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Abstract In this paper, we consider the sparse filter design problem where
some of the coefficients can be reduced to zeroes in order to lower implementa-
tion complexity. The objective is to choose the fewest number of nonzero filter
coefficients to meet a given performance requirement. We formulate a discrete
optimization problem to minimize the number of nonzero terms and develop
a discrete search method to find the minimal nonzero terms. In each step, we
need to consider a subproblem to design the filter coefficients with a given
set of nonzero terms. We formulate this subproblem as a linear programming
problem and apply an exchange algorithm to find the optimal coefficients. For
illustration, we compare the proposed algorithm with existing methods and
show that the proposed method gives better results in all our test cases.

Keywords Sparse filter design · filled function · discrete search method

1 Introduction

Digital finite-impulse response (FIR) filters design have been widely studied
in the literature. There are many optimization methods available to deal with
this class of problems. In particular, Parks-McClellan method is recognized to
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be the most efficient method to design infinite wordlength filter coefficients.
For hardware implementation, it’s desirable to reduce the complexity of the
designed filters. One way is to use the space of powers-of-two for the filter
coefficients so that the wordlength becomes finite. Several methods have been
proposed in the literature, such as L1 norm method [13], mixed integer linear
programming (MILP) [12] and other discrete search methods [2,3,18]. In [11],
a frequency response masking technique is proposed to design sharp FIR fil-
ters with very few nonzero filter coefficients. An important insight in reducing
implementation complexity is the sparseness of nonzero elements so that arith-
metic operations can be omitted if the corresponding coefficient is zero. In view
of this, the nonzero coefficients should be determined such that the number of
nonzero terms is minimum, subject to a given performance requirement. This
problem can find many applications including beamformers [?, 4, 5, 8, 16] and
other digital processing devices. The cost of implementation can be reduced
by using maximally sparse microphone array elements.

The main difficulty of sparse filter design is the combinatorial nature in
dealing with the possible number of nonzero terms. Because of this difficulty,
very few papers in the literature have attempted this problem. In [1], an ap-
proximate method was used where the number of nonzero terms are expressed
by the norm ||·||0. The cost function of this problem can then be approximated
by || · ||p with a small p. In [9], an approximate method was applied with small
coefficients being forced to zero. Some other methods can be found in [7, 15],
where discrete optimization problems were formulated but the complexity of
the algorithms are high. In short, there are very few discrete optimization
methods that can handle this NP-complete problem efficiently. In this paper,
we propose a discrete filled function approach to tackle this problem. The con-
cept of filled function was first introduced in [6] for global optimization with
continuous variables. It searches for a global minimizer among the local mini-
mizers by means of a function, which is called a filled function. A discrete filled
function method was developed in [14] for solving a discrete global optimiza-
tion problem. It searches for a local minimizer by a local search method. Then,
a discrete filled function is constructed, from which a better local minimizer,
if it exists, is obtained.

During the iterative process in finding the right number of nonzero ele-
ments, a subproblem is incurred where the set of nonzero terms are prescribed
and a sparse FIR filter is designed. As some of the harmonics are forced to carry
zero weights, the determination of the filter coefficients is no longer straight-
forward even for infinite wordlengths because the Parks-McClellan method
cannot be applied without the complete set of harmonics. However, this sub-
problem can still be formulated into a linear semi-infinite programming prob-
lem. After discretization, it reduces to solving a single linear programming
problem. If the grid is sufficiently dense in order to maintain accuracy, the
dimension of the linear programming problem will be high, which increases
significantly the complexity of the overall algorithm. The linear programming
method can be applied after a sufficiently dense grid points are used to dis-
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cretize the infinite constraints. In order to avoid this problem, a dedicated
exchange algorithm is developed for solving this subproblem efficiently.

The rest of the paper is organized as follows. First, we formulate the sparse
filter design problem in Section 2 and transform it into a bi-level optimization
problem in Section 3. In Section 4, we develop a dedicated exchange algorithm
to tackle the subproblem. In Section 5, we develop a discrete filled function
algorithm to determine the sparseness of the filter. For illustration, we show
how the proposed algorithm performs better than the other algorithms in the
literature in Section 6.

2 Problem formulation

Ignoring the linear phase term, the frequency response of a linear phase
FIR filter is given by

H(ω) = hᵀC(ω), (2.1)

where h = (h1, · · · , hm)ᵀ, and m is defined by m = (L+1)/2 if the filter length
L is odd and m = L/2 if L is even. C(ω) = (C1(ω), C2(ω), . . . , Cm(ω))ᵀ is an
appropriate cosine function vector given by

Ck(ω) =

{
cos(k − 1)ω, if L is odd,
cos(k − 0.5)ω, otherwise,

k = 1, . . . ,m.

A general filter design problem is to find the coefficient vector h such
that the frequency response H(ω) given in (2.1) fits a given desired frequency
response function Hd(ω), that is,

min
z,h

z

s.t. g (h, ω) ≤ z, ∀ω ∈ F ⊆ [0, π],
(2.2)

where F is the specified region and the function g is given by

g (h, ω) = W (ω)|H(ω)−Hd(ω)|,

where W (ω) is a positive weighting function which measure the importance of
passband and stopband.

We denote the optimal value of (2.2) by z∗. However, the implementation
of the filter coefficients may be expensive to achieve the performance value z∗,
since there may exist many nonzero coefficients. For this, we should design the
filter to achieve a better performance value, and at the same time that the
implementation complexity of the filter coefficients can also be reduced. That
is, we suppose that the performance requirement is δ > z∗ > 0, then the filter
should be designed to satisfy the following constraint

g (h, ω) ≤ δ.

For the implementation complexity of the filter coefficients, it can be ex-
pressed as the total number of nonzero filter coefficients. Then, we can reduce
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the implementation complexity by minimizing the total number of nonzero
filter coefficients. For this, we use the zero norm function as follows.

||x||0 =

{
1, if x 6= 0
0, if x = 0

. (2.3)

Then, for each k, the value ||hk||0 indicates that the filter coefficient hk is used
or not. The total number of nonzero filter coefficients can be expressed by

f(h) =


||h1||0 + 2

m∑
k=2

||hk||0, if L is odd,

2
m∑
k=1

||hk||0, if L is even.
(2.4)

Then, the sparse filter design problem is formulated into an optimization prob-
lem as

min
h

f(h)

s.t. g (h, ω) ≤ δ, ∀ω ∈ F ⊆ [0, π].
(2.5)

Note that the zero norm function is discontinuous, general optimization
method can not be applied for solving this problem. It’s required to develop
efficient and effective method to solve this problem.

Remark 1 The filter length L is an important factor for the problem (2.5). If
L is too small, the constraint in (2.5) may not be satisfied and there is no
solution for (2.5). However, if L is sufficiently large, the constraint in (2.5) can
always be satisfied. Hence, we always choose a sufficiently large value for L
such that the constraint can be satisfied.

3 Problem Transformation

For the problem (2.5), we decompose it into two subproblems as follows.
The coefficient vector h can be treated as two kinds of variables. One is

the set of chosen base, the other is the coefficient vector of the corresponding
chosen base. For the chosen base, it’s from the basis set {Ck(ω) : k = 1, . . . ,m}.
Assume that we choose mΛ basis functions from this set, where the index is
Λ = {λ1, λ2, . . . , λmΛ}, which is a subset of the index set {1, . . . ,m}. That is,
for a given Λ, we only use the following base from {Cλk(ω) : k = 1, . . . ,mΛ}.
Denote a vector of these chosen base by

C̄(ω,Λ) =
(
Cλ1

(ω), Cλ2
(ω), . . . , CλmΛ (ω)

)ᵀ
,

and the corresponding coefficient vector is denoted by

h̄(Λ) =
(
hλ1 , hλ2 , . . . , hλmΛ

)ᵀ
.
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For the index which is not in Λ, the corresponding coefficient is zero, that is,

hk = 0, ∀k ∈ {1, . . . ,m} \ Λ.

Hence, we can solve the problem (2.5) by finding the index set of chosen
base Λ and the corresponding coefficient vector h̄(Λ). Note that h̄(Λ) is a
continuous vector, we can find the optimal h̄(Λ) for any given Λ first.

For any chosen index set Λ, the filter response (2.1) can be rewritten as

H(ω,Λ) =

mΛ∑
k=1

hλkCλk(ω) = h̄
ᵀ
(Λ)C̄(ω,Λ). (3.1)

The general filter design problem (2.2) is transformed into

min
z(Λ),h̄

z(Λ)

s.t. g
(
h̄(Λ), ω

)
≤ z(Λ), ∀ω ∈ F ⊆ [0, π],

(3.2)

where

g
(
h̄(Λ), ω

)
= W (ω)|H(ω,Λ)−Hd(ω)|.

Hence, if Λ is given, we can find the corresponding optimal coefficient vector
h̄
∗
(Λ) and optimal value z∗(Λ) by solving the problem (3.2). Next, we should

check whether the constraint in (2.5) is satisfied. That is, if z∗(Λ) ≤ δ, then
(Λ, h̄

∗
(Λ)) is a feasible solution in the problem (2.5), else there is no feasible

solution for this problem.

For any set Λ, the cost function (2.4) becomes

F (Λ) =

{
2mΛ − 1, if L is odd and 1 ∈ Λ,
2mΛ, otherwise.

(3.3)

Then, the problem (2.5) is transformed into

min
Λ

F (Λ)

s.t. z∗(Λ) ≤ δ,
(3.4)

where z∗(Λ) is obtained by solving (3.2).

Thus, we have formulated two subproblems (3.2) and (3.4) for solving the
problem (2.5). Note that the problem (3.2) is a semi-infinite programming
(SIP) optimization problem and the problem (3.4) is a discrete optimization
problem. It’s required to develop the corresponding methods for solving these
two problems.
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4 Exchange Algorithm

For the problem (3.2), it can be solved very efficiently by Remez exchange
algorithm in the case that Λ = {1, . . . , k} is consecutive. However, for the gen-
eral sparse case that Λ = {1, . . . , k} is not consecutive, the optimal value can
not be calculated directly in each iteration if the Remez exchange algorithm is
applied. Hence, we need to develop a modified exchange algorithm for solving
this problem.

The constraint in Problem (3.2) can be rewritten as

|W (ω)H(ω,Λ)−W (ω)Hd(ω)| ≤ z(Λ),

which is equivalent to a linear form as

W (ω)H(ω,Λ)−W (ω)Hd(ω)− z(Λ) ≤ 0,

−(W (ω)H(ω,Λ)−W (ω)Hd(ω))− z(Λ) ≤ 0.

Substituting (3.1) and reorganizing it in the form of vector, Problem (3.2) is
equivalent to

min
z(Λ),h̄(Λ)

z(Λ)

s.t. G+(ω)

[
z(Λ)
h̄(Λ)

]
−R+(ω) ≥ 0, ∀ω ∈ F ⊆ [0, π],

G−(ω)

[
z(Λ)
h̄(Λ)

]
−R−(ω) ≥ 0, ∀ω ∈ F ⊆ [0, π],

(4.1)

where

G+(ω) =
[

1 −W (ω)C̄(ω,Λ)
]
, (4.2a)

G−(ω) =
[

1 W (ω)C̄(ω,Λ)
]
, (4.2b)

R+(ω) = −W (ω)Hd(ω), (4.3a)

R−(ω) = W (ω)Hd(ω). (4.3b)

We denote the problem (4.1) as P (F+,F−), where F+ denotes the indices
set F in the first constraint and F− denotes the indices set F in the second
constraint.

Basically, after the infinite set F is replaced by its sufficiently dense discrete
set, Problem (4.1) is transformed into a linear programming problem and
can be solved by any linear programming method. In general, if the number
of constraints is not large, the linear programming problem can be solved
efficiently by the simplex method. However, if the number of constraints is
large enough, the interior point method is better than the simplex method for
solving this problem.

For the semi-infinite programming problem (4.1), the number of constraints
is large in general after discretization, if the precision of performance is re-
quired. Then, the computation is expensive even if the interior point method
is used. For this, we develop an algorithm for this problem as follows.
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For the infinite set F , we choose any finite sets Ω+ = {ω1, . . . , ωl1} ∈ F
and Ω− = {ωl1+1, . . . , ωl2} ∈ F . Define a subproblem of (4.1) as

P (Ω+, Ω−) :

min
h̄(Λ),z(Λ)

z(Λ)

s.t. G+(Ω+)

[
z(Λ)
h̄(Λ)

]
−R+(Ω+) ≥ 0

G−(Ω−)

[
z(Λ)
h̄(Λ)

]
−R−(Ω−) ≥ 0,

(4.4)

where

G+(Ω+) =

1 −W (ω1)C̄(ω1, Λ)
...

...
1 −W (ωl1)C̄(ωl1 , Λ)

 ,G−(Ω−) =

1 W (ωl1+1)C̄(ωl1+1, Λ)
...

...
1 W (ωl2)C̄(ωl2 , Λ)


and

R+(Ω+) =

 −W (ω1)Hd(ω1, Λ)
...

−W (ωl1)Hd(ωl1 , Λ)

 ,R−(Ω−) =

W (ωl1+1)Hd(ωl1+1, Λ)
...

W (ωl2)Hd(ωl2 , Λ)

 .
We introduce a modified exchange algorithm as follows:

Algorithm 1

Step 0. (Initialization)

Choose initial finite sets Ω
(0)
+ , Ω

(0)
− ⊂ F . Set Ω̄(0) = (Ω

(0)
+ , Ω

(0)
− ). Solve the

problem P
(
Ω̄(0)

)
to obtain the optimal solution (z(0), h̄

(0)
). Set the relative

error ε > 0. k = 0.
Step 1. (Stop test)

Calculate the constraint values in (4.1) for all ω ∈ F , by using the coeffi-

cient vector (z(k), h̄
(k)

). If all the constraint values are greater than −z(k)ε,
∀ω ∈ F , then return h̄

(k)
as the optimal solution and stop, else goto Step

2.
Step 2. (Obtain the sets of all the minimizers)

Find all the minimizers of the first constraint in (4.1) which are less than

0. Denote the set of all these points by
{
ω
(k+)
new

}
. Find all the minimizers

of the second constraint in (4.1) which are less than 0. Denote the set of

all these points by
{
ω
(k−)
new

}
.

Step 3. (Obtain the active sets)
Check the constraint values of the problem P

(
Ω̄(k)

)
and find all the points

where the corresponding constraint values greater than 0. Denote the set{
ω
(k+)
ina

}
of all these points in Ω

(k)
+ and denote the set

{
ω
(k−)
ina

}
of all these

points in Ω
(k)
− . Then, the active sets are{

ω
(k+)
act

}
= Ω

(k)
+ \

{
ω
(k+)
ina

}
,
{
ω
(k−)
act

}
= Ω

(k)
− \

{
ω
(k−)
ina

}
.



8 Zhi Guo Feng et al.

Step 4. (Exchange rule)
Exchange the finite set as

Ω
(k+1)
+ =

{
ω
(k+)
act

}
∪
{
ω(k+)
new

}
= Ω

(k)
+ ∪

{
ω(k+)
new

}
\
{
ω
(k+)
ina

}
,

Ω
(k+1)
− =

{
ω
(k−)
act

}
∪
{
ω(k−)
new

}
= Ω

(k)
− ∪

{
ω(k−)
new

}
\
{
ω
(k−)
ina

}
. (4.5)

Set Ω̄(k+1) = (Ω
(k+1)
+ , Ω

(k+1)
− ).

Step 5. (Calculate the solution)

Solve the problem P
(
Ω̄(k+1)

)
to obtain the optimal solution (z(k+1), h̄

(k+1)
).

Set k = k + 1. Goto Step 1.

The convergence results of this exchange algorithm can be found in [17].
Then, we can apply Algorithm 1 to solve Problem (4.1).

Remark 2 The merit of the exchange algorithm is that its computational com-
plexity is almost independent of the number of grid size. This can be seen from
the fact that in each iteration, a linear programming subproblem (4.4) which
is independent of grid size is solved. After solving every subproblem, the com-
putation of finding the maximum points is related to the grid size. However,
the number of iterations is always very small, and this can be ignored when
compared to that of solving the subproblem.

5 Filled Function Discrete Search Method

Since the set Λ is a discrete variable, Problem (3.2) is a discrete optimiza-
tion problem. There are several hurdles we need to overcome. First, Λ is a set
and is not convenient to be applied in discrete space search. To handle this,
we introduce an equivalent definition as

σ = (σ1, . . . , σm)ᵀ, σi ∈ {0, 1}. (5.1)

It means that if σi = 1 (or 0), the basis function Ci(ω) is used (or not used).
That is, σ and Λ are one to one correspondence. We can denote the index
which corresponds to σ by Λ(σ).

Note that for each element σi, it has two choices 0 and 1. Hence, the space
of all feasible σ is {0, 1}m and the total number of this space is

2× 2 · · · × 2 = 2m.

Remark 3 If σ = (0, . . . , 0)ᵀ, that is, the corresponding Λ is an empty set
and there is no Ci(ω) used, then its cost function value cannot be evaluated.
For convenience, we can penalize its cost function value by a sufficiently large
value so that it will not influence the solution process.



Design of sparse filters by a discrete filled function technique 9

Then, Problem (3.2) is equivalent to

min
σ

F̃ (σ)

s.t. z̃∗(σ) ≤ δ, (5.2)

where F̃ (σ) and z̃∗(σ) are given by

F̃ (σ) = F (Λ(σ)),

z̃∗(σ) = z∗(Λ(σ)).

It can be seen that Problem (5.2) is a constrained optimization problem.
Penalty function method can be applied and the problem is transformed into

min
σ

F̄ (σ), (5.3)

where

F̄ (σ) =

{
F̃ (σ) + z̃∗(σ), if z̃∗(σ) ≤ δ,
F̃ (σ) + z̃∗(σ) +N, if z̃∗(σ) > δ,

where N is a sufficiently large positive value.
Problem (5.3) is a discrete optimization problem. Note that for the case

of continuous optimization problem, the gradient information is used in many
methods, that is, for each iteration, the method calculate the gradient of cur-
rent iterate and then generate the next iterate. But for the discrete optimiza-
tion problem, we can’t have any gradient information. However, we can imitate
this search idea in continuous case by mimicking the function of a gradient.
To achieve this, we introduce the definition of neighborhood as

Definition 1 For any σ ∈ {0, 1}m, the neighborhood of σ is defined by

N (σ) = {σ′ : ||σ′ − σ|| ≤ 1},

where the norm || · || is given by

||σ′ − σ|| =
m∑
i=1

|σ′i − σi|.

From Definition 1, we can see that the neighborhood of any σ consists of itself,
and all the points with m− 1 elements same as itself and 1 element different
to itself. Then, the number of points in any neighborhood is m+ 1.

Then, similar to the steepest descent algorithm in continuous case, we
propose a discrete version of steepest descent algorithm as follows, where in
each iteration, the next iterate point is obtained by searching over the current
neighborhood and selecting the point which produces the largest reduction in
the cost function value.

Algorithm 2
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Step 0. Choose an initial point σ(0). Compute its cost function value F̄
(
σ(0)

)
. Set

k = 0.
Step 1. For each point in the neighborhood σ ∈ N

(
σ(k)

)
\
{
σ(k)

}
, where A1 \A2 =

{σ ∈ A1 : σ /∈ A2}, compute the corresponding cost function value F̄ (σ).
Choose the point σmin which F̄ (σmin) is the minimum. If F̄ (σmin) ≥
F̄
(
σ(k)

)
, then return σ(k) as the solution and stop, else goto Step 2.

Step 2. Set σ(k+1) = σmin and k = k + 1. Goto Step 1.

After applying Algorithm 2, we can find a point which minimizes the cost
function F̄ (σ) over its neighborhood. We call this point as a local minimizer,
similar to that of continuous case. The definition of local minimizer is given
by

Definition 2 A point σ∗ is called a local minimizer of F̄ over {0, 1}m if
F̄ (σ∗) ≤ F̄ (σ), ∀σ ∈ N (σ∗).

A minimizer is the best point only in its neighborhood. For the region far
away from the point, there may exists a better point. In other words, there
may exist many local minimizers for this problem and it’s required to choose
the best minimizer. To achieve this, we should jump out of the neighborhood of
current minimizer and at the same time keep the corresponding cost function
value relatively small. This will help to find a possible better point. A method
to implement this idea is the discrete filled function, which is constructed
in [14]. The discrete filled function is given by

F̂µ,ρ(σ;σ∗) = µ[F̄ (σ)− F̄ (σ∗)]2 − ρ||σ − σ∗||2,
if F̄ (σ) ≥ F̄ (σ∗), (5.4)

where ρ > 0, 0 < µ < ρ/K (K is a sufficiently large real number).

Then, after a local minimizer is obtained, we can start from this point
and search for a possible better local minimizer by minimizing the discrete
filled function with Algorithm 2 again. Since the maximum distance between
any two points in the space {0, 1}m is m, we can set the maximal number of
searching steps as m. If the number of searching steps is greater than m, we
can’t find the improved solution and then stop. The main algorithm to solve
Problem (5.3) is summarized below.

Algorithm 3

Step 0. Choose an initial point σ(0). Compute its cost function value F̄
(
σ(0)

)
. Set

the optimal solution and optimal value as σ∗ = σ(0) and v∗ = F̄
(
σ(0)

)
.

k = 0.
Step 1. Apply Algorithm 2 to obtain a local minimizer of the cost function F̄ with

the starting point σ(k). Let the local minimizer be denoted as σ(k+1). Set the
optimal solution and optimal value as σ∗ = σ(k+1) and v∗ = F̄

(
σ(k+1)

)
.

k = k + 1.
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Step 2. Set σ∗ as the starting point, and apply Algorithm 2 to search for a point
better than the current local minimizer, with the discrete filled function F̂
in (5.4) used as the cost function. Denote l by the number of searching
steps.

Step 3. If a point σ′ is found such that F̄ (σ′) < F̄ (σ∗) when l ≤ m during Step
2, then stop searching. Set σ(k) = σ′ and goto Step 1. Else, stop searching
and return the optimal solution σ∗ and optimal value v∗.

To apply Algorithm 3, a good initial point is often required. In general, it
can be chosen as σ(0) = (1, 1, . . . , 1)ᵀ, where its cost function value of (2.2) is
the best. If this value does not satisfy the performance requirement in (3.2),
it means that there is no feasible solution and it’s not necessary to apply
Algorithm 3.

6 Illustrative Examples

In this section, we implemented the proposed method and compared the
numerical results with other methods, where the computation was performed
in Matlab.

6.1 Example of exchange algorithm

First, we investigate the numerical results of the proposed exchange al-
gorithm for solving subproblem 4.1. For the convenience of comparison with
interior point method, which is the most efficient method for solving large
scale linear optimization problems, the discretization of F for the exchange
algorithm and interior algorithm is chosen as the same. In Matlab, the interior
point solver LIPSOL is implemented in the function linprog with the option
‘LargeScale=on’.

The test example we considered is Problem (2.2) with odd, symmetric filter
coefficients and the desired frequency response function given by

Hd(ω) =

{
1, if ω ∈ [0, ωp],
0, if ω ∈ [ωs, π],

(6.1)

where ωp = 0.3π and ωs = 0.5π. The weighting function is given by W (ω) = 1
and the number of independent filter coefficients is m = 30. The discrete grid
points is taken every interval from π/400, π/500 to π/2000. We execute the
program 100 times by starting from a different randomly selected σ using the
function rand(σ > 0.5); that is, if the random number of σi is greater than
0.5, then set σi = 1, else set σi = 0. Then, we implement the exchange method
and the interior point method respectively, and the mean running times are
depicted in Figure 1.

From Figure 1, we can see that the complexity of the exchange method is
almost independent of the number of grid points. It’s better than the interior
point method, especially when the number of grid points increases.
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Fig. 1 Running times of the exchange method and interior point method.

Next, we fix the interval as 0.001π and set m from 5 to 50. We execute the
program 100 times by starting from a different randomly selected σ as above.
The comparison of the total running times for the exchange method and the
interior point method is depicted in Figure 2.

It can be seen from Figure 2 that the complexities of the exchange method
and the interior point method increases if m increases, and the exchange
method is more efficient than the interior point method.

6.2 Example of discrete search method

Then, we implement the discrete search method to solve Problem (3.2).
For the comparison, we first consider the examples in [1], where a design
of uniformly linear beamformer is considered. The desired beam pattern is
chosen with mainlobe region given by [0, 0.0436π] and the sidelobe region
given by [0.0872π, π]. The mainlobe magnitude is within ±0.5dB of unity and
the sidelobe magnitude is below −20, −30, and −40 dB, respectively. The
comparison results are summarized in Table 1, 2 and 3. We can see that the
proposed method is better than the methods in [1].

To show the filter response, we plot its magnitude in Figure 3 in the case
of −20dB sidelobe level, where the filter length is chosen as 45. The nonzeros
terms are obtained as {1− 12, 20, 22, 23}.

Next, we consider the example in [13], where the mainlobe region is given
by [0, 0.55π] and the sidelobe region is given by [0.6π, π]. The maximum value
is chosen as −33.42dB. The filter length is chosen as L = 65. We apply the
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Fig. 2 Running times of the exchange method and interior point method.

Method Nonzero terms Filter length (L)
Parks-McClellan 43 43

Minimum-increase in [1] 29 49
Smallest-coefficient in [1] 31 47
Minimum 1-norm in [1] 29 51

Proposed method 31 43
29 45
28 48

Table 1 Numbers of nonzero terms and the filter lengths, where the sidelobe level is -20dB.

Method Nonzero terms Filter length (L)
Parks-McClellan 55 55

Minimum-increase in [1] 47 55
Smallest-coefficient in [1] 47 55
Minimum 1-norm in [1] 47 55

Proposed method 47 55
46 56

Table 2 Numbers of nonzero terms and the filter lengths, where the sidelobe level is -30dB.

Method Nonzero terms Filter length (L)
Parks-McClellan 79 79

Minimum-increase in [1] 65 83
Smallest-coefficient in [1] 69 83
Minimum 1-norm in [1] 73 83

Proposed method 66 78
67 79
65 81

Table 3 Numbers of nonzero terms and the filter lengths, where the sidelobe level is -40dB.
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Fig. 3 Magnitude of the filter response, where the filter length is 45 and the sidelobe level
is -20dB.

proposed method to solve this problem and the total number of nonzero fil-
ter coefficients can achieve 51, which is better than the method in [13]. The
nonzeros terms are obtained as {1− 14, 16− 19, 21, 23− 26, 28, 30, 33} and the
corresponding magnitude of filter response is depicted in Figure 4.

7 Conclusion

In this paper, we have studied the sparse filter design problem and proposed
a new algorithm. First, we have formulated a linear semi-infinite programming
problem to find the optimal filter coefficients for the subproblems where the set
of nonzero terms is given. Then, we developed a dedicated exchange algorithm
for solving this problem and showed that it’s more efficient than the interior
point algorithm. Second, by introducing the neighborhood concept for the
discrete space, we have proposed a discrete search method based on the discrete
filled function to find the minimal number of nonzero terms. Numerical results
indicates that it’s better than existed methods.
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