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Abstract: Data with high-dimensional covariates are now commonly encountered.

Compared to other types of responses, research on high-dimensional data with

censored survival responses is still relatively limited, and most of the existing studies

have been focused on estimation and variable selection. In this study, we consider

data with a censored survival response, a set of low-dimensional covariates of main

interest, and a set of high-dimensional covariates that may also affect survival.

The accelerated failure time model is adopted to describe survival. The goal is

to conduct inference for the effects of low-dimensional covariates, while properly

accounting for the high-dimensional covariates. A penalization-based procedure is

developed, and its validity is established under mild and widely adopted conditions.

Simulation suggests satisfactory performance of the proposed procedure, and the

analysis of two cancer genetic datasets demonstrates its practical applicability.

Key words and phrases: AFT model, censored survival data, high-dimensional

inference.

1. Introduction

Data with high-dimensional covariates but limited sample sizes are now rou-

tinely encountered in many fields. In this study, we consider such data with a

survival response. With the additional complexity brought by censoring, com-

pared to other types of responses, research on data with a survival response has

been relatively limited.

With a sample of n iid observations, consider the AFT (accelerated failure

time) model

T = Xβ0 + Zθ0 + ε. (1.1)

Here T is a length n vector of event times on the logarithmic scale. The covariate

effects contain two components: X with a fixed p is the n× p design matrix for
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the low-dimensional component, and Z is the n × q design matrix for the high-

dimensional component, where q can be much larger than n. Vectors β0 and θ0
are regression coefficients, and ε is the vector of random errors with mean zero

and variance matrix σ2I. Assume that the response variable and covariates are

properly centered, such that the intercept term is omitted. Our main interest

lies in inference (and estimation) for the low-dimensional parameter β0. Such

an inference problem arises in many applications. As an example, consider a

disease treatment study with genetic measurements (Johnson (2009); Morris et al.

(2014)). Here the event time is disease prognosis, the low-dimensional covariates

may include the treatment variables of main interest, and the high-dimensional

covariates may contain genetic markers that contribute to survival but are of

secondary interest.

For modeling survival, we adopt the AFT model. Compared to alternative

models, for example the Cox model, its advantages include simple interpretation

and low computational cost, which are especially desirable with high-dimensional

data. Under low-dimensional settings, notable studies on estimation and infer-

ence with the AFT model include Buckley and James (1979), Tsiatis (1990), Wei,

Ying and Lin (1990), and Stute (1993). Under high-dimensional settings, both

variable selection and dimension reduction methods have been developed. In the

existing studies, the penalization technique, with its significant theoretical and

empirical advantages, has been used by many authors. Examples include Huang,

Ma and Xie (2006), Johnson (2008), Cai, Huang and Tian (2009), Huang and

Ma (2010), Ma and Du (2012), and Hu and Chai (2013).

Most of the existing studies have been focused on estimation and variable

selection. Comparatively, attention on inference is limited. In applications, in-

ference plays an equally important role. For an effect, it is of interest to know not

only its level but also its confidence level. Inference with high-dimensional data

is a challenging and important problem. Zhang and Zhang (2014), van de Geer

et al. (2014), and Javanmard and Montanari (2014) have studied the construc-

tion of confidence intervals for low-dimensional parameters in high-dimensional

linear and generalized linear models. Bühlmann (2013) considers a corrected

ridge regression approach for computing p-values for general hypotheses under

high-dimensional settings. The focus on the low-dimensional parameters in the

present study is similar to that in the aforementioned works. Another relevant

study is Voorman, Shojaie and Witten (2014), which constructs a test statistic for

each regression coefficient based on the penalized score test. Other approaches
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include the least squares after double selection by Belloni, Chernozhukov and

Hansen (2014) and the post selection inference by Lee et al. (2016) and Berk

et al. (2013). Beyond the linear framework, Yang et al. (2016) studies inference

under nonlinear models. Ning and Liu (2017) discusses low-dimensional infer-

ence under the general high-dimensional M-estimation framework. For censored

data, Fang, Ning and Liu (2016) studies inference for the high-dimensional Cox

model. Inference under the high-dimensional AFT model, which provides a flex-

ible alternative to the Cox and other models, is of interest but has not been

pursued.

Consider the AFT model (1.1) for right censored survival data. The goal is to

conduct inference on the estimate of the low-dimensional parameter β0. Different

from the existing works on regularized estimation and variable selection, we focus

on inference. This is considerably more complicated than the existing inference

studies in the context of linear and generalized models due to the presence of

censoring. The proposed method has the potential to be extended to other

censored survival model settings. In what follows, the proposed method and

its statistical properties are established in Sections 2 and 3. Numerical study,

including simulation in Section 4 and data analysis in Section 5, is conducted to

examine practical performance. The article concludes with discussions in Section

6. Additional technical details are provided in the Supplementary File.

2. Inference Under the High-Dimensional AFT Model

Denote T as the logarithm of the event time and C as the logarithm of the

censoring time. Let Y = min(T,C) and δ = 1{T ≤ C}. Let Xp×1 = (X1, X2, . . . ,

Xp)
> and Zq×1 = (Z1, Z2, . . . , Zq)

> be the random vectors of covariables. The

observed design matrices X and Z are generated from X and Z respectively. For

subject i(= 1, . . . , n), under right censoring, we observe
(
yi, δi,xi,, zi,

)
. Through-

out the paper, for a matrix M, let mi, be the transpose of its ith row, m,j be its

jth column, and mi,j be its (i, j)th element. When p + q � n and the column

spaces of X and Z are of full rank, there are multiple estimation approaches.

Here we adopt the weighted least squares approach developed in Stute (1993)

and Stute (1996) that has a simpler objective function and is easier to extend to

high-dimensional settings than the competing alternatives such as the Bukley-

James and rank-based methods.

Consider that p is fixed and small compared to n, but q is large (comparable
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to or even much larger than n). Without loss of generality, assume that the

samples are sorted according to the yi’s. The Kaplan-Meier weights are defined

as

ω1 =
δ1
n
, ωi =

δi
n− i+ 1

i−1∏
j=1

(
n− j

n− j + 1

)δj
, i = 2, . . . , n.

Let W = diag{nω1, nω2, . . . , nωn}. The design matrices and response variable

are weighted normalized such that 1>Wx,k = 0, 1>Wz,j = 0, and 1>Wy = 0

for j = 1, . . . , q and k = 1, . . . , p. Consider the objective function

L0(β,θ) =
1

2n
‖W1/2(y −Xβ − Zθ)‖22,

where ‖·‖2 denotes the `2-norm. Under mild conditions, Stute (1996) establishes

that the estimator obtained by minimizing L0(β,θ) is consistent and asymp-

totically normal as n → ∞ for fixed p and q. Compared to other ways of ac-

commodating censoring, using the Kaplan-Meier weights, as in this approach, is

computationally advantageous. The minimizer of L0(β,θ) satisfies the normal

equations 
∂L0(β,θ)

∂β
=

1

n
X>W(y −Xβ − Zθ) = 0,

∂L0(β,θ)

∂θ
=

1

n
Z>W(y −Xβ − Zθ) = 0.

This is equivalent to

1

n
(X− ZB)>W(y −Xβ − Zθ) = 0,

for all q × p matrices B. The quasi normal equation is

(X− ZB)>WXβ = (X− ZB)>W(y − Zθ). (2.1)

The estimate of β is unbiased, if the estimate of θ is unbiased, or if (X −
ZB)>WZ = 0, provided that (X−ZB)>WX is invertible. Under high-dimensio-

nal settings, however, the estimate of θ is usually biased. Hence it is desirable to

find a matrix B such that W1/2(X−ZB) and W1/2Z are almost orthogonal, and

(X−ZB)>WX is invertible. To achieve these two goals, we consider regularized

estimation for θ and B. In this paper, we use LASSO (Tibshirani (1996)) for

regularization. Note that other penalties, such as Dantzig (Candes and Tao

(2007)), SCAD (Fan and Li (2001)), and MCP (Zhang (2010)) are also applicable.

The LASSO penalized estimator is defined as
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(β̃∗, θ̃) = arg min

β,θ∈Rp+q

{
L0(β,θ) + λ0

q∑
j=1

|θj |

}
,

b̃,k = arg min
b∈Rq

{
Lk(b) + λk

q∑
j=1

|bj |

}
for k = 1, 2, . . . , p.

(2.2)

Here Lk(b) = (1/2n)‖W1/2(x,k − Zb)‖22, for k = 1, 2, . . . , p, and λ0, λk > 0

are data-dependent tuning parameters. In the first objective function in (2.2),

penalization is not imposed on β, as it is low dimensional and our interest lies in

conducting inference for its estimate (as opposed to selection). The first estima-

tion in (2.2) generates a good estimate of θ0. In the second estimation, our goal

is to find the aforementioned matrix B. Let B̃ = (b̃,1, . . . , b̃,p) and X̃ = X−ZB̃.

The estimate of β0 can be obtained by replacing B and θ by B̃ and θ̃ in (2.1)

and satisfies

X̃>WXβ̃ = X̃>W
(
y − Zθ̃

)
.

If X̃>WX is invertible,

β̃ =
(
X̃>WX

)−1
X̃>W

(
y − Zθ̃

)
. (2.3)

In Section , we show that
√
n(β̃−β0) is asymptotically normal as n→∞ under

mild regularity conditions. The estimate of the asymptotic covariance matrix can

be constructed using the observed data (readers can skip the following technical

details on ϕ̃, τ̃0, τ̃1
j , τ̃2

j , and ψ̃j without having trouble understanding the main

results). Define

ϕ̃j(x̃i,, yi,xi,, zi,) = x̃i,j

(
yi − x>i, β̃ − z>i, θ̃

)
,

τ̃0(y) = exp

( ∑
i:yi<y,δi=0

1

(n−
∑n

k=1 1{yk ≤ yi})

)
,

τ̃ j1 (y) =
∑

k:yk>y,δk=1

ϕ̃j(x̃k,, yk,xk,, zk,)τ̃0(yk)

(n−
∑n

i=1 1{yi ≤ y})
,

τ̃ j2 (y) =
∑

i:yi<y,δi=0

[{∑k:yk>yi,δk=1 ϕ̃j(x̃k,, yk,xk,, zk,)τ̃0(yk)}
(n−

∑n
l=1 1{yl ≤ yi})2

]
.

For the kth sample, let

ψ̃j(x̃k,, yk,xk,, zk,) = ϕ̃j(x̃k,, yk,xk,, zk,)τ̃0(yk)δk + τ̃ j1 (yk)(1− δk)− τ̃ j2 (yk).

Let σ̃i,j be the sample correlation of ψ̃i and ψ̃j , Σ̃1 = (σ̃i,j)p×p, and Σ̃0 =

X̃>WX. It is not hard to prove that Σ̃0 and Σ̃1 satisfy Σ̃0
p→ Σ0 and Σ̃1

p→ Σ1
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using Corollary 1.8 of Stute (1996), where Σ0 and Σ1 are defined in Theorem 1.

Hence,

Σ̃
(
β̃
)

= Σ̃−10 Σ̃1

(
Σ̃−10

)>
=
(
X̃>WX

)−1
Σ̃1

(
X>WX̃

)−1
(2.4)

is a consistent estimate of the asymptotic covariance matrix of
√
n(β̃−β0). When

there is no censoring, W = I, and the proposed estimate of β0 and covariance

matrix coincide with those proposed in Zhang and Zhang (2014).

Using Hotelling’s T 2 statistic, a level 1− α confidence region for β0 is

D =

{
β ∈ Rp :

(
β̃ − β

)>
Σ̃−1

(
β̃
)(
β̃ − β

)
<

(n− 1)p

(n− p)n
F1−α,p,n−p

}
.

For the jth component of β0, the marginal confidence interval can be constructed

as β̃j ± t1−α/2,n−p · se(β̃j), where se(β̃j) is the square-root of the (j, j)th element

of Σ̃(β̃)/n.

We conclude this section by providing some heuristics on why β̃ achieves

asymptotic normality. Recall that if δi = 0, ωi = 0. Hence we can replace y

in (2.3) by Xβ0 + Zθ0 + ε and obtain

1√
n

X̃>WX
(
β̃ − β0

)
− 1√

n
X̃>Wε = − 1√

n
X̃>WZ

(
θ̃ − θ0

)
.

When the term on the right hand side is of a smaller order than the terms on

the left, the asymptotic distributions of the two terms on the left hand side

are the same. Hence with LASSO penalization, we can effectively reduce the

high-dimensional problem to a low-dimensional one.

3. Asymptotic Results

We first introduce some notations. Let τY , τT , and τC be the end points of

the support of Y, T , and C, respectively. Let U =
(
X>, Z>

)>
and F be the joint

distribution of (U, T ). Following Stute (1996), we write

F̃ (u, t) =

{
F (u, t), t < τY ,

F (u, τY−) + 1{τY ∈ ν}F (u, {τY }), t ≥ τY ,
(3.1)

where ν is the set of atoms of H, the distribution function of Y . Denote θ0j as

the jth component of θ0. Let A0 = {j : θ0j 6= 0, j = 1, 2, . . . , q} and |A0| be the

cardinality of A0. There exists a q × p matrix B0 = (b,1, . . . ,b,p) that satisifes

EF̃
{
Z
(
X −B>0 Z

)}
= 0q×p. Define

H̃11(u, y) = P (U ≤ u, Y ≤ y, δ = 1), H̃0(y) = P (Y ≤ y, δ = 0).
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For j = 1, . . . , p, let ϕj(U, Y ) =
(
Xj − Z>b,j

)(
Y −X>β0 − Z>θ0

)
,

τ0(y) = exp

(∫ y−

0

H̃0(ds)

1−H(s)

)
,

τ j1 (y) =
1

1−H(y)

∫
1{s > y}ϕj(u, s)τ0(s)H̃11(du, ds),

τ j2 (y) =

∫∫
1{v < y, v < s}ϕj(u, s)τ0(s)

{1−H(s)}2
H̃0(dv)H̃11(du, ds),

and ψj = ϕj(U, Y )τ0(Y )δ + τ j1 (Y )(1− δ)− τ j2 (Y ).

Assumption 1. P (T ≤ C|T,X,Z) = P (T ≤ C|T ).

Assumption 2. The matrix B0 = (b,1, . . . ,b,p) is sparse. If K0 ⊂ {1, . . . , q} is

the index set of the nonzero rows of B0, |K0| � |A0|.

Assumption 3. Xk, Zj, and ε have sub-Gaussian distributions for k = 1, . . . , p,

j = 1, . . . , q. Such distributions are from c1(<∞) distribution families, and each

family is determined by at most c2 parameters.

Assumption 4. Denote the indices of columns of X, ZA0
, and ZK0

in U as J0,

A+
0 , and K+

0 . Let Γ = EF̃ (UU>) and ‖Γ‖∞ = O(1). For A = J0 ∪A+
0 ∪K

+
0 , the

matrix Γ satisfies the restricted eigenvalue condition RE(|A|),

κ2(|A|) = inf
‖a‖1,Ac≤3‖a‖1,A

a>Γa

‖a‖22,A
≥ c∗ > 0.

Assumption 5.
∫
|ϕj(u, s)|C1/2(s)F̃ (du, ds) < ∞ and E{ϕj(U, Y )τ0(Y )δ}2 <

∞ for any j = 1, . . . , p, where C(s) =
∫ s−
0 G(dy)/[{1−H(y)}{1−G(y)}] and G

is the distribution function of the censoring variable.

Under Assumption 1, δ is conditionally independent of the covariate U given

the failure time Y . This assumption also specifies that Y and C are independent.

However, this assumption does allow the censoring variable to be dependent on

the covariates. For more discussions on this assumption, we refer to Stute (1996),

Huang, Ma and Xie (2006, 2007). The sparsity Assumption 2 ensures that the

LASSO selector converges to the true value at a fast rate. A similar assumption

has been made in Fang, Ning and Liu (2016). Under Assumption 3, at most

c3 ≤ c1c2 parameters are needed to fully determine the distributions of Xk, Zj ,

and ε. This assumption has been made in high-dimensional studies and can be

weakened at the price of a smaller q. Assumptions 4 is standard in the high-

dimensional model selection literature. Assumption 5 has been made in Stute

(1996) and ensures the asymptotic normality of the proposed estimator.
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Denote ΓS1,S2
as the extracted submatrix of Γ where S1 is the row index and

S2 is the column index. Properties of β̃ can be established as follows.

Theorem 1. Suppose that Assumptions 1-4 hold. If n→∞,
√
nλ∗,pλ0|A0| → 0,

where λ∗,p = max{λk, 1 ≤ k ≤ p}, and with a large enough M > 0, mink=0,1,...,p

λk > M
√

log q/n, then we have∥∥∥∥ 1√
n

(X− ZB0)
>Wε− 1√

n
(X− ZB0)

>WX
(
β̃ − β0

)∥∥∥∥
1

p→ 0.

Together with Assumption 5, we have
√
n
(
β̃ − β0

) D→ N
(
0,Σ−10 Σ1Σ

−1
0

)
,

where Σ0 = ΓJ0,J0
− Γ>

K+
0 ,J0

Γ−1
K+

0 ,K
+
0

ΓK+
0 ,J0

and Σ1 = (σi,j)1≤i,j≤p with σi,j =

Cov(ψi, ψj).

The proof is provided in the Supplementary File. With the covariate having

two components, two assumptions on the tuning parameters are made. This

theorem requires that
√
nλ∗,pλ0|A0| → 0 and mink=0,1,...,p λk > M

√
log q/n. If

λ∗,p � λ0 �
√

log q/n, the requirement is log(q)|A0|/
√
n → 0 as n → ∞. Thus,

for a large n, q = o(exp(
√
n)) if |A0| is fixed. Compared to the sample size

requirement for the selection and estimation error bounds (q = o(exp(n))), a

larger sample size is required to obtain asymptotic normality. This requirement

is similar to that in Remark 3(a) of Zhang and Zhang (2014) for the simple linear

model without censoring.

When defining the proposed method, LASSO is adopted. It has certain com-

putational advantages over concave penalties. Here the LASSO penalty can be

replaced by nonconvex penalties such as MCP and SCAD. We conjuncture that

the theoretical properties in our theorem still hold, but under slightly different

conditions. In numerical studies, we examine MCP along with LASSO.

4. Simulation

In simulations, we compared the proposed method with two alternatives.

The first is the oracle method, which knows in advance which covariate effects

are nonzero and proceeds with a low-dimensional model; this method is only

applicable in simulations. The alternative, referred to as “Only.X”, analyzes the

low-dimensional covariates only. For the penalty used in the proposed method,

beyond LASSO, we also applied MCP.

In model (1.1), set p = 2, q = 1,000, and |A0| = 6. Thus, eight covari-

ates, two from the low-dimensional set and six from the high-dimensional set,
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Table 1. Simulation: empirical coverage probability under Case 1. (SS, FR, Cor) =
(sample size, failure rate, correlation structure). Targeted coverage is 95%.

Proposed
(SS, FR, Cor) MCP LASSO Oracle Only.X
(450, 60%, Ind) 0.955 0.922 0.950 0.790
(300, 90%, Ind) 0.938 0.935 0.968 0.935
(300, 60%, Ind) 0.943 0.838 0.940 0.863
(450, 60%, AR) 0.945 0.970 0.885 0.818
(300, 90%, AR) 0.922 0.955 0.945 0.897
(300, 60%, AR) 0.943 0.943 0.902 0.905
(450, 60%, CS) 0.965 0.968 0.940 0.938
(300, 90%, CS) 0.892 0.907 0.978 0.887
(300, 60%, CS) 0.910 0.917 0.897 0.938

having nonzero effects on survival. For nonzero regression coefficients, we took

β0 = (1, 1) and θ0A0
= (1, 0.9, 0.8, 0.8, 0.9, 1). The 1,002 covariates were gen-

erated from a multivariate normal distribution with marginal means zero and

marginal variances one. Three correlation scenarios were considered: (Ind) Un-

der independence, all covariates are independent; (AR) Under the auto-regression

correlation structure, the correlation coefficient between covariates j and k is

0.5|j−k|; (CS) Under the compound symmetry correlation structure, the correla-

tion coefficient between covariates j and k is 0.1 if j 6= k. The event time was

generated from the AFT model and followed a Weibull distribution. The censor-

ing time was generated separately under two cases: (Case 1) the censoring time

was exponential and independent of the covariates. Hence, also independent of

the event time, and Assumption 1 is satisfied. (Case 2) The log censoring time

was normal with mean satisfying the AFT model C = Xβ0 + Zθ1 + c0. The

constant c0 was used to adjust the censoring rate. The nonzero components of

θ1 took values (1, 0.5, 0.5, 0.8, 0.9, 1). θ1 and θ0 shared three common nonzero

components. Case 2 violates Assumption 1 and can serve the purpose of sensitiv-

ity analysis. For the (sample size, failure rate) dual, we considered (450, 60%),

(300, 90%), and (300, 60%). Under each setting, 400 replicates were simulated.

The empirical coverage probabilities of the confidence regions are summa-

rized in Tables 1 and 2. Taking all settings into consideration, overall, the pro-

posed method, with both the MCP and LASSO penalties, generates satisfactory

confidence regions with coverage probabilities close to the target. There are

a small number of difficult scenarios, under which the proposed method does

not behave very satisfactorily. However, under these scenarios, even the oracle
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Table 2. Simulation: empirical coverage probability under Case 2. (SS, FR, Cor) =
(sample size, failure rate, correlation structure). Targeted coverage is 95%.

Proposed
(SS, FR, Cor) MCP LASSO Oracle Only.X
(450, 60%, Ind) 0.988 0.980 0.993 1.000
(300, 90%, Ind) 0.910 0.955 0.953 0.990
(300, 60%, Ind) 0.980 0.945 0.985 0.960
(450, 60%, AR) 0.988 0.990 0.988 0.975
(300, 90%, AR) 0.922 0.953 0.960 0.998
(300, 60%, AR) 0.988 0.965 0.990 0.963
(450, 60%, CS) 0.995 0.985 0.998 0.993
(300, 90%, CS) 0.905 0.948 0.953 0.980
(300, 60%, CS) 0.990 0.968 0.990 0.990

method fails to deliver good results. The Only.X method, which focuses on the

low-dimensional covariates, leads to unsatisfactory coverage. This is as expected.

For each of the low-dimensional covariates, we also examine in Tables 3 and 4

the detailed marginal results. For the proposed and alternative methods, we

computed the biases of estimates, standard errors, mean squared errors (MSE),

and empirical coverage probabilities (CVR). In general, the proposed method

generates competitive results, which are similar to those of the oracle method.

Examining the MSEs suggests that with the proposed method, MCP may be

preferred over LASSO. It is believed that this is caused by the better estimation

performance of MCP over LASSO in general. The Only.X method is unsatis-

factory, with biases and standard errors much larger than those of the other

methods. The coverage probabilities in Tables 3 and 4 are not as satisfactory

as those in Tables 1 and 2 (although the proposed method still has comparable

performance as the oracle). The multivariate confidence regions in Tables 1 and 2

were accurately constructed using the Hotelling’s T 2 statistics. In contrast, in Ta-

bles 3 and 4, a “brute force” approach was used to generate marginal confidence

intervals based on the multivariate confidence regions. The marginal standard

errors were taken directly from the diagonals of the estimated covariance matri-

ces, and correlations among estimates were basically ignored. Similar problems

have been noted in the literature and will not be discussed here. If the goal

is to generate more accurate marginal confidence intervals, more sophisticated

methods are needed. For example, one option is to construct the conditional

confidence interval for each variable of interest given all other low-dimensional

estimates.
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Table 3. Simulation results for individual regression parameters under Case 1. All values
are multiplied by 100 except for CVR.

β1 = 1 β2 = 1
(SS, FR) Method Bias(se) MSE CVR Bias(se) MSE CVR

Ind correlation
Proposed+MCP 1.06 (3.82) 22.34 0.968 0.77 (3.74) 22.41 0.972

(450, 60%) Proposed+LASSO −3.17 (4.04) 32.23 0.958 −3.79 (3.87) 35.50 0.925
Oracle 1.70 (3.96) 25.84 0.950 1.56 (3.84) 25.17 0.955
Only.X −19.17(25.82) 1,406.54 0.925−28.64(25.65) 1,712.64 0.862

Proposed+MCP 0.02 (2.37) 8.68 0.948 0.78 (2.44) 10.40 0.942
(300, 90%) Proposed+LASSO −1.26 (2.53) 10.29 0.908 −1.14 (2.61) 10.71 0.962

Oracle 0.00 (2.33) 7.97 0.975 0.47 (2.40) 9.69 0.968
Only.X −9.62(15.90) 482.15 0.942−10.25(18.16) 601.31 0.975

Proposed+MCP 0.93 (4.04) 29.25 0.938 1.31 (3.97) 27.14 0.978
(300, 60%) Proposed+LASSO −4.70 (5.07) 62.38 0.888 −5.87 (4.98) 69.15 0.872

Oracle 1.58 (4.16) 31.36 0.938 2.06 (4.13) 31.89 0.962
Only.X −20.66(26.10) 1,409.41 0.922−22.22(28.10) 1,816.54 0.910

AR correlation
Proposed+MCP 1.67 (4.19) 31.37 0.965 1.56 (4.48) 31.99 0.988

(450, 60%) Proposed+LASSO −1.41 (4.51) 31.40 0.990 −1.56 (4.49) 36.10 0.972
Oracle 2.15 (4.06) 30.72 0.955 1.86 (4.07) 29.88 0.978
Only.X −19.39(28.88) 1,562.74 0.945−18.01(28.28) 1,555.93 0.925

Proposed+MCP 0.81 (3.01) 17.59 0.912 0.08 (3.29) 18.04 0.945
(300, 90%) Proposed+LASSO −0.05 (3.17) 16.72 0.958 −1.37 (3.29) 18.48 0.945

Oracle 0.80 (2.80) 13.34 0.930 0.35 (2.77) 11.79 0.962
Only.X −4.95(20.70) 660.11 0.955 −9.14(20.20) 679.58 0.930

Proposed+MCP 1.56 (4.83) 38.56 0.982 1.60 (4.89) 42.25 0.955
(300, 60%) Proposed+LASSO −3.89 (5.89) 64.19 0.962 −2.60 (5.84) 57.70 0.952

Oracle 2.13 (4.75) 38.34 0.962 1.90 (4.66) 41.56 0.932
Only.X −22.27(29.00) 1,734.95 0.932−14.38(28.72) 1,395.78 0.975

CS correlation
Proposed+MCP 1.21 (3.61) 21.63 0.982 1.30 (3.75) 22.43 0.968

(450, 60%) Proposed+LASSO −1.72 (3.92) 26.67 0.982 −2.11 (4.03) 30.26 0.965
Oracle 1.71 (3.66) 22.76 0.962 1.72 (3.74) 24.47 0.962
Only.X −15.80(25.84) 1,039.64 0.988−16.88(25.45) 1,223.55 0.952

Proposed+MCP −0.10 (2.54) 11.00 0.950 0.56 (2.62) 12.75 0.882
(300, 90%) Proposed+LASSO −1.16 (2.67) 12.51 0.920 −1.13 (2.68) 11.35 0.958

Oracle −0.18 (2.46) 9.41 0.962 0.19 (2.40) 8.92 0.950
Only.X −4.11(16.81) 577.59 0.875 −9.20(17.11) 597.53 0.970

Proposed+MCP 1.36 (3.90) 25.96 0.970 2.16 (3.85) 30.93 0.930
(300, 60%) Proposed+LASSO −3.83 (4.95) 57.59 0.898 −2.45 (5.24) 47.10 0.965

Oracle 1.95 (3.95) 27.65 0.955 2.69 (4.01) 33.39 0.915
Only.X −16.53(25.14) 1,240.66 0.925−14.59(27.86) 1,322.56 0.995
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Table 4. Simulation results for individual regression parameters under Case 2. All values
are multiplied by 100 except for CVR.

β1 = 1 β2 = 1
(SS, FR) Method Bias(se) MSE CVR Bias(se) MSE CVR

Ind correlation
Proposed+MCP −0.19 (2.68) 10.04 0.978 −0.50 (2.69) 10.04 0.990

(450, 60%) Proposed+LASSO −0.55 (2.86) 11.47 0.975 −0.79 (2.86) 12.01 0.978
Oracle −0.18 (2.72) 10.38 0.978 −0.57 (2.72) 10.06 0.990
Only.X −2.61(17.48) 392.39 0.995 −1.08(16.81) 391.15 0.995

Proposed+MCP 0.37 (2.19) 7.85 0.920 0.28 (2.29) 8.30 0.915
(300, 90%) Proposed+LASSO −0.06 (2.32) 8.30 0.945 0.14 (2.36) 8.49 0.970

Oracle 0.31 (2.16) 7.21 0.955 0.10 (2.17) 6.91 0.972
Only.X −1.22(13.94) 283.02 0.990 0.22(13.59) 289.44 0.930

Proposed+MCP −0.47 (3.24) 14.25 0.985 −0.54 (3.17) 14.63 0.978
(300, 60%) Proposed+LASSO −0.89 (3.52) 17.87 0.962 −1.06 (3.43) 18.89 0.938

Oracle −0.41 (3.34) 15.09 0.982 −0.58 (3.28) 15.45 0.985
Only.X 0.56(21.03) 644.01 0.938 0.15(20.73) 618.00 0.968

AR correlation
Proposed+MCP −0.43 (3.14) 14.32 0.985 −0.07 (3.57) 17.33 0.995

(450, 60%) Proposed+LASSO −1.11 (3.51) 17.87 0.970 −0.16 (3.72) 18.83 0.992
Oracle −0.38 (3.15) 13.65 0.985 −0.42 (3.13) 13.65 0.985
Only.X −5.71(20.06) 556.40 0.935 0.44(20.08) 545.61 0.998

Proposed+MCP −0.79 (2.72) 15.30 0.922 0.44 (3.20) 18.25 0.908
(300, 90%) Proposed+LASSO −0.65 (2.90) 13.69 0.962 −0.29 (3.15) 14.94 0.960

Oracle −0.47 (2.53) 10.32 0.960 0.29 (2.60) 10.25 0.962
Only.X 2.08(16.26) 386.17 0.998 −2.66(16.92) 355.34 0.985

Proposed+MCP −0.60 (3.84) 21.09 0.985 0.30 (4.15) 24.61 0.980
(300, 60%) Proposed+LASSO −0.70 (4.29) 26.53 0.968 −0.27 (4.52) 28.86 0.962

Oracle −0.38 (3.82) 20.62 0.992 −0.19 (3.88) 20.52 0.990
Only.X 0.20(24.91) 873.92 0.972 0.91(24.97) 933.29 0.935

CS correlation
Proposed+MCP −0.22 (2.70) 9.82 0.988 −0.04 (2.65) 9.83 0.990

(450, 60%) Proposed+LASSO −0.24 (2.88) 11.60 0.978 −0.31 (2.85) 10.99 0.982
Oracle −0.14 (2.71) 10.15 0.985 −0.01 (2.69) 9.89 0.980
Only.X 1.49(17.34) 398.15 0.982 −1.30(17.35) 384.94 0.985

Proposed+MCP −0.11 (2.33) 10.17 0.915 0.07 (2.35) 9.78 0.912
(300, 90%) Proposed+LASSO −0.37 (2.37) 8.47 0.952 −0.74 (2.45) 9.08 0.938

Oracle −0.18 (2.19) 7.08 0.958 −0.07 (2.24) 7.50 0.940
Only.X 1.64(13.74) 322.17 0.965 −5.84(14.52) 315.59 0.995

Proposed+MCP −0.14 (3.21) 14.78 0.982 0.24 (3.22) 14.39 0.982
(300, 60%) Proposed+LASSO −1.17 (3.53) 19.36 0.962 −0.27 (3.49) 17.66 0.958

Oracle −0.17 (3.29) 15.19 0.995 0.25 (3.28) 14.82 0.990
Only.X −4.79(21.06) 650.7 0.990 2.37(20.46) 674.77 0.988
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5. Data Analysis

5.1. Analysis of the acute myeloid leukemia data

Data were retrieved from TCGA (The Cancer Genome Atlas; https://

tcga-data.nci.nih.gov/tcga/), which is one of the most comprehensive ge-

netic studies on cancer. For multiple cancers, prognosis data have been collected

along with low-dimensional clinical measurements and high-dimensional genetic

measurements. Acute myeloid leukemia (AML) is a cancer of the myeloid line

of blood cells. It is the most common acute leukemia affecting adults, and its

incidence increases with age. The dataset we analyzed contains 194 records. The

event rate was 66.8%. The response variable was overall survival. There are

three clinical variables of interest (X): FAB category (which is a classification

system that runs from M0 through to M7, with M0 being the best and M7 being

the worst. Here we assume that the severity of disease is linear in FAB.), age at

initial pathologic diagnosis, and white blood cell count. Data on the expressions

of 19,798 genes are available. To improve stability, we conducted a supervised

screening prior to analysis. Specifically, we first conducted marginal analysis and

computed the univariate correlation coefficient between the response and each

gene expression. Then genes with p-values (for the correlation coefficients) less

than 0.1 were selected. These selected genes were then ordered by their interquar-

tile ranges, and the top 50% were selected. Overall, 1,001 gene expressions were

further analyzed.

We applied the three methods as in the previous section. For the low-

dimensional covariates, the estimates (multiplied by 102) and estimated covari-

ance matrices
(
multiplied by 104

)
were β̂Only.X = (86.73, 6.70, 0.41)>, β̂LASSO =

(8.10, 2.83, 4.28)>, β̂MCP = (31.53, 1.08, 7.56)>,

Σ̂Only.X =

219.97 −11.21 −1.89

−11.21 0.92 −0.07

−1.89 −0.07 0.32

 ,

Σ̂LASSO =

265.13 −8.80 −13.88

−8.80 1.08 −0.58

−13.88 −0.58 2.68

 ,

Σ̂MCP =

437.22 −27.44 −5.66

−27.44 5.54 −5.28

−5.66 −5.28 9.75

 .

The level 1 − α confidence region can be constructed as D∗ =
{
β ∈ Rp :

(
β̂∗ −

https://tcga-data.nci.nih.gov/tcga/)
https://tcga-data.nci.nih.gov/tcga/)
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Table 5. Analysis of the AML data: 95% marginal confidence intervals for the low-
dimensional covariates (results multiplied by 100) and lists of identified genes.

FAB category Age WBC
Proposed+MCP [−9.452, 72.513] [−3.535, 5.694] [1.438, 13.676]
Proposed+LASSO [−23.809, 40.018] [0.795, 4.863] [1.070, 7.484]
Only.X [57.665, 115.802] [4.828, 8.580] [−0.695, 1.513]

Identified genes

Proposed+MCP
TPPP, OXCT1, TSPAN2, C10orf81, RHCG, SOCS1, TMEM132E,

FCGBP, LOC613126, ZGLP1, GDF2

Proposed+LASSO

LOC100131508, TPPP, OXCT1, TLR3, TSPAN2, C10orf81,
RHCG, LIPC, KIT, SOCS1, TMEM132E, PCOLCE, GDF2,

FCGBP, CHRNA6, OPCML, LOC613126, NYX, ZGLP1, LMTK3,
CD109, TECTB, PRPH, HOPX, SLC7A9, LOC100130331

β
)>

Σ̂−1∗
(
β̂∗−β

)
< 193×3/191F1−α,3,191

}
, where ∗ ∈ {Only.X,LASSO,MCP}.

The marginal confidence intervals are provided in Table 5. Different methods

generate different results. For example, FAB is significant and white blood cell

count is not under the low-dimensional model. The observations are reversed

under the proposed method. With the proposed method, LASSO and MCP

identify different sets of genes. In addition, the significance level of age differs

under the two penalties.

5.2. Analysis of the glioblastoma data

Glioblastoma multiforme (GBM) is tumor that arises from astrocytes. It is

the most common and most aggressive malignant primary brain tumor in human.

The dataset analyzed was obtained from TCGA and contains 298 records. The

response variable is overall survival, and the event rate is 68.7%. There are four

low-dimensional clinical variables of interest: gender (binary, male is coded as

1), race (binary, white is coded as 1), Karnofsky score (a quality of life measure

that runs from 0 to 100, with 0 being the worst), and age at initial pathologic

diagnosis. Measurements on 17,800 gene expressions are available. We conducted

similar marginal screening as in the previous data analysis and selected 1,188 gene

expressions for downstream analysis.

We applied the proposed and alternative methods. For the low-dimensional

covariates, the estimates
(
multiplied by 102

)
and estimated covariance matrices

(multiplied by 104) were

β̂Only.X = (−1.47, 23.11, 6.23, 1.91)>,

β̂LASSO = (−18.78, 36.25, 6.31, 1.77)>,
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Table 6. Analysis of the glioblastoma data: 95% marginal confidence intervals for the
low-dimensional covariates. Results are multiplied by 100.

Gender Race Karnofsky Age
Proposed+MCP [−64.801, 26.392] [−64.741, 127.434] [4.970, 7.699] [0.406, 3.143]
Proposed+LASSO [−63.798, 26.231] [−60.826, 133.325] [4.989, 7.621] [0.471, 3.071]
Only.X [−30.365, 27.429] [−23.771, 69.997] [5.596, 6.867] [1.147, 2.674]

β̂MCP = (−19.20, 31.35, 6.33, 1.77)>,

Σ̂Only.X =


217.37 −13.85 −0.92 −1.03

−13.85 572.21 −3.90 −3.75

−0.92 −3.90 0.11 −0.06

−1.03 −3.75 −0.06 0.15

 ,

Σ̂LASSO =


527.49 257.16 −6.75 −2.09

257.16 2453.16 −22.31 −13.47

−6.75 −22.31 0.45 −0.14

−2.09 −13.47 −0.14 0.44

 ,

Σ̂MCP =


541.22 270.10 −7.14 −1.93

270.10 2403.47 −22.13 −12.99

−7.14 −22.13 0.48 −0.18

−1.93 −12.99 −0.18 0.49

 .

Confidence regions can be constructed as described above. In Table 6, we provide

the marginal 95% confidence intervals. With the proposed method, the LASSO

and MCP penalties generate reasonably similar results, different from Only.X.

In addition, genes FSIP1, NRBP2 and CHST10 are identified by the proposed

method with LASSO penalty, while gene CHST10 is identified with the MCP

penalty.

5.3. Remarks

With the proposed method, both LASSO and MCP can be theoretically

valid. In practical data analysis, it is observed that the two penalties may lead to

different results. Simulation suggests that the MCP results may be preferred. We

note that in simulation, discrepancies are also observed, however, much smaller

than in practical data analysis. It is believed that this is caused by the noisier

nature of practical data. We have conducted small-scale simulations and found

that, if other settings are kept unchanged and sample size is increased, then the

differences between LASSO and MCP results can shrink (results omitted). With
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the complexity of the proposed analysis and unknown data/model settings in

practice, it is difficult to determine what is the minimum sample size needed

in order to generate similar LASSO and MCP results. Variable selection is not

of main interest in our analysis. It is expected that, with their differences in

general, LASSO and MCP may generate different variable selection, as observed

in data analysis.

6. Discussion

In this study, we have considered censored survival data under the AFT

model where the covariate effects can be partitioned into two components. Data

that have a small set of covariates of special interest are commonly encountered.

This study thus has practical implications. We have developed an approach

that can conduct inference for the low-dimensional covariates. Establishment

of its theoretical properties not only provides a strong ground for the proposed

method, but also sheds lights into high-dimensional inference in general. With the

presence of censoring and the AFT model, this study complements and advances

existing literature. Simulations show satisfactory finite-sample performance. The

analysis of two datasets demonstrates practical applicability of the method.

This study can be potentially extended in multiple ways. For accommodat-

ing censoring in the estimation of AFT model, there exist other techniques, for

example the Buckley-James and rank-based. These techniques are also of interest

but not chosen in this study because of their high computational cost. It may

also be of interest to extend the analysis of AFT model to other survival models.

Statistical inference under high-dimensional settings is a fast-developing field. It

would be of interest to compare different methods in the future.

Supplementary Materials

This file includes proofs of the theoretical results presented in the main text.
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