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Abstract: Reliability data are often left truncated and right censored, because the

data-collection process usually starts much later than the installation of the first

product unit, and some units are still in service at the end of the data collec-

tion. The truncation introduces a sampling bias, making analyses of the lifetime

data complicated. This study develops a nonparametric likelihood-based estimation

procedure for left-truncated and right-censored data using B-splines. In terms of

small-sample performance and large-sample efficiencies, the proposed spline-based

estimators for the reliability function are shown to be more efficient than the ex-

isting nonparametric estimators. We further consider nonparametric two-sample

tests for left-truncated and right-censored data. The new class of tests is use-

ful for comparing the reliability of similar products. The test statistics are based

on the cumulative weighted differences between the two estimated failure rates.

Asymptotic distributions of the proposed statistics are derived and their finite-

sample properties are evaluated using Monte Carlo simulations. The performance

of the proposed test statistic is compared with that of the weighted Kaplan–Meier

statistic. Lastly, a real-life example of high-voltage power transformers is used to

illustrate the proposed method.

Key words and phrases: Asymptotic normality, B-splines, convergence rate, two-

sample tests.

1. Introduction

Lifetime data collected from field operations contain important reliability

information useful to asset management, such as preventive maintenance and

remaining useful life predictions. Compared with reliability data collected from

life tests, field failure data are usually subject to serious multiple censoring and

truncation. In particular, the data are typically left truncated and right censored.

The left truncation arises when the data collection starts later than the product

launch/installation (Ye and Tang (2016)). Because of the high level of reliability,

most products are still functioning when the data collection stops, leading to

right censoring. This is common for assets used in infrastructure facilities, such

as pipes in a water supply network (Carrión et al. (2010)) or power transformers
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Figure 1. Schematic of the mechanism that generates left-truncated and right-censored
data. The observation window in the calendar date is [Ts, Te]. Here, “o” represents
installation at date TI , “×” represents the failure event. The respective truncation and
censoring times are L = max{0, Ts − TI} and C = max{0, Te − TI}.

used in a power grid (Hong, Meeker and Mccalley (2009)). An illustration of

the data-generation mechanism is provided in Figure 1. The starting date is

fixed for all product units. However, the installation dates (or sales dates) are

generally random across the product population. The randomness in the left-

truncation time results from the random installation dates. If a unit is installed

before the date on which data begin to be collected, then the date are subject to

left truncation. Furthermore, if the unit’s lifetime is longer than the truncation

time, it is a left-truncated observation (possibly subject to censoring); otherwise,

the unit is truncated and unobserved, and the existence of the unit is unknown.

The untruncated population corresponds to those units whose installation dates

are later than the starting date of the data collection. The same data format is

common in survival studies of clinical trials. For additional examples, see Tsai,

Jewell and Wang (1987), Kevin et al. (2011), and Su and Wang (2012), among

others.

Most of the literature on reliability data analyses has focused on right-

censored data, because life tests are an important source of reliability data.

However, the problem of left-truncation has begun attracting greater interest,

owing to its prevalence in the increasingly important area of asset management.

The recent literature on left-truncated and right-censored data features para-

metric models and related inferences. Hong, Meeker and Mccalley (2009) fitted
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a Weibull distribution to lifetime data of high-voltage power transformers from

an energy company in the United States. The maximum likelihood (ML) esti-

mates were obtained through direct maximization. An alternative method for

ML estimation of the Weibull distribution is the EM algorithm developed by Bal-

akrishnan and Mitra (2012). Parametric inferences for other distributions, such

as the lognormal and gamma distributions, have been developed by Balakrishnan

and Mitra (2011, 2013, 2014) and Emura and Shiu (2016), among others.

A problem with parametric inferences is that the estimation results, such as

the reliability function and lifetime quantiles, may be sensitive to distributional

assumptions. In addition, it may be difficult, if not impossible, to check the distri-

butional assumption in the presence of heavy truncation (Kevin et al. (2011)). In

view of these deficiencies, it is desirable to use nonparametric inference methods

that impose fewer assumptions on the lifetimes. In this line, Turnbull (1976) pro-

posed a nonparametric maximum likelihood estimation (NPMLE) procedure for

arbitrarily censored and truncated data. He further developed a self-consistent

algorithm to compute the NPMLE, which turns out to be a special case of the

EM algorithm. Frydman (1994) corrected Turnbull’s algorithm to make it appli-

cable when the data are truncated and interval censored. The consistency and

efficiency of the NPMLE have been established in a number of studies, such as

Wang, Jewell and Tsai (1986) and Tsai, Jewell and Wang (1987). The EM algo-

rithm converges quite slowly if the collected failure data are heavily truncated,

and it can be sensitive to the initial values. With an appropriate adjustment

of the definition of the risk set, Tsai, Jewell and Wang (1987) showed that the

NPMLE of the survivor function and the cumulative failure rate can be obtained

directly using the analogues of the Kaplan–Meier and Nelson–Aalen estimators.

In this study, we propose a nonparametric inference for left-truncated and

right-censored data, using splines. A spline is a piecewise polynomial function

that possesses a high degree of smoothness where the polynomial pieces connect.

These connection points are known as knots. Once the knots are given, it is

easy to compute the splines recursively for any desired degree of the polynomial

(Schumaker (2007, Chap. IV)). The main advantages of spline interpolation are

its stability and calculation simplicity. When applied to a nonparametric estima-

tion, the number of parameters in the spline is usually much smaller than those

of traditional nonparametric methods. This makes the estimation easier and

reduces the computation time. Therefore, spline-based nonparametric estima-

tions have received considerable attention in recent years. In Rosenberg (1995),

nonnegative B-splines, also called M -splines, are applied to estimate the haz-
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ard function of censored survival data, where the nonnegativity is guaranteed by

the nonnegativity coefficients. Specifically, the M -splines can be considered to

be normalized versions of the B-splines, with a unit integral within the domain

(Ramsay (1988)). Monotonic B-splines are also widely applied in the literature

(e.g., Lu, Zhang and Huang (2009); Xie et al. (2018)), where the monotonic-

ity is guaranteed by the nondecreasing order of the coefficients. On the other

hand, I-splines, with bases that are integrals of the B-splines (Ramsay (1988)),

are used to approximate the cumulative distribution function (CDF) in Wu and

Ying (2012). I-splines naturally yield monotonicity with nonnegative coefficients,

whereas B-splines require a nondecreasing order of coefficients to ensure mono-

tonicity. Therefore, I-splines are often used to approximate monotone functions,

which may simplify the numerical computation (Wu and Ying (2012); Hong et al.

(2015); Lu, Zhang and Huang (2007)).

Motivated by the promising performance, spline basis functions are adopted

for left-truncated and right-censored data. Although splines come in many dif-

ferent forms, they are closely related (Ramsay (1988); Lu, Zhang and Huang

(2007)). Using B-splines to approximate the failure rate is the same as using

M -splines for the failure rate, which, in turn, is the same as using I-splines to

approximate the cumulative failure rate. We use B-splines with nonnegative

constraints on the spline coefficients to approximate the failure rate, and use

I-splines to approximate the cumulative failure rate. We do not approximate

the cumulative distribution and reliability function, because the approximation

induces a normalization constraint on the spline function, which complicates the

ML estimation. We show that the convergence rate of the estimated failure rate

is faster than O(n1/3). Based on the inferential results, we develop spline-based

two-sample tests in order to compare two left-truncated and right-censored data

sets. The results can be used to compare the reliability of similar products.

The rest of the paper is organized as follows. Section 2 formulates the spline-

based likelihood estimation problem for left-truncated and right-censored data.

The asymptotic properties of the spline estimators are presented in Section 3.

Based on the asymptotic results, a nonparametric two-sample test is proposed to

compare lifetime data from two products in Section 4. Section 5 conducts simu-

lation studies to evaluate the finite-sample performance of the spline estimators.

Section 6 applies the proposed spline methods to the power transformer example

in Hong, Meeker and Mccalley (2009). Technical lemmas and the proofs of the

theorems are provided in the Appendix.
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2. B-Spline Approximation of the Failure Rate

Consider the lifetime T of a product unit with reliability R(t), failure rate

λ0(t), and cumulative failure rate Λ0(t), for t ≥ 0. The lifetime T is subject to

left truncation with truncation time L, for L ≥ 0. A unit is observed only when

T > L. The unit is further subject to right censoring, with random censoring

time C and C > L. If the observation window of the product is a fixed interval,

then C − L is equal to the length of the interval if L > 0. See Figure 1 for

an illustration. In terms of a calendar date, we let TI be the installation date

of a random unit, and let [Ts, Te] be the obvervation interval. Then, in terms

of product age, the left-truncation time is L = max{0, Ts − TI} and the right-

censoring time is C = max{0, Te − TI}. Naturally, the truncation and censoring

times are bounded, because TI cannot be earlier than the product launch date

(Shen and Yan (2008); Shen (2014); Balakrishnan and Mitra (2012)). Therefore,

we let [L, L̄] and [C, C̄] be the respective supports of L and C, and assume

L̄, C̄ < ∞. Furthermore, suppose T and (L,C) are independent. Because of

the left-truncation and right-censoring, the lifetime information is only available

within the interval [L, C̄]. As a result, the failure rate of T is identifiable in

[L, C̄].

When T ≥ L, the unit enters our observation, and the observed lifetime is

denoted as Y = min(T,C), Y ≥ L. Let δ = I(T ≤ C) be the censoring indicator.

That is, δ = 1 if the lifetime is observed, and 0 if censored. The observation

from the unit is thus X = (L, Y, δ). Let Xi = (Li, Yi, δi), for i = 1, . . . , n,

be n independent and identically distributed (i.i.d.) copies of X, and let D =

{X1, X2, . . . , Xn}. We are interested in estimating the failure rate λ(t) using D.

Here, it suffices to consider the conditional log-likelihood (Wang (1987)),

L(λ|D) =

n∑
i=1

{
δi lnλ(Yi)−

∫ Yi

Li

λ(s)ds

}
.

In order to implement the spline approximation, we first identify a finite closed

interval [a, b]. The guideline for choosing a and b is that they should include all

observed Li and Yi. In an application, we can let a = min{Li, i = 1, . . . , n} and

b = max{Yi, i = 1, . . . , n}. Given [a, b], let T = {tj}mn+2l
1 , with

a = t1 = · · · = tl < tl+1 < · · · < tl+mn
< tl+mn+1 = · · · = tmn+2l = b,

be a sequence of knots that partition [a, b] into mn + 1 subintervals Jj = [tl+j ,

tl+j+1), for j = 0, 1, . . . ,mn. To ensure the large-sample property, as discussed

in the next section, the number mn of inner knots is usually chosen as O(nν),
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for some ν ∈ (0, 1/2). A common choice is mn = dn1/3e; see, for example, Lu,

Zhang and Huang (2007, 2009) and Hua and Zhang (2012). With fixed mn,

the inner knots {tj}l+mn

l+1 can be either equally spaced (Lu, Zhang and Huang

(2007)), placed at the corresponding quantiles of the distinct observation times

{Yi}n1 (Hua and Zhang (2012)), or placed at the Chebyshev points. Based on

our simulation experience, as well as the simulation experiments reported in the

literature, such as Zhao et al. (2013), the estimation results are not sensitive to

the selection of mn and the placement of the knots. For ease of implementation,

we recommend mn = dn1/3e and equally spaced inner knots.

From the knot sequence, we can construct qn = mn + l spline bases, denoted

as Bk, for 1 ≤ k ≤ qn, using a recursive formula (Schumaker (2007, Chap. IV)).

The class of polynomial splines of order l with the knot sequence T is the linear

space spanned by these bases (Schumaker (2007, Thm. 4.18)). To satisfy the

nonnegativity constraint of the failure rate approximation, we single out the

following subclass of ψl,T :

ψl,T =

{
qn∑
k=1

αkBk : αk ≥ 0

}
.

According to Theorem 5.9 of Schumaker (2007), ψl,T is a class of nonnegative

polynomial splines on [a, b]. The nonnegativity of the B-splines is guaranteed by

the nonnegative coefficients. For each h(·) ∈ ψl,T , h is a polynomial of order l in

the interval Jj for 0 ≤ j ≤ mn, and h is l − 2 times continuously differentiable

on [a, b]. Define Ik(t) =
∫ t
a Bk(s)ds. Using the spline approximation, the log-

likelihood function can be written as

L(α|D) =

n∑
i=1

{
δi ln

[
qn∑
k=1

αkBk(yi)

]
+

qn∑
k=1

αkIk(Li)−
qn∑
k=1

αkIk(yi)

}
. (2.1)

Let α̂ = (α̂1, . . . , α̂qn) be the spline coefficients that maximize (2.1), subject

to the nonnegativity constraints αk ≥ 0, for k = 1, . . . , qn. The spline log-

likelihood function (2.1) is concave with respect to the unknown coefficients.

Therefore, the spline estimation problem is equivalent to a nonlinear convex pro-

gramming problem, subject to linear inequality constraints. The optimization

can be easily solved by most software packages for scientific/statistical compu-

tation. Based on α̂, the spline-based likelihood estimator for the failure rate is

λ̂n(t) =
∑qn

k=1 α̂kBk(t).
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3. Statistical Properties

In this section, we study the statistical properties of the spline-based likeli-

hood estimator α̂, with the L2-metric d given by

d(λ1, λ2) = ‖λ1 − λ2‖2 =

{∫
|λ1(t)− λ2(t)|2dF ∗(t)

}1/2

,

where F ∗(t) = P (L ≤ T ≤ C, T ≤ t) and λ1, λ2 are nonnegative functions. To en-

sure asymptotic convergence, we first require mn = O(nν), for some ν ∈ (0, 1/2)

(Stone (1994)). Below, we list the technical assumptions for the theoretical re-

sults of the proposed spline-based NPMLE.

• Condition 1: The maximum spacing of the knots satisfies

∆ = max
l+1≤j≤mn+l+1

|tj − tj−1| = O(n−ν).

Moreover, there exists a constant M > 0, such that ∆/δ ≤M uniformly in

n, where δ = minl+1≤j≤mn+l+1 |tj − tj−1|.

• Condition 2: The interval [a, b] satisfies P ({Y ∈ [a, b]}) = 1.

• Condition 3: There exists a constant C0 > 0, such that λ0(t) ≥ C0, for

t ∈ [a, b]. In addition, the true failure rate λ0 is differentiable up to order r,

and all derivatives are uniformly bounded by a constant M in [a, b], where

r ≥ 1.

Remark 1. Condition 1 is a weak restriction on the knot sequence, and is satis-

fied when equally spaced knots are used. This condition is also adopted by Stone

(1994). Condition 2 requires that [L, C̄] ⊂ [a, b]. Condition 3 is needed in the

proof of the asymptotic normality in Theorem 3. It usually holds in practice.

Product lifetime is a nonnegative and continuous random variable. Continu-

ous parametric lifetime distributions, such as Weibull, lognormal, and inverse

Gaussian distributions, have been widely used to model such lifetime data; see

Balakrishnan and Mitra (2011, 2012, 2013), among others. The parametric distri-

butions all have smooth hazard rate functions. As an extension from parametric

to nonparametric estimations, the smoothness assumption in Condition 3 is nat-

ural and reasonable. This assumption is also used in Wang (2005) and Zhao and

Zhang (2017).

Theorem 1 (Consistency). Suppose that Conditions 1–3 hold. Then, the esti-

mated failure rate λ̂n converges to the true failure rate λ0, in probability; that is,
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‖λ̂n − λ0‖2 →p 0, as n→∞.

Theorem 2 (Rate of convergence). Suppose that Conditions 1–3 hold. If ν is

chosen to be 1/(2r + 1), then

nr/(2r+1)‖λ̂n − λ0‖2 = Op(1).

Remark 2. Theorem 2 shows that the spline likelihood estimators have a con-

vergence rate that is slower than n−1/2, but faster than n−1/3.

To discuss the asymptotic distributions of functions of λ̂n, define

Hr =
{
h(·) : |h(r−1)(s)− h(r−1)(t)| ≤ c0|s− t| for all a ≤ s, t ≤ b

}
,

where h(r−1) is the (r − 1)th derivative of h, and c0 > 0 is a constant. Let Uλ
denote a neighborhood of the failure rate λ0. We also define a sequence of maps

Gn, mapping Uλ in the parameter space for λ into L∞(Hr), as

Gn(λ)[h] = n−1
n∑
i=1

{
δi
h(Yi)

λ(Yi)
−
∫ Yi

Li

h(t)dt

}
= Pnφ(λ;X)[h].

The limit map G : Uλ 7→ L∞(Hr) is

G(λ)[h] = Pφ(λ;X)[h] = P

{
δ
h(Y )

λ(Y )
−
∫ Y

L
h(t)dt

}
,

where X = (L, Y, δ), Pn and P denote the empirical measure and probability

measure, respectively, with Png = n−1
∑n

i=1 g(Xi) and Pg =
∫
gdP .

Theorem 3 (Asymptotic normality). Suppose Conditions 1–3 hold. Then, for

h ∈ Hr,
√
n

∫ b

a

h(t)

λ2
0(t)
{λ̂n(t)− λ0(t)}dF ∗(t) =

√
n(Gn −G)(λ0)[h] + op(1). (3.1)

Remark 3. Theorem 3 does not require that λ̂n be
√
n-consistent. Because we

assume λ0 is differentiable, it is easy to see that F ∗ is differentiable, with its

derivative denoted as f∗(t). Consider the situation L = 0 and f∗(t) > 0, for

all t ∈ [0, C̄]. For any fixed time τ ∈ [0, C̄], choose h(t) = I(0,τ ](t)λ
2
0(t)/f∗(t)

to see that the estimated cumulative hazard Λ̂n(τ) is
√
n-consistent for Λ0(τ).

Furthermore, a routine evaluation of the right-hand side of (3.1) shows that the

asymptotic variance of Λ̂n(τ) is the same as that for the NPMLE of Λ0 given in

Wang, Jewell and Tsai (1986). This means that the proposed method leads to

an efficient estimation of the cumulative failure rate. Moreover, the asymptotic

normality can be used to construct new tests for the problem of multi-sample

nonparametric comparisons of the reliability of left-truncated and right-censored
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data, as shown in the next section.

4. Nonparametric Tests

As a result of technological advances and the availability of multiple suppli-

ers, a fleet of assets usually consists of different brands or different generations

of the same brand (Ye, Hong and Xie (2013)). These differences naturally strat-

ify the field failure data into several categories. The transformer failure data

analyzed in Hong, Meeker and Mccalley (2009) are a typical example. It is im-

portant that we know whether the categories might vary in terms of product

reliability. This knowledge can be used to select a more reliable product. If

there is no difference in reliability, the field data can be combined to achieve

a more accurate estimation of the product lifetime distribution. In the litera-

ture on left-truncated and right-censored data, several extensions of nonpara-

metric tests have been developed for two-sample comparisons. Examples include

the Wilcoxon test, weighted Kaplan–Meier (WKM) statistic (Shen (2007)), and

weighted log-rank statistic (Shen (2014)). These tests are based on estimates

of the failure rates, cumulative failure rates, or survival functions. Similarly, we

use the spline-based smooth estimator of the failure rate developed above, and

propose a flexible class of nonparametric test statistics based on the integrated

weighted differences between the two estimated failure rates. We examine the

performance of the estimators using the weighted Kaplan–Meier statistic (Shen

(2007)) in Section 5.

Consider two homogeneous groups. In group k, for k = 1, 2, the ith observed

lifetime is X
(k)
i = (L

(k)
i , Y

(k)
i , δ

(k)
i ). The observed data of group k are Dk =

{X(k)
i , i = 1, 2, . . . , nk}. Let n = n1 + n2. Assume that the failure rate and the

cumulative failure rate functions of units from group k are λk and Λk, respectively.

The goal is to test H0 : λ1 = λ2 = λ0, where λ0 denotes the unknown common

failure rate function when H0 is true. The test statistics proposed here capitalize

on the spline-based estimator developed in Section 3. Let λ̂
(k)
n (t) and λ̂n(t) be

the B-spline ML estimators of λk(t) and λ0(t), respectively, based on Dk and the

pooled data D = D1 ∪D2. Motivated by a method commonly used in survival

analyses (e.g., Pepe and Fleming (1989); Balakrishnan and Zhao (2009)), we

propose the following test statistic

Un =
√
n

∫ b

a
Wn(t){λ̂(1)

n (t)− λ̂(2)
n (t)}dF ∗n(t), (4.1)
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whereWn is a bounded weight process (Zhao and Zhang (2017); Balakrishnan and

Zhao (2009); Andersen et al. (1993, Chap. V)), and F ∗n(t) = (
∑n

i=1 δiI(Yi ≤ t))/
(
∑n

i=1 δi). The presence of the weight process Wn(t) makes the above statistic

flexible. A simple and natural choice for the weight is W
(1)
n (t) = 1. Another

natural choice is W
(2)
n (t) = Zn(t) = 1/n

∑n
i=1 I(Li < t ≤ Yi), in which the

case weights are proportional to the number of subjects under observation. In

addition, one may choose the weight process as

W (3)
n (t) =

Zn1
(t)Zn2

(t)

Zn(t)
, W (4)

n (t) = 1− Zn(t),

where Znk(t) is defined as Zn(t), with the summation over the subjects in sample

k only. Weight processes similar to W
(3)
n and W

(4)
n have been used for recurrent

event data (e.g., Andersen et al. (1993, Chap. V)). Now, we state the asymptotic

distribution of Un.

Theorem 4. Suppose λ1 = λ2 = λ0 and Conditions 1–3 hold for λ0 and the

spline estimators λ̂
(1)
n , λ̂

(2)
n , λ̂n. Furthermore suppose Wn are bounded weight pro-

cesses, and that there exists a bounded function W (t), such that W ∈ Hr, and[∫ b

a
{Wn(t)−W (t)}2dt

]1/2

= op

(
n−1/(2(1+2r))

)
.

In addition, suppose that n1/n → p as n → ∞, with 0 < p < 1. Then, Un has

an asymptotic normal distribution N(0, σ2
w), where

σ2
w =

1

p(1− p)
E{φ2(λ0;X)[hw]},

which can be estimated consistently by

σ̂2
w =

n

n1n2

n∑
i=1

{φ2(λ̂n;Xi)[ĥw]},

with hw(t) = W (t){λ0(t)}2 and ĥw(t) = Wn(t){λ̂n(t)}2.

Remark 4. For the asymptotic normality of the proposed test statistics, we do

not need the bounded Lipschitz condition for the selection of the weight processes,

which is required by Balakrishnan and Zhao (2009).

5. Simulation Studies

To verify the performance of the proposed spline-based estimators under

finite samples, a Monte Carlo simulation is conducted. In the simulation study,

we choose cubic B-splines with order l = 4, which are popular in the literature
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(Lu, Zhang and Huang (2009); Hong et al. (2015); Xie et al. (2018)). In addition,

mn is set as dn1/3e. The other simulation settings follow the work of Balakrishnan

and Mitra (2012).

The starting date Ts of data collection is fixed as 1980, and the end date Te
is 2008. Let n be the number of observed units, and let p be the proportion of

truncated observations; that is, 100p% of the observed units are installed before

1980. Let TI,i be the installation time of unit i, for i = 1, . . . , n, which are

assigned as follows. The earliest installation date T I is 1960. For the period

1960–1979, a proportion of 0.15 is attached to each of the first five years, and the

remainder is distributed equally over the remaining years of this period. For the

period 1980–1995, a proportion of 0.1 is attached to each of the first six years,

and a proportion of 0.04 is attached to each of the remaining years of this period.

Accordingly, the left-truncation time of unit i is Li = max{0, Ts − TI,i}, and the

right-censoring time of unit i is Ci = max{0, Te − TI,i}, for i = 1, . . . , n. For

additional details, see Balakrishnan and Mitra (2012).

Four distributions are considered for the product lifetime T : Weibull, log-

normal, a mixture of two Weibull distributions, and a mixture of lognormal and

gamma distributions (Balakrishnan and Mitra (2012, 2011, 2013)). The gener-

ated data are fitted using the proposed spline method and Turnbull’s NPMLE

(Tsai, Jewell and Wang (1987)). Here, we consider two fixed proportions of

truncated observations (i.e., p = 40% and p = 80%) and two sample sizes (i.e.,

n = 100 and 200). Based on 50,000 Monte Carlo replications, the squared bi-

ases and the mean squared errors (MSEs) of the reliability estimators using the

two methods are computed. The results are presented in Figures 2–5. From

the plots, we can see that the squared biases and the MSEs of the spline-based

reliability estimators are smaller than those of Turnbull’s NPMLE for both pro-

portions of truncated observations. Furthermore, a comparison of Figures 2 and

3 (or Figures 4 and 5) shows that when the sample size n doubles, the MSEs

of the spline-based reliability estimators drop substantially, which supports the

asymptotic consistency of these estimators (Theroem 1).

Next, we examine the finite-sample properties of the proposed two-sample

test statistic Un. Assume the lifetimes of the units in the two groups follow

Weibull distributions, with different values of the scale parameter α and shape

parameter β. To guarantee truncation and censoring, we generate the data using

the simulation setting of Balakrishnan and Mitra (2012) for each group. The null

hypothesis H0 : λ1 = λ2 = λ0 is equivalent to α1 = α2 and β1 = β2. If the null

is true, then Tn = Un/σ̂w is approximately standard normal, where Un in (4.1)
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(a) T ∼Weibull(80, 1.5). (b) T ∼ lnN(3, 5).

(c) T ∼ 0.5Weibull(80, 1.5) + 0.5Weibull(80, 0.8). (d) T ∼ 0.8 lnN(4.5, 3.5) + 0.2Gamma(2.5, 30).

Figure 2. Comparisons of the spline estimator and the NPMLE (Turnbull (1976)) for
estimating the reliability function when n = 100 and p = 40%.

can be expressed as

Un =

√
n∑n

i=1 δi

n∑
i=1

δiWn(Yi)
{
λ̂1(Yi)− λ̂2(Yi)

}
,

and σ̂w is given in Theorem 4. Let TH denote the WKM statistic developed by

Shen (2007). Here, we evaluate the performance of Tn and compare it with that

of TH . We consider two scenarios:

• Case 1. Two groups, with the same shape parameter and different scale

parameters.

• Case 2. Two groups, with the same scale parameter and different shape

parameters.
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(a) T ∼Weibull(80, 1.5). (b) T ∼ lnN(3, 5).

(c) T ∼ 0.5Weibull(80, 1.5) + 0.5Weibull(80, 0.8). (d) T ∼ 0.8 lnN(4.5, 3.5) + 0.2Gamma(2.5, 30).

Figure 3. Comparisons of the spline method and the NPMLE (Turnbull (1976)) for
estimating the reliability function when n = 200 and p = 40%.

In Case 1, the two failure rates do not overlap, whereas the true failure rates

intersect in Case 2. For each case, we consider two sample sizes, n1 = n2 = 100

and 200, respectively. As with Section 4, we choose the four weight processes

W (1)
n (t) = 1, W (2)

n (t) = Zn(t) =
1

n

n∑
i=1

I(Li < t ≤ Yi),

W (3)
n (t) =

Zn1
(t)Zn2

(t)

Zn(t)
, W (4)

n (t) = 1− Zn(t),

where Znk(t) is defined as Zn(t), with the summation over the subjects in group

k only. All results reported here are based on 50,000 Monte Carlo replications.

Tables 1 and 2 present the estimated sizes and powers, respectively, of the pro-

posed test statistics Tn and the WKM statistic TH (Shen (2007)), respectively,
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(a) T ∼Weibull(80, 1.5). (b) T ∼ lnN(3, 5).

(c) T ∼ 0.5Weibull(80, 1.5) + 0.5Weibull(80, 0.8). (d) T ∼ 0.8 lnN(4.5, 3.5) + 0.2Gamma(2.5, 30).

Figure 4. Comparisons of the spline method and the NPMLE (Turnbull (1976)) for
estimating the reliability function when n = 100 and p = 80%.

at a significance level of α = 0.05 for the different cases and four weight pro-

cesses. As expected, the powers of all test statistics increase with the sample

size. Under H0, when the proportion of truncated observations is serve (40%),

the proposed test Tn outperforms TH . For Case 1, Table 1 shows good power

properties of the proposed test Tn for the four weight processes. The proposed

test with weight W
(1)
n (t) has the best power performance. On the other hand,

the powers rely heavily on the choices of the weight processes in Case 2, as can be

seen from Table 2. The simulation results suggest that the proposed test Tn with

W
(4)
n (t) has the best power performance. The differing performance of the four

test statistics is due to the intersection between the two failure rate functions.

The difference between the failure rate functions changes sign at the intersection

point. If the weight Wn is approximately the same at the two sides of the inter-
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(a) T ∼Weibull(80, 1.5). (b) T ∼ lnN(3, 5).

(c) T ∼ 0.5Weibull(80, 1.5) + 0.5Weibull(80, 0.8). (d) T ∼ 0.8 lnN(4.5, 3.5) + 0.2Gamma(2.5, 30).

Figure 5. Comparisons of the spline method and the NPMLE (Turnbull (1976)) for
estimating the reliability function when n = 200 and p = 80%.

section point, the value of Un will be small, leading to poor powers of the test.

The weight W
(4)
n (t) puts unequal weight on the two sides and, thus, exhibits the

best performance. From the simulation, we recommend using W
(4)
n (t) for the

test.

6. A Real Example: Power Transformer Failure Data

The power transformer is one of the most important components in a power

grid. Unexpected failures of transformers cause power a shortage and lead to

large economic losses. Therefore, it is important to know the failure behaviors of

a transformer in the field. Such information can be extracted from field failure

data of the transformers. However, because of the long lifetime of a transformer
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Table 1. Estimated sizes and powers of Tn = Un/σ̂w and TH with a Weibull distribution
(α, β), where the shape parameters β1 = β2 = 1.5, and the scale parameters α1 =

30, α2 = 30, 40, 80. Here, W
(k)
n are the weight processes, k = 1, 2, 3, 4.

Tn TH

α1/α2 W
(1)
n W

(2)
n W

(3)
n W

(4)
n α1/α2 W

(1)
n W

(2)
n W

(3)
n W

(4)
n

n1 = n2 = 100
30/30 0.058 0.052 0.052 0.056 30/30 0.065 0.062 0.062 0.064
30/40 0.697 0.583 0.585 0.650 30/40 0.705 0.657 0.657 0.683
30/80 1.000 0.981 0.981 0.997 30/80 1.000 1.000 1.000 1.000

n1 = n2 = 200
30/30 0.052 0.049 0.049 0.053 30/30 0.060 0.058 0.058 0.061
30/40 0.769 0.718 0.720 0.750 30/40 0.827 0.654 0.670 0.716
30/80 1.000 1.000 1.000 1.000 30/80 1.000 1.000 1.000 1.000

Table 2. Estimated sizes and powers of Tn = Un/σ̂w and TH with a Weibull distribution
(α, β), where the scale parameters α1 = α2 = 30, and the shape parameters β1 =

1.5, β2 = 1.5, 1.2, 0.8, 0.5. Here, W
(k)
n are the weight processes, k = 1, 2, 3, 4.

Tn TH

β1/β2 W
(1)
n W

(2)
n W

(3)
n W

(4)
n β1/β2 W

(1)
n W

(2)
n W

(3)
n W

(4)
n

n1 = n2 = 100
1.5/1.5 0.058 0.052 0.052 0.056 1.5/1.5 0.065 0.062 0.062 0.064
1.5/1.2 0.264 0.073 0.078 0.401 1.5/1.2 0.093 0.082 0.085 0.191
1.5/0.8 0.643 0.189 0.192 0.981 1.5/0.8 0.202 0.119 0.122 0.411
1.5/0.5 0.499 0.325 0.377 0.998 1.5/0.5 0.407 0.421 0.473 0.813

n1 = n2 = 200
1.5/1.5 0.052 0.049 0.049 0.053 1.5/1.5 0.060 0.058 0.058 0.061
1.5/1.2 0.399 0.080 0.085 0.627 1.5/1.2 0.265 0.111 0.092 0.380
1.5/0.8 0.870 0.201 0.214 0.999 1.5/0.8 0.394 0.157 0.168 0.553
1.5/0.5 0.668 0.477 0.565 1.000 1.5/0.5 0.637 0.558 0.563 0.895

and the recent development of data recording systems, transformer lifetime data

are left truncated and right censored. Figure 6 displays the data set “MC Old65,”

which are recorded in operating time (Hong, Meeker and Mccalley (2009)).

The data set “MC Old65,” of 80 transformers and the installation dates of

these transformers are recorded. The starting year of observation Ts is 1980,

and the end date for data collection date Te is 2008. The earliest installation

date T I is 1950 and 69 transformers are installed before 1980. As a result, their

lifetime observations are left-truncation observed. The proportion of truncated

observations of tranformers is 86%. In the data set, 65 transformers continue to

function after 2008 and the proportion of censored observed transformers is 81%.
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Figure 6. Service-time event plot of a subset of the transformer lifetime data: “o” repre-
sents the install time, “×” represents the failure time, and “.” represents the censored
time.

We use the proposed spline method with mn = 5 equally spaced inner knots,

Turnbull’s NPMLE, and the Weibull distribution (Hong, Meeker and Mccalley

(2009); Balakrishnan and Mitra (2012)) to fit the data. Figure 7 presents the

estimated reliability functions based on the three methods. We also tried mn = 4

and 6 (not shown); here, the estimated reliability function is almost the same as

that with mn = 5. In general, the spline estimate and the empirical estimate

agree quite well. The empirical estimate becomes constant when t is greater

than the largest failure time, which is 42.1 in this example. By contrast, the

spline method estimates the reliability function up to the largest observation

time, which corresponds to a censoring time of 58. The wider range shows the

greater flexibility of the spline method. Moreover, it is clear that spline-based

estimator is more smooth. The comparisons of the spline-based estimator and the

Weibull estimator show that the spline-based method can be used to assess the

goodness-of-fit of a parametric model. To improve the quality of the uncertainty

in the spline estimates, the random weighted bootstrap procedure (Hong, Meeker

and Mccalley (2009)) with 50,000 resamples is used to construct a pointwise 95%

confidence band of the reliability function, as shown in Figure 8.

Hong, Meeker and Mccalley (2009) also collected the failure times of trans-

formers from the same manufacturer as “MC Old65” but different generations.
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Figure 7. Comparisons of estimators for the reliability function based on “MC Old65”
data (Hong, Meeker and Mccalley (2009)): The stair line is the Trunbull estimate, the
dash line is for the Weibull estimate, and the chain line is the spline estimate.

Figure 8. Spline estimates of the reliability function based on “MC Old65” (Hong,
Meeker and Mccalley (2009)), and the pointwise 95% two-sided confidence band based
on 50,000 simulations.

We choose the data set “MC Old55” as the second group. The difference be-

tween the two groups is the type of insulation. The problem of interest here is

to compare the two groups and check whether the data from the two groups can

be merged. The test statistics (4.1) developed in Section 4 are used for the com-

parison. We obtain Tn = 7.643, 10.392, 6.028, and 4.653, with Wn(t) = W
(k)
n (t),

k = 1, 2, 3, 4, defined in Section 5. All values correspond to p-values � 0.0001.

The proposed tests suggest that the two groups are significantly different. There-

fore, the effect of insulation type cannot be ignored, and the two data sets

“MC Old65” and “MC Old55” cannot be combined.
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Appendix

Proof of Theorem 1 (Consistency)

The log-likelihood function for λ is

L(λ|D) =

n∑
i=1

{δi lnλ(Yi)− [Λ(Yi)− Λ(Li)]} .

With the knot sequence T = {tj}mn+2l
1 specified in Section 2, there exists a spline

λn(t) ∈ ψl,T with order l ≥ r + 2 such that ‖λn(t) − λ0‖∞ = supt∈[a,b] |λn(t) −
λ0(t)| = O(n−νr), according to Corollary 6.21 of Schumaker (2007, p. 227).

Choose a positive function hn ∈ ψl,T such that ‖hn‖22 = O(n−2νr + n−(1−ν)/2).

Therefore, for any α > 0, ‖λn−λ0 +αhn‖22 = O(n−2νr+n−(1−ν)/2) for sufficiently

large n.

Denote nMn(λ) = L(λ|D) and Hn(α) = Mn(λn+αhn). The first and second

derivatives of Hn are

H ′n(α) = n−1
n∑
i=1

{
δihn(Yi)

λn(Yi) + αhn(Yi)
−
∫ Yi

Li

hn(x)dx

}
,

H ′′n(α) = −n−1
n∑
i=1

δih
2
n(Yi)

[λn(Yi) + αhn(Yi)]2
< 0.

Thus H ′n(α) is a non-increasing function. Therefore, to prove Theorem 1, it is

sufficient to show that, for any α0 > 0, H ′n(α0) < 0 and H ′n(−α0) > 0 except on

an event with probability converging to zero. Then λ̂n must be between λn−α0hn
and λn + α0hn with probability converging to one, so that P (‖λ̂n − λn‖2 ≤
α0‖hn‖2)→ 1 as n→∞. We first show H ′n(α0) < 0. Express H ′n(α0) as

H ′n(α0) = (Pn − P )

{
δhn(Y )

λn(Y ) + α0hn(Y )

}
︸ ︷︷ ︸

In1

− (Pn − P )

{∫ Y

L
hn(x)dx

}
︸ ︷︷ ︸

In2
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+ P

{
δhn(Y )

λn(Y ) + α0hn(Y )
−
∫ Y

L
hn(x)dx

}
︸ ︷︷ ︸

In3

.

For the term In1, we firstly prove there exists a positive constant c and a

positive integer N such that when n > N , ‖1/(λn + α0hn)‖∞ ≤ c. Given η > 0,

define the class Fη,n = {λ : λ ∈ ψl,T , d(λ, λn) ≤ η}. There exists a positive

integer N1 such that when n > N1, λn +α0hn ∈ Fη,n. According to Condition 1,

there exists a positive integer N(> N1) such that for n > N ,

d(λ, λ0) ≤ d(λ, λn) + d(λn, λ0) ≤ η +O(N−µr) < 2η,

where λ ∈ Fη,n, n > N1. Let Fη = ∪n≥NFη,n and then we have λn + α0hn ∈ Fη,
for n > N . Corollary 6.21 of Schumaker (2007, p. 227) shows that for any

function λ ∈ Fη, λ has uniformly bounded derivatives up to order l − 1. Then

according to Corollary 2.7.4 of van der Vaart and Wellner (1996, p. 158), we can

find that given ε such that 0 < ε ≤ η, Fη can be covered by a set of ε-brackets

{[λk, λ̄k] : k = 1, 2, . . . , (1/ε)c0/l}, where c0 is a constant depending on l. For

any λ ∈ Fη, there exists a bracket [λk, λ̄k], such that λk(t) ≤ λ(t) ≤ λ̄k(t) for

all t ∈ [a, b], where d2(λk, λ̄k) =
∫
|λk − λ̄k|2dF ∗(t) ≤ ε2, k = 1, 2, . . . , (1/ε)c0/l.

Then we have

d(λk, λ0) ≤ d(λk, λ) + d(λ, λn) + d(λn, λ0) < ε+ 2η,

where λ ∈ Fη, n > N . Then by the converse of Lemma 7.1 from Wellner and

Zhang (2007, p. 2140), we get supt∈[a,b] |λk − λ0| ≤ c1(ε+ 2η)2/3, c1 is constant.

Since λ0 is positive and bounded on [a, b], there exists c2 > 0 such that λk >

c2 > 0. Similarly , there exists a positive c3 such that λ̄k > c3 > 0. That means

λk and λ̄k have the positive lower bounds. Therefore, there exists a positive

constant c such that ‖1/(λn + α0hn)‖∞ ≤ c, for n > N . Since hn ∈ ψl,T with

‖hn‖22 = O(n−2νr + n−(1−ν)/2), and ‖1/(λn + α0hn)‖∞ ≤ c < ∞ for n > N , we

conclude from Lemma 11 of Huang (1998) that

sup
hn∈ψl,T

|(Pn − P )(δhn)/(λn + α0hn)|
‖hn‖2

= OP

(
n−(1−ν)/2

)
.

Moreover, for the second term, we conclude similarly from Lemma 11 of Huang

(1998) that

sup
hn∈ψl,T

∣∣∣(Pn − P )
{ ∫ Y

L hn(x)dx
}∣∣∣

{E[
∫ Y
L h2

n(t)dt]}1/2
= OP

(
n−(1−ν)/2

)
,

where E[
∫ Y
L h2

n(t)dt]�‖hn‖22.Hence, In1+In2 =OP
(
n(−(1−ν))/2(n−νr+n−(1−ν)/4)

)
.
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For the third term, since λ0 is the maximum of M(λ), the first derivative is

zero at λ0. Then we have

P

{
δhn(Y )

λ0(Y )
−
∫ Y

L
hn(x)dx

}
= 0,

and by adding and subtracting terms,

In3 = P

{
δhn(Y )

λn(Y ) + α0hn(Y )
− δhn(Y )

λ0(Y )

}
.

Define m(s) = 1/(λ0 + s∆), where ∆ = λn − λ0 + α0hn, 0 ≤ s ≤ 1. By the

Taylor expansion, there exists θ ∈ (0, 1) such that

m(s) = m(0) +m′(θ)s =
1

λ0
+

(
− ∆

(λ0 + θ∆)2

)
s.

Therefore,

In2 ≤ E
{
− ∆

(λ0 + θ eta2

}
hn.− Eh2

n = O(n−2νr + n−(1−ν)/2).

Since n−2νr + n−(1−ν)/2 > n−1/2 > n−(1−ν), we have

H ′n(α0) ≤ OP
(
n−(1−ν)/(2)(n−νr + n−(1−ν)/4)

)
−O(n−2νr + n−(1−ν)/2) < 0,

except on an event with probability converging to zero. The same arguments

show that H ′n(−α0) > 0 with probability converging to 1.

Proof of Theorem 2 (Rate of Convergence)

Denote mλ(X) = δ lnλ(Y ) −
∫ Y
L λ(u)du and define M(λ) = Pmλ(X) and

Mn(λ) = Pnmλ(X). Then the log-likelihood function can be written as nPnmλ(X).

Given η > 0, define the class

Fη = {λ|λ ∈ ψl,T , d(λ, λ0) ≤ η}.

By the result of Theorem 1, λ̂n ∈ Fη for sufficiently large n. For η > 0 and any

ε < η,

logN[ ]{ε, ψl,T , L2(P )} ≤ cqn log
(η
ε

)
, J[ ]{η, ψl,T , L2(P )} ≤ c0q

1/2
n η,

where qn = mn + l is the number of spline base functions, c and c0 are constants

(Shen and Wong (1994, p. 597)). Therefore for each λ ∈ Fη, there exists a

bracket [λk, λ̄k], such that

λk(t) ≤ λ(t) ≤ λ̄k(t)

for all t ∈ [a, b], where d2(λk, λ̄k) =
∫
|λk−λ̄k|2dF ∗(t) ≤ ε2, k = 1, 2, . . . , (η/ε)cqn .

Moreover, λk and λ̄k are bounded on [a, b] and have positive lower bounds.

Since λ0 is the maximum of M(λ), the first derivative is zero at λ0 and the
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second derivative is negative definite. According to the Taylor expansion,

M(λ) = M(λ0) + 0 +
M ′′(λ0)

2
(λ− λ0)2 + o(λ− λ0)2.

Thus, for λ ∈ Fη, M(λ0)−M(λ) & d2(λ, λ0). Next, define the class

Mη = {mλ −mλ0
: λ ∈ Fη}.

Let

mk(X) = δ lnλk(Y )−
∫ Y

L
λ̄k(x)dx−mλ0

(x)

and

m̄k(X) = δ ln λ̄k(Y )−
∫ Y

L
λk(x)dx−mλ0

(x).

Clearly, the class Mη is covered by the set [mk, m̄k], k = 1, 2, . . . , (η/ε)cqn . To

prove the uniformly bounded class Mη is a Donsker class, we need to show that

(equicontinuity condition)

‖m̄k −mk‖22 . ε2.

Let

f = m̄k −mk = δ
(
log λ̄k − log λk

)︸ ︷︷ ︸
I1

+

∫ Y

L

(
λ̄k − λk

)
dx︸ ︷︷ ︸

I2

.

Since supt∈[a,b] |λk − λ0| ≤ ε1 and supt∈[a,b] |λ̄k − λ0| ≤ ε2 by converse theorem of

Lemma 7.1 from Wellner and Zhang (2007, p. 2140), the boundedness of Y,L, δ

and λ0 yields the boundedness of I1 and I2 on [a, b]. Then according to Cauchy

Schwartz inequality,

|f |2 ≤ 2

{
δ2

(
log

λ̄k
λk

)2

+

[∫ Y

L
(λ̄k − λk)dx

]2
}
.

By taylor expansion,

log
λ̄k
λk

=
1

θ

(
λ̄k − λk

)
,

where θ between λ̄k and λk. Since λ̄k and λk are bounded functions on [a, b],

there exists a constant c1 such that

log
λ̄k
λk

< c1

(
λ̄k − λk

)
.

Therefore

P (|f |2) . d2(λ̄k, λk) ≤ ε2.

Then according to the Lemma 3.4.2 of van der Vaart and Wellner (1996, p. 324),
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we obtain

EP ‖n1/2(P− P )‖Mη
. J[ ](η,Mη, L2(P ))

{
1 +

J[ ](η,Mη, L2(P ))

η2n1/2

}
. (A.1)

The right-hand side of (A.1) yields φn(η) = c2(q
(1/2)
n η + qn/n

1/2). It is easy to

see that φ(η)/η is decreasing in η, and

r2
nφ

(
1

rn

)
= rnq

1/2
n +

r2
nqn

n1/2
≤ n1/2

yields rn = n(1−ν)/2, where 0 < ν < 1/2. Hence, n(1−ν)/2d(λ̂n, λ0) = Op(1) by

Theorem 3.4.1 of van der Vaart and Wellner (1996, p. 322). If ν = r/(2r + 1) ,

the rate of convergence of λ̂n is r/(2r + 1), which is the same as the optimal rate

in nonparametric regression.

Proof of Theorem 3 (Asymptotic Normality)

According to Theorem 1 of Zhao and Zhang (2017, p. 933), we need the

following conditions to establish the asymptotic normality.

• A1.
√
n(Pn − P )(φ(λ̂n;X)[h]− φ(λ0;X)[h]) = op(1).

• A2.
√
n(Gn − G)(λ0)[h] convergences in distribution to a tight Gaussian

process on l∞(Hr).

• A3. G(λ0)[h] = 0 and Gn(λ̂n)[h] = op(n
−1/2).

• A4. G(λ)[h] is the Fréchet-differentiable at λ0 with a continuous derivative,

denoted by Ġλ0
[h].

• A5. G(λ̂n)[h]−G(λ0)[h]−Ġλ0
(λ̂n−λ0)[h] = op(n

−1/2), where Ġλ0
(λ̂n−λ0)[h]

is the directional derivative at λ0 in the direction (λ− λ0).

Then we need to verify conditions A1-A5 above.

For A1, given ε > 0, define the class

Gn(ε)[h] = {φ(λ;X)[h]− φ(λ0;X)[h] : λ ∈ ψl,T such that d(λ, λ0) ≤ ε, h ∈ Hr} .

Let

g
k
(X) =

δ

λ̄k
h− δ

λ0
h

and

ḡk(X) =
δ

λk
h− δ

λ0
h,

where λk and λ̄k are similar defined in the proof of Theorem 2. Clearly, the class
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Gn(ε)[h] is covered by the set [g
k
, ḡk], k = 1, 2, . . . , (η/ε)cqn . Let

f = ḡk − gk =
δ

λk
h− δ

λ̄k
h = δh(Y )

λ̄k − λk
λ̄kλk

.

By the Cauchy-Schawartz inequality,

Pf2 = P

[
δh(Y )

λ̄k − λk
λ̄kλk

]2

. P

[
1

λ̄kλk

]2 (
λ̄k − λk

)2
,

where the last inequality bolds due to h ∈ Hr. Due to the result of Theorem 1,

we can find λ ∈ ψl,T such that d(λ, λ0) ≤ ε. Therefore, d(λk, λ0) ≤ d(λk, λ) +

d(λ, λ0) < 2ε. Then by converse theorem of Lemma 7.1 from Wellner and Zhang

(2007, p. 2140), we get supt∈[a,b] |λk − λ0| ≤ c1ε
2/3, c1 is constant. Since λ0 is

positive and bounded on [a, b], there exists a constant c2 > 0 such that λk > c2 >

0. Similarly as λ̄k. So λ̄k and λk have the positive lower bounds. Furthermore,

using the fact that λ̄kand λk have the positive lower bounds, we have

Pf2 . P
(
λ̄k − λk

)2
. d2

(
λ̄k − λk

)
≤ ε2.

Then according to the Lemma 3.4.2 of van der Vaart and Wellner (1996, p. 324),

we obtain

EP ‖n1/2(P− P )‖Gn(ε)[h] . J[ ](ε,Gn(ε)[h], L2(P ))

{
1 +

J[ ](ε,Gn(ε)[h], L2(P ))

ε2n1/2

}
.

(A.2)

Theorem 1 shows that d(λ̂n, λ0) → 0 almost surely. Hence that by converse

theorem of Lemma 7.1 from Wellner and Zhang (2007, p. 2140), we have

sup
t∈[a,b]

|λ̂n(t)− λ0(t)| → 0 almost surely.

Moreover, Theorem 2 shows that nr/(2r+1)‖λ̂n−λ0‖2 = Op(1) with r > 1. There-

fore we have φ(λ̂n;X)[h] − φ(λ0;X)[h] ∈ Gn(εn)[h] with εn = O(n−r/(1+2r)).

Moreover, for any φ(λ;X)[h]− φ(λ0;X)[h] ∈ Gn(εn)[h], exists M > 0, such that

P (φ(λ;X)[h]− φ(λ0;X)[h])2 . ε2
n and sup

h∈Hr
|φ(λ;X)[h]− φ(λ0;X)[h]| < M.

Hence, we have

EP ‖n1/2(P− P )‖Gn(εn)[h]

. J[ ](εn,Gn(εn)[h], L2(P ))

{
1 +

J[ ](εn,Gn(εn)[h], L2(P ))

εn2n1/2

}
. q1/2

n εn + qnn
−1/2

= O(n1/2(1+2r)−r/(1+2r)) +O(n1/(1+2r)−1/2)

= o(1).
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Therefore, we have
√
n(Pn − P )(φ(λ̂n;X)[h]− φ(λ0;X)[h]) = op(1)

uniformly in h.

For A2, since Hr is a Donsker class and the function φ(λ0;X)[h] is a bounded

Lipschitz function with respect to Hr, we have the class {φ(λ0;X)[h] : h ∈ Hr} is

Donsker (van der Vaart and Wellner (1996, Thm. 2.10.6, p. 192)). Then based on

Theorem 3.10.12 (van der Vaart and Wellner (1996, p. 407)),
√
n(Gn−G)(λ0)[h]

convergences in distribution to a tight Gaussian process on l∞(Hr).
To prove the third part A3, clearly G(λ0)[h] = 0. Note that λ̂n =

∑qn
j=1 α̂j

Bj(t) satisfies the following score function

n−1
n∑
i=1

{
δiBj(Yi)

λ̂n(Yi)
−
∫ Yi

Li

Bj(x)dx

}
= 0, j = 1, . . . , qn.

Thus, for any hn =
∑qn

j=1 αjBj ∈ ϕl,T , we have

n−1
n∑
i=1

{
δihn(Yi)

λ̂n(Yi)
−
∫ Yi

Li

hn(x)dx

}
= 0,

that is, Gn(λ̂n)[hn] = 0 for any hn ∈ ϕl,T . Moreover, for any h ∈ Hr, there exists

hn ∈ ϕl,T such that ‖h− hn‖∞ = O(n−rν). Therefore, we have

Gn(λ̂n)[h]

= Gn(λ̂n)[h− hn]

=
{
Gn(λ̂n)[h− hn]−Gn(λ0)[h− hn]

}
+Gn(λ0)[h− hn]−G0(λ0)[h− hn]

= n−1
n∑
i=1

δi

{
1

λ̂n(Yi)
− 1

λ0(Yi)

}
[h(Yi)− hn(Yi)] + (Gn −G) (λ0)[h− hn]

. d(λ̂n, λ0)‖h− hn‖∞ + op(n
−1/2)

= op(n
−1/2),

where the proof of A2 leads to that (Gn −G) (λ0)[h−hn] convergences in distri-

bution to a tight Gaussian process.

For A4, by the assumption of smoothness, G(λ)[h] is the Fréchet-differentiable

at λ0 with a continuous derivative, denoted by Ġλ0
[h]. Moreover, the directional

derivative Ġλ0
(λ̂n − λ0)[h] at λ0 in the direction (λ− λ0) can be defined as

Ġλ0
(λ̂n − λ0)[h] =

h

(λ−λ0)

G(λ0)[h] = lim
ε→0

G(λ0 + ε(λ− λ0))[h]−G(λ0)[h]

ε
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= −P
[
δh(Y )

λ(Y )− λ0(Y )

λ2
0(Y )

]
= −

∫
h(t)

λ2
0(t)

(λ(t)− λ0(t))dF ∗(t),

where F ∗(t) = P (L ≤ T ≤ C, T ≤ t).
Then for A5, we can prove

G(λ̂n)[h]−G(λ0)[h]− Ġλ0
(λ̂n − λ0)[h]

= P

[
δh(Y )

(
1

λ̂n(Y )
− 1

λ0(Y )

)]
+ P

[
δh(Y )

λ̂n(Y )− λ0(Y )

λ2
0(Y )

]

= P

[
δh(Y )

λ̂n(Y )λ2
0(Y )

{
λ̂n(Y )− λ0(Y )

}2
]

= Op(d
2(λ̂n, λ0)) = Op(n

−2r/(1+2r)) = op(n
−1/2).

Thus it follows from Theorem 1 (Zhao and Zhang (2017, p. 934)) that

√
n

∫
h(t)

λ2
0(t)

(λ(t)− λ0(t))dF ∗(t) = −
√
nĠλ0

(λ̂n − λ0)[h] =
√
n(Gn −G)(λ0)[h]

+ op(1).

Proof of Theorem 4

We first note that Un can be rewritten as

Un =

√
n∑n

i=1 δi

n∑
i=1

δiWn(Yi)
{
λ̂(1)
n (Yi)− λ̂(2)

n (Yi)
}

=
√
nPn

[
W (k)
n (Y )

{
λ̂(1)
n (Y )− λ̂(2)

n (Y )
}]

=
√
nPn

[
W (k)
n (Y )

{
λ̂(1)
n (Y )− λ0(Y )

}]
−
√
nPn

[
W (k)
n (Y )

{
λ̂(2)
n (Y )− λ0(Y )

}]
= U (1)

n − U (2)
n .

Then we define U = [U
(1)
n , U

(2)
n ] and note that U

(l)
n can be written as

U (l)
n = U

(l)
1n + U

(l)
2n +

√
n

nl
U

(l)
3n ,

where, for l = 1, 2,

U
(l)
1n =

√
n(Pn − P )

[
W (k)
n (Y )

{
λ̂(l)
n (Y )− λ0(Y )

}]
,

U
(l)
2n =

√
nP
[(
W (k)
n (Y )−W (Y )

){
λ̂(l)
n (Y )− λ0(Y )

}]
,
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U
(l)
3n =

√
nlP

[
W (Y )

{
λ̂(l)
n (Y )− λ0(Y )

}]
.

Firstly consider U
(l)
1n =

√
n(Pn − P )

[
W

(k)
n (Y ){λ̂(l)

n (Y )− λ0(Y )}
]
. Set

G = {ξ : [0, b]→ [0, τ ]} ,

where τ is the uniform upper bound of weight process W
(k)
n , k = 1, 2, 3, 4. Let

ψλ(ξ,D) = ξ(Y ){λ(Y )− λ0(Y )},

where ξ ∈ G, λ ∈ Fη and Fη = {λ|λ ∈ ψl,T , d(λ, λ0) ≤ η}. For a fixed ξ ∈ G, let

Ψη(ξ) = {ψλ(ξ,D) : λ ∈ Fη} ,

where η > 0. By the conclusion of Theorem 1, λ̂
(l)
n ∈ Fη for any η > 0 and

sufficiently large n. Note that it follows from Corollary 2.7.2 of van der Vaart

and Wellner (1996, p. 157) that

N[ ](ε,Fη, L2(P )) ≤ ec1/ε1/2 ,

for some constant c1. Then, we have

N[ ](ε,Ψη(ξ), L2(P )) ≤ ec1/ε1/2 .

It can be easily shown that |ψλ(ξ,D)| . η, and Pψ2
λ(ξ,D) . η2. Thus,

J[ ](η,Ψη(ξ), L2(P )) =

∫ η

0

√
logN[ ](ε‖ψ‖P,2,Ψη(ξ), L2(P )) + 1dε . η.

Hence, from Theorem 2.14.2 of van der Vaart and Wellner (1996), we have

E∗

{
sup

ψλ(ξ,X)∈Ψη(ξ)

∣∣√n(Pn − P )ψλ(ξ,X)
∣∣}

.
[
J[ ](η,Ψη(ξ), L2(P ))‖ψ‖P,2 +

√
nPψ{ψ >

√
na(η)}

+‖ψ‖P,2
√

logN[ ](η‖ψ‖P,2,Ψη(ξ), L2(P )) + 1
]
,

where

a(η) =
η‖ψ‖P,2√

logN[ ](η‖ψ‖P,2,Ψη(ξ), L2(P )) + 1
.

Then, it is easily shown that

lim sup
n→∞

E∗

{
sup

ψλ(ξ,X)∈Ψη(ξ)

∣∣√n(Pn − P )ψλ(ξ,X)
∣∣} . η1/2.

It follows from d(λ̂
(l)
n , λ0)

a.s.→ 0 that

lim sup
n→∞

E
{
|
√
n(Pn − P )ψλ̂(l)

n
(W (k)

n , X)|
}
. η1/2.
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Let η → 0 to see

lim
n→∞

E
{
|
√
n(Pn − P )ψλ̂(l)

n
(W (k)

n , X)|
}

= 0,

which yields U
(l)
1n = op(1).

Next consider U
(l)
2n =

√
nP
[
(W

(k)
n (Y )−W (Y ))

{
λ̂

(l)
n (Y )− λ0(Y )

}]
.

U
(l)
2n =

√
nP
{(
W (k)
n (Y )−W (Y )

) [
λ̂(l)
n (Y )− λ0(Y )

]}
≤
√
n

∫ ∣∣∣W (k)
n (t)−W (t)

∣∣∣ ∣∣∣λ̂(l)
n (Y )− λ0(Y )

∣∣∣ dF ∗(t)
.
√
n

{∫ b

0

(
W (k)
n (t)−W (t)

)2
dF ∗(t)

}1/2

{∫ b

0

(
λ̂(l)
n (Y )− λ0(Y )

)2
dF ∗(t)

}1/2

.

Since [∫ b

a

{
W (k)
n (t)−W (t)

}2
dt

]1/2

= op

(
n−1/(2(1+2r))

)
and {∫ b

0

(
λ̂(l)
n (Y )− λ0(Y )

)2
dF ∗(t)

}1/2

= Op

(
n−r/(1+2r)

)
,

we have U
(l)
2n = op(1).

From the result of Theorem 3, we have , for l = 1, 2,

U
(l)
3n =

√
nl(Pnl − P ) [φ(λ0;X)[h]] + op(1) = Z(l)

n + op(1),

where Pnlf = (1/nl)
∑

i∈Sl f(Zi) and Sl denotes the set of indices for sub-

jects in group l, l = 1, 2. Moreover, Z
(l)
n ’s converge to Uw in distribution as

n → ∞, where Uw has a normal distribution with mean zero and variance

σ2 = E
[
φ2(λ0;X)[h]

]
. Evidently, Z

(l)
n ’s are independent and identically dis-

tributed, because Pnl is the empirical measure based on group l respectively.

Hence, we have

Un =

√
n

n1
Z(1)
n −

√
n

n2
Z(2)
n + op(1),

where Un convergences in distribution to N(0, 1/(p(1− p))σ2). Thus it follows

that Un has an asymptotic normal distribution N(0, σ2
w), where

σ2
w =

1

p(1− p)
E{φ2(λ0;X)[hw]}.

To show that σ̂2
w − σ2

w = op(1). We set σw
2 = Pφ2(λ0;X)[hw] and σ̂2

w =
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Pnφ2(λ̂n;X)[ĥw]. Note that

σ̂2
w − σ2

w = Pnφ2(λ̂n;X)[W (k)
n λ̂2

n]− Pφ2(λ0;X)[Wλ2
0]

= Pn
{
φ2(λ̂n;X)[W (k)

n λ̂2
n]− φ2(λ0;X)[W (k)

n λ2
0]
}

+ (Pn − P )φ2(λ0;X)[Wλ2
0]

+ Pn
{
φ2(λ0;X)[W (k)

n λ2
0]− φ2(λ0;X)[Wλ2

0]
}
.

It can be easily shown that

Pn
{
φ2(λ̂n;X)[W (k)

n λ̂2
n]− φ2(λ0;X)[W (k)

n λ2
0]
}

= op(1)

and

(Pn − P )φ2(λ0;X)[Wλ2
0] = op(1).

On the other hand, based on the conditions imposed on Wn and W , we have∣∣∣φ(λ0;X)[W (k)
n λ2

0]− φ(λ0;X)[Wλ2
0]
∣∣∣ =

∣∣∣φ(λ0;X)[(W (k)
n −W )λ2

0]
∣∣∣ = op(1),

and∣∣∣φ(λ0;X)[W (k)
n λ2

0] + φ(λ0;X)[Wλ2
0]
∣∣∣ =

∣∣∣φ(λ0;X)[(W (k)
n +W )λ2

0]
∣∣∣ = O(1).

The above two displays imply that∣∣∣φ2(λ0;X)[W (k)
n λ2

0]− φ2(λ0;X)[Wλ2
0]
∣∣∣ . ∣∣∣φ(λ0;X)[W (k)

n λ2
0]− φ(λ0;X)[Wλ2

0]
∣∣∣

= op(1).

Therefore,

Pn
{∣∣∣φ2(λ0;X)[W (k)

n λ2
0]− φ2(λ0;X)[Wλ2

0]
∣∣∣} = op(1).

References

Andersen, P. K., Borgan, O., Gill, R. D. and Keiding, N. (1993). Statistical Models Based on

Counting Processes. Springer US.

Balakrishnan, N. and Mitra, D. (2011). Likelihood inference for lognormal data with left trun-

cation and right censoring with an illustration. Statistical Planning and Inference 141,

3536–3553.

Balakrishnan, N. and Mitra, D. (2012). Left ttuncated and right censored weibull data and

likelihood inference with an illustration. Computational Statistics and Data Analysis 56,

4011–4025.

Balakrishnan, N. and Mitra, D. (2013). Likelihood inference based on left truncated and right

censored data from a gamma distribution. IEEE Transactions on Reliability 62, 679–688.

Balakrishnan, N. and Mitra, D. (2014). Some further issues concerning likelihood inference for

left truncated and right censored lognormal data. Communications in Statistics–Simulation

and Computation 43, 400–416.



874 JIANG, YE AND ZHAO

Balakrishnan, N. and Zhao, X. Q. (2009). New multi-sample nonparametric tests for panel count

data. The Annals of Statistics 37, 1112–1149.

Carrión, A., Solano, H., Gamiz, M. L. and Debón, A. (2010). Evaluation of the reliability of a

water supply network from right-censored and left-truncated break data. Water Resources

Management 24, 2917–2935.

Emura, T. and Shiu, S. (2016). Estimation and model selection for left-truncated and right-

censored lifetime data with application to electric power transformers analysis. Communi-

cations in Statistics - Simulation and Computation 45, 3171–3189.

Frydman, H. (1994). A note on nonparametric estimation of the distribution function from

interval-censored and truncated observations. Journal of the Royal Statistical Society. Se-

ries B (Statistical Methodological) 56, 71–74.

Hong, Y., Duan, Y., Meeker, W., Stanley, D. and Gu, X. (2015). Statistical methods for degra-

dation data with dynamic covariates information and an application to outdoor weathering

data. Technometrics 57, 180–193.

Hong, Y., Meeker, W. Q. and Mccalley, J. D. (2009). Prediction of remaining life of power trans-

formers based on left truncated and right censored lifetime data. The Annals of Applied

Statistics 3, 857–879.

Hua, L. and Zhang, Y. (2012). Spline-based semiparametric projected generalized estimating

equation method for panel count data. Biostatistics 13, 440–454.

Huang, J. Z. (1998). Projection estimation for multiple regression with application to functional

anova models. The Annals of Statistics 26, 242–272.

Kevin, C. C., Siobán, D. H., Roderick, J. L., Nan, B., Matheos, Y., Taffe, J. R. and Michael,

R. E. (2011). Bias due to left truncation and left censoring in longitudinal studies of

developmental and disease processes. American Journal of Epidemiology 173, 1078–1084.

Lu, M., Zhang, Y. and Huang, J. (2007). Estimation of the mean function with panel count

data using monotone polynomial splines. Biometrika 94, 705–718.

Lu, M., Zhang, Y. and Huang, J. (2009). Semiparametric estimation methods for panel count

data using monotone b-splines. Journal of the American Statistical Association 104, 1060–

1070.

Pepe, M. S. and Fleming, T. R. (1989). Weighted kaplan-meier statistics: A class of distance

tests for censored survival data. Biometrics 45, 497–507.

Ramsay, J. O. (1988). Monotone regression splines in action. Statistical Science 3, 425–441.

Rosenberg, P. S. (1995). Hazard function estimation using b-splines. Biometrics 51, 874–887.

Schumaker, L. (2007). Spline Functions: Basic Theory. Cambridge Mathematical Library.

Shen, P. S. (2007). A general class of test procedures for left - truncated and right - censored

data. Communications in Statistics - Theory and Methods 36, 2913–2925.

Shen, P. S. (2014). Nonparametric tests for left-truncated and interval-censored data. Journal

of Statistical Computation and Simulation 85, 1544–1553.

Shen, P. S. and Yan, Y. F. (2008). Nonparametric estimation of the bivariate survival function

with left-truncated and right-censored data. Journal of Statistical Planning and Inference

138, 4041 – 4054.

Shen, X. T. and Wong, W. H. (1994). Convergence rate of sieve estimates. The Annals of

Statiatics 22, 580–615.

Stone, C. J. (1994). The use of polynomial splines and their tensor products in multivariate

function estimation. The Annals of Statistics 22, 118–184.



SPLINES FOR LEFT-TRUNCATED & RIGHT-CENSORED DATA 875

Su, Y. and Wang, J. (2012). Modeling left-truncation and right-censored survival data with

longitudinal covariates. The Annals of Statistics 40, 1465–1488.

Tsai, W.-Y., Jewell, N. P. and Wang, M.-C. (1987). A note on the product-limit estimator under

right censoring and left truncation. Biometrika 74, 883–886.

Turnbull, B. W. (1976). The empirical distribution function with arbitrarily grouped, censored

and truncated data. The Royal Statistical Society: Series B (Statistical Methodology) 38,

290–295.

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes.

Springer.

Wang, J. L. (2005). Smoothing hazard rate. Encyclopedia of Biostatistics, 2nd Edition 7, 4986–

4997.

Wang, M.-C. (1987). Product limit estimates: A generalized maximum likelihood study. Com-

munications in Statistics - Theory and Methods 16, 3117–3132.

Wang, M.-C., Jewell, N. P. and Tsai, W.-Y. (1986). Asymptotic properties of the product limit

estimate under random truncation. The Annals of Statistics 14, 1597–1605.

Wellner, J. A. and Zhang, Y. (2007). Two likelihood-based semiparametric estimation methods

for panel count data with covariates. The Annals of Statiatics 35, 2106–2142.

Wu, Y. and Ying, Z. (2012). Partially monotone tensor spline estimation of the joint distribution

function with bivariate current status data. The Annals of Statistics 40, 1609–1636.

Xie, Y., King, C., Hong, Y. and Yang, Q. (2018). Semi-parametric models for accelerated

destructive degradation test data analysis. Technometrics, in press.

Ye, Z.-S., Hong, Y. and Xie, Y. (2013). How do heterogeneities in operating environments affect

field failure predictions and test planning? The Annals of Applied Statistics 7, 2249–2271.

Ye, Z.-S. and Tang, L.-C. (2016). Augmenting the unreturned for field data with information

on returned failures only. Technometrics 58, 513–523.

Zhao, X., Deng, S., Liu, L. and Liu, L. (2013). Sieve estimation in semiparametric modeling of

longitudinal data with informative observation times. Biostatistics 15, 140–153.

Zhao, X. and Zhang, Y. (2017). Asymptotic normality of nonparametric m-estimations with

applications to hypothesis testing for panel count data. Statistica Sinica 27, 931–950.

Department of Industrial Systems Engineering & Management, E1A-06-25, 1 Engineering Drive

2, National University of Singapore, Singapore 129790.

E-mail: wwjiang@u.nus.edu

Department of Industrial Systems Engineering & Management, E1A-06-25, 1 Engineering Drive

2, National University of Singapore, Singapore 129790.

E-mail: yez@nus.edu.sg

Department of Applied Mathematics, TU806, 8/F, Yip Kit Chuen Building. The Hong Kong

Polytechnic University, Hung Hom, Kowloon, HK.

E-mail: xingqiu.zhao@polyu.edu.hk

(Received May 2017; accepted June 2018)

mailto:wwjiang@u.nus.edu
mailto:yez@nus.edu.sg
mailto:xingqiu.zhao@polyu.edu.hk

	Introduction
	B-Spline Approximation of the Failure Rate
	Statistical Properties
	Nonparametric Tests
	Simulation Studies
	A Real Example: Power Transformer Failure Data

