT (e−x/λw2) + ex/λβε(e

−x/λw2 − 1),

∂xw1(0, t) > ∂xw2(0, t), 0 < t 6 T,

w1(L, t) 6 w2(L, t), 0 < t 6 T,

w1(x, 0) 6 w2(x, 0), 0 < x < L.

By Lemma A.1, the assumption that u1, u2 > 1 is sufficient to guarantee that F (·, ·) and

G(·, ·) in T (e−x/λwi) are Lipschitz continuous on wi, wix, i = 1, 2. By the comparison

principle for nonlinear equations (see [25] Theorem 14.3), we obtain w1 6 w2 in QL,T . �

Lemma A.3 There exists a solution uε ∈ C2,1
(
QL,T

)
to Problem (A.17). Moreover, for

sufficiently small ε > 0, uε satisfies

1 6 uε 6
KeΛt

x+ 1/λ
, in QL,T , (A.19)
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where

K = L+ 1/λ+ 1, Λ =
µ2

γ2
+ γλ > 0.

Proof: Using the Leray-Schauder fixed point theorem (see [11] Theorem 4 on page 541) and

the embedding theorem (see [25] Theorem 6.8), we get the existence of a C1+α, 1+α
2

(
QL,T

)
(0 <

α < 1) solution uε to problem (A.17). By the Schauder estimation (see [25] Theorem 4.23),

we also have uε ∈ C2+α,1+α
2

(
QL,T

)
.

It is left to establish (A.19). Let φ ≡ 1, then

φt − A
(
−uεx
uε

)
φxx −B

(
−uεx
uε

)
φx + γφx + cφ+ βε(φ− 1) = 0,(

λφ+ φx
)
(0, t) = λ > fε(t), 0 < t 6 T,

φ(L, t) = 1, 0 < t 6 T,

φ(x, 0) = 1, 0 < x < L,

Regarding A
(
−uεx
uε

)
and B

(
−uεx
uε

)
as known coefficients, we can establish a comparison

principle for the above PDE (which is similar to Lemma A.2) which will lead to uε > φ = 1.

Let Φ = KeΛt/(x + 1/λ). Then, in QL,T , Φ > 1 + ε for sufficiently small ε > 0, so we

have βε(Φ− 1) = 0. Notice that

Φt = ΛΦ, Φx = − Φ

x+ 1/λ
< 0, Φxx =

2Φ

(x+ 1/λ)2
> 0,

so, by (A.7),

Φt − A
(
− Φ

Φx

)
Φxx −B

(
− Φ

Φx

)
Φx + γΦx + cΦ + βε(Φ− 1)

> Φt −
1

2
µ2Φxx + γΦx + cΦ =

(
Λ− µ2

(x+ 1/λ)2
− γ

x+ 1/λ
+ c

)
Φ > 0.

Together with boundary conditions

(
λΦ + Φx

)
(0, t) = 0 6 fε(t), 0 < t 6 T,

Φ(L, t) > 1, 0 < t 6 T,

Φ(x, 0) > 1, 0 < x 6 L,

applying Lemma A.2, we obtain uε 6 Φ. �

Before passing to the limit, we show some properties of uε.
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Lemma A.4 We have

uεt > 0, (A.20)

uεx 6 0, (A.21)

Proof: We first prove (A.20). For any 0 < ∆ < T , let ũε(x, t) = uε(x, t+ ∆), then both ũε

and uε satisfy the equation in (A.17) in the domain (0, L)× (0, T −∆]. Moreover,

(
λũε + ũεx

)
(0, t) = fε(t+ ∆t) 6 fε(t) =

(
λuε + uεx

)
(0, t) in (0, L)× (0, T −∆],

ũε(L, t) = uε(L, t) = 1, 0 < t 6 T −∆,

ũε(x, 0) = uε(x,∆) > 1 = uε(x, 0), 0 < x < L.

Applying Lemma A.2 we have ũε > uε in (0, L)× (0, T −∆], which implies (A.20).

To prove (A.21), we differentiate the equation in (A.17) w.r.t. x and obtain

∂tu
ε
x − ∂x

[
A

(
−u

ε
x

uε

)
∂xu

ε
x

]
−B

(
−u

ε
x

uε

)
∂xu

ε
x

−B′
(
−u

ε
x

uε

)
∂x

(
−u

ε
x

uε

)
uεx + cuεx + β′ε(u

ε − 1)uεx = 0. (A.22)

Note that

∂x

(
−u

ε
x

uε

)
= −u

ε
xx

uε
+

(
−u

ε
x

uε

)2

,

so (A.22) can be written as

∂tu
ε
x − ∂x

[{
A

(
−u

ε
x

uε

)}
∂xu

ε
x

]
−
{
B

(
−u

ε
x

uε

)
+B′

(
−u

ε
x

uε

)
−uεx
uε

}
∂xu

ε
x

+

{
−B′

(
−u

ε
x

uε

)(
−u

ε
x

uε

)2

+ c+ β′ε(u
ε − 1)

}
uεx = 0. (A.23)

It is a linear equation for uεx in divergence form if we regard the terms in {· · · } as known

coefficients. By (A.7)-(A.9),

|A (y)| 6 µ2, |B (y)| 6 µ1, |B′ (y) y| 6 |y−1(1− F (y−1))| 6 µ1,∣∣B′ (y) y2
∣∣ 6 |1− F (y−1)| 6 1, β′ε(u

ε − 1) > 0,

so all the coefficients of (A.23) are bounded, except the last one which is bounded from

below. Moreover, since

uεx(0, t) = (fε(t)− λuε(0, t)),
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together with fε 6 λ 6 λuε, it implies that

uεx(0, t) 6 0.

From uε > 1 and uε(L, t) = 1 we have

uεx(L, t) 6 0.

Moreover,

uεx(x, 0) = 0,

by the maximum principle for weak solution (see [25] Corollary 6.16), we deduce that uεx 6 0.

�

Lemma A.5 We have

λuε + uεx > 0. (A.24)

Proof: If uε(0, t) = 1, since uε > 1 and uεx 6 0, we have uε(x, t) ≡ 1 and uεx(x, t) ≡ 0 for

all x > 0, so (λuε + uεx)(x, t) ≡ λ > 0, and (A.24) follows.

Otherwise uε(0, t) > 1 which leads to

(cuε + βε(u
ε − 1))(0, t) > c+ βε(0) = 0. (A.25)

Consider the equation in (A.17), i.e.

uεt − A
(
−u

ε
x

uε

)
uεxx −B

(
−u

ε
x

uε

)
uεx + γuεx + cuε + βε(u

ε − 1) = 0.

If uεx = 0, then it reaches its global minimum value 0, so uεxx = 0. Together with uεt > 0,

the above equation gives cuε + βε(u
ε − 1) 6 0, which by the definition of βε implies uε = 1.

Therefore, λuε + uεx = λ > 0, and (A.24) follows. Otherwise, we have uεx < 0, dividing both

sides by uεx and using the identity

−u
ε
xx

uεx
=

[
∂x

(
−u

ε

uεx

)
+ 1

](
−uεx
uε

)
,

it follows

uεt
uεx

+ A

(
−u

ε
x

uε

)[
∂x

(
−u

ε

uεx

)
+ 1

](
−uεx
uε

)
−B

(
−u

ε
x

uε

)
+ γ +

cuε + βε(u
ε − 1)

uεx
= 0.

Denote νε = −uε/uεx. Then

A

(
1

νε

)
νεx + 1

νε
−B

(
1

νε

)
+ γ − cuε + βε(u

ε − 1)

uε
νε = −u

ε
t

uεx
> 0
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by Lemma A.4. We get

νεx >
1

A
(

1
νε

) [f ( 1

νε

)
νε +

cuε + βε(u
ε − 1)

uε
(νε)2

]
,

where f(·) is defined in (A.12). Notice that

cuε + βε(u
ε − 1) > c+ βε(0) = 0,

and f(1
z
) > 0 when z > 1/λ, so

νεx > 0 if νε > 1/λ. (A.26)

Moreover, by f(λ) = 0, (A.25) and

νε(0, t) = 1/λ, (A.27)

it yields

νεx(0, t) > 0. (A.28)

Combining with (A.27), (A.28) and (A.26) we get νε > 1/λ, which implies (A.24).

�

By Lemma A.3, Lemma A.4 and Lemma A.5, we see that |uεx| 6 λuε 6 Kλ2eΛT in

QL,T . This provides an upper bound for |uεx|, independent of ε, so uε are uniformly Lipschitz

continuous in x. Moreover, by Lemma A.4 and Lemma A.5 and the monotonicity of A,

A

(
−u

ε
x

uε

)
> A(λ) > 0. (A.29)

This confirms the uniform parabolic condition in (A.17) for the equation of uε (where we

regard A (−uεx/uε) and B (−uεx/uε) as known coefficients in the operator T ).

Lemma A.6 We have

uεxx > 0. (A.30)

Proof: By the equation in (A.17), Lemma A.3, Lemma A.4, f(λ) = 0, and (A.29), we have

A

(
−u

ε
x

uε

)
uεxx = uεt −B

(
−u

ε
x

uε

)
uεx + γuεx + cuε + βε(u

ε − 1)

>

[
−B

(
−u

ε
x

uε

)
+ γ

]
uεx > [−B(λ) + γ]uεx = −λA(λ)uεx > 0.

This gives (A.30). �

30



Now we give some uniform norm estimates for uε. First, we rewrite the equation of uε in

the divergence form. By (A.17), (A.8) and (A.9) we have

uεt − ∂x
(
A

(
−u

ε
x

uε

)
uεx −B

(
−u

ε
x

uε

)
uε
)

+ γuεx + cuε + βε(u
ε − 1) = 0.

Since A(·), B(·) are bounded, applying Cα,α
2 estimate (see [25] Theorem 6.33 for the interior

estimate and Theorem 6.33 for the boundary estimate) we have

|uε|α,QL,T 6 C(|uε|0,QL,T + |βε(·)|Lp(QL,T ) + 1) 6 C.

Rewrite (A.23) as

∂tu
ε
x − ∂x

[
A

(
−u

ε
x

uε

)
∂xu

ε
x

]
−
{
B

(
−u

ε
x

uε

)
+B′

(
−u

ε
x

uε

)
−uεx
uε

}
∂xu

ε
x

+

{
−B′

(
−u

ε
x

uε

)(
−u

ε
x

uε

)2

+ c

}
uεx = −∂x

[
βε(u

ε − 1)

]
.

Applying Cα,α
2 interior (with partial boundary) estimate, we obtain

|uεx|α,Qr/2 6 C(|uεx|0,Qr/4 + |βε(·)|Lp(Qr/4) + 1) 6 C.

where

Qr := QL,T \ {(x, t) | x2 + t2 6 r}.

According to Lemma A.1, A (−uεx/uε) and B (−uεx/uε) are uniform Cα,α
2 in Qr/2. So we can

apply W 2,1
p interior estimate (see [25] Theorem 7.13 for the interior estimate and Theorem

7.17 for the boundary estimate) to (A.17) in QL,T to obtain

|uε|W 2,1
p (Qr) 6 C(|uε|Lp(Qr/2) + |βε(uε − 1)|Lp(Qr/2) + 1) 6 C.

We emphasize that Cs in the above estimates are independent of ε, so there exits u ∈
W 2,1
p, loc(QL,T )

⋂
C(QL,T ) and a subsequence of uε (still denoted by uε) such that

uε −→ u weakly in W 2,1
p (Qr) and uniformly in C(QL,T ).

Then, u is a solution to problem (A.16) in W 2,1
p,loc

(
QT
)⋂

C
(
QT
)
.

Now, set

v(x, t) =

∫ x

0

u(y, t)dy,

we come to prove v is a solution to problem (3.1) inQL,T . The initial and boundary conditions

are clearly satisfied. Owing to v(0, t) = 0 and vt(0, t) = 0, together with the boundary

condition in (A.16) that (λu+ ux)(0, t) = 0, we have (vt − Lv)(0, t) = 0. Therefore,

(vt − Lv)(x, t) = (vt − Lv)(0, t) +

∫ x

0

∂x(vt − Lv)(y, t)dt =

∫ x

0

(ut − T u)(y, t)dt > 0.(A.31)
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On the other hand, if vx(x, t) = u(x, t) > 1, then, by (A.21), u(y, t) > 1 for all y ∈ [0, x],

which implies (ut−T u)(y, t) = 0 for y ∈ [0, x], thus the inequality in (A.31) becomes equality.

Hence v satisfies the variational inequality in problem (3.1) in QL,T .

Moreover, the estimates (3.4)-(3.9) follow from (A.19), (A.21), (A.30), (A.20) and (A.24).

We come to ascertain the order of smoothness of v. Now, we already proved vx = u ∈
W 2,1
p (Qr)

⋂
C
(
QL,T

)
. The Sobolev embedding theorem implies that vxx = ux ∈ C

(
Qr
)
.

Moreover, using the method in [15], we can prove vxt = ut is continuous passing through the

free boundary.

Next, we prove the uniqueness. Suppose v1, v2 are two solutions to (3.1). Set N =

{∂xv1 > ∂xv2}, then
∂tv1 − Lv1 = 0, ∂tv2 − Lv2 > 0, (x, t) ∈ N ,
v1 = v2 = 0, (x, t) ∈ ∂N ∩ {x = 0},
∂xv1 = ∂xv2, (x, t) ∈ ∂N \ ({x = 0} ∪ {t = 0} ∪ {t = T}),
v1 = v2 = x, (x, t) ∈ ∂N ∩ {t = 0}.

Apply the comparison principle for fully nonlinear equation (see [25] Theorem 14.3) we have

v2 > v1 in N , which implies

{∂xv1 > ∂xv2} ⊂ {v2 > v1},

i.e.

C := {v2 < v1} ⊂ {∂xv1 6 ∂xv2}.

If C is nonempty, using the fact that v2 = v1 on the left boundary of C and ∂xv1 6 ∂xv2 in

C, we get v1 6 v2 in C, which is impossible. This completes the proof of the uniqueness.

Let x2 be defined in (4.3) and choose L > x2. Using a similar argument in Section

4.1 leads to vx(x, t) = 1 for x ∈ [x2, L], so we can extend our solution to the unbounded

domain QT by setting v(x, t) = v(L, t) + (x − L) for x > L. Then after extension, v ∈
C2,1(QT \ {(0, 0)})

⋂
C(QT ) is a unique solution to (3.1) in QT . Moreover, the properties

(3.4)-(3.9) remain true in QT .

Furthermore, Lemma A.1 and the equation in {vx > 1} implies vxt = ut ∈ C
(
{vx >

1} \ {(0, 0)}
)
, so vxt ∈ C

(
QT \ {(0, 0)}

)
. Hence we have

v, vx ∈ C
(
QT
)
, vxx, vt, vxt ∈ C

(
QT \ {(0, 0)}

)
.

This completes the proof.
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Appendix B Proof of Theorem 3.2.

Denote V̂ (x, t) = v(x, T − t). We first prove V̂ (x, t) > V (x, t). For any admissible retained

loss policy Ht = {Hs(z)}s>t and a dividend-payout policy Lt = {Ls}s>t, assume Rs is the

solution to (2.3) with the control pair (Ht,Lt), and θ is the ruin time of Rs defined by (2.4).

Then by Itô’s formula,

V̂ (x, t) = E

[
e−c(T∧θ−t)V̂ (RT∧θ, T ∧ θ)

]

+ E

[∫ T∧θ

t

e−c(s−t)

(
− V̂t −

V̂xx
2

∫ ∞
0

Hs(z)2dF (z)

− V̂x
∫ ∞

0

Hs(z)dF (z) + γV̂x + cV̂

)
(Rs−, s)ds

]

+ E

[∫ T∧θ

t

e−c(s−t)V̂x(Rs−, s)dL
c
s

]
− E

∑
t6s6T∧θ

e−c(s−t)(V̂ (Rs, s)− V̂ (Rs−, s)),

where Lcs is the continuous part of Ls. The first two expectations are non-negative since

V̂ > 0 and −V̂t − LV̂ > 0 by (3.1). Meanwhile, since V̂x > 1 and Rs 6 Rs−, we have

E

[∫ T∧θ

t

e−c(s−t)V̂x(Rs−, s)dL
c
s

]
> E

[∫ T∧θ

t

e−c(s−t)dLcs

]
,

and

V̂ (Rs, s)− V̂ (Rs−, s) 6 Rs −Rs− = Ls− − Ls.

Thus

V̂ (x, t) > E

[∫ T∧θ

t

e−c(s−t)dLcs +
∑

t6s6T∧θ

e−c(s−t)(Ls − Ls−)

]
= E

[∫ T∧θ

t−
e−c(s−t)dLs

]
.

Since the policies are arbitrary chosen, it implies V̂ (x, t) > V (x, t).

We now prove the reverse inequality V̂ (x, t) 6 V (x, t). Let d∗ be defined as in the

statement. Then

d∗(s) = inf{x > 0 | V̂x(x, T − s) = 1}, s ∈ [0, T ].

Because V̂ is concave in x by hypothesis, it yields

V̂x(x, s) > 1, if x < d∗(T − s).
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By the equation in (3.1), it follows

−V̂t − LV̂ = 0, if x 6 d∗(T − s), (B.1)

where the C2,1 continuity of V̂ ensures the above equation holds at (d∗(T − s), s). Let I∗

and L∗ be defined as in the statement. Then

H∗s (z,R∗s−) = z − I∗s (z,R∗s−) = h∗

(
z,−

V̂xx(R
∗
s−, s)

V̂x(R∗s−, s)

)
,

where h∗ is defined by (A.3). With the above feedback controls H∗ and L∗, using the property

that R∗s 6 d∗(T − s) for s > t, one can show (2.3) admits a strong solution R∗s. Moreover,

R∗s is continuous for s > t and it is inside the closure of the waiting region all the time.

Denote θ∗ be the corresponding ruin time.

Now we show that the controls defined above are indeed the optimal controls. By Itô’s

formula,

V̂ (x, t) = E

[
e−c(T∧θ

∗−t)V̂ (R∗T∧θ∗ , T ∧ θ∗)

]

+ E

[∫ T∧θ∗

t

e−c(s−t)

(
− V̂t −

V̂xx
2

∫ ∞
0

H∗s (z,R∗s−)2dF (z)

− V̂x
∫ ∞

0

H∗s (z,R∗s−)dF (z) + γV̂x + cV̂

)
(R∗s−, s)ds

]

+ E

[∫ T∧θ∗

t

e−c(s−t)V̂x(R
∗
s−, s)dL

∗c
s

]
− E

[ ∑
t6s6T∧θ∗

e−c(s−t)(V̂ (R∗s, s)− V̂ (R∗s−, s))

]
.

(B.2)

If θ∗ < T , then R∗T∧θ∗ = R∗θ∗ = 0, so V̂ (R∗T∧θ∗ , T ∧ θ∗) = V̂ (0, θ∗) = 0 by the boundary

condition in (3.1). Otherwise V̂ (R∗T∧θ∗ , T ∧ θ∗) = V̂ (R∗T , T ) = 0, again by the boundary

condition in (3.1). Therefore, the first expectation in (B.2) is zero.

By our choice of H∗, we see that at (R∗s−, s)

− V̂t −
V̂xx
2

∫ ∞
0

H∗s (z, R∗s−)2dF (z)− V̂x
∫ ∞

0

H∗s (z,R∗s−)dF (z) + γV̂x + cV̂

= −V̂t − sup
H∈H

(
V̂xx
2

∫ ∞
0

H(z)2dF (z) + V̂x

∫ ∞
0

H(z)dF (z)

)
+ γV̂x + cV̂ = −V̂t − LV̂ .

Because R∗s− 6 d∗(T − s) for s > t and noticing (B.1), we conclude that the second expec-

tation in (B.2) is also zero.
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Now we are left with

V̂ (x, t) = E

[∫ T∧θ∗

t

e−c(s−t)V̂x(R
∗
s−, s)dL

∗c
s

]
− E

[ ∑
t6s6T∧θ∗

e−c(s−t)(V̂ (R∗s, s)− V̂ (R∗s−, s))

]
.

Notice dL∗cs = 0 unless R∗s− = d∗(T − s), so

V̂x(R
∗
s−, s)dL

∗c
s = V̂x(d

∗(T − s), s)dL∗cs = dL∗cs .

Recall that R∗s is continuous for s > t, so

E

[ ∑
t6s6T∧θ∗

e−c(s−t)(V̂ (R∗s, s)− V̂ (R∗s−, s))

]
= E

[
V̂ (R∗t , t)− V̂ (R∗t−, t)

]
.

Putting the above three equations together, we have

V̂ (x, t) = E

[∫ T∧θ∗

t

e−c(s−t)dL∗cs

]
− E

[
V̂ (R∗t , t)− V̂ (R∗t−, t)

]
= E

[∫ T∧θ∗

t−
e−c(s−t)dL∗s

]
− E

[
(L∗t − L∗t−) + V̂ (R∗t , t)− V̂ (R∗t−, t)

]
.

If R∗t− 6 d∗(T − t), then L∗t − L∗t− = 0 and R∗t = R∗t−, so

(L∗t − L∗t−) + V̂ (R∗t , t)− V̂ (R∗t−, t) = 0

If R∗t− > d∗(T − t), then R∗t = d∗(T − t). Because V̂x(y, t) = 1 for y > d∗(T − t), we also

obtain

(L∗t − L∗t−) + V̂ (R∗t , t)− V̂ (R∗t−, t) = (L∗t − L∗t−) +R∗t −R∗t− = 0.

Now we conclude that

V̂ (x, t) = E

[∫ T∧θ∗

t−
e−c(s−t)dL∗s

]
.

The right hand side is by definition no more than V (x, t). This completes the proof of

Theorem 3.2.

Appendix C Proof of Lemma 4.3.

By (3.1),

vt − A
(
−vxx
vx

)
vxx −B

(
−vxx
vx

)
vx + γvx + cv = 0 in ND. (C.1)
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Differentiating (C.1) w.r.t. x and t, respectively, using (A.8) we obtain

vtx −
[
A

(
−vxx
vx

)
vxxx +B

(
−vxx
vx

)
vxx

]
+ γvxx + cvx = 0 in ND, (C.2)

and

vtt −
[
A

(
−vxx
vx

)
vxxt +B

(
−vxx
vx

)
vxt

]
+ γvxt + cvt = 0 in ND. (C.3)

Since

0 < A(λ) 6 A

(
−vxx
vx

)
6 µ2, B

(
−vxx
vx

)
6 µ2

and

A

(
−vxx
vx

)
, B

(
−vxx
vx

)
∈ Cα,α/2(QT )

(owing to that vx, vxx ∈ Cα,α/2(QT ) and Lemma A.1), we can apply the Schauder estimate

(see [25] Theorem 4.23) to (C.2) and (C.3), respectively, to obtain

vx, vt ∈ C2+α,1+α/2(ND).

Suppose vxx(x0, t0) = 0 for some (x0, t0) ∈ ND. Because vxx 6 0, (x0, t0) is a maximizer

point for vxx. Hence the first order condition gives vxxx(x0, t0) = 0. By (C.2),

vtx(x0, t0) + cvx(x0, t0) = 0,

which contradicts (3.4) and (3.8). Therefore vxx < 0 in ND.

Appendix D Proof of Lemma 4.4.

Equation (4.8) is derived from the boundary condition in (A.16). And (4.9) is an immediate

consequence of (4.8) and (4.10). So it is only left to prove (4.10). In ND, the equation in

(A.16) holds, i.e.,

vxt − A
(
−vxx
vx

)
vxxx −B

(
−vxx
vx

)
vxx + γvxx + cvx = 0.

Because

vxxx =

[
∂x

(
− vx
vxx

)
+ 1

]
v2
xx

vx
,

it follows

vxt − A
(
−vxx
vx

)[
∂x

(
− vx
vxx

)
+ 1

]
v2
xx

vx
−B

(
−vxx
vx

)
vxx + γvxx + cvx = 0.
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Dividing vx yields

−A
(
−vxx
vx

)[
∂x

(
− vx
vxx

)
+ 1

]
v2
xx

v2
x

−B
(
−vxx
vx

)
vxx
vx

+ γ
vxx
vx

+ c = −vxt
vx
6 0,

by (3.4) and (3.8). Denote ν = −vx/vxx. Then the above inequality reads

A
(

1
ν

)
(νx + 1)

2ν2
−
B
(

1
ν

)
ν

+
γ

ν
− c > 0,

so

νx >
1

A(1/ν)

[(
−1

ν
A

(
1

ν

)
+B

(
1

ν

)
− γ
)
ν + cν2

]
=

1

A(1/ν)

[
f

(
1

ν

)
ν + cν2

]
. (D.1)

By (3.9), ν > 1/λ > 0. By (A.13), f is decreasing, so f(1/ν) > f(λ) = 0. Together with

(A.7) we obtain νx > 2c. This completes the proof.
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