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Abstract. We propose and analyze a smoothing direct search algorithm for finding a minimizer
of a nonsmooth nonconvex function over a box constraint set, where the objective function values
cannot be computed directly but are approximated by Monte Carlo simulation. In the algorithm,
we adjust the stencil size, the sample size, and the smoothing parameter simultaneously so that the
stencil size goes to zero faster than the smoothing parameter and the square root of the sample size
goes to infinity faster than the reciprocal of the stencil size. We prove that with probability one
any accumulation point of the sequence generated by the algorithm is a Clarke stationary point. We
report on numerical results from statistics and financial applications.
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1. Introduction. Let G : Rn+m → R be a locally Lipschitz continuous function,
F : Rn → Rm be a continuously differentiable function, and f : Rn → R be a
composite nonsmooth function of the form

(1.1) f(x) = G(x, F (x)).

In this paper, we consider the nonsmooth minimization problem

(1.2)
min f(x)
s.t. x ∈ X := {x ∈ Rn | ` ≤ x ≤ u},

where `, u ∈ Rn, −∞ < `i < ui <∞, i = 1, . . . , n, and the function value F (x) is not
computed exactly, but rather approximated by a Monte Carlo simulation FN , where
N is the sample size of the Monte Carlo simulation.

We assume that the function G admits a smoothing approximation in the sense
of [10]. By this we mean that there is a family of differentiable functions Ĝ(·, µ) which
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SMOOTHING DIRECT SEARCH A2175

converges to G as µ → 0. We make this precise in Definition 2.3. In this paper, we
use the smoothing parameter µ to design an algorithm which takes gradients of Ĝ to
determine descent directions and then decreases µ as the iteration progresses.

Our use of the term nonsmooth in this context is standard [14] and refers to
functions which, while not differentiable (smooth), are locally Lipschitz continuous
and the generalized derivatives are well defined in the sense of [14].

In [11] we considered a similar problem in the more general situation where the
objective function was not everywhere defined and capturing the domain of f was
part of the problem. In this paper, the objective function is everywhere defined and
can be approximated by a smoothing approach. The results in this paper exploit the
structure of that special case to simplify the analysis and improve the efficiency of the
method via smoothing.

A large class of nonsmooth functions has the form (1.1). The box constraint does
not restrict applications where the objective functions have minimizers in a compact
set. In other words, if the level set {x : f(x) ≤ f(x0)} of f with a point x0 ∈ Rn is
bounded, then minimizing f over Rn can be equivalently written as a box-constrained
optimization problem (1.2). One example (for which m = n) is the expected value
version of the stochastic variational inequality problem [12, 49]: Given the induced
probability space (Ξ ⊂ R`,A,P) and a convex set Ω ⊆ Rn, find x∗ ∈ Ω such that

(1.3) (x− x∗)TF (x∗) ≥ 0 ∀x ∈ Ω,

where F (x) := E[φ(ξ, x)], and φ : Ξ × Rn → Rn is continuously differentiable with
respect to x for almost all ξ ∈ Ξ and A-measurable with respect to ξ. The stochas-
tic variational inequality problem (1.3) reduces to the stochastic complementarity
problem:

(1.4) x ≥ 0, F (x) ≥ 0, xTF (x) = 0,

when Ω = Rn+ = {x ∈ Rn |x ≥ 0}, and the system of stochastic nonsmooth equations:

F (x) = 0,

when Ω = Rn. In this case, the approximation is via Monte Carlo simulation

F (x) = E[φ(ξ, x)] ≈ FN (x) :=
1

N

N∑
i=1

φ(ξi, x),

where N is the sample size and ξi, i = 1, . . . , N are observations of ξ ∈ Ξ.
We can express problem (1.3) as a minimization problem [20]

(1.5) min
x∈Rn

‖x− ProjΩ(x− F (x))‖22,

where ProjΩ is the projection onto the set Ω. In this formulation the optimal function
value is zero if and only if (1.4) has a solution.

Another example of problem (1.2) is the `1-norm regularized minimization prob-
lem

(1.6) min
x∈Rn

‖F (x)‖1 + λ‖x‖1,

where F (x) is approximated by a Monte Carlo simulation.
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A2176 X. CHEN, C. T. KELLEY, F. XU, AND Z. ZHANG

If problems (1.5) and (1.6) have minimizers in a compact set, then there is a box
constraint set X, which might be difficult to determine a priori, such that problems
(1.5) and (1.6) can be equivalently written as problem (1.2) with f(x) = ‖x−ProjΩ(x−
F (x))‖22 and f(x) = ‖F (x)‖1 + λ‖x‖1, respectively.

We will exploit the composition structure by using a smoothing function for f .
We will show that if f is replaced by the outcome of Monte Carlo simulation and
one has full knowledge of the nonsmoothness, we can develop a smoothing direct
search method with Monte Carlo simulation, which has global convergence to a Clarke
stationary point of problem (1.2) with probability one (w.p.1.).

For example, if f has the form (1.1), we can define the smoothing function for f
as

(1.7) f̂(x, µ) = Ĝ(x, F (x), µ)

and, when F (x) is replaced by the Monte Carlo outcome FN (x), we set the smoothing
Monte Carlo simulation as

(1.8) f̃(x, µ,N) = Ĝ(x, FN (x), µ).

We consider stencil-based direct search methods in this paper. By this we mean
that at each step in the optimization the function is evaluated at a set of points of
the form

{x± hvi}ni=1 ∪ {x},

where x is the current point and h is the stencil size. The directions v can be quite
general [3, 28, 31, 32]. In this paper, we will use the positive and negative coordinate
directions, which are sufficient for our application.

For any fixed smoothing parameter µ > 0, the function f̂ is continuously dif-
ferentiable with respect to x. The main contribution of this paper is to propose a
smoothing direct search algorithm with Monte Carlo simulation for solving problem
(1.2) and prove the convergence of the algorithm when the stencil size h and smooth-
ing parameter µ go to zero with the rate h/µ → 0, and the sample size N goes to
infinity with the rate (h

√
N)−1 → 0.

Convergence analysis of direct search algorithms for smooth optimization prob-
lems where function values can be computed exactly has been well studied in [15,
16, 23, 28, 47]. Nonsmooth problems have been considered in [2, 3, 4, 11, 28].
Theory and algorithms for problems where the function evaluations require embed-
ded Monte Carlo simulations have been carefully considered for optimization prob-
lems [11, 29, 33, 45, 46, 49] and for nonlinear equations [55, 58]. The new algorithm in
this paper exploits the structure of the problem and properties of smoothing methods
to allow us to use the coordinate basis as fixed stencil search directions, simplifying
the approaches of [3, 11, 28] for nonsmooth problems while preserving the convergence
results.

Direct search methods have been coupled with randomized methods in [52] where
the randomization was in the sampling and the optimization problem itself was de-
terministic. In [48], a generalized pattern search algorithm was applied to a problem
where the objective function f was an expectation. The objective was a function of
continuous and categorical variables and was assumed to be a smooth function of the
continuous variables. Neither of these papers consider nonsmooth problems.

This paper is organized as follows. In section 2, we present a smoothing direct
search algorithm for problem (1.2) where the function values f(x) can be computed
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SMOOTHING DIRECT SEARCH A2177

directly, and prove the convergence of the algorithm. In section 3, we extend the
algorithm and convergence analysis to a smoothing direct search algorithm for (1.2)
where the function values f(x) cannot be computed directly, but are approximated
by Monte Carlo simulation. In section 4, we present numerical experiments which
include examples from statistical learning, and portfolio selection using test problems
from the OR-Library [5] and real data from the Shanghai–Shenzhen stock market.

2. A smoothing direct search method. We begin by reviewing sampling
direct search methods in the context of the smooth optimization problem. Let the
set of search directions be an orthonormal basis V = {v1, v2, . . . , vn}. Let h be the
stencil size along those search directions. A stencil centered at x with h is the set of
points {x ± hvi}ni=1 ∪ {x}. More general stencils can be used [3, 28, 31, 32] but are
not needed for the applications in this paper.

The concept of stencil failure is important in both the algorithms and the analysis.

Definition 2.1. We say that stencil failure has occurred if

(2.1) f(x) ≤ f(x± hvi) for i = 1, . . . , n.

For simplicity, in this paper we will use

(2.2) V = {e1, e2, . . . , en}

for each iteration. Here ei is the ith coordinate vector. The algorithms and conver-
gence analysis can be extended to an orthonormal basis.

It is easy to show [16, 27, 28] that if f is Lipschitz continuously differentiable in
X, then (2.1) implies that

(2.3) ‖∇f(x)‖ = O(h)

uniformly for x ∈ X. To see this note that Lipschitz continuous differentiability of f
in X and (2.1) imply that

∂f(x)

∂xi
h+O(h2) = f(x+ hei)− f(x) ≥ 0, i = 1, . . . , n

and

−∂f(x)

∂xi
h+O(h2) = f(x− hei)− f(x) ≥ 0, i = 1, . . . , n

uniformly in X. Hence ‖∇f(x)‖ = O(h) uniformly in X.
Sampling methods evaluate the objective function at the points of the stencil. If

the current point is the best (stencil failure at the current point), then the stencil size
is reduced. If the current point is not the best on the stencil, then the new best point
becomes the current point. Algorithm direct search is a version of the method for
minimizing a continuously differentiable objective function f within a convex set X.

Algorithm direct search generates two sequences {xk} and {hk}. The conver-
gence analysis is based on their subsequences {x̃t} and {h̃t}, whose generation is
described in the following box with initial points x0 and h0, and t = 0.
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Algorithm direct search (x, f, h)

for forever do
fbase = f(x)
fmin = min{f(y) | y = x± hv, v ∈ V and y ∈ X}
ŷ ∈ {y | f(y) = fmin, y = x± hv, v ∈ V and y ∈ X}
if fmin ≥ fbase then
h← h/2

else
x← ŷ

end if
end for

Sequences generated by Algorithm direct search

for k ≥ 0
ŷ ∈ argmin{f(y) | y = xk ± hkv, v ∈ V and y ∈ X}
if f(ŷ) ≥ f(xk) (stencil failure)

set xk+1 = xk, hk+1 = hk/2, t = t+ 1, x̃t = xk+1, h̃t = hk+1

else
xk+1 = ŷ, hk+1 = hk

end if
end for

In Algorithm direct search, we must choose an initial point x ∈ X. This
requirement for a feasible starting point in a box constraint set X is easy to satisfy.
The worst case cost of a sweep through the stencils for a fixed h > 0 is sampling every
point on the finite set

Ωh(x) = {x0 +mhv | m = 1, 2, . . . and v ∈ V } ∪X,

where x0 is either the initial point or the first point after h has been reduced. This
worst case is, in our experience, very unlikely.

In our formulation the search is nonopportunistic. By this we mean that the mini-
mization is done over the entire stencil. The analysis is the same for the opportunistic
version, where the first point with a smaller function value than fbase is used. The
reason is that the stencil size is only reduced when the stencil fails. Stencil failure
can only take place if the entire stencil is sampled. Before then, it does not matter if
the search is opportunistic or not.

The convergence proof of Algorithm direct search is based on the stencil di-
rections such that if stencil failure happens at the current point, then some type of
approximate necessary condition holds. This idea can be made very general with
different stencils and different smoothness requirements on the objective function
f [2, 3, 4, 11, 28].

We consider the following first-order stationarity measure:

(2.4) χ(x) = max
x+d∈X,‖d‖≤1

[−dT∇f(x)].

It is easy to check that if x ∈ X is a local minimizer of (1.2), then χ(x) = 0.

Proposition 2.2. Assume that f is Lipschitz continuously differentiable. Let
{xk} with x0 ∈ X be the sequence generated by Algorithm direct search. Then

(2.5) lim inf
k→∞

χ(xk) = 0.
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SMOOTHING DIRECT SEARCH A2179

Moreover, stencil failure happens at infinitely many iterates, and for each limit point
x of the stencil failure iterates, it holds that

(2.6) χ(x) = 0.

Proof. Let h0 be the initial stencil size and

(2.7) Xt = X ∩

{
x0 +

n∑
i=1

jih0

2t
ei

∣∣∣∣∣ ji = 0,±1,±2, · · ·

}
, t = 0, 1, 2, . . .

Since X is bounded, Xt is a finite set, and it contains at least one iterate. Stencil
failure occurs at x̃t, the last iterate of the sequence {xk}, contained in Xt and the
size of the stencil at that iteration is h̃t = h0/2

t. For each t ≥ 1, define

I+
t = {i | x̃t + h̃tei ∈ X, 1 ≤ i ≤ n},(2.8)

I−t = {i | x̃t − h̃tei ∈ X, 1 ≤ i ≤ n},(2.9)

and denote gt = ∇f(x̃t). Let L be the Lipschitz constant of ∇f . Then by the
definition of stencil failure and Taylor’s theorem,

0 ≤ f(x̃t + h̃tei)− f(x̃t) ≤ h̃te
T
i gt +

L

2
h̃2
t for all i ∈ I+

t ,(2.10)

0 ≤ f(x̃t − h̃tei)− f(x̃t) ≤ −h̃teTi gt +
L

2
h̃2
t for all i ∈ I−t ,(2.11)

and, consequently,

eTi gt ≥ −
Lh̃t
2

for all i ∈ I+
t ,(2.12)

eTi gt ≤
Lh̃t
2

for all i ∈ I−t .(2.13)

Since ∇f is Lipschitz continuous and X is compact, there exists a positive con-
stant Υ such that

(2.14) ‖∇f(x)‖ ≤ Υ for all x ∈ X.

Specifically, ‖gt‖ ≤ Υ. Therefore, for each d such that x̃t + d ∈ X and ‖d‖ ≤ 1, it
holds that

−dT gt = −
n∑
i=1

di(gt)i

= −
∑

i∈I+t \I
−
t

di(gt)i −
∑

i∈I−t \I
+
t

di(gt)i −
∑

i∈I+t ∩I
−
t

di(gt)i −
∑

i/∈I+t ∪I
−
t

di(gt)i

≤ nmax

{
Lh̃t
2
,Υh̃t

}
+ n

Lh̃t
2

+ nΥh̃t

≤ 3nmax

{
Lh̃t
2
,Υh̃t

}
,

(2.15)
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where the first inequality uses the fact that for each d with x̃t+d ∈ X, i /∈ I−t implies
di > h̃t and i /∈ I+

t implies di < h̃t, since X is a bounded box.
Hence, we obtain

(2.16) χ(x̃t) ≤ 3nmax

{
Lh̃t
2
,Υh̃t

}
→ 0 when t→∞.

Since {x̃t} is a subsequence of {xk} and X is bounded, we conclude that

(2.17) lim inf
k→∞

χ(xk) = 0.

If x is an accumulation point of the stencil failure iterates {x̃t}, then continuity of χ
implies that χ(x) = 0.

2.1. Nonsmooth f . In this subsection, we consider problem (1.1) where F can
be computed exactly. We will use smoothing methods which approximate f by a
parameterized family of smoothing functions f̂(·, µ) given by (1.7), where µ > 0 is the
smoothing parameter.

We formally give a definition of smoothing functions used in this paper.

Definition 2.3 (see [10]). Let f : Rn → R be a locally Lipschitz continuous

function. We call f̂ : Rn × (0,∞) → R a smoothing function of f , if, for any fixed

µ ∈ (0,∞), f̂(·, µ) is continuously differentiable and ∇f̂(·, µ) is Lipschitz continuous
in Rn, and

(2.18) lim
x→x̂,µ↓0

f̂(x, µ) = f(x̂).

The limit in (2.18) is simultaneous in x and µ for all sequences xk → x̂ and
µk → 0 (µk ≥ 0).

Throughout this subsection we let ∇f̂ denote the gradient f̂ with respect to x.

Assumption 2.4. (i) There are constants c1, c2 ≥ 0 such that for any x ∈ Rn,
µ ∈ (0, 1],

(2.19) |f(x)− f̂(x, µ)| ≤ µ(c1 + c2|f(x)|).

(ii) f̂ satisfies the gradient consistency condition,

(2.20) ∂f(x) = con{v | ∇f̂(xk, µk)→ v for xk → x, µk ↓ 0 },

where “con” denotes the convex hull and ∂f(x) is the Clarke subgradient at
x.

(iii) There are Υ > 0, Γ > 0, and µ− > 0 such that ‖∇f̂(x, µ)‖ ≤ Υ and

(2.21) ‖∇f̂(x, µ)−∇f̂(y, µ)‖ ≤ Γ

µ
‖x− y‖

uniformly in x, y ∈ X, and µ ∈ (0, µ−).

In Assumption 2.4, c1, c2, Υ, Γ, and µ− are fixed constants which are independent
of x. Since X is bounded and f is continuous, Assumption 2.4 (i) implies that there
is a constant C such that

|f(x)− f̂(x, µ)| ≤ µC for x ∈ X, µ ∈ (0, 1],

which means that f̂ converges to f uniformly as µ→ 0.
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In section 4, we use examples to illustrate the definition of smoothing functions
and Assumption 2.4. Note that X is bounded and hence there are only finitely many
points in the stencil for each h. Therefore, the stencil will fail infinitely often.

In the case where f is known exactly and there is no embedded Monte Carlo simu-
lation, we propose a smoothing direct search algorithm, Algorithm smoothing search,
that decreases µ and h simultaneously, but in a way that ensures h/µ→ 0 as µ→ 0,
which will be important in the convergence analysis.

Algorithm smoothing search (x, f̂ , h, µ, τ)

for forever do
f̂base = f̂(x, µ)

f̂min = min{f̂(y, µ) | y = x± hv, v ∈ V and y ∈ X}
ŷ ∈ {y | f̂(y, µ) = f̂min, y = x± hv, v ∈ V and y ∈ X}
if f̂min ≥ f̂base then
h← h/2; µ← µ/2τ

else
x← ŷ

end if
end for

Algorithm smoothing search generates three sequences {xk}, {hk}, and {µk}.
The convergence analysis is based on their subsequences {x̃t}, {h̃t}, and {µ̃t}, whose
generation is described in the following box with initial points x0, h0, and µ0 and
t = 0.

Sequences generated by Algorithm smoothing search

for k ≥ 0

ŷ ∈ argmin{f̂(y, µ) | y = xk ± hkv, v ∈ V and y ∈ X}
if f̂(ŷ, µk) ≥ f̂(xk, µk) (Stencil failure)

set xk+1 = xk, hk+1 = hk/2, µk+1 = µk/2
τ , t = t+ 1,

x̃t = xk+1, h̃t = hk+1, µ̃t = µk+1

else
xk+1 = ŷ, hk+1 = hk, µk+1 = µk, k = k + 1

end if
end for

In Algorithm smoothing search, τ ∈ (0, 1) is an input parameter. We must
choose an initial point x ∈ X, the initial stencil size h > 0, and the initial smoothing
parameter µ > 0.

As an extension of (2.4), we use

(2.22) χ̃(x) = min
v∈∂f(x)

( max
x+d∈X,‖d‖≤1

−dT v)

to measure the first-order stationarity of x with respect to problem (1.2) when f
is locally Lipschitz continuous but not necessarily differentiable, where ∂f(x) is the
Clarke subdifferential of f at x [14, 41]. If f is smooth, then χ̃(·) is the same as χ(·).
Moreover, if x is a local minimizer of problem (1.2), then there exists a v ∈ ∂f(x)
such that
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max
x+d∈X,‖d‖≤1

[−dT v] = 0,

that is, χ̃(x) = 0.
The convergence result follows the same argument as in the proof of Proposi-

tion 2.2 and Assumption 2.1 on the smoothing function of f .

Theorem 2.5. Assume that Assumption 2.4 holds. Let {xk, µk} with x0 ∈ X and
µ0 > 0 be the iterates generated by Algorithm smoothing search, and

(2.23) χk(x) = max
x+d∈X,‖d‖≤1

[−dT∇f̂(x, µk)].

Then

(2.24) lim inf
k→∞

χk(xk) = 0.

Moreover, stencil failure happens at infinitely many iterates, and for each limit point
x of the stencil failure iterates it holds that

(2.25) χ̃(x) = 0.

Proof. Define Xt by (2.7). As in the proof of Proposition 2.2, we denote the last
iterate in Xt, where stencil failure occurs by x̃t, the corresponding stencil size by
h̃t = h0/2

t, and the corresponding smoothing parameter by µ̃t = h̃τt . For each t ≥ 1,
define I+

t and I−t in the same way as in the proof of Proposition 2.2, and denote

ĝt = ∇f̂(x̃t, µ̃t). According to the definition of stencil failure and Taylor expansion,
noticing part (iii) of Assumption 2.4, we have

0 ≤ f̂(x̃t + h̃tei, µ̃t)− f̂(x̃t, µ̃t) ≤ h̃te
T
i ĝt +

Γ

2µ̃t
h̃2
t for all i ∈ I+

t ,(2.26)

0 ≤ f̂(x̃t − h̃tei, µ̃t)− f̂(x̃t, µ̃t) ≤ −h̃teTi ĝt +
Γ

2µ̃t
h̃2
t for all i ∈ I−t ,(2.27)

and, consequently,

eTi ĝt ≥ −
Γh̃t
2µ̃t

for all i ∈ I+
t ,(2.28)

eTi ĝt ≤
Γh̃t
2µ̃t

for all i ∈ I−t .(2.29)

By Assumption 2.4, there exists a positive constant Υ such that ‖ĝt‖ ≤ Υ. Using
a similar argument to those for (2.15) and (2.16), we have

(2.30) max
x̃t+d∈X,‖d‖≤1

−dT ĝt ≤ 3nmax

{
Γh̃t
2µ̃t

, Υh̃t

}
.

Noticing the fact that h̃t/µ̃t → 0, we have

(2.31) max
x̃t+d∈X,‖d‖≤1

−dT ĝt → 0 when t→∞,

which implies (2.24).
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Let x be a limit point of {x̃t}, and {x̃ti} be a subsequence that converges to
x. Since {ĝt} is bounded, we may suppose that {ĝti} converges to a point v (if not,
replace {ti} by an appropriately chosen subsequence). Let

(2.32) d∗(v) ∈ argmax
x+d∈X,‖d‖≤1

[−dT v]

and

(2.33) yi =
x− x̃ti + d∗(v)

max{‖x− x̃ti + d∗(v)‖, 1}
.

Then ‖yi‖ ≤ 1, and x̃ti + yi ∈ X due to the convexity of X (x̃ti + yi lies on the line
segment between x̃ti and x+ d∗). Hence,

0 ≤ max
x+d∈X,‖d‖≤1

−dT v = − (d∗(v))T v

= lim
i→∞

−yTi ĝti

≤ lim
i→∞

max
x̃ti

+d∈X,‖d‖≤1
−dT ĝti

= 0.

(2.34)

Notice that v ∈ ∂f(x) according to the gradient consistency of f̂ . By the defini-
tion (2.22) of χ̃(·), we have

(2.35) 0 ≤ χ̃(x) ≤ max
x+d∈X,‖d‖≤1

−dT v = 0,

which completes the proof.

3. Smoothing direct search method with Monte Carlo simulations. In
this section we extend the algorithms and analysis from section 2 to the case where f
is nonsmooth and approximated by a Monte Carlo simulation. Deterministic direct
search methods for nonsmooth optimization problems have been studied in [2, 3, 4,
11, 23, 28, 42].

In this section, we assume that for any x ∈ X, µ > 0 we can estimate the value
of f̂(x, µ) by Monte Carlo simulation f̃(x, µ,N) with N realizations. The value of
f̃(x, µ,N) is random and the sample of N realizations is independently identically
distributed (i.i.d). We can view f̃(x, µ,N) as defined on a common probability space
(see [49, p. 156] for details).

The following is an assumption on the effectiveness of f̃(·, ·, N) as an approxima-

tion of f̂(·, ·).
Assumption 3.1. For each p ∈ (0, 1/2), there exist constants δ ∈ (0, 1), cF > 0,

N̄ > 0, and µ̄ > 0 such that

(3.1) Prob

(
sup
x∈X
|f̂(x, µ)− f̃(x, µ,N)| ≥ cf

Np

)
≤ δ

for each N ≥ N̄ and µ ∈ (0, µ̄].

Consider the composite nonsmooth function in the form (1.1) with

(3.2) F (x) = E[φ(ξ, x)], x ∈ X,
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where ξ is a random vector. Let

(3.3) F̃N (x) =
1

N

N∑
i=1

φ(ξi, x),

ξ1, ξ2, . . . , ξN being iid samples of ξ. Assume that φ(ξ, x) is subexponential for each
x ∈ X (see Appendix B for the definition of subexponential random variables/vectors),
and that φ(ξ, ·) is L-Lipschitz continuous with respect to x ∈ X for a constant L
independent of ξ. Then, as we show in Appendix B, for any p ∈ (0, 1/2) there exist
constants δ ∈ (0, 1), cF > 0, and N̄ > 0 such that

(3.4) Prob

(
sup
x∈X
‖F (x)− F̃N (x)‖ ≥ cF

Np

)
≤ δ

for each N ≥ N̄ . If G is Lipschitz continuous with respect to F (x) and Ĝ satisfies
Assumption 2.4, then there exists a constant LF independent of N and µ such that

|Ĝ(x, F (x), µ)− Ĝ(x, F̃N (x), µ)| ≤ LF ‖F (x)− F̃N (x)‖.

This, together with (3.4), implies that function

f̃(x, µ,N) ≡ Ĝ(x, F̃N (x), µ)

fulfills Assumption 3.1 with cf = LF cF .
Algorithm mc smoothing search for the embedded Monte Carlo case is a simple

extension of Algorithm smoothing search.

Algorithm mc smoothing search (x, f̃ , h, µ,N, τ, γ)

for forever do
f̃base = f̃(x, µ,N)
f̃min = min{f̃(y, µ,N) | y = x± hv, v ∈ V and y ∈ X}
ŷ ∈ {y | f̃(y, µ,N) = f̃min, y = x± hv, v ∈ V and y ∈ X}
if f̃min ≥ f̃base then
h← h/2; µ← µ/2τ ; N ← 4γN

else
x← ŷ

end if
end for

In Algorithm mc smoothing search, τ ∈ (0, 1) and γ > 1 are input parameters.
The objective function f is evaluated through f̃(x, µ,N), the Monte Carlo simulation

of f̂(x, µ) with sample size N , where f̂(x, µ) is a smoothing function of f that is
defined in Definition 2.3 and satisfies Assumption 2.4.

Algorithm mc smoothing search generates four sequences {xk}, {hk}, {µk}, and
{Nk}. The convergence analysis is based on their subsequences {x̃t}, {h̃t}, {µ̃t}, and
{Ñt}, whose generation is described in the following box with initial points x0, h0,
µ0, and N0, and t = 0.
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Sequences generated by Algorithm mc smoothing search

for k ≥ 0

ŷ ∈ argmin{f̃(y, µ,N) | y = xk ± hkv, v ∈ V and y ∈ X}
if f̃(ŷ, µk, Nk) ≥ f̃(xk, µk, Nk) (Stencil failure)

set xk+1 = xk, hk+1 = hk/2, µk+1 = µk/2
τ , Nk+1 = 4γNk,

t = t+ 1, x̃t = xk+1, h̃t = hk+1, µ̃t = µk+1, Ñt = Nk+1

else
xk+1 = ŷ, hk+1 = hk, µk+1 = µk, Nk+1 = Nk, k = k + 1

end if
end for

As in Proposition 2.2 and Theorem 2.5, the boundedness of X ensures the conver-
gence of the algorithm. Let x0 ∈ X denote the initial point of Algorithm mc smoothing

search, h0 > 0 the initial stencil size, µ0 > 0 the initial smoothing parameter, and
N0 > 0 the initial sample size.

The main result of the paper is Theorem 3.2, which states that w.p.1. the iteration
has an accumulation point which is a Clarke stationary point.

Theorem 3.2. Suppose that the Monte Carlo simulations in Algorithm mc

smoothing search are mutually independent for different N . Assume that Assump-
tions 2.4 and 3.1 hold. Let {xk, µk, Nk} be the sequence generated by Algorithm
mc smoothing search. Then

(3.5) Prob

(
lim inf
k→∞

χk(xk) = 0

)
= 1,

where χk is defined in (2.23), and

(3.6) Prob({xk} has an accumulation point x such that χ̃(x) = 0) = 1.

Proof. Define Xt by (2.7). As before, we denote the last iterate in Xt, where
stencil failure occurs by x̃t, the corresponding stencil size by h̃t = h0/2

t, and the
corresponding smoothing parameter by µ̃t = µ0/2

tτ . The sample size at this point in
the algorithm is Ñt = 4tγN0. Define index sets I+

t and I−t in the same way as in the
proof of Proposition 2.2. Since stencil failure happens at x̃t, we have

0 ≤ f̃(x̃t + h̃tei, µ̃t, Ñt)− f̃(x̃t, µ̃t, Ñt) for all i ∈ I+
t ,(3.7)

0 ≤ f̃(x̃t − h̃tei, µ̃t, Ñt)− f̃(x̃t, µ̃t, Ñt) for all i ∈ I−t .(3.8)

Let p be a constant such that

(3.9)
1

2γ
< p <

1

2
.

Then h̃tÑ
p
t →∞ as t→∞. Set δ ∈ (0, 1) and cf > 0 to be the constants that fulfill

Assumption 3.1, and consider the event

(3.10) Et =

{
sup
x∈X
|f̂(x, µ̃t)− f̃(x, µ̃t, Ñt)| ≤

cf

Ñp
t

}
.

By assumption, {Et}∞t=1 are mutually independent, and

Prob(Et) ≥ 1− δ > 0
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for each t sufficiently large so that Ñt ≥ N̄ and µ̃t ≤ µ̄. Therefore,

(3.11) Prob(Et happens for infinitely many t) = 1.

When Et happens, according to (3.7) and (3.8), we have

−2cf

Ñp
t

≤ f̂(x̃t + h̃tei, µ̃t)− f̂(x̃t, µ̃t) ≤ h̃te
T
i ĝt +

Γ

2µ̃t
h̃2
t for all i ∈ I+

t ,(3.12)

−2cf

Ñp
t

≤ f̂(x̃t − h̃tei, µ̃t)− f̂(x̃t, µ̃t) ≤ −h̃teTi ĝt +
Γ

2µ̃t
h̃2
t for all i ∈ I−t ,(3.13)

where ĝt = ∇f̂(x̃t, µ̃t) and Γ is the constant in item (iii) of Assumption 2.4. Subse-
quently, it holds that

eTi ĝt ≥ −
Γh̃t
2µ̃t
− 2cf

h̃tÑ
p
t

for all i ∈ I+
t ,(3.14)

eTi ĝt ≤
Γh̃t
2µ̃t

+
2cf

h̃tÑ
p
t

for all i ∈ I−t .(3.15)

By Assumption 2.4, there exists a positive constant Υ such that ‖ĝk‖ ≤ Υ. Using
similar argument as (2.15) and (2.16), we obtain from (3.14) and (3.15) that

(3.16) max
x̃t+d∈X,‖d‖≤1

−dT ĝt ≤ 3nmax

{
Γh̃t
2µ̃t

+
2cf

h̃tÑ
p
t

, Υh̃t

}
.

Hence, by (3.11) and the fact that h̃t → 0, h̃t/µ̃t → 0, and h̃tÑ
p
t →∞, we have

(3.17) Prob({χk(xk)} has a subsequence that converges to zero) = 1,

which implies (3.5).
When lim infk→∞ χk(xk) = 0, let {ki} be the index sequence such that χki(xki)→

0. Since {xki} is bounded (guaranteed the boundedness of X), it has an accumulation
point x. By the same argument that leads to the second part of Theorem 2.5, we have
that χ̃(x) = 0. Thus, (3.6) holds.

4. Numerical experiments. In this section, we test Algorithm mc smoothing

search on two problems: a stochastic optimization problem arising from censored
regression and a two-stage optimization problem arising from portfolio management.
The problems in sections 4.1 and 4.2.1 are derived from applications, but use synthetic
data to enable us to control the sample size.

4.1. Censored regression. We consider the following regularized censored re-
gression problem [1, 6, 34, 35, 51, 53]:

min
x∈Rn

f(x)

s.t. − e ≤ x ≤ e,
(4.1)

where e ∈ Rn is the vector with all its entries being one and

(4.2) f(x) = Ec,y[(max(cTx, 0)− y)2] + λ

n∑
i=1

log(1 + |(x)i|).

Here the random variable pair (c, y) represents a data set of interest (c ∈ Rn, y ∈ R),
and λ > 0 is a regularization parameter.
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The regularization term

λ

n∑
i=1

log(1 + |(x)i|)

in the objective function is used to enforce sparsity.
We assume that c ∼ N(0, I) and y = max(cTx∗ + ε, 0) for some underlying

ground truth feature x∗ and unobservable noise ε ∼ N(0, σ2). Moreover, we assume
x∗ is sparse, that is, x∗ has few nonzero entries. Using the concave regularized model
(4.1), we want to recover a sparse feature x to approximate x∗ as accurate as possible
given that x∗ ∈ {x | ‖x‖∞ ≤ 1} = [−e, e].

The functions (max(cTx, 0) − y)2 and log(1 + |(x)i|) are not differentiable but
do admit smoothing functions (see Appendix A). Using the smoothing functions,

we can define a smoothing function f̂c,y(x, µ) for (max(cTx, 0) − y)2 which satisfies
Assumption 2.4. From the convexity of (max(cTx, 0)− y)2, the Clarke subdifferential
and the expectation can be exchanged, that is,

∂Ec,y[(max(cTx, 0)− y)2] = Ec,y[∂(max(cTx, 0)− y)2]

(see [14]). Moreover, Ec,y[f̂c,y(x, µ)] is a smoothing function for Ec,y[(max(cTx, 0)−
y)2], and satisfies Assumption 2.4 (see [8]). Problem (4.1) is a constrained nons-
mooth nonconvex optimization problem where the objective function values cannot
be computed directly.

In practice, the data in these problems are limited. To mimic the finite size of the
data we will pose an approximation to problem (4.1) that replaces the expectation
with the sample average of a finite, but large, data set. We will manage the sampling
in the algorithm by randomly sampling from that data set. To this end, we consider
X = {x | ‖x‖∞ ≤ 1} = [−e, e], and we randomly generate a true feature x∗ ∈ R20

whose 5 nonzero entries are from uniform distribution on [−1, 1]. Independently, we
generate samples ci from c ∼ N(0, I) and εi from ε ∼ N(0, 0.01) with a sample size
107. Let yi = max(cTi x

∗ + εi, 0). The new problem is an approximation to (4.1) with
a finite data set. We have

(4.3) f̄(x, 107) =
1

107

107∑
i=1

[(max(cTi x, 0)− yi)2] + λ

n∑
i=1

log(1 + |(x)i|).

We used the regularization parameter λ = 10−2. This is large enough to capture the
sparsity exactly and small enough to allow us to observe several iterations before the
iteration stagnates.

We configure the optimization as follows
• The algorithmic parameters are c = 2, γ = 1.5, and τ = 0.5.
• We begin with h = 0.5 and terminate when h ≤ 10−3.
• N = 100 and µ = 0.1 at the beginning of the iteration.

Given N , for each evaluation of f , we independently and randomly sample vec-
tors (ci, yi), i = 1, . . . , N from the data set (ci, yi), i = 1, . . . , 107, generated above.
Note that we sample with replacement, following the bootstrapping technique in
statistics [19]. This allows the sample size to be larger than 107. Then we compute
smoothing approximation f̃(x, µ,N) of the following function:

(4.4) f̄(x,N) =
1

N

N∑
i=1

[(max(cTi x, 0)− yi)2] + λ

n∑
i=1

log(1 + |(x)i|)

by using smoothing functions for max(., 0) and | · |.
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Fig. 4.1. Histories of the distance ‖xk − x∗‖ and the value f(xk).

For the initial point x0 = (0, . . . , 0)T we performed 20 runs of Algorithm mc

smoothing search. In Figure 4.1, we show histories of the distance ‖xk − x∗‖ and
the value f(xk).

Figure 4.1 illustrates several properties of the algorithm and the problem. At the
end of the iteration, all the iteration histories are very similar. The theory would lead
one to expect similar histories if N is large. On the other hand, the initial value of N is
large enough to cause considerable variation in f early in the iteration. This variation
accounts for the differences in the histories. Finally, the iteration stagnates in the
terminal phase when the differences from the iterates and x∗ are roughly at the level
of the regularization parameter. The reason for this is that the regularization term
would dominate the error term when x is near x∗. While a smaller regularization
would defer the stagnation, it would make it harder to capture the sparsity. Our
choice of λ = 10−2 captures the sparsity exactly. At each final iterate xk, we have
(xk)i = (x∗)i = 0 for all i ∈ Sc, where S = {i | (x∗)i 6= 0, i = 1, . . . , n}, the support
set of x∗.

Figure 4.2 plots ‖xk−x∗‖ and f(xk) against the number of Effective Data Passes
performed until the kth iteration (EDPk), which is defined as the number of samples
made during the first k iterations divided by the data size 107. Note that EDPk
increases with respect to k, but not strictly. The number of Effective Data Passes
may stay unchanged during several successive iterations because the former changes
only after a stencil failure, which happens only once in a few iterations. Consequently,
a single number of Effective Data Passes can correspond to several values of ‖xk−x∗‖
or f(xk). That is why we observe vertical lines in Figure 4.2.

Figure 4.2 shows that the algorithm is capable of achieving considerable progress
using very few Effective Data Passes. Both ‖xk − x∗‖ and f(xk) are reduced signifi-
cantly even before one single Effective Data Pass is made. This shows the effectiveness
of our sampling strategy, which increases the sample size steadily in course of the it-
erations. The stagnations in the final stage of the plots are seemingly more visible
than in Figure 4.1. This is because the sample size increases rapidly, and hence the
variations in ‖xk − x∗‖ or f(x∗) are less visible when plotted against EDPk than
plotted against k.

Note that we begin with h = 0.5 and terminate when h ≤ 10−3. By the structure
of Algorithm mc smoothing search, the algorithmic parameters τ = 0.5, γ = 1.5 and
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Fig. 4.2. ‖xk − x∗‖ and f(xk) plotted against the number of Effective Data Passes EDPk.

the initial values N0 = 100, µ0 = 0.1, we know that after t = 9 iterations, h̃9 ≤ 10−3,
and hence µ̃9 = µ0/2

tτ = 0.1/29×0.5 = 0.044 and Ñ9 = 4tγN0 = 49×1.5100 ≈ 1.34E10.

4.2. Portfolio management. Consider ν assets. Let u ∈ Rν denote the ran-
dom returns of them, and

(4.5) r = E[u], C = E[(u− r)(u− r)T ].

Here r is the vector of expected returns of the different assets, and C is the covariance
matrix of the return on the assets in the portfolio. When r and C are known, as
discussed in [44], the Markowitz mean-variance model [36, 37] for portfolio selection
can be formulated as

min
w

1

2
wTCw − ηrTw

s.t. eTw = 1

a ≤ w ≤ b,

(4.6)

where w denotes the weights of the assets in the portfolio, a ∈ Rν and b ∈ Rν

(a ≤ b) are lower and upper bounds enforced on w, and η is a nonnegative parameter
(called the risk aversion factor) to balance the conflicting aspects of minimizing the
risk measured by wTCw and maximizing the expected return measured by rTw. The
Markowitz mean-variance model [36, 37] was first proposed and solved when the total
return is known. The model captures the essence of two conflicting aspects in portfolio
management namely, the risk and the return.

The use of mean-variance analysis in portfolio selection normally requires the
knowledge of means, variances, and covariances of returns of all securities under
consideration. However, in general, these data are not known exactly. Treating
their estimates as if they were the exact parameters can lead to suboptimal portfolio
choices.

The experiments reported in [22, 25, 30] show that, influenced by the sampling er-
ror, portfolios selected with the mean-variance model by Markowitz are not as efficient
as an equally weighted portfolio. Other results [13, 39] show that the mean-variance
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model tends to magnify the errors associated with the estimates. In this section, we
consider an optimal parameter selection model based on the Markowitz mean-variance
model to find optimal parameters for portfolio selection.

For simplicity, here we only consider the case where C is positive definite and the
feasible set {w | eTw = 1, a ≤ w ≤ b} is nonempty. Given a, b, and η, problem (4.6) has
a unique solution w. In other words, w is uniquely defined by a, b, and η, the values
of which will determine the quality of the portfolio selected by solving problem (4.6).
A common measure for the quality is the Sharpe ratio [50]

SR =
rTw√
wTCw

.

The Sharpe ratio characterizes how well the return of an asset compensates the in-
vestor for the risk taken. In general, a strategy is better than others if its Sharpe
ratio is higher.

In practice, a, b, and η are usually set by investors empirically according to
their preferences. We consider selecting them by solving the two-stage optimization
problem

max
(a,b,η)∈Ω

rTw(a, b, η)√
w(a, b, η)TCw(a, b, η)

,

where w(a, b, η) = argmin
w

1

2
wTCw − ηrTw

s.t. eTw = 1

a ≤ w ≤ b,

(4.7)

where the feasible set

Ω = [a, a]× [b, b]× [η, η] with η < η

is given. The number of variables of the first level problem is

#{i|ai < ai, i = 1, . . . , ν}+ #{i|bi < bi, i = 1, . . . , ν}+ 1.

For example, if we choose
(4.8)
ai = ai = 0 for i 6= 1, a1 = 0, a1 = 1 and bi = bi = 1 for i 6= 2, b2 = 0, b2 = 1,

then the number of variables of the first level problem is 3.
Finding optimal parameters a, b, and η is a challenging problem. Since C is

positive definite, the second level optimization problem has a unique solution. Hence
w(a, b, η) is well defined, and it is Lipschitz continuous with respect to (a, b, η). How-
ever, w(a, b, η) is not differentiable, and the covariance matrix C and the vector of
expected return r cannot be computed directly in general. We will use the barrier
method [43, Chapter 19] to solve the second stage problem of (4.7) and define a
smoothing function wµ(a, b, η) [43]. In particular, we use Algorithm mc smoothing

search to solve
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Table 4.1
Description of the eight real data sets.

Data set ν Location Index T Description
Data 1 31 Hong Kong Hang Seng 291 Weekly prices from 1992 to 1997
Data 2 85 Germany DAX 100 291 Weekly prices from 1992 to 1997
Data 3 89 UK FTSE 100 291 Weekly prices from 1992 to 1997
Data 4 98 USA S&P 100 291 Weekly prices from 1992 to 1997
Data 5 225 Japan Nikkei 225 291 Weekly prices from 1992 to 1997
SSE50 50 China SSE50 501 Daily prices from 2013 to 2015
CSI100 100 China CSI 100 501 Daily prices from 2013 to 2015
CSI300 300 China CSI 300 401 Daily prices from 2011 to 2013

max
(a,b,η)∈Ω

rTwµ(a, b, η)√
wµ(a, b, η)TCwµ(a, b, η)

,

where wµ(a, b, η) = argmin
1

2
wTCw − ηrTw − µ

ν∑
i=1

log(si)− µ
ν∑
i=1

log(ti)

s.t. eTw = 1

w − a− s = 0

b− w − t = 0.

(4.9)

In this section, we report numerical results that we obtained with Algorithm
mc smoothing search for five standard data sets from the OR-Library [5], the SSE50
index, the CSI 100 index, and the CSI 300 index from Shanghai–Shenzhen stock
market. The data are the weekly or daily prices of the component stocks for the eight
stock market indices drawn from different countries. See Table 4.1 for the description
of the data sets. The ν and T columns are the number of the component assets
included in the index and the number of the observations for the assets, respectively.

We report on two experiments: randomly generated problems in section 4.2.1,
which use the mean and the covariance matrix generated from the real data in Ta-
ble 4.1 and rolling window procedures for out-of-sample comparison in section 4.2.2,
which use the stock prices to generate the returns of assets and the covariance matrix
by Monte Carlo simulation.

4.2.1. Randomly generated problems. We choose the following parameters
as input data of Algorithm mc smoothing search:

h = 0.5, µ = 0.1, N = 100, τ = 0.5, γ = 1.5.

We choose the feasible set X as in (4.8).
For all tests, we terminated the algorithm if the stencil size is less than 10−2.
For each data set in Table 4.1, we first calculate the average r̂ ∈ Rν and the

covariance matrix Ĉ ∈ Rν×ν for the returns of the assets. Given a sample size N , we
generate i.i.d. random vectors ui ∈ Rν , i = 1, . . . , N normally distributed with mean
r̂ and covariance matrix Ĉ, that is,

ui = r̂ + Ĉ
1
2 randn(ν, 1), i = 1, 2, ..., N,

and then take rN to be the sample average of ui, i = 1, 2, ..., N and CN to be the
sample covariance matrix
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Table 4.2
Numerical results for the portfolio management problem with randomly generated data.

Data set Data 1 Data 2 Data 3 Data 4 Data 5 SSE50 CSI100 CSI300
Lower bound a1 4.69E-1 4.22E-1 6.56E-1 1.25E-1 1.00E00 2.00E-2 1.00E-2 7.50E-1
Upper bound b2 8.13E-1 8.75E-1 9.69E-1 9.69E-1 7.12E-1 1.14E-1 3.85E-1 7.50E-1
Risk aversion η 9.69E-1 5.31E-1 3.43E-1 4.38E-1 8.59E-1 1.25E-1 6.25E-1 6.41E-1

Opt. Sharpe ratio 1.57E-1 2.85E-1 2.51E-1 2.47E-1 9.76E-2 3.92E-1 2.74E-1 7.98E-2
Sharpe ratio e/ν 1.04E-1 9.15E-2 1.53E-1 1.99E-1 −4.90E-2 2.36E-1 2.65E-1 −9.05E-2

rN =
1

N

N∑
i=1

ui and CN =
1

N

N∑
i=1

(ui − rN )(ui − rN )T .

Then we compute the smoothing approximation for the problem of minimizing the
negative Sharpe ratio which is given by (4.9) with r = rN , C = CN , and x =
(a1, b2, η).

For each data set in Table 4.1, we use Algorithm mc smoothing search to solve
problem (4.7) with the starting point (a1, b2, η) = (0, 1, 0.5). Table 4.2 presents the
results. From Table 4.2, we can see the optimal value of objective function (Opt.
Sharpe ratio) at the final iteration is bigger than the value of objective function at
the point w = e/ν, which is a feasible point of problem (4.6) with a = 0 and b = e.

4.2.2. Problems with rolling window procedures. For a given data set,
assuming that the observations of the stock prices are {Pi,t : 1 ≤ i ≤ ν, 1 ≤ t ≤ T},
we can compute the (logarithmic) returns of the stocks:

ri,t = log
Pi,t+1

Pi,t
, i = 1, . . . , ν, t = 1, . . . , T − 1.

For the purpose of numerical comparisons, we partition the data set into two subsets:
a training set and a testing set. The training set, called in-sample set, consists of the
first half of the data set and is used to compute an optimal parameter x∗ and the
corresponding optimal portfolio selection w(x∗). The testing set, called out-of-sample,
consists of the second half of the data set and is used to test the quality of the optimal
parameter x∗ and the corresponding optimal portfolio selection w(x∗).

More exactly, for stock i with i = 1, . . . , ν, we can use the training set to compute
the in-sample expectation and the standard deviation by

µ̄i =
1

M

M∑
t=1

ri,t and σ̄i =

√√√√ 1

M

M∑
t=1

(ri,t − µ̄i)2,

respectively, where M = (T − 1)/2. As is standard in finance [24], we simulate the
out-of-sample prices as follows. Let N be the sample size. Then at the jth simulation

(1 ≤ j ≤ N), for M + 1 ≤ t ≤ T − 1, if the price S
(j)
i−1,t of stock i at an out-of-sample

time t− 1 is known, the price S
(j)
i,t of this stock at time t is generated by

S
(j)
i,t = S

(j)
i,t−1 exp(µ̄i + σ̄iZ),

where S
(j)
i,M = Pi,M for all 1 ≤ j ≤ N and Z is randomly produced by the standard

normal distribution N(0, 1). In a similar way, we can calculate the (logarithmic)
returns by this simulation
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r
(j)
i,t = log

S
(j)
i,t+1

S
(j)
i,t

, t = M + 1, . . . , T − 1.

For t = M + 1, . . . , T − 1, denote the column vector r
(j)
t with its ith component being

r
(j)
i,t and its average vector r̄t = 1

N

∑N
j=1 r

(j)
t ; the sample mean rN and the sample

variance CN of the out-of-sample can be computed by

rN =
1

M

T−1∑
t=M+1

r̄t and CN =
1

M

T−1∑
t=M+1

(r̄t − rN )(r̄t − rN )T .

Then we solve problem (4.9) with the sample mean rN and the sample variance CN

to obtain the optimal parameter x∗ and the corresponding optimal portfolio selection
w(x∗) by Algorithm mc smoothing search.

We choose the following parameters as input data of Algorithm mc smoothing

search:
h = 0.5, µ = 0.1, N = 10, τ = 0.5, γ = 1.5.

We choose the feasible set X as in (4.8). For all tests, we choose the starting point
(a1, b2, η) = (0, 1, 0.5) and terminated the algorithm when the sample size N gets
larger than 105.

To evaluate the quality of the optimal portfolio selection w(x∗), we shall make use
of the real out-of-sample data. We denote by rout and Cout the mean and variance of
the real returns of the out-of-sample set, namely,

rout =
1

M

T−1∑
t=M+1

rt and Cout =
1

M

T−1∑
t=M+1

(rt − rout)(rt − rout)T ,

where rt is the vector formed by the stock prices ri,t(i = 1, . . . , n) for t = M +
1, . . . , T − 1. Then we can calculate the Sharpe ratio of the optimal solution w(x∗)
by using rout and Cout as

SR∗ =
(rout)Tw(x∗)√
w(x∗)TCoutw(x∗)

.

In Table 4.3, for all the eight data sets, we list the optimal values of a1, b2, and
η achieved by Algorithm mc smoothing search, and the corresponding SR∗. For
comparison, we also list the Sharpe ratio of the average strategy (namely, taking
1/ν portion of each portfolio) using rout and Cout. From Table 4.3, we can see that
using Algorithm mc smoothing search to solve problem (4.7) can provide a portfolio
strategy with higher Sharpe ratio than the average strategy for all data sets.

Table 4.3
Numerical results for the portfolio management problem with rolling window procedures.

Data set Data 1 Data 2 Data 3 Data 4 Data 5 SSE50 CSI100 CSI300
Lower bound a1 1.00E-3 1.18E-2 1.12E-2 1.02E-1 4.40E-2 2.00E-2 1.00E-2 3.33E-3
Upper bound b2 3.14E-1 2.31E-1 6.36E-1 4.15E-2 1.29E-2 5.83E-1 2.60E-1 2.53E-1
Risk aversion η 2.81E-1 9.38E-1 6.25E-1 6.25E-2 1.00E00 7.19E-1 2.50E-1 7.50E-1

Sharpe ratio SR∗ 3.35E-1 2.36E-1 3.72E-1 5.12E-1 2.19E-1 2.71E-1 4.33E-1 2.19E-1
Sharpe ratio e/ν 1.57E-1 2.10E-1 2.79E-1 3.44E-1 −3.85E-2 2.36E-1 2.65E-1 3.18E-3
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5. Conclusions. In this paper we propose a smoothing direct search algorithm
with Monte Carlo simulation Algorithm mc smoothing search for the constrained
nonsmooth nonconvex optimization problem (1.2), where the objective function value
f(x) cannot be computed directly, but are approximated by Monte Carlo simulation.
This algorithm updates the stencil size h, smoothing parameter µ, and the sample
size N simultaneously with the rates h/µ → 0 and (h

√
N)−1 → 0. We prove that

any accumulation point of the sequence generated by the algorithm satisfies the first-
order optimality condition χ̃(x) = 0 with probability one, where χ̃(x) is defined by
(2.22). We report on a set of numerical experiments which illustrate the analysis
and show that Algorithm mc smoothing search is an effective method for minimiz-
ing nonsmooth functions whose function values cannot be computed directly but are
approximated by Monte Carlo simulation.

Appendix A. Smoothing functions.
We give an example of smoothing functions to explain Assumption 2.1. Let

f(x) = 2 max(0, p(x)), where p : Rn → R is twice continuously differentiable with

‖∇p(x)∇p(x)T ‖ ≤ Γ.

We use the smoothing function

(A.1) f̂(x, µ) = p(x) +
√
p(x)2 + 4µ2,

and V = {e1, . . . , en}, the unit coordinate directions in Rn.
Clearly, part (i) of Assumption 2.4 holds with c1 = 2 and c2 = 0, since

|f(x)− f̂(x, µ)| ≤ 2µ.

Now we consider part (ii) of Assumption 2.4. The Clarke subgradient has the
form

(A.2) ∂f(x) = 2

 ∇p(x) if p(x) > 0,
0 if p(x) < 0,
[0, 1]∇p(x) if p(x) = 0,

and the gradient of the smoothing function is

∇f̂(x, µ) =

(
1 +

p(x)√
p(x)2 + 4µ2

)
∇p(x).

Hence, we have
‖∇f̂(x, µ)‖ ≤ 2‖∇p(x)‖.

If p is Lipschitz continuously differentiable on a convex and compact set Ω, then there
is an Υ such that ‖∇f̂(x, µ)‖ ≤ Υ on Ω.

It is easy to see that for p(x) 6= 0, f is differentiable at x and

∂f(x) = ∇f(x) = con{v | ∇f̂(xk, µk)→ v, for xk → x, µk ↓ 0 }.

For p(x) = 0, since 0 ≤ 1 + p(x)√
p(x)2+4µ2

≤ 2, we have

con{v | ∇f̂(xk, µk)→ v, for xk → x, µk ↓ 0 } ⊆ ∂f(x).
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Now, let µ2
k = (1 − h2)p(xk)2/(4h2) for some h ∈ (0, 1]. Then for xk → x with

p(xk) ↓ 0, we have µk ↓ 0 and

∇f̂(xk, µk) = (1 + h)∇p(xk)→ (1 + h)∇p(x),

and for xk → x with p(xk) ↑ 0, we have µk ↓ 0 and

∇f̂(xk, µk) = (1− h)∇p(xk)→ (1− h)∇p(x).

Moreover, if we take µk =
√
|p(xk)|, then for xk → x, we have p(xk)→ 0, µk ↓ 0 and

∇f̂(xk, µk) =

(
1 +

p(xk)√
p(xk)2 + 4|p(xk)|

)
∇p(xk)→ ∇p(x).

Hence we find that for p(x) = 0,

∂f(x) = [0, 2]∇p(x) = con{v | ∇f̂(xk, µk)→ v, for xk → x, µk ↓ 0 }.

Finally, we consider part (iii) of Assumption 2.4. Since

∇2f̂(x, µ) =

(
1 +

p(x)√
p(x)2 + 4µ2

)
∇2p(x) +

4µ2

(p(x)2 + 4µ2)
3
2

∇p(x)∇p(x)T ,

we have

‖∇2f̂(x, µ)‖ ≤ 1

2µ
‖∇p(x)∇p(x)T ‖+ 2‖∇2p(x)‖ ≤ Γ

2µ
+ 2‖∇2p(x)‖,

which implies that part (iii) of Assumption 2.4 holds.
A smoothing function of |p(x)| can be defined by using the relation |p(x)| =

max(0, p(x))+max(0,−p(x)) and a smoothing function of max(0, p(x)). For example,
using (A.1), we can have a smoothing function

√
(p(x)2 + 4µ2) for |p(x)|.

There is a detailed discussion of smoothing functions in [10].

Appendix B. The proof of (3.4).
In this appendix, we will show the existence of δ ∈ (0, 1), cF > 0, and N̄ > 0

that fulfill (3.4). To this end, we have to study the uniform convergence rate of the
empirical mean (3.3), which has been investigated in [26, 59] under certain conditions.
In particular, if φ(ξ, x) = 1(ξ ≤ x), where ξ, x ∈ R, and 1(E) is the indicator function
of an event E, then inequality (3.4) is indeed satisfiable with p = 1/2 (see [18, 38]).
However, in general, one can only achieve (3.4) for p < 1/2. Our argument here is
essentially an extension of the discussions in [59, section 3].

Before the proof, we recall that φ(ξ, x) is subexponential for each x ∈ X. As de-
fined in [56, Definition 5.13], a real-value random variable ζ is called a sub-exponential 1

random variable if

(B.1) sup
p≥1

p−1E(|ζ|p)1/p <∞.

1 Note that there is another widely used but completely different concept of subexponentiality
in probability theory, which refers to a certain heavy-tail behavior of distributions as detailed in [21,
54]. The subexponentiality defined by (B.1) is commonly found in areas like machine learning and
data analysis (see [17, section 3.1.2] and [57, Chapter 2]), and is a slight generalization of the pre-
Gaussianity defined in [7, Chapter 1].
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The quantity on the left-hand side of (B.1), often denoted by ‖ζ‖ψ1
, is called the

subexponential norm of ζ. According to [17, Theorem 3.14], ζ is subexponential as
per (B.1) if and only if its moment-generating function G(t) ≡ E(eζt) is finite in a
neighborhood of zero (see also [56, inequality (5.16)] and [57, Theorem 2.2]). As elab-
orated in [56, inequality (5.14)] and [57, Theorem 2.2], assuming subexponentiality is
also equivalent to requiring that the tail probability P (|ζ| > t) decays exponentially
or faster, which is certainly not a trivial condition. However, it encompasses a large
class of distributions that are interesting in practice, including all the distributions
with bounded support sets, the normal distribution, Gamma distribution, Weibull
distribution, Poisson distribution, geometric distribution, and any Lipschitz continu-
ous functions of random variables following such distributions (see standard statistics
textbooks like [40] for the definitions and moment-generating functions of the named
distributions).

An important property of subexponential random variables is a Bernstein-type
inequality presented in [56, Proposition 5.16]: if ζ1, ζ2, . . . , ζN are independent sub-
exponential random variables with zero mean, and σ = max1≤i≤N ‖ζi‖ψ1 , then

(B.2) Prob

(
1

N

∣∣∣∣∣
N∑
i=1

ζi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−cN min

{
t2

σ2
,
t

σ

})
for each t ≥ 0,

where c is an absolute constant. Therefore,

(B.3) Prob

(
1

N

∣∣∣∣∣
N∑
i=1

ζi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−cNt

2

σ2

)
when 0 ≤ t ≤ σ.

More general forms of inequalities (B.2) and (B.3) can be found in [9, Theorem 1.2.7]
and [17, Corollary 3.17]. Note that (B.2) still holds if we replace σ with any num-
ber larger than max1≤i≤N ‖ζi‖ψ1

, for the right-hand side of (B.2) is decreasing with
respect to σ. Consequently, inequality (B.3) is valid as long as

σ ≥ max
1≤i≤N

‖ζi‖ψ1
.

In section 3, by saying that the m-dimensional random vector φ(ξ, x) is sub-
exponential, we mean that each entry of φ(ξ, x) is a subexponential random variable
(not necessarily independent of each other). Then, according to [56, Remark 5.18],
each entry of F (x) − φ(ξ, x) is a subexponential random variable with zero mean,
since F (x) = E[φ(ξ, x)] as stated in (3.2).

Now we give the proof of (3.4).

Proof. Consider an arbitrary point y ∈ X. Let (F (y)− φ(ξ, y))i be the ith entry
of the random vector F (y)− φ(ξ, y), and

σ(y) = 1 + max
1≤i≤m

∥∥∥(F (y)− φ(ξ, y)
)
i

∥∥∥
ψ1

.

For each i ∈ {1, 2, . . . ,m}, since σ(y) ≥ ‖(F (y) − φ(ξ, y))i‖ψ1 , we can invoke the
Bernstein-type bound (B.3) to obtain

Prob
( ∣∣∣(F (y)− F̃N (y)

)
i

∣∣∣ ≥ t) = Prob

(
1

N

∣∣∣∣∣
N∑
`=1

(
F (y)− φ(ξ`, y)

)
i

∣∣∣∣∣ ≥ t
)

(B.4)

≤ 2 exp

[
− cNt

2

σ2(y)

]
,
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whenever t ∈ [0, 1] ⊂ [0, σ(y)]. Hence

Prob
(
‖F (y)− F̃N (y)‖ ≥ ε

)
≤ Prob

(
max

1≤i≤m

∣∣∣(F (y)− F̃N (y)
)
i

∣∣∣ ≥ ε√
m

)
(B.5)

≤ 2m exp

[
− cNε2

mσ2(y)

]
for each ε ∈ [0, 1]. This gives us the point-wise convergence rate of F̃N . In the
following, we will extend this to obtain an estimation for the uniform convergence
rate. The key is to exploit the Lipschitz continuity of φ and the boundedness of X.

Since φ(ξ, x) is L-Lipschitz with respect to x for a constant L independent of ξ,
both F and F̃N are L-Lipschitz continuous. Let D be the diameter of X, which is
finite since X is bounded. Then there exists a set {yj}Kj=1 ⊆ X such that

(B.6) K ≤
⌈ √

nD

ε/(4L)

⌉n
and X ⊆

K⋃
j=1

B
(
yj ,

ε

4L

)
.

For each x ∈ X, let jx be an integer in {1, 2, . . . ,K} such that x ∈ B(yjx , ε/(4L)).
Then

‖F (x)− F̃N (x)‖ ≤ ‖F (x)− F (yjx)‖+ ‖F̃N (x)− F̃N (yjx)‖+ ‖F (yjx)− F̃N (yjx)‖
≤ L‖x− yjx‖+ L‖x− yjx‖+ max

1≤j≤K
‖F (yj)− F̃N (yj)‖

≤ ε

2
+ max

1≤j≤K
‖F (yj)− F̃N (yj)‖.

This, together with (B.5) and (B.6), tells us that

Prob

(
sup
x∈X
‖F (x)− F̃N (x)‖ ≥ ε

)
≤ Prob

(
max

1≤j≤K
‖F (yj)− F̃N (yj)‖ ≥

ε

2

)
≤

K∑
j=1

{
2m exp

[
− cNε2

4mσ2(yj)

]}

≤ 2m

⌈ √
nD

ε/(2L)

⌉n
exp

(
−c′Nε2

)
for each ε ∈ [0, 1], where

c′ ≡ min
1≤j≤K

c

4mσ2(yj)
> 0.

Setting ε = 1/Np, we obtain

(B.7) Prob

(
sup
x∈X
‖F (x)− F̃N (x)‖ ≥ 1

Np

)
≤ 2m

⌈
2
√
nLDNp

⌉n
exp

(
−c′N1−2p

)
.

Given p ∈ (0, 1/2), we can choose N̄ large enough (depending on m, n, L, D, c′, and p)
such that the right-hand side of (B.7) is at most 1/2 for each N ≥ N̄ . Consequently,

(B.8) Prob

(
sup
x∈X
‖F (x)− F̃N (x)‖ ≥ 1

Np

)
≤ 1

2

for each N ≥ N̄ . In other words, this N̄ fulfills (3.4) together with δ = 1/2 and
cF = 1.
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