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In this paper, we present a computationally tractable optimization method for a robust mean-CVaR
portfolio selection model under the condition of distribution ambiguity. We develop an extension that
allows the model to capture a zero net adjustment via the linear constraint in the mean return, which can
be cast as a tractable conic program. Also, we adopt a nonparametric bootstrap approach to calibrate
the levels of ambiguity and show that the portfolio strategies are relatively immune to variations in input
values. Finally, we show that the resulting robust portfolio is very well diversified and superior to its non-
robust counterpart in terms of portfolio stability, expected returns and turnover. The results of numerical
experiments with simulated and real market data shed light on the behavior of our distributionally robust
optimization model established.
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1. Introduction

Quantile-based risk measures are practically important in various fields such as financial engineer-
ing, financial management and economics. Recently, there has been a dramatic increase in the
interest of studying this family of risk measures and its financial applications. Value-at-risk (VaR)
and conditional value-at-risk (CVaR), which are concerned with the probability or magnitude of
losses, are the most popular quantile-based risk measures. VaR reflects the maximum potential loss
of an asset or portfolio in a given period and at a confidence level, i.e., it provides information on
losses that cannot be exceeded with a certain probability. As a measure of risk, however, VaR has
several limitations. For example, it does not satisfy subadditivity, i.e., diversification may result in
greater risk, hence it is not a coherent risk measure (Artzner et al. 1999). To overcome the draw-
backs of VaR, researchers propose a modified version, namely, CVaR, which is defined as mean
of its tail distribution exceeding VaR. CVaR, which is a coherent risk measure, is more appealing
than VaR because it takes into account the contribution from the very rare but very large losses.
To the best of our knowledge, most of observations and discussions of CVaR in the portfolio opti-

mization literature are concerned with the formulation and tractability of model, and full knowledge

∗Corresponding author. Email: lnslzf@mail.sysu.edu.cn. Tel.: +86 20 84111989; fax: +86 20 84114823.

1

This is an Accepted Manuscript of an article published by Taylor & Francis in Quantitative Finance on 11 Jun 2018 (published online), 
available at: http://www.tandfonline.com/10.1080/14697688.2018.1466057

This is the Pre-Published Version.



March 29, 2018 Quantitative Finance Data-driven˙CVaR20180328

of the distribution of portfolio losses (Hellmich and Kassberger 2011, Xiao and Valdez 2015) is as-
sumed. In most real-life applications, however, the distribution of those losses is unknown, and
therefore it is either estimated from historical data or constructed from expert knowledge (or a
combination of the two); see, e.g., Yao et al. (2013). Moreover, even when the loss distribution is
precisely known, the computation of CVaR typically reduces to the evaluation of a high-dimensional
integral, which is itself an important and challenging problem. Furthermore, in the words of Scarf
et al. (1958), “we may have reason to suspect that the future demand will come from a distribution
which differs from that governing past history in an unpredictable way”. Such unpredictability
provides a strong incentive for the decision-maker to adopt (distributionally) robust optimization
approaches, which have recently become increasingly popular in portfolio optimization under am-
biguity. 1 An attempt to the robust optimization of CVaR is proposed in Quaranta and Zaffaroni
(2008), who implement in a robust manner of the bi-criteria model proposed by Rockafellar and
Uryasev (2000), thereby obtaining a robust linear reformulation of the problem. The idea of op-
timal decisions in ambiguous stochastic models is initiated by Scarf et al. (1958), who deal with
a distribution-robust inventory control problem in which only mean and variance of demand are
known. This ambiguous distribution set generally takes the following form

D0 =
{
P ∈ M+ : P(ξ ∈ Ω) = 1, EP(ξ) = µ̂, CovP(ξ) = Σ̂ ≻ 0

}
,

where M+ is the set of all probability measures on the measurable space (Rn,B) with the σ-
algebra B on R

n, Ω ⊆ R
n is a closed convex set known to contain the support of random vector

ξ, and µ̂ and Σ̂ are the inferred mean and covariance matrix, respectively. Natarajan et al. (2009)
present a model for worst-case CVaR based on partial moment information when the underlying
distributions of random variables are not precisely known. Also, they discuss how those sets in
robust optimization map to risk measures, and propose a specific approach to generate coherent
risk measures in this context. Chen et al. (2011) consider the worst-case lower partial moments and
worst-case CVaR with respect to reliable data consisting of only fixed first and second moments,
and derive a tight bound for these two risk measures. The same type of ambiguity set is adopted by
Calafiore and El Ghaoui (2006) and Popescu et al. (2007), who examine a linear chance-constrained
problem and investigate the problem of maximizing a portfolio’s expected utility.
However, the assumption that mean and covariance of the data are known exactly is less rea-

sonable from a practical viewpoint. Natarajan et al. (2010) derive exact and approximate optimal
strategies for the worst-case expected utility model in the portfolio selection problem under distri-
bution ambiguity using a piecewise-linear concave utility function. Recently, Paç and Pinar (2014)
consider the problem of optimal portfolio choice using CVaR risk measures in which the mean re-
turn is subject to an ellipsoidal uncertainty set and distribution ambiguity. Lotfi and Zenios (2016)
develop models of robust VaR and CVaR optimization for joint ambiguity in distribution, mean
return and covariance matrix. They present an algorithm and heuristic for constructing an ellip-
soidal ambiguity set from a set of point estimates. In addition to moment-based robust approaches,
several other facets of robust portfolio construction based on limited statistical information can be
found in Zhu and Fukushima (2009), Huang et al. (2010), Hellmich and Kassberger (2011), Gotoh
et al. (2013), Wozabal (2014) and Zhu et al. (2015). We do not limit the discussion in our paper to

1In general, decision-makers are exposed not only to risk (refers to events for which the probabilities of the future outcomes are
known) but also to ambiguity (refers to events for which the probabilities of the future outcomes are unknown) when making
investment decisions. The distinction between risk and ambiguity was first made by Knight (1921) and latter supported by

the empirical experiments of Ellsberg (1961), whose findings have shown that agents are not always able to derive a unique
probability distribution over the reference state space. After Ellsberg’s seminal paper, uncertain environment has become better
known as ambiguity and the general dislike for it as ambiguity aversion. Ellsberg (1961) argues that most people are ambiguity-
averse, that is, they prefer a lottery with known probabilities to a similar lottery with unknown probabilities. In recent years,
a rapidly growing literature on ambiguity aversion is emerging; see, among others, Garlappi et al. (2007) and Ma et al. (2008)
for optimal portfolio choice, Cao et al. (2005) and Ui (2011) for non-participation or selective participation in markets, and
Faria and Correia-da-Silva (2014) for European call option pricing.
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the minimization of a risk as in Natarajan et al. (2009), Chen et al. (2011), Gotoh et al. (2013) and
Wozabal (2014), where only CVaR minimization is examined. By adding an ambiguous minimum
return constraint, we introduce robust portfolio optimization using worst-case CVaR. For details
of the historical development and use of robust optimization in portfolio selection, we refer readers
to Kim et al. (2014), and references therein.
Data-driven approaches have been proposed, in which investors have no information beyond the

evolving history of asset return observations. Sample average approximation (see, e.g., Bertsimas
et al. 2016) is a popular approach to data-driven decision making under uncertainty. Delage and Ye
(2010) novelly construct a confidence set for the mean vector and covariance matrix from histori-
cal data. Ben-Tal et al. (2013) study how to construct uncertainty sets from statistical confidence
region based on phi-divergences, and generalize the result of Wang et al. (2016). Jiang and Guan
(2016) propose a data-driven approach to chance-constrainted problems where the ambiguity of
the return distribution is described by phi-divergence. Bertsimas et al. (2017) study a distribu-
tionally robust optimization with various choices of distribution sets. In particular, they focus on
data analysis and hypothesis-testing tools such as Kolmogorov-Smirnov, χ2, Anderson-Darling,
Watson and likelihood ratio to construct ambiguity sets. Under certain convexity and compactness
assumptions, Esfahani and Kuhn (2017) show that data-driven distributionally robust problems
with Wasserstein distance are tractable, by transforming the inner maximization problem into a
finite dimensional problem. In these existing methods, researchers assume that the ambiguity sets
are constructed with certain structures and sizes according to a finite number of data points.
Our work is somewhat related to the paper by Salahi et al. (2013). Both are extensions of the

traditional mean-CVaR model which uses a pre-given single probability distribution. Salahi et al.
(2013) only introduce the uncertainty of mean and use the CVaR of mean to replace the mean,
where the distribution is the pre-given single and the CVaR is single. While, we incorporate the
uncertainty of mean, covariance and distribution, use a set of distributions to replace the pre-given
single distribution, and take the worst case on the set. The worst-case approach adopted in our
paper is fitter for the spirit of the max-min expected utility (MEU) framework axiomatized by
Gilboa and Schmeidler (1989), which can be viewed as reflecting both beliefs (information) and
subjective attitude toward ambiguity.1

To facilitate the practice, we adopt an ambiguous distribution of the returns where only known
mean vector and covariance matrix belong to some ambiguity sets. This is a more simple, clear
and flexible way to start real applications. At the same time, we can easily achieve a tractable
reformulation of the distributionally robust portfolio optimization problem as a second-order cone
program (SOCP), which can be efficiently solved in polynomial time. Furthermore, we integrate
the zero net adjustment on mean returns to overcome the drawback of excessive conservativeness in
robust portfolio optimization. While there is a large body of existing literature concerned with the
formulation of robust portfolio selection, the discussion focusing on how to specify the size of the
ambiguity set in an attractive manner is relatively rare. We also focus on providing guidelines for
calibrating two levels of ambiguity from available realization of the uncertain data in robust CVaR
optimization application, and by which investors can specify the suitable bounds of the ambiguity
set. Computational experiments on real market data reveal that, in most cases, our approach

1Unlike classical approaches to decision making such as von Neumann-Morgenstern paradigm of expected utility maximization
that neglect an agent’s preference on the choice among multiple probability models, Gilboa and Schmeidler (1989) provide
a system of axioms under which an agent’s preference on the choice of the models can be characterized by the worst-case
approach. However, this approach does not distinguish between ambiguity and aversion to ambiguity, and hence is sometimes
criticized because it apparently implies extreme ambiguity aversion. A few studies overcoming this issue have been proposed.

For example, Klibanoff et al. (2005) provide an axiomatic foundation for the smooth ambiguity model. This model allows us to
separate ambiguity from ambiguity attitudes and allows for smooth indifference curves, avoiding the infinite ambiguity aversion
implied in the MEU approach. A recent paper by Izhakian (2017) provides an axiomatic foundation for a model of decision
making under ambiguity, where the preference representation is referred to as sign-dependent expected utility under uncertain
probabilities (EUUP). However, there is still a debate in the literature about the axiomatic foundations of this line of models
(see Epstein 2010, Klibanoff et al. 2012). Because of this, the approach of Gilboa and Schmeidler (1989) is still to be the main
reference in the literature.
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outperforms the one without considering robustness and results in more efficient portfolios. Our
work suggests that a data-driven approach to portfolio optimization, which calibrates two levels
of ambiguity, is a valuable choice. This work further highlights the importance of taking moment
uncertainty into account in portfolio selection. Moreover, an interesting finding in experiments is
that model extension with zero net adjustment can truly avoid the excessive conservativeness in
robust portfolio optimization and thus provide a more promising performance.
The remainder of the paper is organized as follows. Section 2 constructs a robust portfolio

selection optimization model using CVaR as the risk measure. In this section, we derive the tractable
conic reformulations for the robust mean-CVaR model, and consider a model extension with zero net
adjustment on mean vector. Data-driven technique for calibrating the parameters and simulation
analysis of the proposed approaches are derived in Section 3. In Section 4, we report the results
of a variety of numerical experiments using real market data. Finally, conclusions are drawn in
Section 5.
Notation. The space of the symmetric matrices of dimension n is denoted by Sn. Sn

+ denotes the
cone of positive semidefinite matrices. Let In and e be the identity matrix of dimension n and the
vector in R

n with unit elements, that is, e = (1, · · · , 1)T, respectively. ‘T’ denotes the transpose of
a matrix or vector and ||z||2 represents the Euclidean norm of the vector z. For any two matrices
A,B ∈ Sn, we let 〈A,B〉 = tr(AB) be the trace scalar product, whereas relation A � B(A ≻ B)
implies that A−B is positive semidefinite (positive definite). For X ∈ Sn

+, we denote its symmetric

square root by
√
X or X

1

2 . For a given reversible matrix G ∈ Sn, ‖z‖G represents the ellipsoidal

norm of a vector z, i.e., ‖z‖G =
√
zTG−1z. For a matrix X ∈ Sn, ||X||F represents the Frobenius

norm, i.e., ||X||F = (X •X)
1

2 =
√

tr(XXT).

2. Robust Mean-CVaR Portfolio Optimization Model

This section introduces the portfolio optimization problem, which accounts for ambiguity in the
underlying probability distribution. We start from the traditional mean-CVaR portfolio selection
model to its tractable distributionally robust counterpart.

2.1. Worst-case CVaR risk measure

Let l(x, ξ) be the loss for portfolio vector x, and assume that the random return vector ξ has
a continuous probability density function p(ξ) with a finite mean µ and covariance Σ. Given a
confidence level of β ∈ (0, 1) and a fixed x, VaR is defined as

VaRβ(x) = min

{
η ∈ R :

∫

{ξ:l(x,ξ)≤η}
p(ξ)dξ ≥ β

}
.

The corresponding CVaR at level 1 − β with respect to the distribution P, which is defined as
the expected value of the loss l(x, ξ) exceeding VaR, can be expressed as

CVaRβ(x,P) = EP

[
l(x, ξ)|l(x, ξ) ≥ VaRβ(x)

]

=
1

1− β

∫

{ξ:l(x,ξ)≥VaRβ(x)}
l(x, ξ)p(ξ)dξ.

Rockafellar and Uryasev (2000) show that the calculation of CVaR can be achieved by minimizing
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the following function

Fβ(x, η) = η +
1

1− β

∫

ξ∈Rn

[l(x, ξ)− η]+p(ξ)dξ,

where [t]+ = max{0, t}. That is,

CVaRβ(x,P) = min
η∈R

Fβ(x, η). (1)

Since risk measures such as VaR and CVaR are defined as functionals of the loss distribution, an
implicit starting point is knowledge of that distribution. However, it is difficult to obtain the exact
result of Fβ(x, η) if we have no information on the distribution of ξ. Using sampling or simulation
methods, the approximation of Fβ(x, η) can be given as

F̃β(x, η) = η +
1

S(1− β)

S∑

k=1

[l(x, ξ[k])− η]+,

where S denotes the number of samples, and ξ[k] refers to the k-th sample. According to the law
of large numbers in statistics, the empirical mean F̃β(x, η) converges to Fβ(x, η) as the sample size
S goes to infinity.
In practice, owing to limited historical data, the estimated CVaR may contain considerable

estimation error. Therefore, it may be more difficult for the investor to hedge the worst-case
scenario over the set of probability measures, which is defined by the limited information available.
The following definition gives the worst-case CVaR risk measure with distribution ambiguity.

Definition 1 Given a probability threshold β > 0, the worst-case CVaR (WCVaR) of portfolio
x, where random vector ξ may assume a distribution from ambiguity set D, is defined by

WCVaRβ(x) = sup
P∈D

CVaRβ(x,P). (2)

Zhu and Fukushima (2009) demonstrate that WCVaR inherits subadditivity, positive homogene-
ity, monotonicity, and translation invariance. Therefore, WCVaR, like CVaR, is a coherent risk
measure.

2.2. Robust portfolio optimization model with WCVaR risk measure

Consider a financial market consisting of n different assets. A portfolio is characterized by a vector
of asset weights x ∈ R

n, whose elements add up to 1. The component xi denotes the percentage of
total wealth that is invested in the ith asset at the beginning of the investment period. The classical
mean-CVaR portfolio selection problem (MC), which seeks for an optimal trade-off between risk
and return, can be formulated as

(MC) : min
x

CVaRβ(x,P),

s.t. EP(ξ)
Tx ≥ ρ, x ∈ X ,

where ρ stands for the lower limit on the target expected return. Here, the objective is to minimize
CVaR under the condition that the expected return is greater than or equal to ρ, and X ⊆ R

n

denotes the set of admissible portfolios.

5
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In reality, the investor does not know the distribution P. When only a collection of S historical
observations {ξ[1], · · · , ξ[S]} of ξ is available, the original problem (MC) of finding a portfolio
allocation can be recast as the following sample-based mean-CVaR optimization problem (SMC)

(SMC) : min
(x,η)

F̃β(x, η),

s.t.
1

S

S∑

k=1

(ξ[k])Tx ≥ ρ,

x ∈ X , η ∈ R.

SMC is easy to solve if X is convex and l(x, ξ) is convex in x (Rockafellar and Uryasev 2000). It is
easy to see that F̃β(x, η) depends on only a small portion of loss scenarios l(x, ξ[1]), · · · , l(x, ξ[τ ])
with τ = ⌈(1 − β)S⌉, where l(x, ξ[i]) indicates the ith largest loss scenario, and ⌈d⌉ is the smallest
integer not less than d (Gotoh et al. 2013). This implication is that a perturbation in those loss
scenarios can exert an influence on the estimate of CVaRβ(x,P), and simultaneously result in
highly unreliable solutions. However, this framework can be validated by the law of large numbers.
In other words, if the number of observations goes to infinity, the solution of SMC approaches the
optimal portfolio.
Lim et al. (2011) show that CVaR is sensitive to the misspecification of the underlying loss distri-

bution, and they also demonstrate empirically the fragility associated with CVaR minimization. A
remedy for such fragility is to adopt a distributionally robust approach and embrace the fact that P
is known to belong to an ambiguity set D. Mathematically, the distributionally robust counterpart
to MC is given by 1

(RMC) : min
x

sup
P∈D

CVaRβ(x,P),

s.t. inf
P∈D

EP(ξ)
Tx ≥ ρ, x ∈ X ,

where D is the ambiguity set for uncertain underlying distribution P, and ρ denotes the required
value of the worst-case expected return specified by the investor.
In RMC, we choose decision variable x in such a way that the CVaR risk measure is minimized

under the worst-case distribution. Here, the worst-case distribution is taken over ambiguity set D,
that is, a family of distributions characterized through certain known properties of the unknown
data-generating distribution P. Historical data and/or expert estimates serve as guiding tools in the
estimation of P. Such characterizations of ambiguity should be convenient in terms of estimation
and optimization.

Remark 1 Generally, X includes additional convex constraints on the portfolio structure, such
as necessary finite budget, short-selling, diversification bound and cardinality constraints. Because
the return on one portfolio can be expressed as ξTx, in what follows only a loss of the form
l(x, ξ) = −ξTx is considered.

1Ghirardato et al. (2004) axiomatize a model termed α-maxmin expected utility (α-MEU) wherein it is possible in a certain
sense to distinguish ambiguity attitude from ambiguity. The α-MEU model is

α inf
P∈D

EP[U(X)] + (1− α) sup
P∈D

EP[U(X)],

where α ∈ [0, 1] is a parameter, X is a random payoff, U is a general utility function, and D is a set of prior probability measures.
A key feature of α-MEU is that it differentiates the level of ambiguity aversion, specified by α, and the level of ambiguity,
specified by the range of D. There is more flexibility with α-MEU in capturing the ambiguity attitude (parameterized by α)
of the decision maker (α=1, 0 represents, respectively, extremely ambiguity-averse and extremely ambiguity-loving attitudes).
Similar to the α-MEU criterion, we can develop a so-called α-maxmin mean-CVaR criterion. This paper just considers the
extreme case of this criterion when α = 1. The more general cases are left for our future research.
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In this paper, we assume that ξ is governed by an ambiguous distribution that only partial
information on the moments is known. More specifically, similar to Delage and Ye (2010), but
partially different, we consider the ambiguity sets DF (γ1, γ2) for the distribution defined as

DF (γ1, γ2) =



P ∈ M+ :

P(ξ ∈ Ω) = 1,

(EP(ξ)− µ̂)TΣ̂−1(EP(ξ)− µ̂) ≤ γ1,

‖CovP(ξ)− Σ̂‖F ≤ γ2, CovP(ξ) ≻ 0



 ,

where we assume that Ω = R
n holds in this paper. Parameters Σ̂ and µ̂ can be estimated by the

observations {ξ[i]}Si=1 from ambiguous distribution P. If {ξ[i]}Si=1 are independent and identically
distributed (i.i.d.), an unbiased and consistent estimate of Σ is obtained by the sample covariance

matrix Σ̂ = 1
S−1

S∑
i=1

(ξ[i] − µ̂)(ξ[i]− µ̂)T with µ̂ = 1
S

S∑
i=1

ξ[i]. Parameters γ1 and γ2 determine the size

of the ambiguity set and can be interpreted as a measure of the degree of ambiguity about the
estimates of expected return and covariance. They provide means of quantifying one’s confidence
in µ̂ and Σ̂, respectively. Hence, we refer to the positive parameters γ1 and γ2 as the levels of
ambiguity throughout this paper.
The set DF (γ1, γ2) can be seen as a generalization of the ambiguity sets considered in the lit-

erature. For instance, DF (0, 0) imposes an exact mean and covariance matrix, as in Chen et al.
(2011), and DF (γ1, 0) is related to the exact covariance matrix and ellipsoidal ambiguity set for the
mean return considered in Paç and Pinar (2014). Similarly, DF (0, γ2) is related to the exact mean
and F -norm ball set for the covariance matrix, which is of interest in risk minimization model or
when there is special knowledge on the mean return. For practical computation in the subsequent
experiments, one important question in solving RMC is how to choose the levels of ambiguity γ1
and γ2. If they are set too high, the optimization procedure may be overly conservative. The idea
is to choose the ambiguity set that reflects the perceived information indicated by the data, which
is particularly important in data-driven setting. In what follows we further investigate the issue of
determination of γ1 and γ2 and provide a data-driven rule to guide investors with regard to the
appropriate choice of them.

Remark 2 The ambiguity set DF (γ1, γ2) is different form that of Delage and Ye (2010), where the
uncertainty of covariance matrix is modeled as a conic set. DF (γ1, γ2) offers a very intuitive way
to calibrate the levels of ambiguity γ1 and γ2 endogenously (see Subsection 3.1), and provides a
simple modeling guidance to practitioners.

In the sequel, we present a rigorous treatment for taking moment ambiguity defined by DF (γ1, γ2)
into account in the mean-CVaR portfolio optimization framework and develop tractable reformu-
lations. And we extend our discussion to the case of zero net adjustment in Subsection 2.3. Before
proceeding to the proofs of our theoretical results, we state a lemma that will be used in our proofs.

Lemma 2.1 (Chen et al. 2011). Assume that l(x, ξ) = −ξTx and random vector ξ ∈ R
n, with

mean µ̄ and covariance Σ̄ ≻ 0, follows a family of distributions F , which is defined by F = {P ∈
M+ | P(ξ ∈ Ω) = 1,EP(ξ) = µ̄,CovP(ξ) = Σ̄}. If the support set of ξ covers the whole space, i.e.,
Ω = R

n, then we have

max
P∈F

CVaRβ(x,P) = −µ̄Tx+ κ
√

xTΣ̄x, (3)

where κ =
√

β
1−β

.

The details of the proof of Lemma 2.1 are referred to Chen et al. (2011).
Replacing D by DF (γ1, γ2), we consider the following robust mean-CVaR model under distribu-
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tion ambiguity,

(RMC-DF (γ1, γ2)) : min
x

max
P∈DF (γ1,γ2)

CVaRβ(x,P),

s.t. min
P∈DF (γ1,γ2)

EP(ξ)
Tx ≥ ρ,

x ∈ X .

The following proposition gives the main result in this subsection.

Proposition 2.2 Suppose that l(x, ξ) = −ξTx and X constitutes a polyhedral set, then both the
optimal value and a minimizer of the robust mean-CVaR model (RMC-DF (γ1, γ2)) under distribu-
tion ambiguity, can be obtained by solving the SOCP

min
x,s,t

κs − µ̂Tx+
√
γ1t,

s.t.
√
γ1‖Σ̂

1

2x‖2 ≤ µ̂Tx− ρ,

‖(Σ̂ + γ2In)
1

2x‖2 ≤ s, (4)

‖Σ̂ 1

2x‖2 ≤ t,

x ∈ X ,

where the variables are x ∈ R
n, s, t ∈ R.

Proof. For convenience of analysis, we define

U(µ̂,Σ̂)F
=

{
(µ,Σ) ∈ R

n × Sn
+ | (µ− µ̂)TΣ̂−1(µ− µ̂) ≤ γ1, ‖Σ− Σ̂‖F ≤ γ2

}
.

We first maximize with respect to P ∈ F , and then with respect to (µ̄, Σ̄) within the uncertainty
set. From the definition of DF (γ1, γ2) and Lemma 2.1, we have

max
P∈DF

CVaRβ(x,P) = max
(µ̄,Σ̄)∈U(µ̂,Σ̂)F

max
P∈F

CVaRβ(x,P)

= max
(µ̄,Σ̄)∈U(µ̂,Σ̂)F

{−xTµ̄+ κ
√

xTΣ̄x}

= − min
µ̄∈Uµ̂

xTµ̄+ κ max
Σ̄∈UF

Σ̂

√
xTΣ̄x, (5)

where Uµ̂ = {µ ∈ R
n | (µ− µ̂)TΣ̂−1(µ− µ̂) ≤ γ1} and UF

Σ̂
= {Σ ∈ Sn

+ | ‖Σ− Σ̂‖F ≤ γ2}. Here, the
last equality follows directly from the objective function and set of constraints being independent
of each other.
Therefore, the two optimization problems in (5) can be solved independently. Clearly, the optimal

solution to min
µ̄∈Uµ̂

xTµ̄ can be shown to be

µ̄wc = µ̂−
√
γ1Σ̂x√
xTΣ̂x

, (6)

8
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and the associated optimal value is

min
µ̄∈Uµ̂

xTµ̄ = µ̂Tx−√
γ1

√
xTΣ̂x. (7)

Let Σ̃ := Σ̄− Σ̂. Then the problem max
Σ̄∈UF

Σ̂

√
xTΣ̄x can be formalized as

max
Σ̃∈Sn

√
xTΣ̃x+ xTΣ̂x,

s.t. ‖Σ̃‖F ≤ γ2.

For this problem, we have

max
Σ̃:‖Σ̃‖F≤γ2

√
xTΣ̃x+ xTΣ̂x = max

Σ̃:‖Σ̃‖F≤γ2

√
Σ̃ • xxT + xTΣ̂x

≤
√

γ2‖xxT‖F + xTΣ̂x

=

√
γ2‖x‖22 + xTΣ̂x

from the Cauchy-Schwartz inequality, and the optimal solution for this auxiliary problem is given
by

Σ̃∗ =
γ2xx

T

‖x‖22
.

Hence,

max
Σ̄∈UF

Σ̂

√
xTΣ̄x =

√
xT(Σ̂ + γ2In)x. (8)

Plugging (7) and (8) into (5), the objective function of problem (RMC-DF (γ1, γ2)) becomes

max
P∈DF (γ1,γ2)

CVaRβ(x,P) = −µ̂Tx+
√
γ1

√
xTΣ̂x+ κ

√
xT(Σ̂ + γ2In)x.

Hence, we have

min
x

− µ̂Tx+
√
γ1

√
xTΣ̂x+ κ

√
xT(Σ̂ + γ2In)x,

s.t. µ̂Tx−√
γ1

√
xTΣ̂x ≥ ρ,

x ∈ X .

9
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By introducing auxiliary variables s, t ∈ R, we can rewrite this optimization problem as

min
x,s,t

− µ̂Tx+
√
γ1t+ κs,

s.t.
√
γ1

√
xTΣ̂x ≤ µ̂Tx− ρ,

√
xT(Σ̂ + γ2In)x ≤ s,

√
xTΣ̂x ≤ t, x ∈ X ,

which yields the desired result.

Remark 3 We see that problem (4) is an SOCP, which is important for computational tractabil-
ity and can be solved efficiently by interior-point method. Readers are referred to Alizadeh and
Goldfarb (2003) for further details of SOCP problems.

Remark 4 Robust CVaR optimization problems with different types of distributional uncertainty
are available for several cases. Delage and Ye (2010) consider the case with ambiguity on the first two
moments. Bertsimas et al. (2017) focus on using data and hypothesis-testing tools to construct the
distributional sets. Esfahani and Kuhn (2017) show that under certain convexity and compactness
assumptions, data-driven distributionally robust problems with Wasserstein distance is tractable.
One of the differences between our model and the model in Esfahani and Kuhn (2017) is the measure
of ambiguity. Esfahani and Kuhn (2017) adopt the Wasserstein metric, which is a mathematically
sophisticated concept of a distance among probability distributions and is usually hard to compute.
In contrast, our measures of ambiguity are defined by certain constraints on distribution’s moments,
which are widely used in practice and easy to compute. This particular choice of partial information
is the key behind the characteristics of our model. It appears that tractable conic reformulations
programming are easier to derive for distributionally robust optimization models with moment-
based ambiguity sets (see Esfahani and Kuhn (2017)). Moreover, our proof approach is motivated
by the insight gained from the existing result of Chen et al. (2011) and hence is more direct in the
sense that we do not resort to tools from infinite-dimensional convex optimization as in the proofs
of Delage and Ye (2010) and Esfahani and Kuhn (2017).

2.3. Extension with zero net adjustment

The robust technique is a relatively conservative method. Ceria and Stubbs (2006) introduce the
zero net adjustment-robust framework to reduce the conservativeness of robust mean-variance s-
trategies for the input parameter under ellipsoidal uncertainty. They show that efficient frontier
generated by robust portfolios to be closer to the true frontier, and realized returns of robust port-
folios are greater to exhibit better out-of-sample performance than those using traditional mean-
variance optimization. If the stock returns are serially independent and identically distributed, we
can invoke the Central Limit Theorem to conclude that the sample mean µ̂ is approximately nor-
mally distributed. Hence, the estimated expected returns µ̂ are symmetrically distributed around
EP(ξ), we expect them to approximate as many realized returns above their expected values as
below them in Santos (2010). This amounts to saying that the estimation errors cancel out when
summed over all assets. Mathematically, it can be expressed as

eT(EP(ξ)− µ̂) = 0, (9)

which forces the net adjustment of expected returns to be zero. Moreover, Santos (2010), in com-
paring the min-max robust and adjusted robust approaches with the Markowitz’s mean-variance
and min-variance approaches, provides empirical evidence to show that robust optimization is an

10
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effective way to treat the problem of estimation error in mean return. Interested readers are also
referred to Zymler et al. (2011) and Perchet et al. (2015) for related topics on zero net adjustment.
Inspired by the work of Ceria and Stubbs (2006), we extend our model (RMC-DF (γ1, γ2)) to the

case of zero net adjustment, which we call “the adjusted robust mean-CVaR optimization model
under distribution ambiguity”:

(RMC-Dadj
F (γ1, γ2)) : min

x
max

P∈Dadj

F (γ1,γ2)
CVaRβ(x,P),

s.t. min
P∈Dadj

F (γ1,γ2)
EP(ξ)

Tx ≥ ρ,

x ∈ X ,

where

D
adj
F (γ1, γ2) =




P ∈ M+ :

P(ξ ∈ Ω) = 1,

(EP(ξ) − µ̂)TΣ̂−1(EP(ξ)− µ̂) ≤ γ1,

‖CovP(ξ)− Σ̂‖F ≤ γ2, CovP(ξ) ≻ 0,
eT(EP(ξ)− µ̂) = 0





.

We follow a similar line of argument for (RMC-DF (γ1, γ2)), which is developed in Subsection
2.2, and provide an equivalent robust formulation that relies on strong duality to solve the robust
problem using standard cone programming solvers. The following result indicates that the problem

(RMC-Dadj
F (γ1, γ2)) over the family D

adj
F (γ1, γ2) can also be solved as an SOCP.

Proposition 2.3 Suppose that l(x, ξ) = −ξTx and X constitutes a polyhedral set, then the ad-

justed robust mean-CVaR model under distribution ambiguity (RMC-Dadj
F (γ1, γ2)) is equivalent to

an SOCP:

min
x,δ,ω

κδ − µ̂Tx+
√
γ1ω,

s.t.
√
γ1‖Λ

1

2x‖2 ≤ µ̂Tx− ρ,

‖(Σ̂ + γ2In)
1

2x‖2 ≤ δ, (10)

‖Λ 1

2x‖2 ≤ ω,

x ∈ X ,

where the variables are x ∈ R
n, δ, ω ∈ R and Λ = Σ̂− 1

eTΣ̂e
Σ̂eeTΣ̂ ≻ 0.

Proof. Define a set as

Uadj
µ̂ =

{
µ ∈ R

n | (µ− µ̂)TΣ̂−1(µ − µ̂) ≤ γ1, e
T(µ − µ̂) = 0

}
.

11
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Applying Lemma 2.1 yields

max
P∈Dadj

F (γ1,γ2)
CVaRβ(x,P) = max

µ̄∈Uadj

µ̂ ,Σ̄∈UF

Σ̂

max
P∈F

CVaRβ(x,P)

= max
µ̄∈Uadj

µ̂ ,Σ̄∈UF

Σ̂

{
−xTµ̄+ κ

√
xTΣ̄x

}

= − min
µ̄∈Uadj

µ̂

xTµ̄+ κ max
Σ̄∈UF

Σ̂

√
xTΣ̄x. (11)

The two optimization problems in (11) can be solved independently. Clearly, the problem min
µ̄∈Uadj

µ̂

xTµ̄

can be re-expressed as

min
µ̄∈Rn

xTµ̄,

s.t. ‖Σ̂− 1

2 (µ̄− µ̂)‖2 ≤
√
γ1, (12)

eT(µ̄ − µ̂) = 0.

Its conic dual is

max
q∈R

xTµ̂−√
γ1‖Σ̂

1

2 (x− qe)‖2. (13)

It can be shown that the optimal solution to the dual problem (13) is

q∗ = argmin
q∈R

‖Σ̂ 1

2 (x− qe)‖2 =
xTΣ̂e

eTΣ̂e
.

Replacing q in the dual problem (13) with the foregoing equation, we can express the optimal value
of problem (13) as

xTµ̂−√
γ1‖Σ̂

1

2 (x− xTΣ̂e

eTΣ̂e
e)‖2 = xTµ̂−√

γ1‖Λ
1

2x‖2,

where Λ = Σ̂− 1
eTΣ̂e

Σ̂eeTΣ̂ ≻ 0 (by Cauchy-Schwartz inequality).

It is not difficult to show that problem (12) is strictly feasible in variable µ̄, and therefore the
strong conic duality theorem holds (Shapiro 2001). In other words, the primal problem (12) has
the same objective value with the dual problem (13). Thus, it is also easy to show that the optimal
solution to the optimization problem min

µ̄∈Uadj

µ̂

xTµ̄ is

µ̄wc = µ̂−
√
γ1Λx√
xTΛx

. (14)

Hence, substituting (8) and (14) into (11), we have

max
P∈Dadj

F (γ1,γ2)
CVaRβ(x,P) = −(xTµ̂−√

γ1‖Λ
1

2x‖2) + κ

√
xT(Σ̂ + γ2In)x.

12
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Therefore, problem (RMC-Dadj
F (γ1, γ2)) can be written as

min
x

κ

√
xT(Σ̂ + γ2In)x− xTµ̂+

√
γ1
√
xTΛx,

s.t. xTµ̂−√
γ1
√
xTΛx ≥ ρ, x ∈ X .

Similarly, by introducing auxiliary variables δ and ω, the problem can be expressed as an SOCP:

min
x,δ,ω

κδ − µ̂Tx+
√
γ1ω,

s.t.
√
γ1
√
xTΛx ≤ µ̂Tx− ρ,

√
xT(Σ̂ + γ2In)x ≤ δ,

√
xTΛx ≤ ω, x ∈ X ,

where the variables are x ∈ R
n, δ, ω ∈ R. We now have the desired conclusion.

Remark 5 For the case of γ1 = γ2 = 0, the robust and adjusted-robust counterparts to CVaR

optimization for distribution ambiguity, i.e., (RMC-DF (0, 0)) and (RMC-Dadj
F (0, 0)), can also be

formulated as SOCPs, and we can easily observe that they are the same.

3. Simulation Analysis

3.1. Calibration of parameters γ1 and γ2

Use of the robust or adjusted-robust optimization approach requires choosing values for parameters
γ1 and γ2 to control the degree of ambiguity. In other words, parameters γ1 and γ2 can be specified
exogenously. To specify the parameter γ1 that corresponds to the 100(1 − α)% confidence region,
we can apply a similar statistical analysis approach as that used in Garlappi et al. (2007) under
standard assumptions concerning the time series of the returns. For instance, if the population
covariance matrix Σ is unknown, we can employ the 95%(α = 0.05) percentile of the F-distribution
with N and S − N degrees of freedom and use a quantile framework to set meaningful values
for γ1 in a practical computation using return data. This approach is reasonable from a statistical
viewpoint, and its computational efficiency is attractive. In reality, however, we rarely have complete
information on the distribution of asset returns. Therefore, a formal rule to guide an investor in
making an appropriate choice of parameters is crucial in decisions based on a few historical samples.
Generally, we can use several nonparametric techniques, such as the bootstrapping technique

and cross-validation principle (Efron and Gong 1979, DeMiguel et al. 2013, Maillet et al. 2015),
to estimate parameters γ1 and γ2. However, because the cross-validation principle can produce
very unstable sequences of parameters over time, we use bootstrapping techniques to calibrate
the parameters endogenously. This methodology, which refers to redrawing historical observations
with replacement, is highly intuitive. We assume that asset returns are independent and identically
distributed, but impose no other assumptions on the distribution. The algorithm for computing
the optimal parameters with the bootstrap analogue is as follows.

Bootstrapping procedure:

Step 1. Construct B bootstrap samples {Y1, Y2, · · · , YB} (for example, B = 10000) by drawing
random observations with replacement from the available observations.
Step 2. For each bootstrap sample Yb, compute the corresponding mean µ̂b and covariance

13
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matrix Σ̂b, and then generate a sample

C =
{
(µ̂b, Σ̂b) : b = 1, · · · , B

}
.

Step 3. For sample C, define data sets Cγ1
and Cγ2

as

Cγ1
=

{
γ1b : γ1b = (µ̂b − µ̂)TΣ̂−1(µ̂b − µ̂), b = 1, · · · , B

}
,

Cγ2
=

{
γ2b : γ2b = ‖Σ̂b − Σ̂‖F , b = 1, · · · , B

}

to ensure reasonable values of γ1 and γ2. The percentiles of the empirical distributions of Cγ1
and

Cγ1
can then be referenced to derive γ1 and γ2. Consequently, the calibrated values of γ1 and γ2

are

γ̂1 = qζ(Cγ1
), γ̂2 = qζ(Cγ2

),

where qζ(·) is an upper quantile of the corresponding data sets (for example, ζ = 95%).
In the following, we use an example with four assets considered in Yam et al. (2016) to evaluate

the bootstrap procedure, where the four risky assets are chosen as the indices of S&P 500, DAX,
HSI and FTSE 100, whose true mean vector and variance matrix are given by

µ =




0.061166
0.109547
0.090358
0.040923


 and Σ =




0.018632 0.020056 0.020646 0.015213
0.020056 0.034507 0.027412 0.020652
0.020646 0.027412 0.048680 0.021663
0.015213 0.020652 0.021663 0.018791


 ,

respectively. Assume that the return vector of underlying risky assets follows a multivariate Gaus-
sian distribution N (µ,Σ), by which we can easily generate random samples of returns for further
analysis. This example will also be used in the Subsections 3.2 and 3.3 for simulation analysis.
In addition to the estimation of ambiguity parameters γ1 and γ2, it is also interested to clarify

the relationship between the estimated ambiguity parameters γ̂1 and γ̂2 and the uncertainty of
the estimations of the mean vector and the covariance matrix. Denote the sample mean vector
and sample covariance matrix by µ̂ and Σ̂, respectively. The parameter uncertainties due to the
estimation error can be measured by the ellipsoidal norm of difference between µ̂ and the true
mean vector µ, and the Frobenius norm of difference between Σ̂ and the true covariance matrix Σ.
Mathematically, these two measures are defined as

γPU
1 = ‖µ̂− µ‖2

Σ̂−1
, γPU

2 = ‖Σ̂ − Σ‖F .

Based on 600 times of simulations, Table 1 displays the average values of the bootstrap-estimated
values of the level of ambiguity (γ̂1 and γ̂2) and the average values of degrees of parameter uncer-
tainty (γPU

1 and γPU
2 ) for the different sample length S. As shown in Table 1, when the size of

the fund universe is fixed, the average values of γ̂1, γ̂2, γ
PU
1 and γPU

2 decrease as the number of
samples S increases. The intuition behind this result is that the larger the sample size, the less the
uncertainty and ambiguity. Moreover, when parameter uncertainties in the estimated mean and
covariance matrix (γPU

1 and γPU
2 ) increase, the bootstrap-estimators of the levels of ambiguity (γ̂1

and γ̂2) also increase. The most interesting thing is that the bootstrap-estimated value of the level
of ambiguity γ̂1 is relatively more sensitive to sample length S as compared with γ̂2.
In summary, the data-driven bootstrap approach allows us to obtain reliable information for the

distribution of returns over the investment period. Moreover, to capture the time-series effects in
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Table 1. The average values of the bootstrap-estimated values of the level of ambiguity (γ̂1 and
γ̂2) and the average values of degrees of parameter uncertainty (γPU

1 and γPU
2 ).

S=100 S=200 S=500 S=800 S=1000

γ̂1 0.3748 0.1812 0.0713 0.0445 0.0355
γ̂2 0.0831 0.0793 0.0767 0.0762 0.0758
γPU
1 0.0410 0.0193 0.0082 0.0050 0.0040

γPU
2 0.0135 0.0097 0.0062 0.0049 0.0043

Notes. This table reports the average values of the
bootstrap-estimated values of the levels of ambiguity γ̂1
and γ̂2 and the average values of degrees of parameter
uncertainty γPU

1 and γPU
2 for different estimation sam-

ple length S. For each given estimation sample size, 600
simulations are performed to produce average results. The
bootstrap samples B and the significance level ζ are set
to 10000 and 95% respectively.

returns, one could adopt the stationary bootstrap method in Politis and Romano (1994). Methods
of selecting these parameters remain an interesting topic for further investigation.

3.2. Impact of γ1 and γ2 on portfolio decision

To further study the effects of the levels of ambiguity on the optimal investment strategies of

the two robust optimization problems (RMC-DF(γ1, γ2)) and (RMC-Dadj
F (γ1, γ2)), we define the

following relative difference (RD) in the portfolio decision:

RD-xi =
x∗i (γ1, γ2)− x∗i (γ̂1, γ̂2)

x∗i (γ̂1, γ̂2)
× 100%, for i = 1, 2, 3, 4, (15)

where x∗i (γ̂1, γ̂2) and x∗i (γ1, γ2) are the weight of the robust portfolios obtained by using the pa-
rameters (γ̂1, γ̂2) and (γ1, γ2), respectively. The indices i = 1, 2, 3, 4 represent four asset indices.
Let us consider the problem (RMC) with the following range of parameters (a change of 20%):

|γi − γ̂i|
γ̂i

≤ 20%, for i = 1, 2.

More specifically, the value of parameters γ1 and γ2 varies in the range [0.1449, 0.2174] ×
[0.0635, 0.0951], respectively.
Figs. 1 and 2 demonstrate the relative differences of the two strategies for a range of values of

these parameters. From Figs. 1 and 2 one can observe that the relative differences in the portfolios
are less than 10%. In other words, a 20% error in the estimation of the parameters γ1 and γ2 leads
to at most a 10% change in the relative difference. This indicates that a small change in two input
parameters can only give rise to subtle changes in the optimal portfolio weights. For instance, for
values of γ2 in the range [0.0635, 0.0951], the relative difference RD-x2 in both RMC-DF(γ1, γ2)

and RMC-Dadj
F (γ1, γ2) can be smaller than 2%. Thus, values of γ1 and γ2 within the range used

in our test do not appear to have a great impact on the behaviour of the robust strategies and
our robust approach is relatively immune to variations in input values. In particular, the relative
difference for the robust approach are relatively insensitive to the value of γ1.

3.3. Comparison of efficient frontiers and diversifications

In this subsection, the (robust) efficient frontiers are drawn to examine the differences among three
models. We adopt a similar market setting as described in Subsection 3.1 and compute portfolios
that lie in the set, X = {x ∈ R

n | eTx = 1, x ≥ 0}. The estimation sample is set at length S = 200.
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Figure 1. Relative difference RD-xi (i = 1, 2, 3, 4, in percentage) of strategies
(RMC-DF(γ1, γ2)) for varying parameters γ1 and γ2. The bootstrap samples B
and the significance level ζ used in bootstrapping techniques are set to 10000
and 95%. The estimation sample is set at length S = 200. The confidence level
used in calculation of CVaR is β = 0.95 and target return is ρ = 0.01.
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Figure 2. Relative difference RD-xi (i = 1, 2, 3, 4, in percentage) of strategies
(RMC-Dadj

F (γ1, γ2)) for varying parameters γ1 and γ2. The bootstrap samples
B and the significance level ζ used in bootstrapping techniques are set to 10000
and 95%. The estimation sample is set at length S = 200. The confidence level
used in calculation of CVaR is β = 0.95 and target return is ρ = 0.01.

The bootstrap samples B and the significance level ζ used in bootstrapping techniques are also set
to 10000 and 95%. The algorithm used to generate a discrete approximation to the robust efficient
frontier, which is formally outlined below, is similar to that in Tütüncü and Koenig (2004) and
Ye et al. (2012). However, unlike those authors, we use CVaR as the risk measure to determine
the efficient set of portfolios from the mean-CVaR model or robust mean-CVaR model (RMC).
Moreover, to measure the effect of the zero net adjustment methodology on the efficient frontier,
we also run the experiment using adjusted-robust mean-CVaR model.

Procedure for generating robust Mean-CVaR efficient frontier:

Step 1. Solve RMC without the expected return constraint to compute the global minimum-risk
portfolio xmin and attain the worst-case mean µwc. Set ρmin = µT

wcxmin.
Step 2. Solve problem maxx∈X {minP∈D EP(ξ)

Tx} to attain the optimal portfolio xmax and
corresponding objective value ρmax. Set ∆ = ρmax − ρmin.
Step 3. Choose M , the number of desired points on the efficient frontier. For ρ ∈ {ρmin, ρmin +
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Figure 3. The efficient frontier and the composition of efficient portfolios from
the SMC. The percentage allocation of assets 1-4 in the optimal allocation x∗

has been illustrated in different colors.
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Figure 4. The efficient frontier and the composition of efficient portfolios from
DF (γ̂1, γ̂2). The portfolio CVaR in the x-axis and the portfolio return in the
y-axis are the worst case values of CVaR risk measure and expected return,
respectively. The percentage allocation of assets 1-4 in the optimal allocation
x∗ has been illustrated in different colors.

∆
M−1 , ρmin + 2 · ∆

M−1 , · · · , ρmin + (M − 1) · ∆
M−1}, solve RMC with expected return constraint.

The RMC model depends on the distributional ambiguity set D: it is either DF (γ1, γ2) or

D
adj
F (γ1, γ2). Corresponding models (RMC-DF (γ1, γ2)) and (RMC-Dadj

F (γ1, γ2)) will be denoted,

for shortly, as DF (γ1, γ2) and D
adj
F (γ1, γ2), respectively.

Fig. 3 presents the sample-based mean-CVaR (SMC) efficient frontier and the composition of
efficient portfolios. The values of CVaR range from 0.1840 for the minimum-CVaR portfolio (which
at the same time has a minimum expected return of 0.0816) to 0.2237 for the portfolio with a
maximum expected return (0.1140). The minimum-CVaR portfolio primarily consists of a position
in asset 1, while encompassing only a small position in assets 2 and 4. The maximum-return portfolio
is made up of a large position in asset 2, the index with a maximum expected return. In Figs. 4 and
5, we illustrate the robust efficient frontier and composition of robust efficient portfolios identified

using the classical robust DF (γ̂1, γ̂2) and adjusted-robust asset allocation approach D
adj
F (γ̂1, γ̂2).

Comparing the compositions of the SMC and RMC efficient portfolios, we can see that the weights
of the asset 2 increase throughout the full spectrum of the expected return. As Figs. 4 and 5 show,
the allocation transition proceeds smoothly from one portfolio to the next. Moreover, the robust
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portfolios.

optimal portfolios deliver greater diversification than those identified using the SMC approach, and
the weights of the individual assets change smoothly when moving toward higher returns.
Fig. 6 compares the worst-case performance of SMC and RMC efficient portfolios. The two black

curves reflect the performances of SMC portfolios in the worst cases DF (γ̂1, γ̂2) and D
adj
F (γ̂1, γ̂2),

respectively. Each point on the curves correspond to the worst-case risk and return of SMC efficient
portfolios. As evidenced by the figure, the SMC curve is obviously below the robust efficient frontier
in each case. In other words, the robust portfolios (blue and red curves) perform substantially better

than the SMC portfolios in the worst cases (DF (γ̂1, γ̂2) and D
adj
F (γ̂1, γ̂2)).

4. Empirical Analysis

This section reports the results of empirical study for the robust portfolio, based on real market
data. As is common practice in the literature, we use rolling horizon analysis to evaluate the out-
of-sample performance of different portfolio criteria and choose CVaR with parameter β = 0.95

18



March 29, 2018 Quantitative Finance Data-driven˙CVaR20180328

Table 2. Dow Jones Credit Suisse Hedge Fund Indexes.

1 Convertible Arbitrage
2 Dedicated Short Bias
3 Emerging Markets
4 Equity Market Neutral
5 Event Driven
6 Distressed
7 Multi-Strategy
8 Risk Arbitrage
9 Fixed Income Arbitrage
10 Global Macro
11 Long/Short Equity
12 Managed Futures

as risk measure in our empirical tests. All computations are performed on a PC with an Intel(R)
Core(TM) 2.30 GHz processor and 8 GB RAM employing the simplex code in the CPLEX 12.1
package (IBM ILOG CPLEX 2009).
Here, the out-of-sample performance of the (adjusted) robust mean-CVaR model based on sev-

eral widely accepted measures is compared with that of the SMC model using real market data.
More specifically, we assess the two models’ mean portfolio return, portfolio standard deviations
(SDs), reward to risk ratios and portfolio turnover. The levels of ambiguity γ1 and γ2, are calibrated
via a bootstrapping procedure, that is, the data-based simulation method for statistical inference
described in the previous section. We acknowledge that there are many other ways one can choose
the portfolio and we do not intend to indicate that our approach is the best one for CVaR opti-
mization problem. Instead, we aim to illustrate that the RMC approaches (RMC-DF(γ1, γ2) and

RMC-Dadj
F (γ1, γ2)) give a decent performance with some desired features.

4.1. Data and methodology

Our dataset, extracted free of charge from http://www.hedgeindex.com, comprises monthly excess
returns on the 12 Credit Suisse/Tremont Hedge Fund indices (see Table 2). The sample period of
these historical data is January 1994 to December 2015 (for 264 observations in total). Because the
return data on the Multi-Strategy Hedge Fund indices for the first three months are incomplete,
they are omitted in constructing the hedge fund portfolios. Statistical tests show that most of the
returns of these indices exhibit negative skewness and a high degree of kurtosis (Zhu et al. 2015).
For simplicity, assuming that the risk free rate is zero, we shall henceforth interpret the reward to
risk ratio as the Sharpe ratio.
Throughout the experiment, portfolio performance is evaluated on the basis of a monthly re-

balancing portfolio strategy. A rolling horizon procedure similar to that in DeMiguel and Nogales
(2009) is used for portfolio construction. More specifically, given an L-month-long dataset of asset
returns, we choose moving windows of S months in length and then compute the corresponding
optimal portfolio weights, which are considered to constitute the portfolios for period S + 1. This
process is continued by removing the first return and adding a return to the dataset for the next
period until the end of the dataset is reached. Note that at the end of the procedure, we obtain
L − S portfolio weights x∗t , t = S, · · · , L − 1, with corresponding out-of-sample returns for each
portfolio, allowing us to compare the performance of the two models.
For each strategy k, the out-of-sample mean µ̃k, SD σ̃k, Sharpe ratio s̃rk, average turnover t̃rnk
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and out-of-sample CVaR CVaRβ,k, respectively, are given by

µ̃k =
1

L− S

L−1∑

t=S

(ξ[t+1])Tx∗k,t,

σ̃k =

√√√√ 1

L− S − 1

L−1∑

t=S

[(ξ[t+1])Tx∗k,t − µ̃k]2,

s̃rk =
µ̃k

σ̃k
,

t̃rnk =
1

L− S − 1

L−1∑

t=S

N∑

j=1

|x∗k,j,t+1 − x∗k,j,t+|,

CVaRβ,k = min
η

{η +
1

(L− S)(1 − β)

L−1∑

t=S

max{−(ξ[t+1])Tx∗k,t − η, 0}}

where x∗k,j,t denotes the portfolio weight in asset j at time t under strategy k, x∗k,j,t+ the relative

portfolio weights after return ξ[t+1] has been realized but before the rebalancing decision in period
t + 1, and x∗k,j,t+1 the desired portfolio weight after rebalancing at time t + 1. Because the asset
weights before rebalancing are given by

x∗k,j,t+ =
(1 + ξ

[t+1]
j )x∗k,j,t

N∑
j=1

(1 + ξ
[t+1]
j )x∗k,j,t

,

the turnover of strategy k is

t̃rnk =
1

L− S − 1

L−1∑

t=S

N∑

j=1

∣∣∣∣∣(x
∗
k,j,t+1 − x∗k,j,t)−

x∗k,j,t(ξ
[t+1]
j − ξkp)

1 + ξkp

∣∣∣∣∣ ,

where ξkp =
∑N

j=1 ξ
[t+1]
j x∗k,j,t is the portfolio return from strategy k at time t+1. Portfolio turnover

measures the average percentage of wealth traded for a given strategy, and is used primarily to
demonstrate the realistic nature of the practical implementation of our strategies when transaction
costs are considered. The smaller the turnover t̃rn, the lower the transaction costs.
There are 264 observations over L months for each hedge fund considered. As we have only a

limited number of samples, we are unable to determine with confidence the distribution of asset
returns without any ambiguity. Some of the observations are used as a training set to estimate
the sample mean and covariance, and the estimation window is then “rolled” one month forward
by dropping the earliest return and adding a new return. Further, to cover the period of the
recent financial crisis, we used the full January 2008 to December 2015 period in our performance
evaluation. The dataset for the January 1994-December 2007 period is used for the initial parameter
estimation. For a more comprehensive comparison and understanding, in addition to the initial
estimation, we also carry out an additional re-estimation based on data from January 1994 to
December 2011 in the middle of the rebalancing period, i.e., January 2012. Thus, in our later
analysis, the portfolio performance of the first 4-year period (January 2008 to December 2011)
is presented separately from that of the latter 4-year period (January 2012 to December 2015).
Obviously, the test dataset cannot be used to calibrate γ1 and γ2, and we thus need to calibrate
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Table 3. The bootstrap-estimated values of the level of ambiguity γ̂1, γ̂2.

γ̂1 γ̂2

1994/01-2007/12 22.2314 0.0045
1994/01-2011/12 16.7532 0.0042

Notes. This table reports the
bootstrap-estimated values of the level
of ambiguity γ̂1, γ̂2. The bootstrap
samples B and the significance level ζ
are set to 10000 and 95%.

Table 4. Performances of different portfolio strategies.

D
adj

F
(γ̂1, γ̂2) DF (γ̂1, γ̂2) D

adj

F
(γ̂1, 0) DF (γ̂1, 0) DF (0, 0) SMC

Mean 0.0004 -0.0007 -0.0018 -0.0044 -0.0046 -0.0053
Std 0.0179 0.0168 0.0290 0.0394 0.0406 0.0473
Sharpe 0.0237 (-0.0418) (-0.0633) (-0.1108) (-0.1121) (-0.1114)
Turnover 0.0172 0.0194 0.0445 0.0497 0.0507 0.0647
CVaR0.95 0.0592 0.0674 0.1774 0.2638 0.2729 0.3208

Notes. This table reports the monthly out-of-sample means, standard deviations, Sharpe
ratios, turnover and CVaR of the different portfolio strategies. The data consist of monthly
returns on twelve Credit Suisse Hedge Fund indices from January 1994 to December 2011
(216 observations). The portfolio weights for each strategy are determined each month using
moments estimated from a rolling-window of 168 months. The resulting out-of-sample period
spans from January 2008 to December 2011.

them on the training dataset via the bootstrap method. The estimations of γ1 and γ2 with respect
to the 95% confidence region across the L− S optimizations are shown in Table 3.
In the rolling procedure, some portfolio optimization problems may be infeasible because of

the relatively high specified (worst-case) expected returns required. To render our optimization
problems simpler to solve, we first set the parameter ρ as −5% (which means that investors are
willing to bear a maximum loss for 5% in the worst-case scenarios). To produce less conservative
strategies, furthermore, the values of ρ is set as the simple average of all the mean values of asset
returns, denoted by ρaverage, which is estimated by the historical samples within the current time
period. If infeasibility occurs, we reduce the required expected returns by 20% and resolve the
problem until it becomes feasible.

4.2. Discussion of results

The results of the model comparison in terms of monthly out-of-sample means, SDs, Sharpe ratios,
turnover and CVaR for the January 2008-December 2011 and January 2012-December 2015 periods
are presented in Tables 4 and 5. It can be seen that the portfolios calculated using the RMC model
perform well in terms of the expected return relative to the other models.

Comparing the performance of D
adj
F (γ̂1, γ̂2),DF (γ̂1, γ̂2),D

adj
F (γ̂1, 0) and DF (γ̂1, 0) shows that

D
adj
F (γ̂1, γ̂2) and D

adj
F (γ̂1, 0) have a clear advantage over DF (γ̂1, γ̂2) and DF (γ̂1, 0) owing to the

inclusion of a less pessimistic view of the expected return. In terms of monthly turnover, the
adjusted-robust approach delivers better results than traditional robust optimization (non-adjusted
robust approach). The worst turnover is achieved by the SMC portfolios, which yield a turnover
of 0.0647 for the January 2008-December 2011 period and 0.0183 for the January 2012-December
2015 period. We can also see that the Sharpe ratio of the strategy that yields the largest values is

the Dadj
F (γ̂1, γ̂2) model. Owing to market instability, the other strategies result in a negative Sharpe

ratio during the earlier period. In the computation of the CVaR for the optimal portfolio x∗, we
solve the problem (1) with x being replaced by x∗. As expected, the adjusted-robust approach
does a better job than the other methods. Moreover, the performance of the portfolios obtained

by D
adj
F (γ̂1, γ̂2) and DF (γ̂1, γ̂2) is superior to that of DF (0, 0) in terms of both average return and
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Table 5. Performances of different portfolio strategies.

D
adj
F

(γ̂1, γ̂2) DF (γ̂1, γ̂2) D
adj
F

(γ̂1, 0) DF (γ̂1, 0) DF (0, 0) SMC

Mean 0.0024 0.0014 0.0019 0.0007 0.0007 0.0002
Std 0.0068 0.0057 0.0056 0.0052 0.0053 0.0060
Sharpe 0.3525 0.2506 0.3466 0.1319 0.1420 0.0262
Turnover 0.0108 0.0128 0.0158 0.0138 0.0136 0.0183
CVaR0.95 0.0123 0.0146 0.0141 0.0193 0.0193 0.0197

Notes. This table reports the monthly out-of-sample means, standard deviations, Sharpe
ratios, turnover and CVaR of the different portfolio strategies. The data consist of month-
ly returns on twelve Credit Suisse Hedge Fund indices from January 1994 to December
2015 (264 observations). The portfolio weights for each strategy are determined each
month using moments estimated from a rolling-window of 216 months. The resulting
out-of-sample period spans from January 2012 to December 2015.
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Figure 7. The cumulative wealth of the trading strategies over the period Jan-
uary 2008 to December 2011 for target mean return, ρ = −5%. The evolution
of each hedge fund index is also provided for reference purposes.

turnover. This result confirms the importance of taking moment uncertainty into account in real-life
portfolio selection, particularly in the presence of uncertainty about the second moments.
Figs. 7-9 show the cumulative wealth of the different dynamic portfolio strategies for each model

for the January 2008-December 2011 period under different level of required expected return. They
illustrate the performance of the robust strategies for different input parameter values and offer
insight into the features of different trading strategies. It is obvious that the cumulative portfolio
returns generated by the RMC model are better than those generated by the SMC model at the

end of the investment period. Of the six portfolios, that derived by the Dadj
F (γ̂1, γ̂2) model typically

provides the greatest cumulative wealth and achieves superior performance to the other approach-
es in terms of the average return. This result highlights the potential benefit and effectiveness of
hedging the downside risk by taking moment uncertainty and zero net adjustment into accoun-

t simultaneously. Furthermore, it’s worth noting that the D
adj
F (γ̂1, γ̂2) and D

adj
F (γ̂1, 0) strategies

generated by setting ρ as ρaverage almost perform similarly.
We can see that the SMC model exhibits vulnerability in a consistently volatile market, with its

cumulative wealth declining considerably when the market crashed during the financial crisis. One
possible explanation is that the return series is quite skewed and heavy-tailed. The robust opti-
mization approach yields a more stable strategy over time, and the returns of the adjusted-robust
portfolio experience relatively little fluctuation. In this regard, the adjusted-robust optimization
approach is more robust to the risk of a crash than the other methods, and is thus better able to
choose portfolios that exhibit robust performance, which is a desirable property. Note that in Figs.
7-9, the evolution of each hedge fund index is also provided for reference purposes. The empiri-
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Figure 8. The cumulative wealth of the trading strategies over the period
January 2008 to December 2011 for target mean return, ρ = 0.5×ρaverage . The
evolution of each hedge fund index is also provided for reference purposes.
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Figure 9. The cumulative wealth of the trading strategies over the period
January 2008 to December 2011 for target mean return, ρ = ρaverage. The
evolution of each hedge fund index is also provided for reference purposes.

cal results do not allow us to draw general conclusions about which model is intrinsically better
without more intensive tests. In a downward market, however, the robust strategies are clearly
better.

5. Conclusions

In this paper, we show that the worst-case CVaR (WCVaR) risk measure over distributional ambi-
guity sets can be computed efficiently via conic optimization techniques. In particular, the second-
order cone technique for the linear loss function case. We introduce a data-driven criterion for
calibrating the levels of ambiguity based on bootstrapping, which provides an important modeling
guidance and may be of interest to practitioners. The results of numerical experiments with sim-
ulated and real market data demonstrate that our robust methods can construct more diversified
portfolios and superior to its non-robust counterpart in terms of portfolio stability, expected returns
and turnover. Although a number of ambiguity sets on probability distributions under uncertainty
have been proposed, to the best of our knowledge, there seems to be no consensus on whether or
not the robust CVaR optimization solution under an ambiguity set is intrinsically better than the
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one under an alternative one. It remains an interesting topic that deserves to be investigated in
future.
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