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Abstract: This paper is concerned with linear quadratic optimal control problems for mean-

field backward stochastic differential equations (MF-BSDEs, for short) with deterministic co-

efficients. The optimality system, which is a linear mean-field forward-backward stochastic

differential equation with constraint, is obtained by a variational method. By decoupling the

optimality system, two coupled Riccati equations and an MF-BSDE are derived. It turns out

that the coupled two Riccati equations are uniquely solvable. Then a complete and explicit

representation is obtained for the optimal control.
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1 Introduction

The mean-field type stochastic control problem is important in various fields such as science,

engineering, economics, management, and particularly in financial investment. The theory of

mean-field forward stochastic differential equations (MF-FSDEs, for short) can be traced back

to Kac [21] who presented the McKean-Vlasov stochastic differential equation motivated by a

stochastic toy model for the Vlasov kinetic equation of plasma. Since then, research on related

topics and their applications has become a notable and serious endeavor among researchers

in applied probability and optimal stochastic control, particularly in financial engineering.

Typical representatives include, but not limited to, McKean [27], Dawson [15], Chan [12],

Buckdahn–Djehiche–Li–Peng [7], Buckdahn–Li–Peng [8], Borkar–Kumar [5], Crisan–Xiong [14],

Andersson–Djehiche [2], Buckdahn–Djehiche–Li [6], Meyer-Brandis–Oksendal–Zhou [28], Yong

[35, 36], Huang–Li–Yong [19], Li–Sun–Yong [23], Pham [29], and Sun [30]. In particular, Lasry–

Lions [22] introduced mean-field games, derived their important strategies and mentioned many
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open yet interesting problems. Huang–Caines–Malhamé [17, 18] and Huang–Malhamé–Caines

[20] studied large population stochastic dynamic mean-field games. In addition, Carmona–

Delarue [9, 10] and Carmona–Delarue–Lachapelle [11] developed probabilistic theory of mean-

field including mean-field forward-backward stochastic differential equations (MF-FBSDEs, for

short), control and games. Bensoussan–Sung–Yam [3], Bensoussan–Sung–Yam–Yung [4], and

Graber [16] analyzed mean-field linear-quadratic control problems and games with their strate-

gies. The MF-FSDEs can be treated in a forward-looking way by starting with the initial state.

In financial investment, however, one frequently encounters financial investment problems with

future conditions (as random variables) specified. This naturally results in a mean-field back-

ward stochastic differential equation (MF-BSDE, for short) with a given terminal condition

(see Buckdahn–Djehiche–Li–Peng [7] and Buckdahn–Li–Peng [8]). This is an important and

challenging research topic. Recently there has been increasing interest in studying this type of

stochastic control problems as well as their applications. The optimal stochastic control prob-

lems under MF-BSDEs are underdeveloped in the literature, and therefore many fundamental

questions remain open and methodologies need to be significantly improved.

Let (Ω,F ,F,P) be a complete filtered probability space on which a standard one-

dimensional Brownian motion W = {W (t); 0 6 t < ∞} is defined, where F = {Ft}t>0 is

the natural filtration of W augmented by all the P-null sets in F . Consider the following

controlled linear MF-BSDE:
dY (s) =

{
A(s)Y (s) + Ā(s)E[Y (s)] +B(s)u(s) + B̄(s)E[u(s)]

+ C(s)Z(s) + C̄(s)E[Z(s)]
}
ds+ Z(s)dW (s), s ∈ [t, T ],

Y (T ) = ξ,

(1.1)

where A(·), Ā(·), B(·), B̄(·), C(·), C̄(·), D(·), D̄(·) are given deterministic matrix-valued func-

tions; ξ is an FT -measurable random vector; and u(·) is the control process. The class of

admissible controls for (1.1) is

U [t, T ] =

{
u : [t, T ]× Ω→ Rm

∣∣ u(·) is F-progressively measurable, E
∫ T

t
|u(s)|2ds <∞

}
.

Under some mild conditions on the coefficients of equation (1.1), for any terminal state

ξ ∈ L2
FT (Ω;Rn) (the set of all FT -measurable, square-integrable Rn-valued processes) and any

admissible control u(·) ∈ U [t, T ], equation (1.1) admits a unique square-integrable adapted so-

lution (Y (·), Z(·)) ≡ (Y (· ; ξ, u(·)), Z(· ; ξ, u(·))), which is called the state process corresponding

to ξ and u(·). Now we introduce the following cost functional:

J(t, ξ;u(·)) , E
{
〈GY (t), Y (t)〉+

〈
ḠE[Y (t)],E[Y (t)]

〉
(1.2)

+

∫ T

t

[
〈Q(s)Y (s), Y (s)〉+

〈
Q̄(s)E[Y (s)],E[Y (s)]

〉
+ 〈R(s)Z(s), Z(s)〉+

〈
R̄(s)E[Z(s)],E[Z(s)]

〉
+ 〈N(s)u(s), u(s)〉+

〈
N̄(s)E[u(s)],E[u(s)]

〉]
ds

}
,

where G, Ḡ are symmetric matrices and Q(·), Q̄(·), R(·), R̄(·), N(·), and N̄(·) are deterministic,

symmetric matrix-valued functions. Our mean-field backward stochastic linear quadratic (LQ,

for short) optimal control problem can be stated as follows.
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Problem (MF-BSLQ). For any given t ∈ [0, T ) and terminal state ξ ∈ L2
FT (Ω;Rn), find

a u∗(·) ∈ U [t, T ] such that

J(t, ξ;u∗(·)) = inf
u(·)∈U [t,T ]

J(t, ξ;u(·)) , V (t, ξ). (1.3)

Any u∗(·) ∈ U [t, T ] satisfying (1.3) is called an optimal control of Problem (MF-BSLQ) for

the terminal state ξ, the corresponding (Y ∗(·), Z∗(·)) ≡ (Y (· ; ξ, u∗(·)), Z(· ; ξ, u∗(·))) is called

an optimal state process, and the three-tuple (Y ∗(·), Z∗(·), u∗(·)) is called an optimal triple.

The function V (· , ·) is called the value function of Problem (MF-BSLQ). Note that when the

mean-field part is absent, Problem (MF-BSLQ) is reduced to a stochastic LQ optimal control

of backward stochastic differential equations (see Lim–Zhou [24] for some relevant results). For

LQ optimal control problems of forward stochastic differential equations, the interested reader

is referred to, for example, [34, 13, 1, 33, 31] and the book of Yong–Zhou [37].

In this paper, we shall construct the optimal control and provide a representation of the

value function for Problem (MF-BSLQ). The main idea can be described as follows. We first

show that under certain conditions the cost functional is strictly convex and coercive with

respect to the control variable. So from the basic theorem in convex analysis we conclude the

uniqueness and existence of an optimal control. By a variational method, the optimal control

is then characterized in terms of the optimality system, which is a coupled mean-field type

forward-backward stochastic differential equation, together with a stationarity condition. In

order to obtain an explicit representation of the optimal control, we use a decoupling tech-

nique inspired by the four-step scheme introduced in [25, 26] for general FBSDEs to solve the

optimality system. This leads to a pair of coupled Riccati equations. By considering their

connection with forward mean-field LQ problems, we further establish the unique solvability

of the Riccati equations. The optimal control is thus constructed and an explicit formula for

the value function can be developed by the method of completing the squares.

The rest of the paper is organized as follows. Section 2 gives some preliminaries. Among

other things, we show Problem (MF-BSLQ) is uniquely solvable by using the basic theory of

convex analysis. In Section 3, we derive the optimality system by a variational method and

the coupled two Riccati equations by a decoupling technique. Section 4 is devoted to the

uniqueness and existence of solutions to the Riccati equations. In Section 5, we present explicit

formulas of the optimal control and the value function.

2 Preliminaries

Throughout this paper, Rn×m is the Euclidean space of all n × m real matrices, Sn is the

space of all symmetric n×n real matrices, Sn+ is the subset of Sn consisting of positive definite

matrices, and Sn+ is the closure of Sn+ in Rn×n. When m = 1, we simply write Rn×m as Rn,

and when n = m = 1, we drop the superscript. Recall that the inner product 〈· , ·〉 on Rn×m

is given by 〈M,N〉 7→ tr (M>N), where the superscript > denotes the transpose of matrices

and tr (K) denotes the trace of a matrix K, and that the induced norm on Rn×m is given by

|M | =
√

tr (M>M). If no confusion is likely, we shall use 〈· , ·〉 for inner products in possibly

different Hilbert spaces, and denote by | · | the norm induced by 〈· , ·〉. Let t ∈ [0, T ) and H be

a given Euclidean space. The space of H-valued continuous functions on [t, T ] is denoted by

C([t, T ];H), and the space of H-valued, pth (1 6 p 6∞) power Lebesgue integrable functions
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on [t, T ] is denoted by Lp(t, T ;H). Further, we introduce the following spaces of random

variables and stochastic processes:

L2
FT (Ω;H) =

{
ξ : Ω→ H

∣∣ ξ is FT -measurable, E|ξ|2 <∞
}
,

L2
F(t, T ;H) =

{
ϕ : [t, T ]× Ω→ H

∣∣ ϕ(·) is F-progressively measurable,

E
∫ T

t
|ϕ(s)|2ds <∞

}
,

L2
F(Ω;C([t, T ];H)) =

{
ϕ : [t, T ]× Ω→ H

∣∣ ϕ(·) is F-adapted, continuous,

E
[

sup
t6s6T

|ϕ(s)|2
]
<∞

}
.

Next we introduce the following assumptions that will be in force throughout this paper.

(H1) The coefficients of the state equation satisfy the following:

A(·), Ā(·) ∈ L1(0, T ;Rn×n), B(·), B̄(·) ∈ L2(0, T ;Rn×m), C(·), C̄(·) ∈ L2(0, T ;Rn×n).

(H2) The weighting coefficients in the cost functional satisfy{
G, Ḡ ∈ Sn, Q(·), Q̄(·) ∈ L1(0, T ; Sn),

R(·), R̄(·) ∈ L∞(0, T ;Sn), N(·), N̄(·) ∈ L∞(0, T ;Sm),

and there exists a constant δ > 0 such that for a.e. s ∈ [0, T ],{
G, G+ Ḡ > 0, Q(s), Q(s) + Q̄(s) > 0,

R(s), R(s) + R̄(s) > 0, N(s), N(s) + N̄(s) > δI.

Now we present a result concerning the well-posedness of the state equation (1.1).

Theorem 2.1. Let (H1) hold. Then for any (ξ, u(·)) ∈ L2
FT (Ω;Rn) × U [t, T ], MF-BSDE

(1.1) admits a unique adapted solution (Y (·), Z(·)) ∈ L2
F(Ω;C([t, T ];Rn))×L2

F(t, T ;Rn). More-

over, there exists a constant K > 0, independent of ξ and u(·), such that

E
[

sup
t6s6T

|Y (s)|2 +

∫ T

t
|Z(s)|2ds

]
6 KE

[
|ξ|2 +

∫ T

t
|u(s)|2ds

]
. (2.1)

Note that (H1) allows the coefficients A(·) and C(·) to be unbounded, which is a little

different from the standard case [7, 8]. However, the proof of Theorem 2.1 is similar to that of

the case without mean-field. We only present a short proof here and refer the interested reader

to Sun–Yong [32, Proposition 2.1] for more details.

Proof. To show the uniqueness, let (Y1(·), Z1(·)), (Y2(·), Z2(·)) ∈ L2
F(Ω;C([t, T ];Rn)) ×

L2
F(t, T ;Rn) be two adapted solutions to (1.1). Then (Y0(·), Z0(·)) , (Y1(·)−Y2(·), Z1(·)−Z2(·))

satisfies {
dY0 =

{
AY0 + ĀE[Y0] + CZ0 + C̄E[Z0]

}
ds+ Z0dW, s ∈ [t, T ],

Y0(T ) = 0.

In the above we have suppressed the time variable s and will do so frequently in the sequel to

simplify notation. By Itô’s formula, we have for any r ∈ [t, T ],

|Y0(r)|2 = −
∫ T

r

(
2
〈
Y0, AY0 + ĀE[Y0] + CZ0 + C̄E[Z0]

〉
+ |Z0|2

)
ds− 2

∫ T

r
〈Y0, Z0〉dW (s).
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Taking expectation and making use of the Cauchy-Schwarz inequality, we obtain

E|Y0(r)|2 + E
∫ T

r
|Z0(s)|2ds

6 E
∫ T

r

[(
2|A(s)|+ 2|C(s)|2

)
|Y0(s)|2 +

1

2
|Z0(s)|2

]
ds

+ E
∫ T

r

{
2|Ā(s)||Y0(s)||E[Y0(s)]|+ 4|C̄(s)|2|Y0(s)|2 +

1

4
|E[Z0(s)]|2

}
ds

6
∫ T

r

{[
2|A(s)|+ 2|Ā(s)|+ 2|C(s)|2 + 4|C̄(s)|2

]
E|Y0(s)|2 +

3

4
E|Z0(s)|2

}
ds,

from which follows

E|Y0(r)|2 +
1

4
E
∫ T

r
|Z0(s)|2ds 6

∫ T

r

[
2|A(s)|+ 2|Ā(s)|+ 2|C(s)|2 + 4|C̄(s)|2

]
E|Y0(s)|2ds.

We now conclude by Gronwall’s inequality that E|Y0(r)|2 = 0 and hence E
∫ T
r |Z0(s)|2ds = 0

for all r ∈ [t, T ]. This proves the uniqueness.

Next we will use the contraction mapping theorem to prove the existence. For notational

simplicity, we denote f(s) = B(s)u(s) + B̄(s)E[u(s)]. For any β ∈ R, we define Mβ[t, T ] to be

the Banach space

Mβ[t, T ] = L2
F(Ω;C([t, T ];Rn))× L2

F(t, T ;Rn)

equipped with the norm

‖(Y, Z)‖Mβ [t,T ] ,

{
E
[

sup
t6s6T

|Y (s)|2eβh(s)
]

+ E
∫ T

t
|Z(s)|2eβh(s)ds

} 1
2

,

where

h(s) =

∫ s

t

[
|A(r)|+ |Ā(r)|+ |C(r)|2 + |C̄(r)|2

]
dr, s ∈ [t, T ].

Since all the norms ‖ · ‖Mβ [t,T ] with different β are equivalent, we denote Mβ[t, T ] simply

by M[t, T ]. Now according to the theory of classical BSDE (see, for example, Sun-Yong [32,

Proposition 2.1] and Yong-Zhou [37, Chapter 7]), for any (y(·), z(·)) ∈M[t, T ], the BSDE{
dY (s) =

{
Ay + ĀE[y] + Cz + C̄E[z] + f

}
ds+ ZdW (s), s ∈ [t, T ],

Y (T ) = ξ
(2.2)

admits a unique adapted solution (Y (·), Z(·)) ∈M[t, T ], and the following estimate holds:

E
[

sup
t6s6T

|Y (s)|2 +

∫ T

t
|Z(s)|2ds

]
6 K ′E

[
|ξ|2 +

(∫ T

t
|g(s)|ds

)2
]
, (2.3)

where g = Ay+ ĀE[y] +Cz+ C̄E[z] + f and K ′ > 0 is constant independent of ξ and g. So we

can define an operator T from M[t, T ] to itself by T (y, z) = (Y, Z) via the BSDE (2.2). Once

we find a β > 0 such that

‖T (y, z)− T (ȳ, z̄)‖Mβ [t,T ] 6
1

2
‖(y, z)− (ȳ, z̄)‖Mβ [t,T ], ∀(y, z), (ȳ, z̄) ∈M[t, T ], (2.4)

5



the existence will follow immediately from the contraction mapping theorem. To this end, take

any (y1(·), z1(·)), (y2(·), z2(·)) ∈M[t, T ], and let

(y(·), z(·)) = (y1(·)− y2(·), z1(·)− z2(·)), (Y (·), Z(·)) = T (y1, z1)− T (y2, z2).

By applying Itô’s formula to s 7→ |Y (s)|2eβh(s) and using the Cauchy-Schwarz inequality, we

obtain for any r ∈ [t, T ],

|Y (r)|2eβh(r) +

∫ T

r
|Z|2eβhds+ 2

∫ T

r
eβh〈Y,Z〉dW (s) (2.5)

= −
∫ T

r
eβh
{
βh′|Y |2 + 2

〈
Y,Ay + ĀE[y] + Cz + C̄E[z]

〉}
ds

6
∫ T

r
eβh
{[
− βh′ + β

(
|A|+ |Ā|+ |C|2 + |C̄|2

)]
|Y |2

+ β−1
(
|A||y|2 + |Ā|E|y|2 + |z|2 + E|z|2

)}
ds

= β−1
∫ T

r
eβh
(
|A||y|2 + |Ā|E|y|2 + |z|2 + E|z|2

)
ds

6 α

{
sup
t6s6T

[
|y(s)|2eβh(s)

]
+ sup
t6s6T

E
[
|y(s)|2eβh(s)

]
+

∫ T

r
|z|2eβhds+ E

∫ T

r
|z|2eβhds

}
,

where

α = β−1
[∫ T

r

(
|A(s)|+ |Ā(s)|

)
ds+ 1

]
.

Taking expectation, one obtains

E
{
|Y (r)|2eβh(r) +

∫ T

r
|Z|2eβhds

}
6 2α‖(y, z)‖2Mβ [t,T ]

. (2.6)

On the other hand, by the Burkholder-Davis-Gundy inequalities and the Cauchy-Schwarz in-

equality, there exists a constant K > 0 such that

E
{

sup
t6r6T

∣∣∣∣∫ T

r
eβh〈Y, Z〉dW (s)

∣∣∣∣} 6 KE
{∫ T

t
e2βh|Y |2|Z|2ds

}1/2

(2.7)

6 KE

{[
sup
t6s6T

|Y (s)|2eβh(s)
]1/2 [∫ T

t
|Z|2eβhds

]1/2}

6
1

4
E
[

sup
t6s6T

|Y (s)|2eβh(s)
]

+K2E
[∫ T

t
|Z|2eβhds

]
.

Hereafter, we shall use K > 0 to represent a generic constant which can be different from line

to line. Now combining (2.5), (2.7), and (2.6) we obtain

E
[

sup
t6r6T

|Y (r)|2eβh(r)
]
6 2α‖(y, z)‖2Mβ [t,T ]

+ 2E
{

sup
t6r6T

∣∣∣∣∫ T

r
eβh〈Y, Z〉dW (s)

∣∣∣∣}
6 αK‖(y, z)‖2Mβ [t,T ]

+
1

2
E
[

sup
t6r6T

|Y (r)|2eβh(r)
]
.

This, together with (2.6), in turn yields

‖(Y,Z)‖2Mβ [t,T ]
6 β−1K

[∫ T

t

(
|A|+ |Ā|

)
ds+ 1

]
‖(y, z)‖2Mβ [t,T ]

.
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Thus we can choose β sufficiently large so that (2.4) holds, and the existence therefore follows.

Finally, to prove the estimate (2.1), we let (Y (·), Z(·)) be the adapted solution to the MF-

BSDE (1.1) so that (Y,Z) = T (Y,Z) and let (Y0(·), Z0(·)) be the adapted solution to (2.2)

with respect to (y(·), z(·)) = (0, 0) so that (Y0, Z0) = T (0, 0). By (2.4) and (2.3),

‖(Y, Z)‖Mβ [t,T ] 6 ‖(Y, Z)− (Y0, Z0)‖Mβ [t,T ] + ‖(Y0, Z0)‖Mβ [t,T ]

6
1

2
‖(Y,Z)‖Mβ [t,T ] +K

[
E|ξ|2 + E

(∫ T

t
|f(s)|ds

)2
]1/2

6
1

2
‖(Y,Z)‖Mβ [t,T ] +K

[
E|ξ|2 + E

∫ T

t
|u(s)|2ds

]1/2
,

and the estimate (2.1) follows readily.

From Theorem 2.1, one can easily see that under (H1)–(H2), the quadratic cost functional

J(t, ξ;u(·)) is well-defined (i.e., finite) for all (t, ξ) ∈ [0, T ) × L2
FT (Ω;Rn) and u(·) ∈ U [t, T ].

Thus, Problem (MF-BSLQ) makes sense. The following result tells us that under (H1)–(H2),

Problem (MF-BSLQ) is actually uniquely solvable for any terminal state ξ ∈ L2
FT (Ω;Rn).

Theorem 2.2. Let (H1)–(H2) hold. Then for any terminal state ξ ∈ L2
FT (Ω;Rn), Problem

(MF-BSLQ) admits a unique optimal control.

Proof. Let ξ ∈ L2
FT (Ω;Rn) be given. For a control u(·) ∈ U [t, T ], we denote by (Y u(·), Zu(·))

the unique adapted solution to the state equation (1.1). In terms of Y u(·) and Zu(·), the cost

functional (1.2) can be written as

J(t, ξ;u(·)) = E〈G{Y u(t)− E[Y u(t)]}, Y u(t)− E[Y u(t)]〉+
〈(
G+ Ḡ

)
E[Y u(t)],E[Y u(t)]

〉
+E

∫ T

t

[
〈Q{Y u − E[Y u]}, Y u − E[Y u]〉+

〈(
Q+ Q̄

)
E[Y u],E[Y u]

〉
+ 〈R{Zu − E[Zu]}, Zu − E[Zu]〉+

〈(
R+ R̄

)
E[Zu],E[Zu]

〉
+ 〈N{u− E[u]}, u− E[u]〉+

〈(
N + N̄

)
E[u],E[u]

〉]
ds

}
. (2.8)

By the linearity of the differential equation in (1.1), we have for any u(·), v(·) ∈ U [t, T ] and

α, β ∈ (0, 1) with α+ β = 1,

Y αu+βv(·) = αY u(·) + βY v(·), Zαu+βv(·) = αZu(·) + βZv(·).

Recall that for any positive semidefinite matrix M ∈ Sk, x, y ∈ Rk, and α, β ∈ (0, 1) with

α+ β = 1,

〈M(αx+ βy), αx+ βy〉 6 α〈Mx, x〉+ β〈My, y〉,

and the inequality is strict when M is positive semidefinite and x 6= y. Thus, by the assumption

(H2) and (2.8), we have for any two different controls u(·), v(·) ∈ U [t, T ] and any α, β ∈ (0, 1)

with α+ β = 1,

J(t, ξ;αu(·) + βv(·)) < αJ(t, ξ;u(·)) + βJ(t, ξ; v(·)).

This shows the map u(·) 7→ J(t, ξ;u(·)) is strictly convex. Further, we see from (2.8) that under

the assumption (H2),

J(t, ξ;u(·)) > δE
∫ T

t

[
|u(s)− E[u(s)]|2 + |E[u(s)]|2

]
ds = δE

∫ T

t
|u(s)|2ds,
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which implies the coercivity of u(·) 7→ J(t, ξ;u(·)). Therefore, by the basic theorem in convex

analysis, for any given ξ ∈ L2
FT (Ω;Rn), Problem (MF-BSLQ) has a unique optimal control.

3 Optimality system, decoupling, and Riccati equations

Let us first derive the optimality system for the optimal control of Problem (MF-BSLQ). For

simplicity of notation, in what follows we shall often suppress the time variable s if no confusion

can arise.

Theorem 3.1. Let (H1)–(H2) hold. Let (Y ∗(·), Z∗(·), u∗(·)) be the optimal triple for the

terminal state ξ ∈ L2
FT (Ω;Rn). Then the solution X∗(·) to the mean-field forward stochastic

differential equation (MF-FSDE, for short)
dX∗ =

{
−A>X∗ − Ā>E[X∗] +QY ∗ + Q̄E[Y ∗]

}
ds

+
{
−C>X∗ − C̄>E[X∗] +RZ∗ + R̄E[Z∗]

}
dW, s ∈ [t, T ],

X∗(t) = GY ∗(t) + ḠE[Y ∗(t)],

(3.1)

satisfies

Nu∗ + N̄E[u∗]−B>X∗ − B̄>E[X∗] = 0, a.e. s ∈ [t, T ], a.s. (3.2)

Proof. For any u(·) ∈ U [t, T ] and any ε ∈ R, let (Y (·), Z(·)) be the solution of{
dY =

{
AY + ĀE[Y ] +Bu+ B̄E[u] + CZ + C̄E[Z]

}
ds+ ZdW, s ∈ [t, T ],

Y (T ) = 0,

and let (Y ε(·), Zε(·)) be the solution to the perturbed state equation{
dY ε =

{
AY ε+ ĀE[Y ε] +B(u∗+ εu) + B̄E[u∗+ εu] + CZε+ C̄E[Zε]

}
ds+ ZεdW, s ∈ [t, T ],

Y ε(T ) = ξ.

It is clear that (Y ε(·), Zε(·)) = (Y ∗(·) + εY (·), Z∗(·) + εZ(·)), and hence

J(t, ξ;u∗(·) + εu(·))− J(t, ξ;u∗(·))

= 2εE
{
〈GY ∗(t), Y (t)〉+

〈
ḠE[Y ∗(t)],E[Y (t)]

〉
+

∫ T

t

[
〈QY ∗, Y 〉+ 〈RZ∗, Z〉+ 〈Nu∗, u〉

]
ds

+

∫ T

t

[〈
Q̄E[Y ∗],E[Y ]

〉
+
〈
R̄E[Z∗],E[Z]

〉
+
〈
N̄E[u∗],E[u]

〉]
ds

}
+ ε2E

{
〈GY (t), Y (t)〉+

〈
ḠE[Y (t)],E[Y (t)]

〉
+

∫ T

t

[
〈QY, Y 〉+ 〈RZ,Z〉+ 〈Nu, u〉

]
ds

+

∫ T

t

[〈
Q̄E[Y ],E[Y ]

〉
+
〈
R̄E[Z],E[Z]

〉
+
〈
N̄E[u],E[u]

〉]
ds

}
.

Applying Itô’s formula to s 7→ 〈X∗(s), Y (s)〉, we have

−E
{
〈GY ∗(t), Y (t)〉+

〈
ḠE[Y ∗(t)],E[Y (t)]

〉}
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= −E
〈
GY ∗(t) + ḠE[Y ∗(t)], Y (t)

〉
= E

∫ T

t

{〈
QY ∗ + Q̄E[Y ∗], Y

〉
+
〈
RZ∗ + R̄E[Z∗], Z

〉
+
〈
B>X∗ + B̄>E[X∗], u

〉}
ds.

It follows that for any u(·) ∈ U [t, T ] and any ε ∈ R,

J(t, ξ;u∗(·) + εu(·))− J(t, ξ;u∗(·)) (3.3)

= 2εE
∫ T

t

〈
Nu∗ + N̄E[u∗]−B>X∗ − B̄>E[X∗], u

〉
ds

+ ε2E
{
〈GY (t), Y (t)〉+

〈
ḠE[Y (t)],E[Y (t)]

〉
+

∫ T

t

[
〈QY, Y 〉+ 〈RZ,Z〉+ 〈Nu, u〉

]
ds

+

∫ T

t

[〈
Q̄E[Y ],E[Y ]

〉
+
〈
R̄E[Z],E[Z]

〉
+
〈
N̄E[u],E[u]

〉]
ds

}
.

Set φ(ε) = J(t, ξ;u∗(·) + εu(·)) − J(t, ξ;u∗(·)). It follows form (3.3) that φ(·) is continuously

differentiable with derivative at ε = 0 given by

φ′(0) = 2E
∫ T

t

〈
Nu∗ + N̄E[u∗]−B>X∗ − B̄>E[X∗], u

〉
ds.

Since u∗(·) is the optimal control of Problem (MF-BSLQ) for the terminal state ξ, we have

φ(ε) = J(t, ξ;u∗(·) + εu(·))− J(t, ξ;u∗(·)) > 0, ∀ε ∈ R; φ(0) = 0.

Thus, ε = 0 is a global extremum of φ(·) and hence φ′(0) = 0. Now (3.2) follows easily since

u(·) is arbitrary.

From the above result, we see that if u(·) happens to be an optimal control of Problem

(MF-BSLQ) for terminal state ξ, then the following MF-FBSDE admits an adapted solution

(X(·), Y (·), Z(·)):

dX =
{
−A>X − Ā>E[X] +QY + Q̄E[Y ]

}
ds

+
{
−C>X − C̄>E[X] +RZ + R̄E[Z]

}
dW, s ∈ [t, T ],

dY =
{
AY + ĀE[Y ] +Bu+ B̄E[u] + CZ + C̄E[Z]

}
ds+ ZdW, s ∈ [t, T ],

X(t) = GY (t) + ḠE[Y (t)], Y (T ) = ξ,

(3.4)

and the following stationarity condition holds:

Nu+ N̄E[u]−B>X − B̄>E[X] = 0, a.e. s ∈ [t, T ], a.s. (3.5)

We call (3.4), together with the stationarity condition (3.5), the optimality system for the

optimal control of Problem (MF-BSLQ). Note that (3.5) brings a coupling into the MF-FBSDE

(3.4) and does not provide a representation for u(·) because the equation for X(·) involves Y (·)
and Z(·).

To solve the optimality system (3.4)–(3.5), we use the decoupling technique inspired by

the four-step scheme introduced in [25, 26] for general FBSDEs. This will lead to a derivation
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of two Riccati equations. To be precise, we conjecture that X(·) and Y (·) are related by the

following:

Y (s) = −Σ(s)
{
X(s)− E[X(s)]

}
− Γ(s)E[X(s)]− ϕ(s), s ∈ [t, T ], (3.6)

where Σ(·),Γ(·) : [0, T ]→ Sn are absolutely continuous and ϕ(·) satisfies

dϕ(s) = α(s)ds+ β(s)dW (s), ϕ(T ) = −ξ, (3.7)

for some F-progressively measurable processes α(·) and β(·). Note that

dE[X] =
{
−
(
A+ Ā

)>E[X] +
(
Q+ Q̄

)
E[Y ]

}
ds

dE[Y ] =
{(
A+ Ā

)
E[Y ] +

(
B + B̄

)
E[u] +

(
C + C̄

)
E[Z]

}
ds,

E[X(t)] =
(
G+ Ḡ

)
E[Y (t)], E[Y (T )] = E[ξ],(

N + N̄
)
E[u]−

(
B + B̄

)>E[X] = 0.

(3.8)

Thus, 

d
(
X − E[X]

)
=
{
−A>

(
X − E[X]

)
+Q

(
Y − E[Y ]

)}
ds

+
{
− C>X − C̄>E[X] +RZ + R̄E[Z]

}
dW,

d
(
Y − E[Y ]

)
=
{
A
(
Y − E[Y ]

)
+B

(
u− E[u]

)
+ C

(
Z − E[Z]

)}
ds+ ZdW,

X(t)− E[X(t)] = G
(
Y (t)− E[Y (t)]

)
, Y (T )− E[Y (T )] = ξ − E[ξ],

N
(
u− E[u]

)
−B>

(
X − E[X]

)
= 0.

(3.9)

From (3.6) we have

Y − E[Y ] = −Σ
(
X − E[X]

)
−
(
ϕ− E[ϕ]

)
, E[Y ] = −ΓE[X]− E[ϕ]. (3.10)

Denoting η(·) = ϕ(·)− E[ϕ(·)] and γ(·) = α(·)− E[α(·)], we have from (3.7) that

dη(s) = γ(s)ds+ β(s)dW (s), η(T ) = E[ξ]− ξ. (3.11)

Then (3.9)–(3.11) yield

0 = d(Y − E[Y ]) + Σ̇(X − E[X])ds+ Σd(X − E[X]) + dη

=
{
A(Y − E[Y ]) +B(u− E[u]) + C(Z − E[Z])

}
ds+ ZdW

+ Σ̇(X − E[X])ds+
{
− ΣA>(X − E[X]) + ΣQ(Y − E[Y ])

}
ds

+
{
− ΣC>X − ΣC̄>E[X] + ΣRZ + ΣR̄E[Z]

}
dW + γds+ βdW

=
{
A(Y − E[Y ]) +B(u− E[u]) + C(Z − E[Z]) + Σ̇(X − E[X])

−ΣA>(X − E[X]) + ΣQ(Y − E[Y ]) + γ
}
ds

+
{
Z − ΣC>X − ΣC̄>E[X] + ΣRZ + ΣR̄E[Z] + β

}
dW

=
{
−AΣ(X − E[X])−Aη +BN−1B>(X − E[X]) + C(Z − E[Z])

+ Σ̇(X − E[X])− ΣA>(X − E[X])− ΣQΣ(X − E[X])− ΣQη + γ
}
ds

+
{
Z − ΣC>X − ΣC̄>E[X] + ΣRZ + ΣR̄E[Z] + β

}
dW
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=
{(

Σ̇−AΣ− ΣA> − ΣQΣ +BN−1B>
)
(X − E[X])

+C(Z − E[Z])− (A+ ΣQ)η + γ
}
ds

+
{
Z − ΣC>X − ΣC̄>E[X] + ΣRZ + ΣR̄E[Z] + β

}
dW.

This implies(
Σ̇−AΣ−ΣA>−ΣQΣ+BN−1B>

)
(X−E[X])+C(Z−E[Z])−(A+ΣQ)η + γ = 0, (3.12)

Z − ΣC>X − ΣC̄>E[X] + ΣRZ + ΣR̄E[Z] + β = 0. (3.13)

Now from (3.13) we have

(I + ΣR+ ΣR̄)E[Z]− Σ(C + C̄)>E[X] + E[β] = 0. (3.14)

Subtracting (3.14) from (3.13), we obtain

(I + ΣR)(Z − E[Z])− ΣC>(X − E[X]) + (β − E[β]) = 0. (3.15)

Assuming that I + ΣR and I + ΣR+ ΣR̄ are invertible, we obtain from (3.14) and (3.15):

E[Z] = (I + ΣR+ ΣR̄)−1
{

Σ(C + C̄)>E[X]− E[β]
}
, (3.16)

Z − E[Z] = (I + ΣR)−1
{

ΣC>(X − E[X])− (β − E[β])
}
. (3.17)

Substitution of (3.17) into (3.12) now gives[
Σ̇−AΣ− ΣA> − ΣQΣ +BN−1B> + C(I + ΣR)−1ΣC>

]
(X − E[X])

−C(I + ΣR)−1(β − E[β])− (A+ ΣQ)η + γ = 0,

from which one should let{
Σ̇−AΣ− ΣA> − ΣQΣ +BN−1B> + C(I + ΣR)−1ΣC> = 0,

γ − C(I + ΣR)−1(β − E[β])− (A+ ΣQ)η = 0.
(3.18)

Also, we have from (3.8), (3.10), and (3.16):

0 =
d

ds

(
E[Y ] + ΓE[X] + E[ϕ]

)
= (A+ Ā)E[Y ] + (B + B̄)E[u] + (C + C̄)E[Z]

+ Γ̇E[X]− Γ(A+ Ā)>E[X] + Γ(Q+ Q̄)E[Y ] + E[α]

= − (A+ Ā)ΓE[X]− (A+ Ā)E[ϕ] + (B + B̄)(N + N̄)−1(B + B̄)>E[X]

+ (C + C̄)(I + ΣR+ ΣR̄)−1
{

Σ(C + C̄)>E[X]− E[β]
}

+ Γ̇E[X]− Γ(A+ Ā)>E[X]− Γ(Q+ Q̄)ΓE[X]− Γ(Q+ Q̄)E[ϕ] + E[α]

=
{

Γ̇− (A+ Ā)Γ− Γ(A+ Ā)> − Γ(Q+ Q̄)Γ + (B + B̄)(N + N̄)−1(B + B̄)>

+ (C + C̄)(I + ΣR+ ΣR̄)−1Σ(C + C̄)>
}
E[X]

−
[
(A+ Ā) + Γ(Q+ Q̄)

]
E[ϕ]− (C + C̄)(I + ΣR+ ΣR̄)−1E[β] + E[α].

Hence, one should let
Γ̇− (A+ Ā)Γ− Γ(A+ Ā)> − Γ(Q+ Q̄)Γ + (B + B̄)(N + N̄)−1(B + B̄)>

+ (C + C̄)(I + ΣR+ ΣR̄)−1Σ(C + C̄)> = 0,

E[α]−
[
(A+ Ā) + Γ(Q+ Q̄)

]
E[ϕ]− (C + C̄)(I + ΣR+ ΣR̄)−1E[β] = 0.

(3.19)
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Moreover, comparing the terminal values on both sides of the two equations in (3.10), one has

Σ(T ) = 0, Γ(T ) = 0.

Therefore, by (3.18)–(3.19), we see that Σ(·) and Γ(·) should satisfy the following Riccati-type

equations, respectively:{
Σ̇−AΣ− ΣA> − ΣQΣ +BN−1B> + C(I + ΣR)−1ΣC> = 0, s ∈ [0, T ],

Σ(T ) = 0,
(3.20)


Γ̇− (A+ Ā)Γ− Γ(A+ Ā)> − Γ(Q+ Q̄)Γ + (B + B̄)(N + N̄)−1(B + B̄)>

+ (C + C̄)(I + ΣR+ ΣR̄)−1Σ(C + C̄)> = 0, s ∈ [0, T ],

Γ(T ) = 0,

(3.21)

and ϕ(·) should satisfy the following MF-BSDE on [0, T ]:
dϕ =

{
(A+ ΣQ)ϕ+

[
Ā+ Γ(Q+ Q̄)− ΣQ

]
E[ϕ] + C(I + ΣR)−1β

+
[
(C + C̄)(I + ΣR+ ΣR̄)−1 − C(I + ΣR)−1

]
E[β]

}
ds+ βdW,

ϕ(T ) = −ξ.

(3.22)

4 Unique solvability of Riccati equations

In this section we shall establish the unique solvability of the Riccati equations (3.20) and

(3.21). Once Σ(·) and Π(·) are known, the existence of a solution to MF-BSDE (3.22) will

immediately follows from Theorem 2.1.

Theorem 4.1. Let (H1)–(H2) hold. Then the Riccati equations (3.20) and (3.21) admit

unique solutions Σ(·) ∈ C([0, T ];Sn+) and Γ(·) ∈ C([0, T ];Sn+), respectively.

Proof. For λ > 0 and ε > 0, let us consider the forward stochastic differential equation

(FSDE, for short)
dX(s) =

{
A(s)X(s) + Ā(s)E[X(s)] +B(s)u(s) + B̄(s)E[u(s)]

+ C(s)v(s) + C̄(s)E[v(s)]
}
ds+ v(s)dW (s), s ∈ [t, T ],

X(t) = ξ,

(4.1)

and the cost functional

Jλ,ε(t, ξ;u(·), v(·)) = E
{∫ T

t

[
〈Q(s)X(s), X(s)〉+

〈
Q̄(s)E[X(s)],E[X(s)]

〉
+ 〈[εI +R(s)]v(s), v(s)〉+

〈
R̄(s)E[v(s)],E[v(s)]

〉
+ 〈N(s)u(s), u(s)〉+

〈
N̄(s)E[u(s)],E[u(s)]

〉]
ds+ λ|X(T )|2

}
.

We pose the following forward mean-field LQ problem: For any given initial pair (t, ξ) ∈
[0, T ]× L2

Ft(Ω;Rn), find a pair (u∗(·), v∗(·)) ∈ L2
F(t, T ;Rm)× L2

F(t, T ;Rn) such that

Jλ,ε(t, ξ;u
∗(·), v∗(·)) = inf

u(·),v(·)
Jλ,ε(t, ξ;u(·), v(·)) , Vλ,ε(t, ξ)
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as (u(·), v(·)) ranges over the space L2
F(t, T ;Rm) × L2

F(t, T ;Rn). By (H2), we have for any

(t, ξ) ∈ [0, T ]× L2
Ft(Ω;Rn) and any (u(·), v(·)) ∈ L2

F(t, T ;Rm)× L2
F(t, T ;Rn),

Jλ,ε(t, ξ;u(·), v(·)) (4.2)

>
∫ T

t

{
〈Q(s)E[X(s)],E[X(s)]〉+

〈
Q̄(s)E[X(s)],E[X(s)]

〉
+ 〈R(s)E[v(s)],E[v(s)]〉+

〈
R̄(s)E[v(s)],E[v(s)]

〉
+ 〈[N(s)− δ/2]E[u(s)],E[u(s)]〉+

〈
N̄(s)E[u(s)],E[u(s)]

〉}
ds

+ εE
∫ T

t
|v(s)|2ds+

δ

2
E
∫ T

t
|u(s)|2ds

>

(
ε ∧ δ

2

)
E
∫ T

t

[
|v(s)|2 + |u(s)|2

]
ds.

Then it follows from [30, Theorem 5.2] (see also [35, Theorem 4.1]) that for any λ, ε > 0, the

following two Riccati equations
Ṗλ,ε + Pλ,εA+A>Pλ,ε +Q− Pλ,ε(B,C)

(
N 0

0 εI +R+ Pλ,ε

)−1
(B,C)>Pλ,ε = 0,

Pλ,ε(T ) = λI,

(4.3)

and

Π̇λ,ε + Πλ,ε(A+ Ā) + (A+ Ā)>Πλ,ε +Q+ Q̄

−Πλ,ε(B + B̄, C + C̄)

(
N+N̄ 0

0 εI+R+R̄+Pλ,ε

)−1
(B + B̄, C + C̄)>Πλ,ε = 0,

Πλ,ε(T ) = λI,

(4.4)

admit unique solutions Pλ,ε(·) and Πλ,ε(·), respectively, such that

Vλ,ε(t, ξ) = E〈Pλ,ε(t)(ξ − E[ξ]), ξ − E[ξ]〉+ 〈Πλ,ε(t)E[ξ],E[ξ]〉,
∀(t, ξ) ∈ [0, T ]× L2

Ft(Ω;Rn).
(4.5)

For fixed λ > 0, we have

Vλ,ε(t, ξ) = inf
u(·),v(·)

Jλ,ε(t, ξ;u(·), v(·)) 6 inf
u(·),v(·)

Jλ,ε′(t, ξ;u(·), v(·)) = Vλ,ε′(t, ξ),

∀(t, ξ) ∈ [0, T ]× L2
Ft(Ω;Rn),

(4.6)

whenever 0 6 ε 6 ε′. This implies

Pλ,ε(t) 6 Pλ,ε′(t), Πλ,ε(t) 6 Πλ,ε′(t), ∀ t ∈ [0, T ]; ∀ 0 < ε 6 ε′. (4.7)

On the other hand, we claim that

Vλ,0(t, ξ) > 0, ∀(t, ξ) ∈ [0, T ]× L2
Ft(Ω;Rn) with ξ 6= 0. (4.8)

Indeed, if (4.8) is false then Vλ,0(t, ξ) = 0 for some (t, ξ) with ξ 6= 0. Let {(uk(·), vk(·))}∞k=1 be

a minimizing sequence of (u(·), v(·)) 7→ Jλ,0(t, ξ;u(·), v(·)) and let Xk(·) be the corresponding

solution of (4.1). By making use of (H2), we have

Jλ,0(t, ξ;uk(·), vk(·))
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>
∫ T

t

{
〈Q(s)E[Xk(s)],E[Xk(s)]〉+

〈
Q̄(s)E[Xk(s)],E[Xk(s)]

〉
+ 〈R(s)E[vk(s)],E[vk(s)]〉+

〈
R̄(s)E[vk(s)],E[vk(s)]

〉
+ 〈[N(s)− δ/2]E[uk(s)],E[uk(s)]〉+

〈
N̄(s)E[uk(s)],E[uk(s)]

〉}
ds

+
δ

2
E
∫ T

t
|uk(s)|2ds+ λE|Xk(T )|2

>
δ

2
E
∫ T

t
|uk(s)|2ds+ λE|Xk(T )|2, ∀k > 1.

Since Jλ,0(t, ξ;uk(·), vk(·))→ Vλ,0(t, ξ) = 0, the above implies

lim
k→∞

E
∫ T

t
|uk(s)|2ds = 0, lim

k→∞
E|Xk(T )|2 = 0.

Regarding (Xk(·), vk(·)) as the adapted solution to the MF-BSDE
dY (s) =

{
A(s)Y (s) + Ā(s)E[Y (s)] +B(s)uk(s) + B̄(s)E[uk(s)]

+ C(s)vk(s) + C̄(s)E[vk(s)]
}
ds+ vk(s)dW (s), s ∈ [t, T ],

Y (T ) = Xk(T ),

we apply Theorem 2.1 to obtain

E|ξ|2 = E|Xk(t)|2 6 E
[

sup
t6s6T

|Xk(s)|2
]

≤ KE
[
|Xk(T )|2 +

∫ T

t
|uk(s)|2ds

]
→ 0 as k →∞,

which leads to a contradiction. Now (4.8), together with (4.6) and (4.7), implies that the limits

limε→0 Pλ,ε(t) and limε→0 Πλ,ε(t) exist, and

Pλ(t) , lim
ε→0

Pλ,ε(t) > 0, Πλ(t) , lim
ε→0

Πλ,ε(t) > 0, ∀t ∈ [0, T ].

By (4.3), we get

Pλ,ε(t) = λI +

∫ T

t

[
Pλ,εA+A>Pλ,ε +Q

− Pλ,ε(B,C)

(
N 0

0 εI +R+ Pλ,ε

)−1
(B,C)>Pλ,ε

]
ds.

Passing to limit as ε→ 0, by the bounded convergence theorem, we have

Pλ(t) = λI +

∫ T

t

[
PλA+A>Pλ +Q− Pλ(B,C)

(
N 0

0 R+ Pλ

)−1
(B,C)>Pλ

]
ds.

Therefore, 
Ṗλ + PλA+A>Pλ +Q− Pλ(B,C)

(
N 0

0 R+ Pλ

)−1
(B,C)>Pλ = 0,

Pλ(T ) = λI.
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Similarly using (4.4), we have

Π̇λ + Πλ(A+ Ā) + (A+ Ā)>Πλ +Q+ Q̄

−Πλ(B + B̄, C + C̄)

(
N + N̄ 0

0 R+ R̄+ Pλ

)−1
(B + B̄, C + C̄)>Πλ = 0,

Πλ(T ) = λI.

Next, for fixed ε > 0, we have

Vλ,ε(t, ξ) = inf
u(·),v(·)

Jλ,ε(t, ξ;u(·), v(·)) 6 inf
u(·),v(·)

Jλ′,ε(t, ξ;u(·), v(·)) = Vλ′,ε(t, ξ),

∀(t, ξ) ∈ [0, T ]× L2
Ft(Ω;Rn),

whenever 0 < λ 6 λ′. It follows that

Pλ,ε(t) 6 Pλ′,ε(t), Πλ,ε(t) 6 Πλ′,ε(t), ∀t ∈ [0, T ],

and hence

0 < Pλ(t) 6 Pλ′(t), 0 < Πλ(t) 6 Πλ′(t), ∀t ∈ [0, T ]; 0 < λ 6 λ′.

Therefore, the families {Σλ(t) , Pλ(t)−1 : λ > 0} and {Γλ(t) , Πλ(t)−1 : λ > 0} are decreasing

in Sn+ and hence converge. We denote

Σ(t) = lim
λ→∞

Σλ(t) > 0, Γ(t) = lim
λ→∞

Γλ(t) > 0, t ∈ [0, T ].

Now using the fact
d

dt

[
Pλ(t)−1Pλ(t)

]
= 0,

d

dt

[
Πλ(t)−1Πλ(t)

]
= 0,

[R(t) + Pλ(t)]−1 = [I + Pλ(t)−1R(t)]−1Pλ(t)−1,

[R(t) + R̄(t) + Pλ(t)]−1 =
{
I + Pλ(t)−1[R(t) + R̄(t)]

}−1
Pλ(t)−1,

one can easily show that Σλ(·) is a solution of{
Σ̇λ −AΣλ − ΣλA

> − ΣλQΣλ +BN−1B> + C(I + ΣλR)−1ΣλC
> = 0,

Σλ(T ) = λ−1I,
(4.9)

and Γλ(·) is a solution of
Γ̇λ − (A+ Ā)Γλ − Γλ(A+ Ā)> − Γλ(Q+ Q̄)Γλ + (B + B̄)(N + N̄)−1(B + B̄)>

+ (C + C̄)
[
I + Σλ(R+ R̄)

]−1
Σλ(C + C̄)> = 0,

Γλ(T ) = λ−1I.

(4.10)

Note that (4.9) is equivalent to

Σλ(t) = λ−1I −
∫ T

t

[
AΣλ + ΣλA

>+ ΣλQΣλ −BN−1B>− C(I + ΣλR)−1ΣλC
>
]
ds.
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Because {Σλ(t)}λ>1 and {[I+Σλ(t)R(t)]−1Σλ(t)}λ>1 are uniformly bounded on [0, T ], by letting

λ→∞, we obtain from the dominated convergence theorem:

Σ(t) = −
∫ T

t

[
AΣ + ΣA> + ΣQΣ−BN−1B> − C(I + ΣR)−1ΣC>

]
ds,

so Σ(·) is a solution of the Riccati equation (3.20). Likewise, Γ(·) is a solution of the Riccati

equation (3.21).

To prove the uniqueness, let us suppose that Σ1(·),Σ2(·) ∈ C([0, T ];Sn+) are two solutions

of (3.20). Then it is easy to show that ∆(·) , Σ1(·)− Σ2(·) is a solution to the equation{
∆̇− (A+ Σ1Q)∆−∆(A+ Σ2Q)> + C(I + Σ1R)−1∆

[
I −R(I + Σ2R)−1Σ2

]
C> = 0,

∆(T ) = 0.

Note that the functions Σi and (I + ΣiR)−1, i = 1, 2 are bounded on [0, T ]. Then a standard

argument using the Gronwall inequality will show that ∆(·) = 0. The uniqueness of the solution

to equation (3.21) is proved similarly.

5 Representations of optimal controls and value function

This section is going to give explicit formulas of the optimal controls and the value function,

via the solutions to the Riccati equations (3.20), (3.21), and the MF-BSDE (3.22). Our first

result can be stated as follows.

Theorem 5.1. Let (H1)–(H2) hold and let ξ ∈ L2
FT (Ω;Rn) be given. Let Σ(·) and Γ(·) be

the unique solutions to the Riccati equations (3.20) and (3.21), respectively, and let (ϕ(·), β(·))
be the unique adapted solution to the MF-BSDE (3.22). Then the following MF-FSDE admits

a unique solution X(·):

dX =
{
− (A+ ΣQ)>X −

[
Ā− ΣQ+ Γ(Q+ Q̄)

]>E[X]−Qϕ− Q̄E[ϕ]
}
ds

+
{[
R(I + ΣR)−1Σ− I

]
C>X +

(
− C̄> −R(I + ΣR)−1ΣC>

+ (R+ R̄)
[
I + Σ(R+ R̄)

]−1
Σ(C + C̄)>

)
E[X]

−R(I + ΣR)−1(β − E[β])− (R+ R̄)
[
I + Σ(R+ R̄)

]−1E[β]
}
dW,

X(t) = −[I +GΣ(t)]−1G{ϕ(t)− E[ϕ(t)]} − [I + (G+ Ḡ)Γ(t)]−1(G+ Ḡ)E[ϕ(t)],

(5.1)

and the unique optimal control of Problem (MF-BSLQ) for the terminal state ξ is given by

u = N−1B>(X − E[X]) + (N + N̄)−1(B + B̄)>E[X]. (5.2)

Proof. It is clear that (5.1) has a unique solution X(·). So we only need to prove that u(·)
defined by (5.2) is the unique optimal control of Problem (MF-BSLQ) for the terminal state

ξ. To this end, we define

Y = −Σ(X − E[X])− ΓE[X]− ϕ, (5.3)

Z = (I + ΣR)−1
{

ΣC>(X − E[X])− (β − E[β])
}

(5.4)

+ (I + ΣR+ ΣR̄)−1
{

Σ(C + C̄)>E[X]− E[β]
}
.
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Then we have Y (T ) = ξ and

E[Y ] = −ΓE[X]− E[ϕ], (5.5)

E[Z] = (I + ΣR+ ΣR̄)−1
{

Σ(C + C̄)>E[X]− E[β]
}
. (5.6)

Also, from (5.4) and (5.6) we have

Z + ΣRZ + ΣR̄E[Z]− ΣC>X − ΣC̄>E[X] + β (5.7)

= (I + ΣR)Z + ΣR̄E[Z]− ΣC>X − ΣC̄>E[X] + β

= ΣC>(X − E[X])− (β − E[β]) + (I + ΣR)E[Z]

+ ΣR̄E[Z]− ΣC>X − ΣC̄>E[X] + β

= −Σ(C + C̄)>E[X] + E[β] + (I + ΣR+ ΣR̄)E[Z]

= 0.

Thus, making use of (3.20), (3.21), and (5.7), we have

dY = − Σ̇(X − E[X])ds− Σd(X − E[X])− Γ̇E[X]ds− ΓdE[X]− dϕ

= − Σ̇(X − E[X])ds+ Σ
{

(A+ ΣQ)>(X − E[X]) +Q(ϕ− E[ϕ])
}
ds

−Σ
{[
R(I + ΣR)−1Σ− I

]
C>X +

(
− C̄> −R(I + ΣR)−1ΣC>

+ (R+ R̄)(I + ΣR+ ΣR̄)−1Σ(C + C̄)>
)
E[X]

−R(I + ΣR)−1(β − E[β])− (R+ R̄)(I + ΣR+ ΣR̄)−1E[β]
}
dW

− Γ̇E[X]ds+ Γ
{[
A+ Ā+ Γ(Q+ Q̄)

]>E[X] + (Q+ Q̄)E[ϕ]
}
ds

−
{

(A+ ΣQ)ϕ+
[
Ā+ Γ(Q+ Q̄)− ΣQ

]
E[ϕ] + C(I + ΣR)−1β

+
[
(C + C̄)(I + ΣR+ ΣR̄)−1 − C(I + ΣR)−1

]
E[β]

}
ds− βdW

=
{(
− Σ̇ + Σ(A+ ΣQ)>

)
(X − E[X]) +

(
− Γ̇ + Γ

[
A+ Ā+ Γ(Q+ Q̄)

]>)E[X]

−Aϕ− ĀE[ϕ]− C(I + ΣR)−1(β − E[β])− (C + C̄)(I + ΣR+ ΣR̄)−1E[β]
}
ds

−
{

ΣR(I + ΣR)−1ΣC>(X − E[X])− ΣC>X − ΣC̄>E[X]

+ Σ(R+ R̄)(I + ΣR+ ΣR̄)−1Σ(C + C̄)>E[X]− ΣR(I + ΣR)−1(β − E[β])

−Σ(R+ R̄)(I + ΣR+ ΣR̄)−1E[β] + β
}
dW

=
{(
−AΣ +BN−1B> + C(I + ΣR)−1ΣC>

)
(X − E[X]) +

(
− (A+ Ā)Γ

+ (B + B̄)(N + N̄)−1(B + B̄)> + (C + C̄)(I + ΣR+ ΣR̄)−1Σ(C + C̄)>
)
E[X]

−Aϕ− ĀE[ϕ]− C(I + ΣR)−1(β − E[β])− (C + C̄)(I + ΣR+ ΣR̄)−1E[β]
}
ds

−
{

ΣR(I + ΣR)−1
{

ΣC>(X − E[X])− (β − E[β])
}
− ΣC>X − ΣC̄>E[X] + β

+ Σ(R+ R̄)(I + ΣR+ ΣR̄)−1
{

Σ(C + C̄)>E[X]− E[β]
}}
dW

=
{
−A

(
Σ(X − E[X]) + ΓE[X] + ϕ

)
− Ā

(
ΓE[X] + E[ϕ]

)
+BN−1B>(X − E[X])

+ (B+B̄)(N+N̄)−1(B+B̄)>E[X]+C(I+ΣR)−1
{

ΣC>(X−E[X])−(β−E[β])
}
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+ (C + C̄)(I + ΣR+ ΣR̄)−1
{

Σ(C + C̄)>E[X]− E[β]
}}
ds

−
{

ΣR(Z − E[Z])− ΣC>X − ΣC̄>E[X] + β + Σ(R+ R̄)E[Z]
}
dW

=
{
AY + ĀE[Y ] +B(u− E[u]) + (B + B̄)E[u] + C(Z − E[Z]) + (C + C̄)E[Z]

}
ds

−
{

ΣRZ + ΣR̄E[Z]− ΣC>X − ΣC̄>E[X] + β
}
dW

=
{
AY + ĀE[Y ] +Bu+ B̄E[u] + CZ + C̄E[Z]

}
ds+ ZdW.

Moreover, the first equation in (5.1) can be written as

dX =
{
−A>X − Ā>E[X]−Q

(
Σ(X − E[X]) + ΓE[X] + ϕ

)
− Q̄

(
ΓE[X] + E[ϕ]

)}
ds

+
{
− C>X − C̄>E[X] +R(I + ΣR)−1

(
ΣC>(X − E[X])− (β − E[β])

)
+ (R+ R̄)

[
I + Σ(R+ R̄)

]−1(
Σ(C + C̄)>E[X]− E[β]

)}
dW

=
{
−A>X − Ā>E[X] +QY + Q̄E[Y ]

}
ds+

{
− C>X − C̄>E[X] +RZ + R̄E[Z]

}
dW.

From the second equation in (5.1), we see

E[X(t)] = −[I + (G+ Ḡ)Γ(t)]−1(G+ Ḡ)E[ϕ(t)], (5.8)

X(t)− E[X(t)] = −[I +GΣ(t)]−1G{ϕ(t)− E[ϕ(t)]}. (5.9)

(5.5) and (5.8) yield

[I + (G+ Ḡ)Γ(t)]E[X(t)] = −(G+ Ḡ)E[ϕ(t)] = (G+ Ḡ)
{

ΓE[X(t)] + E[Y (t)]
}
,

from which follows

E[X(t)] = (G+ Ḡ)E[Y (t)]. (5.10)

Note that by (5.3) and (5.5),

Y (t)− E[Y (t)] = −Σ(t)
{
X(t)− E[X(t)]

}
−
{
ϕ(t)− E[ϕ(t)]

}
,

which, together with (5.9), yields

[I +GΣ(t)]
{
X(t)− E[X(t)]

}
= −G

{
ϕ(t)− E[ϕ(t)]

}
= G

(
Σ(t)

{
X(t)− E[X(t)]

}
+ Y (t)− E[Y (t)]

)
,

from which follows

X(t)− E[X(t)] = G
{
Y (t)− E[Y (t)]

}
. (5.11)

Combining (5.10)–(5.11) we have

X(t) = GY (t) + ḠE[Y (t)].

Finally, observing that u(·) defined by (5.2) satisfies

Nu+ N̄E[u]−B>X − B̄>E[X] = 0,

we see that (X(·), Y (·), Z(·), u(·)) solves the optimality system (3.4)–(3.5). The result then

follows immediately from Theorem 3.1.
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We next present a formula for the value function of Problem (MF-BSLQ).

Theorem 5.2. Let (H1)–(H2) hold. Then the value function of Problem (MF-BSLQ) is

given by

V (t, ξ) = E
{〈
G[I + Σ(t)G]−1(ϕ(t)− E[ϕ(t)]), ϕ(t)− E[ϕ(t)]

〉
+
〈
(G+ Ḡ)[I + Γ(t)(G+ Ḡ)]−1E[ϕ(t)],E[ϕ(t)]

〉
+

∫ T

t

[
〈Q(ϕ− E[ϕ]), ϕ− E[ϕ]〉+

〈
(Q+ Q̄)E[ϕ],E[ϕ]

〉
+
〈
(I +RΣ)−1R(β − E[β]), β − E[β]

〉
+
〈
[I + (R+ R̄)Σ]−1(R+ R̄)E[β],E[β]

〉]
ds
}
.

where Σ(·) and Γ(·) are the unique solutions to the Riccati equations (3.20) and (3.21), respec-

tively, and (ϕ(·), β(·)) is the unique adapted solution to the MF-BSDE (3.22).

Proof. Let (Y ∗(·), Z∗(·), u∗(·)) be the optimal triple corresponding to the terminal state

ξ ∈ L2
FT (Ω;Rn), and let X∗(·) be the solution to MF-FSDE (3.1). According to Theorem 3.1,

(X∗(·), Y ∗(·), Z∗(·), u∗(·)) satisfies the optimality system (3.4)–(3.5). On the other hand, let

X(·) be the solution to (5.1), and let u(·), Y (·), and Z(·) be defined by (5.2), (5.3), and (5.4),

respectively. We recall from the proof of Theorem 5.1 that (X(·), Y (·), Z(·), u(·)) also satisfies

the optimality system (3.4)–(3.5). By the uniqueness of optimal controls, we must have

(X∗(·), Y ∗(·), Z∗(·), u∗(·)) = (X(·), Y (·), Z(·), u(·)).

Thus, the value V (t, ξ) is equal to

J(t, ξ;u(·)) = E
{∫ T

t

[
〈QY, Y 〉+

〈
Q̄E[Y ],E[Y ]

〉
+ 〈RZ,Z〉+

〈
R̄E[Z],E[Z]

〉
+ 〈Nu, u〉+

〈
N̄E[u],E[u]

〉]
ds+ 〈GY (t), Y (t)〉+

〈
ḠE[Y (t)],E[Y (t)]

〉}
= E

{∫ T

t

[
〈Q(Y − E[Y ]), Y − E[Y ]〉+

〈
(Q+ Q̄)E[Y ],E[Y ]

〉
+ 〈R(Z − E[Z]), Z − E[Z]〉+

〈
(R+ R̄)E[Z],E[Z]

〉
+ 〈N(u− E[u]), u− E[u]〉+

〈
(N + N̄)E[u],E[u]

〉]
ds

+ 〈G(Y (t)− E[Y (t)]), Y (t)− E[Y (t)]〉+
〈
(G+ Ḡ)E[Y (t)],E[Y (t)]

〉}
.

Noting that

E[Y ] = −ΓE[X]− E[ϕ],

E[Z] =
[
I + Σ(R+ R̄)

]−1{
Σ(C + C̄)>E[X]− E[β]

}
,

E[u] = (N + N̄)−1(B + B̄)>E[X],

Y − E[Y ] = −Σ(X − E[X])− (ϕ− E[ϕ]),

Z − E[Z] = (I + ΣR)−1
{

ΣC>(X − E[X])− (β − E[β])
}
,

u− E[u] = N−1B>(X − E[X]),
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and using the fact that

(I +MN)−1M = M(I +NM)−1, ∀M,N ∈ Sn+,

it can be shown by a straightforward computation that

E
∫ T

t

[
〈Q(Y −E[Y ]), Y −E[Y ]〉+〈R(Z−E[Z]), Z−E[Z]〉+〈N(u−E[u]), u−E[u]〉

]
ds (5.12)

= E
∫ T

t

{〈[
ΣQΣ+C(I+ΣR)−1ΣRΣ(I+RΣ)−1C>+BN−1B>

]
(X−E[X]), X−E[X]

〉
+ 2〈X−E[X],ΣQ(ϕ−E[ϕ])〉 − 2

〈
X − E[X], C(I + ΣR)−1ΣR(I + ΣR)−1(β − E[β])

〉
+ 〈Q(ϕ− E[ϕ]), ϕ− E[ϕ]〉+

〈
(I +RΣ)−1R(I + ΣR)−1(β − E[β]), β − E[β]

〉}
ds,

and that∫ T

t

[〈
(Q+ Q̄)E[Y ],E[Y ]

〉
+
〈
(R+ R̄)E[Z],E[Z]

〉
+
〈
(N + N̄)E[u],E[u]

〉]
ds (5.13)

=

∫ T

t

{〈[
Γ(Q+Q̄)Γ+(C+C̄)

[
I+Σ(R+R̄)

]−1
Σ(R+R̄)Σ

[
I+(R+R̄)Σ

]−1
(C+C̄)>

+ (B + B̄)(N + N̄)−1(B + B̄)>
]
E[X],E[X]

〉
+ 2
〈
E[X],Γ(Q+ Q̄)E[ϕ]

〉
− 2
〈
E[X], (C + C̄)

[
I + Σ(R+ R̄)

]−1
Σ(R+ R̄)

[
I + Σ(R+ R̄)

]−1E[β]
〉

+
〈
(Q+Q̄)E[ϕ],E[ϕ]

〉
+
〈[
I+(R+R̄)Σ

]−1
(R+R̄)

[
I+Σ(R+R̄)

]−1E[β],E[β]
〉}
ds.

Observing that

dE[X] = −
{[
A+ Ā+ Γ(Q+ Q̄)

]>E[X] + (Q+ Q̄)E[ϕ]
}
ds,

d(X − E[X]) = −
{

(A+ ΣQ)>(X − E[X]) +Q(ϕ− E[ϕ])
}
ds

−
{

(I +RΣ)−1C>(X − E[X]) +
[
I + (R+ R̄)Σ

]−1
(C + C̄)>E[X]

+ (I +RΣ)−1R(β − E[β]) +
[
I + (R+ R̄)Σ

]−1
(R+ R̄)E[β]

}
dW,

we have by applying Itô’s formula to s 7→ 〈Σ(s)(X(s)− E[X(s)]), X(s)− E[X(s)]〉,

−E
〈
Σ(t)

{
X(t)− E[X(t)]

}
, X(t)− E[X(t)]

〉
(5.14)

= E
∫ T

t

{〈[
Σ̇− (A+ ΣQ)Σ− Σ(A+ ΣQ)> + C(I + ΣR)−1Σ(I +RΣ)−1C>

]
· (X − E[X]), X − E[X]

〉
− 2〈X − E[X],ΣQ(ϕ− E[ϕ])〉

+ 2
〈
X − E[X], C(I + ΣR)−1ΣR(I + ΣR)−1(β − E[β])

〉
+ 〈(I +RΣ)−1RΣR(I + ΣR)−1(β − E[β]), β − E[β]〉

}
ds

+

∫ T

t

{〈
(C + C̄)

[
I + Σ(R+ R̄)

]−1
Σ
[
I + (R+ R̄)Σ

]−1
(C + C̄)>E[X],E[X]

〉
+ 2
〈
E[X], (C + C̄)

[
I + Σ(R+ R̄)

]−1
Σ(R+ R̄)

[
I + Σ(R+ R̄)

]−1E[β]
〉

+
〈[
I + (R+ R̄)Σ

]−1
(R+ R̄)Σ(R+ R̄)

[
I + Σ(R+ R̄)

]−1E[β],E[β]
〉}
ds,
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and by applying the integration by parts formula to s 7→ 〈Γ(s)E[X(s)],E[X(s)]〉, we have

−〈Γ(t)E[X(t)],E[X(t)]〉 (5.15)

=

∫ T

t

{〈(
Γ̇−

[
A+ Ā+ Γ(Q+ Q̄)

]
Γ− Γ

[
A+ Ā+ Γ(Q+ Q̄)

]>)E[X],E[X]
〉

− 2
〈
E[X],Γ(Q+ Q̄)E[ϕ]

〉}
ds.

Now adding equations (5.12), (5.13), (5.14) and (5.15) yields

V (t, ξ) = E
{
〈G(Y (t)− E[Y (t)]), Y (t)− E[Y (t)]〉+

〈
(G+ Ḡ)E[Y (t)],E[Y (t)]

〉
(5.16)

+
〈
Σ(t)

{
X(t)− E[X(t)]

}
, X(t)− E[X(t)]

〉
+ 〈Γ(t)E[X(t)],E[X(t)]〉

}
+E

∫ T

t

{
〈Q(ϕ− E[ϕ]), ϕ− E[ϕ]〉+

〈
(Q+ Q̄)E[ϕ],E[ϕ]

〉
+
〈
(I +RΣ)−1R(β − E[β]), β − E[β]

〉
+
〈[
I + (R+ R̄)Σ

]−1
(R+ R̄)E[β],E[β]

〉}
ds.

Recalling that

E[Y ] = −ΓE[X]− E[ϕ], Y − E[Y ] = −Σ(X − E[X])− (ϕ− E[ϕ]),

and noting that

E[X(t)] = −[I + (G+ Ḡ)Γ(t)]−1(G+ Ḡ)E[ϕ(t)],

X(t)− E[X(t)] = −[I +GΣ(t)]−1G{ϕ(t)− E[ϕ(t)]},

we obtain

E
{
〈G(Y (t)− E[Y (t)]), Y (t)− E[Y (t)]〉+

〈
(G+ Ḡ)E[Y (t)],E[Y (t)]

〉
+
〈
Σ(t)

{
X(t)− E[X(t)]

}
, X(t)− E[X(t)]

〉
+ 〈Γ(t)E[X(t)],E[X(t)]〉

}
= E

{〈
G
{

Σ(t)(X(t)−E[X(t)])+(ϕ(t)−E[ϕ(t)])
}
,Σ(t)(X(t)−E[X(t)])+(ϕ(t)−E[ϕ(t)])

〉
+
〈
(G+ Ḡ)

{
Γ(t)E[X(t)] + E[ϕ(t)]

}
,Γ(t)E[X(t)] + E[ϕ(t)]

〉
+
〈
Σ(t)

{
X(t)− E[X(t)]

}
, X(t)− E[X(t)]

〉
+ 〈Γ(t)E[X(t)],E[X(t)]〉

}
= E

{
〈Σ(t)[I +GΣ(t)](X(t)− E[X(t)]), X(t)− E[X(t)]〉

+ 2〈GΣ(t)(X(t)− E[X(t)]), ϕ(t)− E[ϕ(t)]〉+ 〈G(ϕ(t)− E[ϕ(t)]), ϕ(t)− E[ϕ(t)]〉
+
〈
Γ(t)[I + (G+ Ḡ)Γ(t)]E[X(t)],E[X(t)]

〉
+ 2
〈
(G+ Ḡ)Γ(t)E[X(t)],E[ϕ(t)]

〉
+
〈
(G+ Ḡ)E[ϕ(t)],E[ϕ(t)]

〉}
= E

{〈
G[I + Σ(t)G]−1(ϕ(t)− E[ϕ(t)]), ϕ(t)− E[ϕ(t)]

〉
+
〈
(G+ Ḡ)[I + Γ(t)(G+ Ḡ)]−1E[ϕ(t)],E[ϕ(t)]

〉}
.

Substitution of the above into (5.16) completes the proof.
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