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Abstract: In the presence of treatment heterogeneity due to unknown grouping in-

formation, standard methods that assume homogeneous treatment effects cannot

capture the subgroup structure in the population. To accommodate such hetero-

geneity, we propose a concave fusion approach to identifying the subgroup struc-

tures and estimating the treatment effects for a semiparametric linear regression

with censored data. In particular, the treatment effects are subject-dependent and

subgroup-specific, and our concave fusion penalized method conducts the subgroup

analysis without needing to know the individual subgroup memberships in advance.

The proposed estimation procedure automatically identifies the subgroup structure

and simultaneously estimates the subgroup-specific treatment effects. The proposed

algorithm combines the Buckley–James iterative procedure and the alternating di-

rection method of multipliers. The resulting estimators enjoy the oracle property,

and simulation studies and a real-data application demonstrate the good perfor-

mance of the proposed method.

Key words and phrases: Concave penalization, oracle property, subgroup analysis,

survival data, treatment heterogeneity.

1. Introduction

With the rapid development of precision medicine, subgroup analyses have

become commonplace in clinical trials aimed at tailoring disease treatment and

prevention to subgroups of patients with similar characteristics. Heterogeneity

of treatment effects may arise owing to underlying differences beteeen groups of

patients in terms of the risk, pathology, biology, genetics, severity of disease, and

so on. Subgroup identification in a heterogeneous population is a crucial step in

promoting individualized treatment strategies, which, in turn, can contribute to

a deeper understanding of the genetic bases of diseases, more accurate diagnoses,

and better survival predictions.
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When treatment heterogeneity is present, the average treatment effect ob-

tained by the standard methods can lead to bias and incorrect conclusions. A

subgroup analysis, on the other hand, is specifically developed to model potential

heterogeneity in the population, which requires a rigorous statistical framework

(Kravitz, Duan and Braslow (2004); Rothwell (2005); Lagakos (2006)). From a

finite mixture modeling perspective, Shen and He (2015) proposed a structured

logistic–normal mixture model by quantifying the subgroup membership using a

logistic regression and the response using a normal linear regression. Wu, Zheng

and Yu (2016) extended this to a logistic–Cox mixture model to accommodate

censored outcomes. Mixture models typically require specifying the number of

components and a parametric model for grouping, which may not be feasible in

practice. In contrast, Ma and Huang (2017) developed a pairwise fusion penal-

ized approach using concave penalty functions, including the smoothly clipped

absolute deviation (SCAD) penalty of Fan and Li (2001) and the minimax con-

cave penalty (MCP) of Zhang (2010), that automatically identifies subgroups

and estimates the subgroup-specific intercepts. Furthermore, Ma and Huang

(2016) adopted the concave fusion penalized method to estimate the grouping

structures and the subgroup-specific treatment effects. This automatic fusion

approach to identifying the subgroups is based on complete observations and,

thus, is not directly applicable to handling treatment heterogeneity with cen-

sored data. A subgroup analysis for censored heterogeneous data brings new

theoretical and computational challenges owing to the censoring and complexity

of the survival models. Because survival data represent one of the most important

clinical endpoints, inference and analysis methods that accommodate treatment

heterogeneity across subgroups with censored observations are playing an increas-

ingly critical role in precision medicine. However, most existing survival models

are developed for statistical inferences on average effects (e.g., Kalbfleisch and

Prentice (1980); Fleming and Harrington (1991); Andersen et al. (1993)). In ad-

dition, penalized methods have been proposed for variable selection in the Cox

proportional hazards model (e.g., Tibshirani (1997); Fan and Li (2002); Bradic,

Fan and Jiang (2011); Huang et al. (2013)). When the proportional hazards

assumption does not hold, alternative models are developed to handle sparsity

in the regression. For example, Cai, Huang and Tian (2009) proposed a regu-

larization estimation approach for the linear or accelerated failure time model.

Liu and Zeng (2013) studied variable selection in transformation survival models

with possibly time-varying covariates. Lin and Lv (2013) investigated a high-

dimensional sparse additive hazards model with survival data.
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To conduct a more systematic subgroup analysis using heterogeneous survival

models, we propose a censored linear regression model with heterogeneous treat-

ment effects, and assume a sparsity structure for the treatment effects. Specifi-

cally, the regression model considered allows the effects to be subgroup-specific,

with unknown grouping information. To estimate the subgroup structures and

subgroup-specific treatment effects, we use a concave fusion penalized method to

shrink the pairwise differences of treatment effects, where the tuning parameter

is selected using a modified Bayesian information criterion (BIC). Our numerical

algorithm combines the Buckley–James iterative procedure (Buckley and James

(1979)) and the alternating direction method of multipliers (BJ-ADMM) using

concave penalties such as the SCAD or MCP. Under some canonical conditions,

the oracle Buckley–James least squares estimator with a priori knowledge of the

true subgroups is a local minimizer of the proposed objective function, with high

probability. Thus, our proposed estimator can approximate the oracle estimator

with high probability.

The rest of this paper is organized as follows. Section 2 describes the censored

linear regression model under heterogeneity, the Buckley–James least squares

objective function, and the concave fusion penalization method. To compute

the penalized Buckley–James least squares estimator, we propose the BJ-ADMM

algorithm with concave fusion penalties in Section 3. The theoretical properties of

the resulting estimator are established in Section 4. The finite-sample properties

of the proposed method are evaluated through simulation studies in Section 5,

and our method is illustrated using a real-data example in Section 6. Concluding

remarks are provided in Section 7. The technical proofs are given in the online

Supplemental Material.

2. Model and Method

2.1. Censored linear model with heterogeneity

Consider a clinical trial with a survival endpoint. For each subject, let Y

and C denote the transformed survival and censoring times, respectively, and

let Z = (z1, . . . , zq)
> be a q-dimensional nuisance covariate vector, and X =

(x1, . . . , xp)
> be a p-dimensional covariate vector of interest. The observed data

consist of {Y ∗i , δi, Xi, Zi; i = 1, . . . , n}, independent copies of {Y ∗, δ,X, Z}, with

Y ∗ = min(Y,C) and δ = I(Y ≤ C).

Under homogeneous treatment effects, the semiparametric linear regression
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model takes the form

Yi = Z>i η +X>i β + εi, i = 1, . . . , n, (2.1)

where η = (η1, . . . , ηq)
>, β = (β1, . . . , βp)

>, and εi are assumed to be independent

and identically distributed with an unknown distribution F . The corresponding

probability density function of εi is f , F−1(1) <∞, and E|εi| <∞, where E(εi)

need not be zero. Furthermore, we assume that εi is independent of (Zi, Xi, Ci)

and conditional on Zi, and that Xi, Yi, and Ci are independent.

If individuals are from multiple subgroups with different treatment effects,

the homogeneity assumption in model (2.1) is violated. To estimate the subgroup-

specific effects, we consider a heterogenous linear regression model,

Yi = Z>i η +X>i βi + εi, i = 1, . . . , n, (2.2)

where the key difference between models (2.1) and (2.2) lies in the individual-

specific treatment effects βi.

To estimate each βi, we assume all subjects can be classified into R subgroups

G1, . . . ,GR, and that the regression coefficients satisfy the fused sparse structure,

‖βi − βj‖ = 0, i, j ∈ Gr, r = 1, . . . , R. (2.3)

Under the sparsity assumption (2.3), the treatment effects are the same within

each subgroup but are different across subgroups. Suppose that for i ∈ Gr,
βi = ρr, where ρr is the common value of βi in subgroup Gr. Our goal is to

simultaneously estimate the subgroup-specific treatment effects ρr (i.e., βi) and

identify the fused sparse structure Gr (i.e., R).

2.2. Penalized method via concave fusion

Penalized procedures are commonly used for parameter estimation and vari-

able selection. In order to estimate the parameters β = (β>1, . . . , β
>
n)> and η, and

to select the proper grouping structure of β under the sparse assumption (2.3),

we develop a penalized Buckley–James least squares method. Let θ = (η>,β>)>

and θi = (η>, β>i )
>.

Because Yi cannot be completely observed, owing to censoring, we impute

Yi using its conditional expectation, given the observed data,

Ỹi(θi, F ) = E(Yi | Xi, Zi, Y
∗
i , δi)
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= δiY
∗
i + (1− δi)

{
Z>i η +X>i βi +

∫∞
Y ∗i −Z>i η−X>iβi

tdF (t)

1− F (Y ∗i − Z>i η −X>i βi)

}
. (2.4)

Let εi(θi)=Yi−Z>i η−X>i βi, ζi(θi)=Ci−Z>i η−X>i βi, and υi(θi)=min(ζi(θi), εi(θi)).

For a given θ, based on {(υi(θi), δi), i = 1, . . . , n}, the Kaplan–Meier estimator

of the unknown error distribution F in (2.4) is given by

F̃θ(t) = 1−
∏

i:υi(θi)≤t

{
1− 1

Gn(θ, υi(θi))

}δi
, (2.5)

where Gn(θ, u) =
∑n

i=1 I(υi(θi) ≥ u).

Motivated by the Buckley–James least squares method (Buckley and James

(1979); Miller and Halpern (1982)), we propose the following penalized Buckley–

James least squares objective function:

`P (θ;λ) =
1

2

n∑
i=1

[
{Ỹi(θi, F̃θ)− Z>i η −X>i βi} −

1

n

n∑
i=1

{Ỹi(θi, F̃θ)− Z>i η −X>i βi}

]2
+

∑
1≤i<j≤n

Pλ(‖βi − βj‖), (2.6)

where Pλ(·) is a penalty function, and λ ≥ 0 is a tuning parameter that controls

the penalty on ‖βi−βj‖. The tuning parameter λ determines an estimation path

of individual-specific treatment effects, and can shrink ‖βi−βj‖ toward zero with

a large enough value of λ. For a given λ, we define

θ̂(λ) = argmin
θ∈Rq+np

`P (θ;λ), (2.7)

and the optimal value of λ can be selected using a properly constructed BIC.

In particular, we partition the support of λ into a grid of λmin = λ0 < λ1 <

· · · < λJ = λmax. Then for each λj , we compute a solution path of θ̂(λj), and

obtain the estimated number of subgroups R̂(λj) and subgroup-specific effects

{ρ̂1(λj), . . . , ρ̂R̂(λj)
(λj)}. The optimal λ̂ is selected by minimizing a data-driven

BIC; that is, λ̂ = argminλj ;j=1,...,JBIC(λj). Subsequently, we obtain the estima-

tor θ̂ = θ̂(λ̂), and the individuals can be separated into R̂ = R̂(λ̂) subgroups

accordingly; that is, Ĝr = {i : β̂i = ρ̂r, i = 1, . . . n}, for r = 1, . . . , R̂.

The commonly used sparsity-inducing penalties include the following:

(i) Lasso penalty (Tibshirani (1996)), with Pλ(t) = λ|t|;
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(ii) SCAD penalty (Fan and Li (2001)), with Pλ(t) = λ
∫ |t|
0 min{1, (aλ−x)+/a(λ−

1)}dx, a > 2;

(iii) MCP (Zhang (2010)), with Pλ(t) = λ
∫ |t|
0 {1− x/(aλ)}+dx, a > 2.

However, the Lasso generally assigns a small penalty to a small difference of

‖βi − βj‖. Consequently the resulting subgroups tend to be dense, and may

include too many spurious subgroups with very small differences between them.

3. Computational Procedure

3.1. The BJ-ADMM algorithm

We propose using the Buckley–James iterative procedure in conjunction with

the ADMM algorithm to obtain the estimator θ̂. Let Z = (Z1, . . . , Zn)>, X =

diag(X>1, . . . , X
>
n), and Z̄ = (1/n)

∑n
i=1 Zi. Let Z̄ be an n× q matrix with every

row equal to Z̄, and let X̄ = (1/n)
∑n

i=1Xi, where Xi is the ith row of X. Let X̄
be an n×np matrix with every row equal to X̄. Define Z̃ = Z−Z̄, X̃ = X−X̄, and

QZ = In − Z(Z̃>Z)−1Z̃>, where In is an n × n identity matrix. Let Ỹ (θ, F̃θ) =

(Ỹ1(θ1, F̃θ), . . . , Ỹn(θn, F̃θ))>, Ȳ (θ, F̃θ) = (1/n)
∑n

i=1 Yi(θi, F̃θ), Ȳ(θ, F̃θ) be an

n-vector with each component Ȳ (θ, F̃θ), and Ỹ(θ, F̃θ) = Ỹ (θ, F̃θ) − Ȳ(θ, F̃θ).

Let Ω = E ⊗ Ip, where E = {(ei − ej), i < j}>(n(n−1))/2×n, with ei the ith n × 1

unit vector with ith element equal to one and the remaining elements zero, Ip is

a p×p identity matrix, and ⊗ represents the Kronecker product. Let 〈a, b〉 = a>b

represent the inner product of two vectors a and b of the same dimension. Using

the notation αij = βi − βj , the objective function in (2.6) can be written as

˜̀
P (η,β,α) =

1

2

n∑
i=1

{Ỹi(θi, F̃θ)− Z>i η −X>i βi}2

− 1

2n

{
n∑
i=1

(Ỹi(θi, F̃θ)− Z>i η −X>i βi)

}2

+
∑

1≤i<j≤n
Pλ(‖αij‖),

subject to βi − βj − αij = 0, (3.1)

where α = {α>ij , i < j}>. Under the constraints in (3.1), the augmented La-

grangian equation is

Q(η,β,α,ν) = ˜̀
P (η,β,α)+

∑
i<j

〈νij , βi − βj − αij〉+
ϕ

2

∑
i<j

‖βi−βj−αij‖2, (3.2)
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where the dual variables ν = {ν>ij , i < j}> are the Lagrange multipliers and ϕ is

a penalty parameter. Given the parameter values θ(k) = (η(k)>,β(k)>)> and ν(k)

at the kth step, our BJ-ADMM iterative algorithm proceeds as follows:

α(k+1) = argmin
α

L(α,β(k),ν(k)), (3.3)

ν
(k+1)
ij = ν

(k)
ij + ϕ(β

(k)
i − β

(k)
j − α

(k+1)
ij ), (3.4)

(η(k+1),β(k+1)) = argmin
η,β

Q(η,β,α(k+1),ν(k+1) | θ(k)), (3.5)

where L(α,β(k),ν(k)) is the simplified version of the objective function Q(η(k),

β(k),α,ν(k)) after discarding the terms independent of α,

L(α,β(k),ν(k)) =
ϕ

2

∑
i<j

‖β(k)i − β
(k)
j + ϕ−1ν

(k)
ij − αij‖

2

+
∑
i<j

Pλ(‖αij‖), (3.6)

Q(η,β,α(k+1),ν(k+1) | θ(k)) = ˜̀
P (η,β,α(k+1) | θ(k))

+
∑
i<j

〈
ν
(k+1)
ij , βi − βj − α(k+1)

ij

〉
+
ϕ

2

∑
i<j

‖βi − βj − α(k+1)
ij ‖2, (3.7)

and ˜̀
P (η,β,α(k+1) | θ(k))

=
1

2

n∑
i=1

{Ỹi(θ(k)i , F̃θ(k))− Z>i η −X>i βi}2

− 1

2n

{
n∑
i=1

(Ỹi(θ
(k)
i , F̃θ(k))− Z>i η −X>i βi)

}2

+
∑

1≤i<j≤n
Pλ(‖α(k+1)

ij ‖).

Note that the element α
(k+1)
ij of α(k+1) is the minimizer of (ϕ/2)‖ξ(k)ij − αij‖2 +

Pλ(‖αij‖), where ξ
(k)
ij = β

(k)
i − β

(k)
j + ϕ−1ν

(k)
ij . Different groupwise thresholding

operators Pλ(·) would yield different estimates α
(k+1)
ij :

(i) for the Lasso penalty (Tibshirani (1996)),

α
(k+1)
ij = S

(
ξ
(k)
ij ,

λ

ϕ

)
, where S(w, t) =


(

1− t

‖w‖

)
w, if

t

‖w‖
< 1,

0, otherwise;
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(ii) for the SCAD penalty (Fan and Li (2001)), with a > 1/ϕ+ 1,

α
(k+1)
ij =


S

(
ξ
(k)
ij ,

λ

ϕ

)
, if ‖ξ(k)ij ‖ ≤ λ+

λ

ϕ
,

ξ
(k)
ij , if ‖ξ(k)ij ‖ > aλ,

S(ξ
(k)
ij , aλ/((a− 1)ϕ))

1− 1/((a− 1)ϕ)
, otherwise;

(iii) for the MCP (Zhang (2010)), with a > 1/ϕ,

α
(k+1)
ij =


S(ξ

(k)
ij , λ/ϕ)

1− 1/(aϕ)
, if ‖ξ(k)ij ‖ ≤ aλ,

ξ
(k)
ij , otherwise.

Via some algebraic manipulation, the problem in (3.7) is equivalent to min-

imizing

h(η,β,α(k+1),ν(k+1) | θ(k))

=
1

2
‖Ỹ (θ(k), F̃θ(k))−Zη −Xβ‖2 − n

2
{Ȳ (θ(k), F̃θ(k))− Z̄>η − X̄>β}2

+
ϕ

2
‖Ωβ −α(k+1) + ϕ−1ν(k+1)‖2.

Thus, for given values of α(k+1), ν(k+1), and θ(k), we update β(k+1) and η(k+1)

as follows:

β(k+1)=(X̃>QZX + ϕΩ>Ω)−1{X̃>QZỸ (θ(k), F̃θ(k)) + ϕΩ>(α(k+1) − ϕ−1ν(k+1))},
η(k+1)=(Z̃>Z)−1Z̃>{Ỹ (θ(k), F̃θ(k))−Xβ(k+1)}.

The BJ-ADMM algorithm terminates when the primal residual r(k) = Ωβ(k)

− α(k) is close enough to zero, such as ‖r(k)‖ < 0.01. Once convergence is

reached, subjects i and j with α̂ij = 0 can be grouped into one subgroup Ĝr.
In addition, we can estimate the rth subgroup-specific treatment effect using

ρ̂r = (1/|Ĝr|)
∑

i∈Ĝr β̂i, where |Gr| denotes the number of elements in Gr. Note

that when QZ = In, the proposed algorithm reduces to an estimation procedure

for the model Yi = X>i βi + εi.

3.2. Initial values

To facilitate the (k + 1)th update of (α(k+1),ν(k+1), η(k+1),β(k+1)) in (3.3)

to (3.5) of the BJ-ADMM iterative algorithm, we need to specify proper initial
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values. Motivated by the Buckley–James iterative procedure (Miller and Halpern

(1982)), we obtain the regression estimators η(m+1) and β(m+1) = (β
(m+1)>
1 , . . . ,

β
(m+1)>
n )> at the (m+ 1)th step by minimizing the ridge fusion criterion

`(θ | θ(m)) =
1

2

n∑
i=1

{Ỹi(θ(m)
i , F̃θ(m))− Z>i η −X>i βi}2

− 1

2n

{
n∑
i=1

(Ỹi(θ
(m)
i , F̃θ(m))− Z>i η −X>i βi)

}2

+
λ∗

2

∑
1≤i<j≤n

‖βi − βj‖2,

(3.8)

where θ(m) = (η(m)>,β(m)>)> are the parameter estimates at the mth step, and

we set λ∗ = 0.001.

Using matrix notation, (3.8) can be written as

`(θ | θ(m)) =
1

2
‖Ỹ (θ(m), F̃θ(m))−Zη −Xβ‖2

−n
2
{Ȳ (θ(m), F̃θ(m))− Z̄>η − X̄>β}2 +

λ∗

2
‖Ωβ‖2,

which leads to

β(m+1) = (X̃>QZX + λ∗Ω>Ω)−1X̃>QZỸ (θ(m), F̃θ(m)),

η(m+1) = (Z̃>Z)−1Z̃>{Ỹ (θ(m), F̃θ(m))−Xβ(m+1)(λ∗)}.

In each iterative step, we also update Ỹ (θ(m), F̃θ(m)). The algorithm continues

until θ(m) converges to the limit value, which is then used as the initial value for

the BJ-ADMM iterative procedure.

3.3. Tuning parameter

From a grid of λ values, we select the optimal tuning parameter λ̂ by mini-

mizing the following modified BIC:

BIC(λ) = log

{
1

n
‖Ỹ(θ̂(λ), F̃

θ̂(λ)
)− Z̃η̂(λ)− X̃β̂(λ)‖2

}
+ Cn

log n

n

{
R̂(λ)p+ q

}
,

(3.9)

where Cn is a positive number dependent on n. By default, we take Cn =

log(np+ q), ϕ = 1, and a = 3.
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3.4. Convergence of the BJ-ADMM algorithm

The convergence of the BJ-ADMM algorithm can be demonstrated by show-

ing that both the primal residual and the dual residual approach zero in the

iterative procedure.

Proposition 1. If {α(k)}∞k=1 is bounded and ‖ν(k+1)−ν(k)‖ → 0, then {η(k),β(k),

α(k),ν(k)}∞k=1 is bounded. Moreover, there exists a subsequence {η(kj),β(kj),

α(kj),ν(kj)}∞kj=1, such that

lim
kj→∞

‖η(kj+1) − η(kj)‖+ ‖β(kj+1) − β(kj)‖

+ ‖α(kj+1) −α(kj)‖+ ‖ν(kj+1) − ν(kj)‖ = 0

and, thus, {η(k),β(k),α(k),ν(k)}∞k=1 has a sub-sequence that converges to a sta-

tionary point.

The proof is given in the Supplementary Materials. This proposition guar-

antees that the BJ-ADMM algorithm, when applied to the objective function in

(3.2), converges to a minimum point that is locally optimal.

4. Asymptotic Results

4.1. Notation and conditions

To study the consistency and oracle property of the proposed concave-penal-

ized Buckley–James estimator, we first introduce some notation and regularity

conditions. Let Π̃ = {πir} denote an n × R matrix with πir = 1 for i ∈ Gr, and

πir = 0 for i /∈ Gr. Let Π = Π̃ ⊗ Ip, U = (Z,XΠ)n×(q+Rp), and Ui be the ith

row vector of U ; that is, Ui = [Z>i , X
>
i πi1, . . . , X

>
i πiR]> and Ū = (1/n)

∑n
i=1 Ui.

Define φ = (η>,ρ>)> and ρ = (ρ>1, . . . , ρ
>
R)>, where ρr is the rth subgroup-

specific parameter vector of dimension p. Then, β = Πρ, and the correspond-

ing true parameters are φ0 = (η>0,ρ
>
0)
> and β0 = Πρ0. Note that Π>Π =

diag(|G1|, . . . , |GR|)⊗Ip, and let Gmin = min1≤r≤R |Gr| and Gmax = max1≤r≤R |Gr|,
which represent the minimum and maximum group sizes, respectively. Let

εi(φ) = Yi − U>i φ, ζi(φ) = Ci − U>i φ, and υi(φ) = min(εi(φ), ζi(φ)). In the

following, we restrict φ to a bounded interval ‖φ‖ ≤ κ, and then maxi ‖θi‖ ≤ κ.

Based on {(υi(φ), δi), i = 1, . . . , n}, we have

F̃φ(t) = 1−
∏

i:υi(φ)≤t

[
1− 1

Gn(φ, υi(φ))

]δi
,
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where Gn(φ, u) =
∑n

i=1 I(υi(φ) ≥ u). For a given vector b = (b1, . . . , bt)
> ∈ Rt

and a symmetric matrix At×t, define ‖b‖∞ = max1≤s≤t |bs|, ‖A‖∞ = max1≤i≤t∑t
j=1 |Aij |, and ‖A‖ = ‖A‖2 = maxb∈Rt,‖b‖=1 ‖Ab‖. Let Emin(A) and Emax(A)

be the smallest and largest eigenvalues of A, respectively, and let

ρ = min
i∈Gr,j∈Gr′ ,r 6=r′

‖β0i − β0j‖ = min
r 6=r′
‖ρ0r − ρ0r′‖

which is the minimum difference between the common treatment effects of two

subgroups.

Define Dφ,i(u) = (D
(1)>
φ (u), D

(2)>
φ (u)πi1, . . . , D

(2)>
φ (u)πiR)>, where D

(1)
φ (u) =

E[Zi | Y ∗i − U>i φ ≥ u] and D
(2)
φ (u) = E[Xi | Y ∗i − U>i φ ≥ u], which can be

estimated using

D̂
(1)
φ (u) =

∑n
i=1 ZiI(υi(φ) ≥ u)∑n
i=1 I(υi(φ) ≥ u)

,

D̂
(2)
φ (u) =

∑n
i=1XiI(υi(φ) ≥ u)∑n
i=1 I(υi(φ) ≥ u)

,

respectively. In addition, define

WF (t) = t−
∫∞
t sdF (s)

1− F (t)
and WF (t, h) = h(t)−

∫∞
t h(s)dF (s)

1− F (t)
. (4.1)

Let

Σn =

n∑
i=1

∫
I(ζi(φ0) ≥ u)(Ui − Dφ0,i(u))(Ui − Dφ0,i(u))>W 2

F (u)dF (u)

and Vn =

n∑
i=1

∫
I(ζi(φ0) ≥ u)Ui(Ui − Dφ0,i(u))>WF (u)WF

(
u,
f ′

f

)
dF (u),

where f ′ is the first derivative of the density function f . Let Vn = E(V −1n ΣnV
−1
n ).

Based on the composition of U , we correspondingly decompose Vn as

Vn =

(
Vn11 Vn12
Vn21 Vn22

)
,

where Vn11 is a q × q matrix.

For convenience, we rewrite the penalty function as pλ(·) = λ%λ(·), and

rewrite %λ(·) as %(·) when it is free of λ. Hereafter, Pλ(s) is taken to be the folded-

concave penalty studied by Lv and Fan (2009), defined in condition (C1). Let c
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and cj denote some positive constants. We impose three regularity conditions:

(C1) %λ(s) is symmetric, nondecreasing and concave in s ∈ [0,∞), and the

derivative %
′

λ(s) is continuous on (0,∞). It is constant for s ≥ aλ, for

some a > 0, and %λ(0) = 0. In addition, %
′

λ(s) is increasing in λ and

%
′

λ(0+) ≡ %′(0+) = c > 0 is independent of λ.

(C2) Let S(s, t | F ) = tI(t ≤ s) + (
∫∞
s udF (u)/(1− F (s)))I(t > s), ζi = ζi(θ0i),

and εi = εi(θ0i). The imputed noise vector

S = (S(ζ1, ε1 | F ), . . . ,S(ζn, εn | F ))>

has subGaussian tails, such that

P (|a>{S− E(ε)}| > ‖a‖x) ≤ 2 exp(−c1x2),

for any vector a ∈ Rn and x > 0, where ε = (ε1, . . . , εn)>.

(C3) (i) supi ‖Xi‖ ≤ c2 and supi ‖Zi‖ ≤ c3; (ii) Emin(U>U) ≥ c4Gmin and

Emax(U>U) ≤ c5n.

The penalty criterion in condition (C1) indicates that the singularity at

the region ensures sparsity. Furthermore, the concavity reduces the amount of

penalty for large parameters, and the increase in %
′

λ(s) with respect to λ allows

λ to effectively control the overall strength of the penalty. The subGaussian tail

behavior of the error term in condition (C2) is an extension of Ma and Huang

(2016) for the fact that E(εi) may not be zero.

4.2. Censored heterogeneous model

We first study the theoretical properties of the oracle estimators φ̂or =

(η̂or>, ρ̂or>)> in the censored heterogenous linear model. If we know the under-

lying subgroup structure (2.3), that is, the matrix Π is known, then the oracle

estimator of φ is given by

φ̂or = argmin
φ∈RLp+q

{
1

2
‖Ỹ (φ, F̃φ)−Uφ‖2 − n

2
[Ȳ (φ, F̃φ)− Ū>φ]2

}
. (4.2)

Because the group membership of the subjects, Π, is typically unknown in ad-

vance, the oracle estimators are not obtainable in practice. However, we can

investigate the theoretical properties of the proposed estimators. Let vn =
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max(n1/2/Gmin, n
4ς/Gmin) and

Ψ̃n(φ) = n−1/2
n∑
i=1

∫
I(ζi(φ) ≥ u)(Ui − Dφ,i(u))WFφ

(u)dM(u, εi(φ) | Fφ),

where

M(s, t | F ) = I(t ≤ s)−
∫ s
−∞ I(t ≥ u)dF (u)

1− F (s−)
.

Theorem 1. (Large-sample properties for oracle estimators). Under conditions

(C2)–(C3) and

P

(
lim
n→∞

n1/2−4ς
{

inf
φ≤κ,‖φ−φ0‖≥n−γ

‖Ψ̃n(φ)‖
}

=∞
)

= 1,

and 4ς + γ > 1, with 1/8 ≤ ς < 1, we have

(i) (Consistency) ‖φ̂or −φ0‖ = o(vn) a.s., ‖β̂or −β0‖ = o(
√
Gmaxvn) a.s., and

supi ‖β̂ori − β0i‖ = o(vn) a.s.

(ii) (Asymptotic normality) If vn → 0, then GnV−1/2n (φ̂or − φ0)
D→ N (0, 1),

where Gn is a 1× (q+Rp) row vector, such that ‖Gn‖ = 1, and
D→ denotes

convergence in distribution.

Because |Gmin| ≤ n/R and vn → 0, we conclude thatR = o{min(n1/2, n1−4ς)};
thus, Theorem 1 indicates that the number of subgroups L is assumed to grow

slower than min(n1/2, n1−4ς). Let Gmin = nψ with 0 < ψ ≤ 1. Then, the bound

can be rewritten as vn = min(n1/2−ψ, n4ς−ψ).

Theorem 2. Under conditions (C1)–(C3) and ρ > cλ, with λ� max(
√

log(n)/

Gmin, n
−1/2+4ς /Gmin) for some constant c > 0, there exists a local minimizer

θ̂(λ) of the objective function `P (θ;λ) given in (2.6) that satisfies

P{θ̂(λ) = θ̂or} → 1.

Theorem 2 implies that if the minimal difference of the common treatment

effects between two subgroups satisfies ρ� max(
√

log(n)/Gmin, n
−1/2+4ς/Gmin),

the oracle estimator θ̂or is a local minimizer of the objective function, with high

probability. In this case, our method can recover the true subgroup structure

with high probability.

Corollary 1. Under the conditions in Theorem 2, as n → ∞, GnV−1/2n (φ̂ −
φ0)

D→ N (0, 1). As a result, we have Gn1V−1/2n11 (η̂(λ) − η0)
D→ N (0, 1), and
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Gn2V−1/2n22 (ρ̂(λ) − ρ0)
D→ N (0, 1), where Gn1 and Gn2 are 1 × q and 1 × Rp row

vectors, respectively, with ‖Gn1‖ = ‖Gn2‖ = 1.

The asymptotic distribution of the penalized estimators can be used to con-

struct a confidence interval for each ρj , and also to test the significance of each

component of the subgroup-specific treatment effects.

4.3. Censored homogeneous model

When the true model contains only homogeneous treatment effects,

Yi = Z>i η +X>i ρ+ εi, i = 1, . . . , n,

we have β1 = · · · = βn = ρ and R = 1. The oracle estimators φ̂or = (η̂or>, ρ̂or>)>

in the censored homogeneous linear model are

φ̂or = argmin
φ∈Rp+q

{
1

2
‖Ỹ (φ, F̃φ)−U∗φ‖2 − n

2
{Ȳ (φ, F̃φ)− Ū∗>φ}2

}
= argmin

(η>,ρ>)>∈Rp+q

{
1

2
‖Ỹ (φ, F̃φ)−Zη − xρ‖2 − n

2
{Ȳ (φ, F̃φ)− Z̄>η − X̄>ρ}2

}
,

where x = (X1, . . . , Xn)>, X̄ = (1/n)
∑n

i=1Xi, U
∗ = (Z,x), U∗ = (Z>, X>)>,

U∗i = (Z>i , X
>
i )
>, and Ū∗ = (1/n)

∑n
i=1 U

∗
i . Let β̂or = (β̂or>1 , . . . , β̂or>n )> with

β̂ori = ρ̂or, and set ρ̂ and θ̂ = (η̂>, β̂>)> as the penalized estimators of ρ and

θ = (η>,β>)> , respectively, where η0 and ρ0 correspond to the true coefficient

vectors and φ0 = (η>0, ρ
>
0)
>. Let

Σ∗n =

n∑
i=1

∫
I(ζi(φ0) ≥ u)(U∗i − D∗φ0

(u))(U∗i − D∗φ0
(u))>W 2

F (u)dF (u)

and V ∗n =

n∑
i=1

∫
I(ζi(φ0) ≥ u)U∗i (U∗i − D∗φ0

(u))>WF (u)WF

(
u,
f ′

f

)
dF (u),

where D∗φ(u) = E(U∗|Y ∗ − U∗>φ ≥ u). Then, D∗φ(u) can be estimated by

D̂∗φ(u) =
∑n

i=1 U
∗
i I(υ∗i (φ) ≥ u)/

∑n
i=1 I(υ∗i (φ) ≥ u), where υ∗i (φ) = min(ε∗i (φ),

ζ∗i (φ)), ε∗i (φ) = Yi − U∗>i φ, and ζ∗i (φ) = Ci − U∗>i φ. Let V∗n = E(V ∗−1n Σ∗nV
∗−1
n ).

Based on the composition of U∗, V∗n can be correspondingly decomposed as

V∗n =

(
V∗n11 V∗n12
V∗n21 V∗n22

)
,
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where V∗n11 is a q × q matrix.

Moreover, we replace condition (C3) with (C3*), as follows:

(C3∗) (i) supi ‖Xi‖ ≤ c2 and supi ‖Zi‖ ≤ c3; (ii) Emin(U∗>U∗) ≥ c6n and

Emax(U∗>U∗) ≤ c7n.

Let v′n = max(n−1/2, n4ς−1) and

Ψ̃∗n(φ) = n−1/2
n∑
i=1

∫
I(ζ∗i (φ) ≥ u)(U∗i − D∗φ(u))WFφ

(u)dM(u, ε∗i (φ) | Fφ).

Theorem 3. If conditions (C1), (C2), and (C3∗) hold,

P

(
lim
n→∞

n1/2−4ς
{

inf
φ≤κ,‖φ−φ0‖≥n−γ

‖Ψ̃∗n(φ)‖
}

=∞
)

= 1,

and 4ς + γ > 1 with 1/8 ≤ ς < 1, then we have

(i) (Consistency) ‖φ̂or − φ0‖ = o(v′n) a.s., ‖β̂or − β0‖ = o(
√
nv′n) a.s., and

supi ‖β̂ori − β0i‖ = o(v′n) a.s. ;

(ii) (Asymptotic normality) If v′n → 0, then G′nV
∗−1/2
n (φ̂or − φ0)

D→ N (0, 1),

where G′n is a 1× (q + p) row vector with ‖G′n‖ = 1;

(iii) If λ � max(
√

log(n)/n, n−3/2+4ς) for some constant ς > 0, there exists a

local minimizer θ̂ of the objective function `P (θ;λ) given in (2.6) satisfying

P{θ̂(λ) = θ̂or} → 1.

Corollary 2. Under the conditions in Theorem 3, as n → ∞, G′nV
∗−1/2
n (φ̂ −

φ0)
D→ N (0, 1). As a result, we have G′n1V

∗−1/2
n11 (η̂(λ) − η0)

D→ N (0, 1), and

G′n2V
∗−1/2
n22 (ρ̂(λ) − ρ0)

D→ N (0, 1), where G′n1 and G′n2 are 1 × q and 1 × p row

vectors, respectively, with ‖G′n1‖ = ‖G′n2‖ = 1.

5. Simulation Studies

To evaluate the finite-sample performance of the proposed method, we con-

sidered three censored linear regression examples, including one heterogenous

treatment effect, multiple heterogenous treatment effects, and the homogeneous

regression setting.
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Example 1. (One treatment variable). We generate data from the censored

heterogenous linear regression model,

Yi = Z>i η +Xiβi + εi, i = 1, . . . , n,

where Zi = (Zi1, Zi2)
> is generated from a bivariate standard normal distribution,

Xi is generated from the standard normal distribution, and εi is taken from the

normal distribution N (1, 0.22). Furthermore, we generate the censoring time Ci
from log{min(τ,Unif(0, τ + 2))}, where Unif(·,·) denotes a uniform distribution,

and τ controls the censoring rate. The true coefficients are set as η = (η1, η2)
>=

(−1, 1)>. We randomly assign the treatment coefficients to three subgroups with

equal probabilities; that is, we let P (i ∈ G1) = P (i ∈ G2) = P (i ∈ G3) = 1/3,

such that βi = ρ1 for i ∈ G1, βi = ρ2 for i ∈ G2, and βi = ρ3 for i ∈ G3.
To investigate the effect of the size of the difference between subgroup-specific

treatment effects, we consider three values of ρ:

Case1 : ρ1 = 1, ρ2 = −1, and ρ3 = 0;

Case2 : ρ1 = 2, ρ2 = −2, and ρ3 = 0;

Case3 : ρ1 = 4, ρ2 = −4, and ρ3 = 0.

We chose sample sizes of n = 100 and 200 and censoring rates of 20% and

40%, which correspond to τ = 20 and 1, respectively. We compared the per-

formance of the estimators using the proposed BJ-ADMM algorithm with that

of using the two concave penalties (SCAD and MCP) and the Lasso penalty.

Following Ma and Huang (2016, 2017), we use ϕ = 1 and a = 3 for the MCP

and SCAD penalty. The optimal value of the tuning parameter λ was selected

by minimizing the modified BIC in (3.9). All simulation results are based on 500

replications.

Figure 1 displays the fusiongrams, that is, the solution paths for β̂1(λ), . . . ,

β̂n(λ) against λ using the SCAD, MCP, and Lasso under Case 3 of Example 1. For

both the SCAD and the MCP, the method provides nearly unbiased estimates,

and when λ reaches around 0.8, the estimates of (β1, . . . , βn) merge into the three

groups at the true values −4, 0, and 4. When λ exceeds 1.8, the estimates of βi
all shrink to a single value. For the Lasso, the estimates of βi quickly merge to

one value from λ = 0.2, owing to its tendency toward over-shrinkage.

To evaluate the proposed estimation procedure, we present the estimates R̂,

β̂i, ρ̂j ’s, and η̂ over 500 replications for each setting. Table 1 shows the mean,
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Figure 1. Fusiongrams (or solution paths) of β̂1(λ), . . . , β̂n(λ) versus λ for Case 3 of
Example 1, with n = 100 and censoring rate 40% under three different penalties, SCAD,
MCP, and Lasso.

median, and standard deviation of the estimated numbers of subgroups R̂ and

the percentage of R̂ equal to the true number of groups achieved by the SCAD

and MCP shrinkage procedures. In Case 1, with a censoring rate of 20%, Case

2, and Case 3, the median of R̂ is always three which is the true number of

subgroups. As the sample size n increases, the mean moves closer to three, and

the standard deviation becomes smaller, and the percentage of correctly selecting

the number of subgroups increases. The two concave penalties SCAD and MCP

exhibit similar performance.

To examine the treatment effect estimates β̂i, for i = 1, . . . , n, we plot Xiβi,

Xiβ̂i, and Xiβ̂
BJ
i against the values of Xi in Figure 2 under the SCAD method

for n = 100 and a censoring rate of 20%. Here βi is the true value, β̂i is the

value estimated by the proposed BJ-ADMM algorithm with SCAD, and β̂BJi
is the value estimated by the Buckley–James iterative procedure. The figure

shows that the lines fitted by the BJ-ADMM with SCAD are close to the truth,

whereas those fitted by the Buckley–James iterative procedure center around the
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Table 1. The mean, median, and standard deviation (SD) of R̂ and the percentage of R̂

equal to the true number of subgroups, P (R̂ = R), by the BJ-ADMM algorithm with the
MCP and SCAD penalties based on 500 replications, with n = 100, 200, and censoring
rates of 20% and 40%, respectively, in Example 1.

BJ-ADMM+SCAD BJ-ADMM+MCP

Case n Censoring Mean Median SD P (R̂ = R) Mean Median SD P (R̂ = R)

Case 1 100 20% 3.62 3 0.672 0.85 3.64 3 0.675 0.84

40% 3.86 3.5 0.708 0.80 3.89 3.5 0.710 0.80

200 20% 3.48 3 0.587 0.88 3.51 3 0.591 0.87

40% 3.60 3.5 0.626 0.83 3.63 3.5 0.630 0.82

Case 2 100 20% 3.23 3 0.330 0.94 3.25 3 0.332 0.93

40% 3.45 3 0.358 0.89 3.47 3 0.360 0.89

200 20% 3.11 3 0.267 0.96 3.13 3 0.269 0.96

40% 3.21 3 0.210 0.92 3.22 3 0.213 0.91

Case 3 100 20% 3.04 3 0.131 1.00 3.05 3 0.134 1.00

40% 3.09 3 0.148 0.96 3.10 3 0.157 0.95

200 20% 3.01 3 0.087 1.00 3.01 3 0.088 1.00

40% 3.04 3 0.096 0.98 3.03 3 0.095 0.97

-4
-2

0
2

4

-1.0 -0.5 0.0 0.5 1.0

Figure 2. Plots of Xiβi (solid lines), Xiβ̂i (dotted lines), and Xiβ̂
BJ
i (circle points)

versus values of Xi, where βi denotes the true value, β̂i is the value estimated by BJ-
ADMM+SCAD, and β̂BJ

i is the value estimated using the Buckley–James iterative pro-
cedure for Case 3 of Example 1.

horizontal line y = 0, and thus deviate far from the truth. Figure 3 exhibits the

mean squared error (MSE) for the estimates of η, which also demonstrates the

good performance of our method under different settings.

To further study the estimation accuracy of the subgroup-specific effects



SUBGROUP ANALYSIS IN CENSORED REGRESSION 1045

●

●

●
●

●

●

●

●

●

●

●
●

SCAD SCAD MCP MCP

0.
00

0.
05

0.
10

0.
15

n=100
M

SE

●●
●

●

●

●
●

●

●

●

●●●

●
●●
●●

SCAD SCAD MCP MCP
0.

00
0.

05
0.

10
0.

15

n=200

M
SE

Figure 3. Box plots of the MSEs of η̂ using BJ-ADMM+SCAD and BJ-ADMM+MCP,
with n = 100, 200, and censoring rates of 20% (white) and 40% (grey), respectively, for
Case 3 of Example 1.

ρ̂r, we compare the mean, median, and standard deviation of the estimates ρ̂1,

ρ̂2, and ρ̂3 by the proposed method with the SCAD and MCP with those of the

oracle estimators in Table 2. Both the means and medians of the three versions of

(ρ̂1, ρ̂2, ρ̂3) are close to the true values for all cases. As n increases, the biases and

standard deviations decrease, but the converse is true when the censoring rate

increases. Moreover, the estimates using the SCAD and MCP are similar, and

both are close to the oracle results. In addition, the size of the difference between

the subgroup-specific treatment effects slightly influences the performance of the

proposed method.

Example 2. (Multiple treatment variables). In this experiment, we generate

data from a censored heterogenous linear regression model,

Yi = Z>i η +X>i βi + εi, i = 1, . . . , n,

where Zi and η are generated in the same way as in Example 1, and Xi =

(Xi1, Xi2)
> is simulated from a bivariate standard normal distribution. We ran-

domly assign the responses to three groups with equal probabilities, that is, R = 3

and P (i ∈ G1) = P (i ∈ G2) = P (i ∈ G3) = 1/3, such that βi = ρ1 for i ∈ G1,
βi = ρ2 for i ∈ G2, and βi = ρ3 for i ∈ G3, where ρ1 = (4, 4)>, ρ2 = (−4,−4)>, and

ρ3 = (0, 0)>. In this experiment, we also consider the noncentralized quadratic
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Table 2. The mean, median, and standard deviation (SD) of the estimators ρ̂1, ρ̂2, and ρ̂3
by the SCAD and MCP penalties and the oracle (OR) estimators over 500 replications,
with n = 100, 200, and censoring rates of 20% and 40%, respectively, in Example 1.

n = 100 n = 200

Censoring = 20% Censoring = 40% Censoring = 20% Censoring = 40%

Case Mean Median SD Mean Median SD Mean Median SD Mean Median SD

Case 1 ρ̂1(SCAD) 1.076 1.072 0.074 1.112 1.107 0.125 1.046 1.042 0.051 1.087 1.082 0.106

ρ̂1(MCP) 1.082 1.076 0.078 1.124 1.120 0.129 1.048 1.045 0.053 0.059 1.085 0.109

ρ̂1(OR) 1.050 1.048 0.050 1.053 1.059 0.086 1.026 1.022 0.027 1.047 1.042 0.076

ρ̂2(SCAD) -0.913 -0.924 0.092 -0.897 -0.902 0.133 -0.938 -0.943 0.072 -0.917 -0.919 0.093

ρ̂2(MCP) -0.910 -0.916 0.095 -0.895 -0.900 0.135 -0.934 -0.939 0.076 -0.913 -0.916 0.097

ρ̂2(OR) -1.065 -1.053 0.073 -1.098 -1.079 0.098 -1.023 -1.021 0.051 -1.049 -1.043 0.080

ρ̂3(SCAD) 0.024 0.020 0.031 0.039 0.033 0.057 0.011 0.009 0.018 0.021 0.019 0.037

ρ̂3(MCP) 0.022 0.019 0.034 0.041 0.039 0.060 -0.013 -0.011 0.019 -0.024 -0.021 0.042

ρ̂3(OR) 0.012 0.010 0.019 0.027 0.025 0.035 -0.007 -0.005 0.010 -0.011 -0.009 0.021

Case 2 ρ̂1(SCAD) 2.049 2.044 0.044 2.089 2.086 0.092 2.016 2.012 0.031 2.047 2.042 0.056

ρ̂1(MCP) 2.052 2.048 0.048 2.092 2.090 0.093 2.018 2.015 0.033 2.049 2.045 0.059

ρ̂1(OR) 2.020 2.028 0.040 2.043 2.049 0.076 2.008 2.006 0.017 2.017 2.012 0.046

ρ̂2(SCAD) -1.953 -1.964 0.052 -1.917 -1.919 0.083 -1.978 -1.983 0.032 -1.957 -1.959 0.053

ρ̂2(MCP) -1.950 -1.956 0.055 -1.915 -1.918 0.085 -1.974 -1.979 0.036 -1.953 -1.956 0.057

ρ̂2(OR) -2.015 -2.013 0.030 -2.058 -2.059 0.058 -2.009 -2.006 0.021 -2.029 -2.023 0.060

ρ̂3(SCAD) 0.008 0.007 0.011 0.019 0.023 0.027 0.005 0.003 0.008 0.014 0.012 0.017

ρ̂3(MCP) 0.009 0.006 0.013 0.021 0.025 0.029 -0.007 -0.005 0.009 -0.016 -0.014 0.012

ρ̂3(OR) 0.005 0.004 0.009 0.013 0.010 0.015 -0.003 -0.002 0.003 -0.06 -0.005 0.008

Case 3 ρ̂1(SCAD) 3.989 3.996 0.034 3.919 3.924 0.069 3.995 3.997 0.020 3.937 3.942 0.036

ρ̂1(MCP) 3.987 3.994 0.036 3.916 3.922 0.070 3.992 3.994 0.019 3.936 3.940 0.037

ρ̂1(OR) 3.991 3.998 0.031 3.923 3.934 0.066 3.998 3.999 0.016 3.954 3.960 0.032

ρ̂2(SCAD) -3.982 -3.984 0.041 -3.921 -3.925 0.073 -3.989 -3.991 0.023 -3.951 -3.959 0.042

ρ̂2(MCP) -3.980 -3.983 0.045 -3.920 -3.922 0.075 -3.988 -3.992 0.026 -3.951 -3.955 0.044

ρ̂2(OR) -3.989 -3.991 0.038 -3.931 -3.934 0.068 -3.994 -3.998 0.020 -3.976 -3.980 0.039

ρ̂3(SCAD) -0.004 0.003 0.011 0.009 0.013 0.017 -0.002 -0.003 0.006 -0.006 -0.007 0.013

ρ̂3(MCP) -0.002 0.003 0.014 0.010 0.011 0.018 -0.001 -0.002 0.006 -0.006 -0.005 0.012

ρ̂3(OR) -0.000 0.001 0.009 0.004 0.005 0.015 -0.000 -0.000 0.003 -0.004 -0.003 0.009

loss function with fusion penalty given by

`∗P (θ;λ) =
1

2

n∑
i=1

{Ỹi(θi, F̃θ)− Z>i η −X>i βi}2 +
∑

1≤i<j≤n
Pλ(‖βi − βj‖). (5.1)

As a result, we examine the following four cases to explore the effect of central-

ization:

Case1 : εi ∼ N (0, 0.52) by `P (θ;λ) in (2.6);

Case2 : εi ∼ N (0, 0.52) by `∗P (θ;λ) in (5.1);

Case3 : εi ∼ N (1, 0.52) by `P (θ;λ) in (2.6);

Case4 : εi ∼ N (1, 0.52) by `∗P (θ;λ) in (5.1).
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Figure 4 displays the fusiongrams for β1 = (β11, . . . , β1n)> and β2 = (β21, . . . ,

β2n)>with n = 100 and a censoring rate of 20% under Case 3. The figure indicates

that the BJ-ADMM methods with the SCAD and MCP behave similarly, and

both are more suited to enforcing sparser subgroups than the Lasso penalty. Ta-

ble 3 reports the mean, median, and standard deviation of R̂ and the percentage

of R̂ equal to the true number of subgroups for the BJ-ADMM procedure with

the SCAD and MCP based on 500 replicates in Case 3. The median of R̂ always

matches the true number of subgroups, which is three, and the mean of R̂ is also

close to three. Moreover, the percentage of correctly selecting the true number

of subgroups increases as the censoring rate becomes smaller or the sample size

increases. Table 4 reports the mean, median, and standard deviation (SD) of the

root mean square error (RMSE) of the estimator ρ̂ with the formula ‖ρ̂−ρ‖/
√
Rp

under the SCAD penalty over 500 replications with n = 100, 200, and censoring

rates of 20% and 40%, respectively, under the four cases of Example 2. The

results under Case 2 show the best performance because the objective function

`∗P (θ;λ) correctly reflects the parameter structure of the model. In contrast,

`∗P (θ;λ) leads to an invalid estimation in Case 4. Our centralized quadratic loss

function with a fusion penalty, that is, `P (θ;λ), always provides valid estimates

of the group-specified coefficients. Furthermore, we evaluate the performance of

the estimators ρ̂ = (ρ̂>1, ρ̂
>
2, ρ̂
>
3)
> using the MSE with the formula ‖ρ̂ − ρ‖/

√
Rp.

Figure 5 depicts the box plots of the MSEs of ρ̂ using the two concave penal-

ties SCAD and MCP under censoring rates of 20% and 40%, respectively, under

Case 3. The MSE decreases as the censoring rate decreases or the sample size

increases, for both the SCAD and the MCP. The the BJ-ADMM with SCAD and

MCP perform similarly in all settings.

Example 3. (Homogeneous treatment effect). In this experiment, we generate

data from a censored homogeneous linear regression model,

Yi = Z>i η +Xiβ + εi, i = 1, . . . , n,

where Zi, Xi, εi, and η were generate in the same way as in Example 1. We

use β = 2, sample size n = 100, and censoring rates of 20% and 40%. In

addition to the independent censoring, as in the previous two examples, we also

considered covariate-dependent censoring by generating C from N (µ + X, 1),

where µ controls the censoring rate.

Table 5 presents the simulation results of the estimate R̂ by the SCAD and

MCP shrinkage procedures over 500 replicates. In all cases, the medians of R̂
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Table 3. The mean, median, and standard deviation (SD) of R̂ and the percentage of

R̂ equal to the true number of subgroups, P (R̂ = R), by the MCP and SCAD penalties
based on 500 replications, with n = 100, 200, and censoring rates of 20% and 40%,
respectively, in Case 3 of Example 2.

BJ-ADMM+SCAD BJ-ADMM+MCP

n Censoring Mean Median SD P (R̂ = R) Mean Median SD P (R̂ = R)

100 20% 3.11 3 0.423 0.91 3.26 3 0.412 0.92

40% 3.36 3 0.502 0.85 3.40 3 0.602 0.88

200 20% 3.06 3 0.223 0.95 3.11 3 0.302 0.94

40% 3.16 3 0.372 0.89 3.20 3 0.451 0.90

Table 4. The mean, median, and standard deviation (SD) of the RMSEs of the estimators
ρ̂ with the formula ‖ρ̂ − ρ‖/

√
Rp under the SCAD penalty over 500 replications with

n = 100, 200, and censoring rates of 20% and 40%, respectively, under the four Cases of
Example 2.

n = 100 n = 200

Censoring = 20% Censoring = 40% Censoring = 20% Censoring = 40%

Case Mean Median SD Mean Median SD Mean Median SD Mean Median SD

Case 1 0.026 0.029 0.039 0.059 0.064 0.088 0.018 0.016 0.028 0.035 0.034 0.053

Case 2 0.017 0.016 0.021 0.038 0.044 0.052 0.009 0.006 0.014 0.023 0.021 0.031

Case 3 0.041 0.047 0.070 0.079 0.084 0.116 0.029 0.031 0.041 0.053 0.054 0.082

Case 4 1.834 1.947 2.882 2.419 2.528 3.062 1.589 1.638 2.031 2.011 1.927 2.421

are exactly one, which implies a homogeneous treatment effect. Regardless of

the independent or covariate-dependent censoring mechanisms, the means of the

estimated numbers of subgroups are all close to one, and the standard deviation

becomes smaller as the censoring rate decreases. Moreover, the percentage of

correctly selecting the true number of subgroups becomes higher as the censoring

rate decreases. The two concave penalties SCAD and MCP perform equally well.

Furthermore, we considered the null hypothesis H0 : β1 = · · · = βn = β∗,

with β∗ = 2, to test homogeneity, and applied the χ2-test statistic,

T ∗n = (ρ̂− ρ∗)>(V̂n11)−1(ρ̂− ρ∗),

where ρ∗ = (1R̂ ⊗ Ip)β
∗ and 1R̂ is a vector of length R̂ with all elements equal

to one. We calculated the average type-I error rate based on 500 replications

using (1/500)
∑500

j=1 I{T
∗j
n > χ2

R̂
(0.95)}, where T ∗jn is the value of T ∗n from the

jth replicate, and χ2
R̂

(0.95) is the 0.95-quantile of the χ2 distribution with R̂

degrees of freedom. We obtained an average type-I error rate of 0.0552 and
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Figure 4. Fusiongrams of β1 = (β11, . . . , β1n)> and β2 = (β21, . . . , β2n)>, with n = 100
and censoring rate 20% in Example 2.

Table 5. The mean, median, and standard deviation (SD) of R̂ and the percentage of

R̂ equal to the true number of subgroups, P (R̂ = R), by the MCP and SCAD penalties
based on 500 replications, with n = 100 and censoring rates of 20% and 40%, respectively,
in Example 3.

BJ-ADMM+SCAD BJ-ADMM+MCP

Mechanism Rate Mean Median SD P (R̂ = R) Mean Median SD P (R̂ = R)

Independent 20% 1.12 1 0.137 0.97 1.10 1 0.132 0.96

40% 1.19 1 0.242 0.95 1.20 1 0.237 0.94

Dependent 20% 1.17 1 0.152 0.96 1.15 1 0.149 0.96

40% 1.25 1 0.207 0.91 1.26 1 0.196 0.93

0.0554 for the SCAD and the MCP, respectively, which are very close to the

nominal significance level of 0.05.
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Figure 5. Box plots of the MSEs of ρ̂ using BJ-ADMM+SCAD and BJ-ADMM+MCP,
with n = 100, 200, and censoring rates of 20% (white) and 40% (grey), respectively, in
Example 2.

6. Application

As an illustration, we apply the proposed method to a real data set from

a clinical trial in primary biliary cirrhosis (PBC) of the liver carried out by the

Mayo Clinic (Fleming and Harrington (1991)). Patients in the PBC data were

randomized into two treatment groups: D-penicillamine and a placebo. Sixteen

baseline covariates were collected: age in years (z1), sex (z2), presence of as-

cites (z3), presence of hepatomegaly (z4), presence of spiders (z5), presence of

edema (z6), serum bilirubin (z7), serum cholesterol (z8), albumin (z9), urine cop-

per (z10), alkaline phosphatase (z11), serum glutamic-oxaloacetic transaminase

(z12), triglycerides (z13), histologic stage of disease (z14), platelet count (z15),

and prothrombin time (z16). After removing records with the missing data, the

sample contained n = 276 observations. During the follow-up, 129 patients died

and the other 147 patients were censored, leading to a censoring rate of 53%.

We took the log-transformed survival time as the response variable Yi, and con-

sidered a binary variable X for the two treatments (Xi = 1 for patients in the

D-penicillamine group; Xi = 0 for patients in the placebo group).

To check for possible heterogeneity in the treatment effects, we first fitted a

censored homogeneous linear model, Yi = Z>i η+ εi, with Zi = (zi1, . . . , zi16)
>, us-

ing the Buckley–James estimation procedure. We then plotted the Kaplan–Meier

kernel density estimate of residuals {(δi, Yi − Z>i η̂BJ) : Xi = 1, i = 1, . . . , 276},
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Figure 6. The kernel density plot of the residuals after controlling for the effects of the
16 baseline covariates for the patients treated with D-penicillamine in the PBC data.

where η̂BJ is the Buckley–James estimator. Figure 6 shows that the distribution

has multiple modes for these patients, which indicates possible heterogeneous

treatment effects.

As a result, we considered the censored heterogeneous linear regression, Yi =

Z>i η +Xiβi + εi. All covariates were standardized before applying the proposed

method with the SCAD and MCP. We selected the optimal tuning parameter

λ̂ = 0.15 for both the SCAD and the MCP by minimizing the modified BIC

defined in (3.9), and identified R̂ = 3 major subgroups by our proposed BJ-

ADMM algorithm. Figure 7 displays the fusiongrams for β = (β1, . . . , βn)> using

the SCAD and MCP, indicating the existence of heterogeneity in the treatment

effects.

In Table 6, we report the estimates ρ̂1, ρ̂2, and ρ̂3 with the p-values used to

test the significance of each component of the subgroup-specific treatment effects

using the proposed method, and the p-values using the standard Buckley–James

method. The Buckley–James results show that the treatment had no statistically

significant effect on the survival time. However, the BJ-ADMM methods with

the MCP and SCAD suggest that the D-penicillamine treatment had significantly

positive and negative subgroup-specific effects on the survival times of patients

in the first and second groups, respectively, but no effect in the third group.

7. Conclusion

To accommodate random censoring in survival data, we have proposed a con-

cave fusion penalized Buckley–James least squares approach for simultaneously
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Figure 7. Fusiongrams of β = (β1, . . . , βn)> using the proposed BJ-ADMM with the
SCAD and MCP penalties for the PBC data.

Table 6. The estimates and p-values of ρ̂1, ρ̂2, and ρ̂3 by the BJ-ADMM using the MCP
and SCAD methods, and those of β̂ = ρ̂1 by the Buckley–James method for the PBC
data.

Method Result ρ̂1 ρ̂2 ρ̂3
BJ-ADMM+SCAD Estimate 0.767 -0.567 0.003

p-value 0.006 0.009 0.708

BJ-ADMM+MCP Estimate 0.769 -0.566 0.003

p-value 0.005 0.009 0.708

Buckley–James Estimate 0.003

p-value 0.710

estimating the grouping structure and the subgroup-specific treatment effects

in a heterogeneous linear regression model. Our BJ-ADMM algorithm with the

SCAD or MCP works well in both simulation and real-data examples. It is possi-

ble to incorporate the modified Buckley–James estimator (Lai and Ying (1991))

into our method to deal with with the difficulties caused by the instability at

the upper tail of the associated Kaplan–Meier estimator of the underlying error

distribution. Extensions to other survival models, such as the Cox proportional

hazards model (Zhang and Lu (2007)), additive hazards (Lin and Lv (2013)), or

transformation models, are also worth pursuing.

Supplementary Material

The online Supplementary Material includes the proofs of Proposition 1 and

Theorems 1–3.
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