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Abstract This paper studies Bayesian inference on longi-
tudinal mixed effects models with non-normal AR(1) er-
rors. We model the nonparametric zero-mean noise in the
autoregression residual with a Dirichlet process (DP) mix-
ture model. Applying the empirical likelihood tool, an ad-
justed sampler based on the Pólya urn representation of DP
is proposed to incorporate information of the moment con-
straints of the mixing distribution. A Gibbs sampling algo-
rithm based on the adjusted sampler is proposed to approx-
imate the posterior distributions under DP priors. The pro-
posed method can easily be extended to address other mo-
ment constraints owing to the wide application background
of the empirical likelihood. Simulation studies are used to
evaluate the performance of the proposed method. Our method
is illustrated via the analysis of a longitudinal dataset from a
psychiatric study.
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1 Introduction

The seminal linear mixed effects model by Laird and Ware
(1982) has been popularly accepted and adopted to formu-
late longitudinal data since it combines the merits of in-
corporating both individual random effect components and
within-individual errors and of accommodating the unbal-
anced observations and more parsimonious covariance struc-
tures. The autoregressive time series process of order p, de-
noted by AR(p), is widely used to characterize the resid-
ual serial dependence correlation structure of repeated mea-
surements considering the similarities between the time se-
ries and the hierarchical longitudinal data; refer to Chi and
Reinsel (1989), Bartolucci and Bacci (2014), among others
for details. There is extensive work under conditions where
the residual error sequence follows an uncorrelated normal
distribution. However, this assumption is critical and might
be violated in practice; refer to Arnau et al (2012) for exam-
ples in a wide range of application fields. In this paper, we
consider the case where the individual errors are non-normal
with zero-mean in the sense that the zero-mean noise term in
the AR(1) residual is not normally distributed. We develop
a computationally feasible method to address the Bayesian
semiparametric model inference in the linear mixed effects
model, where the noise follows a Dirichlet process mixture
(DPM) model. The strategy is to employ the empirical like-
lihood (EL) tool to incorporate the moment constraint in-
formation into an equivalent representation of the Dirichlet
process (DP) to obtain zero-mean posterior distributions and
hence to develop an adjusted Gibbs sampler for posterior in-
ference.

Let us explore the literature under the model presented
by Laird and Ware (1982) when the within-subject resid-
ual autocorrelation is assumed under serial autoregression
AR(p). Chi and Reinsel (1989) presented a score test to
check the autocorrelation in the AR(1) errors for the random
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effects model. Goldstein et al (1994) proposed a multilevel
model for repeated measured data augmented by AR(1) and
AR(2) models together with a seasonal component for the
residuals. Fan et al (2014) adopted mixture priors between a
point mass and a normal distribution on both effects together
with the aid of the MCMC method to select variables and to
choose the model. However, within the applied contexts, the
residual errors tend to depart from the normal distribution,
which is particularly common in psychometric, educational,
psychological, and other social and health sciences back-
grounds. Goldstein et al (1994) noted that in some cases, es-
pecially when measurements are close together in time, the
normality assumption is doubtful, and some additional cor-
relation structures should be modeled. Bartolucci and Bacci
(2014) studied a longitudinal dataset from the Health and
Retirement study by a linear mixed effects model with AR(1)
errors following a logistic distribution. Wang and Fan (2011)
presented a score test for autocorrelation and a hybrid ECME-
scoring procedure to calculate the MLE, where the individ-
ual error has an AR(p) dependence structure and follows a
t distribution. Damsleth and El-Shaarawi (1989) applied the
AR(1) model with double-exponential noise to a series of
weekly measurements of sulphate concentrations. Tiku et al
(2000) listed dozens of papers that assumed non-normal as-
sumptions for the noise, and they considered AR(q) mod-
els in time series with non-normal noise represented by a
member of a wide family of symmetric distributions. Fur-
thermore, some work considered nonparametric random ef-
fects (Kleinman and Ibrahim, 1998; Li et al, 2011); there is
also increasing attention on Bayesian quantile regression for
longitudinal and even clustered data (Luo et al, 2012; Reich
et al, 2010).

The questions that we seek to address are difficult to
consider by frequentist approaches to statistical analysis. In
practice, Bayesian methods appear to provide a relatively
computationally feasible and effective technique. Bayesian
nonparametric methods have become increasingly popular
for addressing non-normal issues. Among them, the Dirich-
let process proposed by Ferguson (1973) is commonly used
as a nonparametric prior for an unknown discrete distribu-
tion. Note that samples for Dirichlet processes can easily
be drawn from its Pólya urn representation (Blackwell and
MacQueen, 1973) or its stick-breaking construction (Sethu-
raman, 1994). The Dirichlet process mixture models pro-
posed by Antoniak (1974) can be used to model priors for
continuous distributions. Further developments of DPM mod-
els can be found in Escobar (1994), Escobar and West (1995),
and MacEachern and Müller (1998), among others. Neal
(2000) presented several Markov chain methods for sam-
pling from the posterior distributions of DPM models.

Encouraged by the effectiveness of DPM models for the
aforementioned longitudinal mixed effects model with non-
normal AR(1) errors, we provide a semiparametric Bayesian

method as a solution. First, we add a DPM model to the
non-normal noise term in the autoregression residual. Note
that the noise term is subject to the zero-mean constraint.
Next, using the property that the DP prior is a conjugate for
mixing distributions, we obtain a DP posterior in an equiv-
alent Pólya urn representation. After the above preparation,
the key step is to incorporate the moment constraint infor-
mation via the empirical likelihood so that the posterior of
the mixing distribution is zero-mean. As a result, we have
an adjusted Gibbs sampler for Bayesian inference. Conse-
quently, the proposed posterior sampling algorithm is an ap-
proximate form of the standard Markov chain Monte Carlo
(MCMC) algorithm with DP prior.

Returning to the literature, there are several ways to make
full use of this type of moment constraints. Brunner and Lo
(1989) created DP mixtures of uniform distributions to ob-
tain symmetric densities with the mean and mode at zero.
Hoff (2003) proposed a general method to define probabil-
ity measures in a convex set and obtained measures with a
mean constraint. Hoff (2000) noted that his approach could
be used to construct probability measures with a mean of
zero and a variance of one. Yang et al (2010) proposed a con-
cise centered stick-breaking process (CSBP) to induce mean
and variance constraints on an unknown distribution that can
apply centered stick-breaking mixtures (CSBM) in parallel
for the DPM model under the semiparametric latent factor
regression. Griffin (2016) applied the CSBM method in a
semiparametric linear mixed model with mean constraints
on the adaptive truncated stick-breaking mixtures of both the
random effects and regression errors. However, the CSBP
and CSBM methods are limited to mean and variance con-
straints and could not be applied to solve complicated con-
straints related to the distribution function, for example, a
quantile constraint such as a median of zero.

In addition to the aforementioned work, some studies
adjusted the prior rather than the posterior to address aux-
iliary information. Kitamura and Otsu (2011) constructed
an exponential tilting projection of a DP process with the
Kullback-Leibler divergence for independent and identically
distributed data; Shin (2014) completed their method for
general moment constrained models for dependent data and
drew posterior samples by a sequential Monte Carlo algo-
rithm; Choi (2016) used the same principle to obtain expo-
nentially tilted DP priors and presented a Metropolis-Hastings
algorithm for posterior sampling.

The novelty of our proposed method is that we apply EL
to the moment constraints for the posterior sampler, which
has not previously been investigated in the literature. Lazar
(2003) were the first to apply EL to Bayesian analysis, but
they treated EL mainly as an alternative of the parametric
likelihood. Nevertheless, we apply EL as a tool to cancel
the moment constraints. The contribution of our semipara-
metric Bayesian method is twofold. On one hand, under the
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longitudinal data setting, the nonparametric instead of nor-
mality assumption on the noise term provides robust model-
ing, which leads to broader applications. On the other hand,
we propose a new method to address auxiliary information
for DP prior inference. We achieve our goal by adjusting the
Gibbs sampler. Gibbs sampling is feasible for any models
that considers distributions subject to moment constraints.
Meanwhile, the application scope of our methodology is not
restricted to the longitudinal data setting, in that the devel-
opment of the methodology does not rely on the data type.

The remainder of this paper is organized as follows. Sec-
tion 2 establishes the procedures for how we develop an EL-
based modification on posterior distributions to obtain the
adjusted Gibbs sampler. Section 3 presents the Gibbs sam-
pling algorithm for the posterior computation. Section 4 de-
tails the simulation results, and Section 5 illustrates an ap-
plication to a real dataset. Section 6 ends the article with a
discussion.

2 Empirical-likelihood-based Dirichlet process mixture

Let yi be an ni× 1 vector of responses whose element yi j
is the jth response of the ith subject for i = 1, . . . ,m. The
longitudinal mixed effects model with AR(1) errors in our
study can be characterized by

yi = xiβββ + zibi +wi, i = 1, . . . ,m;

wi = (wi1, . . . ,wini)
T ; wi j = ρwi, j−1 + εi j, j = 2, . . . ,ni,

(1)

where βββ is a p×1 vector of fixed effect parameters, bi a q×
1 Gaussian random vector representing the subject-specific
random effects, xi = (xi1, . . . ,xini)

T and zi = (zi1, . . . ,zini)
T

are ni × p and ni × q design matrices linking βββ and bi to
yi, respectively, and wi = (wi1, . . . ,wini)

T is an ni× 1 vec-
tor of model errors. In the AR(1) serial correlation, ρ is the
autoregressive coefficient and the ε ′

i j
s are i.i.d. noises. De-

note N = n1 + · · ·+ nm. When the noise sequence {εi j} is
non-normal, we assume a mixture model on the noise

fG(ε|σ2) =
∫

ϕ(ε|u,σ2)dG(u), (2)

where ϕ(·|u,σ2) is the normal probability density function
with mean u and variance σ2, and G is an unknown probabil-
ity distribution of u satisfying

∫
udG(u) = 0, which ensures

that ε comes from a zero-mean mixture distribution.
If there were no constraint

∫
udG(u) = 0, the Dirichlet

process (DP) proposed by Ferguson (1973) is often used as
a prior of the mixing distribution G. We hence first recall
the concept of a Dirichlet process. A DP is parameterized
in terms of a positive precision parameter α and a base dis-
tribution G0 defined on a probability space Θ . Suppose that
A1, . . . ,Ak is a finite measurable partition of Θ . A Dirich-
let process, denoted as DP(α,G0), is a random probabil-
ity measure G such that the joint distribution of the vector

(G(A1), . . . ,G(Ak)) is a Dirichlet distribution with parame-
ters (αG0(A1), . . . ,αG0(Ak)).

Note that a DP can be equivalently characterized by a
Pólya urn representation, e.g., refer to Blackwell and Mac-
Queen (1973). That is, for G∼DP(α,G0), a random sample
u1, . . . ,un drawn from G can be represented as

un|u1, . . . ,un−1 ∼
n−1

∑
l=1

1
n−1+α

δul +
α

n−1+α
G0,

where δu is the probability mass at point u. Denote u−i =

{u1, . . . ,un}−{ui}. The exchangeability property of the Pólya
urn representation shows that

ui|u−i ∼
n−1

n−1+α
G−i(·)+

α

n−1+α
G0(·), (3)

where G−i(·) = 1
n−1 ∑ j 6=i δu j(·). The Gibbs sampler Eq. (3)

can be seen as a posterior sampler based on the prior DP(α,G0)

and dataset u−i due to the conjugate property of a DP. On the
basis of the right side of Eq. (3), a zero-mean base distribu-
tion G0 is a natural selection due to the constraint

∫
udG(u)=

0. However, G−i(·) may not be zero-mean.
Next, we develop an empirical-likelihood-based zero-

mean approximation to replace G−i(·) on the right side of
Eq. (3). We broaden our perspective to G(p)

−i (·)=∑ j 6=i p j,−iδµ j(·),
the weighted empirical form of G−i(·), where each coordi-
nate of the vector p = (p1,−i, . . . , pi−1,−i, pi+1,−i, . . . , pn,−i)

T

is a probability weight summing to one.
By choosing the weights appropriately, we construct a

zero-mean measure G(p)
−i (·) close to G−i(·). Recall that in

Chapter 2 of Owen (2001), the empirical likelihood is de-
fined as the maximum of the likelihood ratio

R(p) = ∏
j 6=i

(n−1)p j,−i (4)

subject to the constraints

∑
j 6=i

p j,−i = 1, ∑
j 6=i

p j,−iu j = 0, p j,−i ≥ 0, j = 1, . . . ,n, j 6= i.

Note that in Chapter 3 of Owen (2001), the equation (4) can
be seen as a negative Cressie-Read power divergence be-
tween G(p)

−i (·) and G−i(·) for γ → 0 denoted by

CRγ(p) =
2

γ(γ +1) ∑
j 6=i

[(
(n−1)p j,−i

)−γ −1
]
.

R(p) can be maximized at points

p∗
j,−i

=
1

n−1
1

1+λu j
, (5)

where λ is the solution of the equation

∑
j 6=i

u j

1+λu j
= 0.
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The typical solution of λ via the Newton-Raphson algorithm
can be found in Owen (2001). In our numerical studies, we
use the R package emplik to solve the empirical likelihood
function; refer to http://www.ms.uky.edu/∼mai/EmpLik.html.

The resultant zero-mean adjustment of Eq. (3) with the
involvement of EL becomes

ui|u−i ∼
n−1

n−1+α
G(p∗)
−i +

α

n−1+α
G0

=
n−1

n−1+α
∑
j 6=i

p∗
j,−i

δµ j +
α

n−1+α
G0.

(6)

Eq. (6) can be seen as a synthesized posterior sampler based
on dataset u−i, prior DP(α,G0), and constraint information∫

udG(u) = 0. We call it an EL-DP sampler hereafter, and
can be used to generate a Markov chain of {u1, . . . ,un}.

Then, returning to the mixture model (2), we can con-
struct a so-called EL-DPM Gibbs sampler. That is, suppose
that ε ′i s, i = 1, . . . ,n, meet both the mixture model (2) and
G ∼ DP(α,G0). Given the latent variable ui ∼ G, we have
εi|ui ∼ ϕ(εi|ui,σ

2). Based on Eq. (6) and a similar discus-
sion as in Section 3 of Neal (2000), we obtain the Gibbs
sampler

ui|u−i,εi ∼∑
j 6=i

qi, jδu j + riHi(ui), (7)

where

qi, j = k · (n−1) · p∗
j,−i

ϕ(εi|u j,σ
2),

ri = k ·α
∫

ϕ(εi|u,σ2)dG0(u),

Hi(ui) =
αϕ(εi|ui,σ

2)dG0(ui)

α
∫

ϕ(εi|ui,σ2)dG0(ui)

∝ ϕ(εi|ui,σ
2)dG0(ui),

(8)

and k is a parameter such that ∑ j 6=i qi, j + ri = 1.
Finally, it is safe to return to the model (1). Once {u1, . . . ,un}

or, equivalently, the unknown G can be drawn by the pro-
posed EL-DPM Gibbs sampler, we can apply the standard
Gibbs sampling algorithm to draw posterior samples for the
remaining unknown parameter components β , σ2, ρ , and bi,
i = 1, . . . ,m.

Remark 1 In practice, constraints other than zero-mean may
be added to distribution G. Assume that G satisfies the mo-
ment constraints∫

g(ν ,µ)dG(µ) = 0,

for a known function g(ν , ·) with a nuisance parameter ν .
With our method, the empirical likelihood can be obtained
by

max

{
∏
j 6=i

(n−1)p j,−i |p j,−i ≥ 0,∑
j 6=i

p j,−i = 1,∑
j 6=i

p j,−i g(ν ,µ j) = 0

}
.

In practice, the base distribution G0 should be selected
to satisfy the constraint∫

g(ν ,µ)dG0(µ) = 0,

for all ν . For example, in a quantile regression model, the
median of the mixing distribution G may be assumed to be
zero, which means

∫
∞

−∞
Φ(−u/σ)dG(u) = 1

2 , where Φ(·) is
the normal cumulative distribution and σ is a nuisance pa-
rameter. Accordingly, G0 can be selected to satisfy the equa-
tion

∫
∞

−∞
Φ(−u/σ)dG0(u) = 1

2 , for example, a normal dis-
tribution with zero-mean.

In simple cases of constraints on the mean and median,
the questions appear to be solvable. However, it is non-trivial
to find an appropriate G0 when it is subject to complex mo-
ment restrictions. If such a G0 does not exist, G0 can be se-
lected to satisfy the conditions∫ ∫

g(ν ,µ)π(ν)dG0(µ) = 0,

where π(ν) is the prior for parameter ν . Practically, an ad
hoc way to select G0 is to take a normal distribution with hy-
perparameters including location µ0 and variance τ2

0 , both of
which can be obtained by solving the equation above. This
process is feasible in most situations.

Remark 2 As a special case of the Cressie-Read power di-
vergence family CRγ(p) for γ → 0, the empirical likelihood
employed in our paper acts as a criterion to measure the
distance between two discrete distributions. The Cressie-
Read divergence CRγ(p) proposed abundant distances for
different needs when γ varies; refer to Chapter 3 of Owen
(2001). For example, as γ → −1, the limitation CR−1(p)
is the Kullback-Leibler divergence (empirical entropy) be-
tween G(p)

−i and G−i, and for γ = −2, CR−2(p) is the Eu-

clidean likelihood distance between G(p)
−i and G−i. One ob-

vious advantage of the empirical likelihood compared to the
Euclidean likelihood is that the latter may produce negative
probabilities p j,−i while the empirical likelihood does not.
Therefore, we use the empirical likelihood as a measure to
search out a mean-zero approximate distribution such that it
is the nearest to the distribution generated by the DP.

For studies involving a Dirichlet process mixture subject
to constraints, under various modeling, the Cressie-Read power
divergence is the most common tool. Kitamura and Otsu
(2011), Shin (2014), and Choi (2016) all applied the Kullback-
Leibler divergence, or relative entropy, to address the restric-
tion information, whereas we apply the empirical likelihood.
They modified the prior by incorporating the auxiliary in-
formation at the beginning and conducted the analysis in the
usual Bayesian framework. Our insight based on the empir-
ical likelihood is different: we modify the posterior sampler
by incorporating the constraint information during the Gibbs
sampling by calculating the projection G(p∗)

−i for each G−i.
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Remark 3 In practice, latent samples u1, . . . ,un with zero-
mean can be simulated with the Gibbs sampling algorithm
by Eq. (7). The precondition to use the algorithm is that
the exchangeability of u1, . . . ,un can be verified based on
our method. We admit that using the adjusted Pólya urn
scheme to draw u1, . . . ,un may destroy the exchangeability
for u1, . . . ,un. Fortunately, the adjusted Pólya urn scheme
that we propose can be seen as a projection of the standard
Pólya urn scheme of a DP. The exchangeability of u1, . . . ,un
drawn from the latter was verified in Escobar and West (1995).
We illustrate the geometric interpretation in Figure 1. De-
note H as the space of all distributions with form G(p)

−i , and
H0 is a subset of H with zero-mean distributions. Then,
G(p∗)
−i is the projection of G(p)

−i in H0. In fact, for any point

G(p)
−i ∈ H , its projection in H0 is defined as the nearest

point in H0.

H0
H

G(p)
−i

G(p∗)
−i

G−i

Fig. 1 The adjusted Pólya urn scheme can be looked as a projection of
a standard Pólya urn scheme of DP

3 Gibbs Sampling Algorithm

In this section, we sketch the framework of an approximate
MCMC sampling based on model (1), the mixture distribu-
tion (2), posterior sampler (6), and other parametric priors
for α,σ2,ρ,βββ , and bi, i = 1, . . . ,m.

The observations yi js can be produced from the follow-
ing hierarchical model:

σ
2,ρ,βββ ,bi ∼ π(σ2,ρ,βββ ,bi), i = 1, . . . ,m,

εi j ∼ N(ui j,σ
2), j = 2, . . . ,ni, i = 1, . . . ,m,

ui j|G∼ G,G∼ DP(α,G0),

wi j = ρwi, j−1 + εi j,

yi j = xT
i jβββ + zT

i jbi +wi j.

(9)

In the analysis below, the prior specifications for the param-
eters are:

G0 = N(0,σ2
0 ),α ∼ Ga(a0,b0),

σ
2 ∼ IG(c0,d0),ρ ∼ U(−1,1),

βββ ∼ Np(0,Σ0),bi ∼ Nq(0,D(ηηη)),ηηη ∼ g(ηηη).

Here, Ga(a0,b0) stands for the gamma distribution with shape
parameter a0 and rate parameter b0, IG(c0,d0) stands for
the inverse-gamma distribution with shape parameter c0 and
scale parameter d0, D(ηηη) is the covariance matrix charac-
terized by the hyperparameter vector ηηη , and g is a known
probability distribution.

Next, we establish the posterior sampling of G through
the EL-DPM sampler (7), and then perform Gibbs sampling
for the remaining parameters. Denote u= {ui j, j = 2, . . . ,ni, i=
1, . . . ,m} and b = {bi, i = 1, . . . ,m}. Based on the likelihood
function

m

∏
i=1

ni

∏
j=2

fG(εi j|σ2) =
m

∏
i=1

ni

∏
j=2

∫
ϕ(εi j|u,σ2)dG(u), (10)

where εi j =(yi j−xT
i jβββ−zT

i jbi)−ρ(yi, j−1−xT
i, j−1βββ−zT

i, j−1bi),
we develop the Gibbs sampler for sampling ui j,α,σ2,ρ,βββ ,
b and ηηη through the following steps:

1. Drawing ui j, j = 2, . . . ,ni, i = 1, . . . ,m: Denote u−(i, j) =
{uls,(l,s) 6= (i, j)}. The conditional density of ui j given
u−(i, j),α,σ2,ρ,βββ ,b and the data is

f (ui j|u−(i, j),α,σ2,ρ,βββ ,b,data)

=
αϕ(εi j|ui j,σ

2)dG0(ui j)+∑(l,s)6=(i, j) qi j,lsδ (uls)

ri j +∑(l,s)6=(i, j) qi j,ls

where

qi j,ls = (N−m−1) · p∗
ls,−i j

ϕ(εi j|uls,σ
2),

ri j = α

∫
ϕ(εi j|u,σ2)dG0(u),

and p∗
ls,−i j

s are empirical likelihood weights calculated
with equation (5) based on u−(i, j). Specifically, let si j =

∑(l,s)6=(i, j) qi j,ls,
1a. With probability ri j/{ri j+si j}, generate ui j from the

density that is proportional to αϕ(εi j|ui j,σ
2)dG0(ui j);

1b. With probability si j/{ri j+si j}, generate ui j from the
set {uls,(l,s) 6=(i, j)} using probabilities proportional
to qi j,ls.

2. Drawing α: Let d be the number of distinct values of u.
Then, α is updated by the following steps.
2a. Based on the current value of α , draw ν from Beta(α+

1,N−m);
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2b. Given ν , draw a new value for α from a mixed gamma
distribution:

πν Ga(a0 +d,b0− log(ν))+(1−πν )Ga(a0 +d−1,b0− log(ν)),

where πν/(1− πν) = (a0 + d − 1)/[(N −m)(b0 −
log(ν))].

3. Drawing σ2: The prior distribution for σ2 is IG(c0,d0).
Based on the likelihood function (10), we draw σ2 from
the posterior distribution

[σ2|u,ρ,βββ ,b,data]∼ IG(c,d),

where

c = c0 + l/2,

l = (n1−1)+ · · ·+(nm−1),

d = d0 +
m

∑
i=1

ni

∑
j=2

(wi j−ρwi, j−1−ui j)
2/2.

4. Drawing ρ: By combining the uniform prior with the
likelihood function, we derive the posterior distribution
for ρ:

[ρ|u,σ2,βββ ,b,data]∼N

ρ̂,

(
m

∑
i=1

ni

∑
j=2

σ
−2w2

i, j−1

)−1
I[−1,1],

where

ρ̂ =
m

∑
i=1

ni

∑
j=2

wi, j−1(wi j−ui j)/
m

∑
i=1

ni

∑
j=2

w2
i, j−1.

5. Drawing βββ : Based on the multivariate normal prior Np(0,Σ0)

and the likelihood function, the posterior distribution for
βββ is a multivariate normal distribution

[βββ |u,σ2,ρ,b,data]∼ Np(µβ ,Σβ ),

where

Σβ =

(
Σ
−1
0 +σ

−2
m

∑
i=1

ni

∑
j=2

(xi j−ρxi, j−1)(xi j−ρxi, j−1)
T

)−1

,

µβ = σ
−2

m

∑
i=1

ni

∑
j=2

(Ai j−ui j)Σβ (xi j−ρxi, j−1),

Ai j = (yi j− zT
i jbi)−ρ(yi, j−1− zT

i, j−1bi).

6. Drawing bi, i = 1, . . . ,m: By combining the multivariate
normal prior Nq(0,D(ηηη)) for bi and the likelihood func-
tion, the posterior distribution is

[bi|ui,σ
2,ρ,βββ ,ηηη ,data]∼ N(µbi ,Σbi),

where

Σbi =

(
D(ηηη)−1 +σ

−2
ni

∑
j=2

(zi j−ρzi, j−1)(zi j−ρzi, j−1)
T

)−1

,

µbi = σ
−2

ni

∑
j=2

(Bi j−ui j)Σbi(zi j−ρzi, j−1),

Bi j = (yi j−xT
i jβββ )−ρ(yi, j−1−xT

i, j−1βββ ), j = 2, . . . ,ni.

7. Drawing ηηη : Based on the prior distribution g(ηηη), the pos-
terior distribution density for ηηη is proportional to

f (ηηη |b) ∝ g(ηηη)
m

∏
i=1

ϕq(bbbi|0,D(ηηη)),

where ϕq(·|0,D(ηηη)) stands for the q-dimensional multi-
variate normal density with mean 0 and covariance ma-
trix D(ηηη).

Remark 4 In particular, we can extend our algorithm to the
nonparametric random effects model situation. We assume
that the random effects bis follow an unknown distribution
F and that F follows DP(γ,F0), where F0 = Nq(0,D(ηηη)).
Note that F is also zero-mean. Then, Steps 6 and 7 above
should be modified by the EL-DPM Gibbs sampler (7) as
follows:

6’ Drawing bi, i = 1, . . . ,m: Denote b−i = {bs,s 6= i} and
εb

i j = (yi j−xT
i jβββ )−ρ(yi, j−1−xT

i, j−1βββ )−ui j. The condi-
tional density of bi given b−i,γ,σ

2,ρ,βββ ,ui and the data
is

f (bi|b−i,γ,σ
2,ρ,βββ ,ui,data)

=
γ ∏

ni
j=2 ϕ(εb

i j|(zi j−ρzi, j−1)
T bi,σ

2)dF0(bi)+∑s 6=i qb
i,sδ (bs)

rb
i +∑s 6=i qb

i,s

where

qb
i,s = (m−1) · p∗s,−i

ni

∏
j=2

ϕ(εb
i j|(zi j−ρzi, j−1)

T bs,σ
2),

rb
i = γ

∫ ni

∏
j=2

ϕ(εb
i j|(zi j−ρzi, j−1)

T b,σ2)dF0(b),

and p∗s,−is are empirical likelihood weights obtained by
solving the following empirical likelihood

max

{
∏
s 6=i

(m−1)ps,−i |ps,−i ≥ 0,∑
s6=i

ps,−i = 1,∑
s 6=i

ps,−ibs = 0

}
.

Specifically, let sb
i = ∑s 6=i qb

i,s,
6’a. With probability rb

i /{rb
i + sb

i }, generate bi from the
density that is proportional to γ ∏

ni
j=2 ϕ(εb

i j|(zi j −
ρzi, j−1)

T bi,σ
2)dF0(bi);

6’b. With probability sb
i /{rb

i + sb
i }, generate bi from the

set {bs,s 6= i} using probabilities proportional to
qb

i,s.

7’ Drawing ηηη : Based on the prior distribution g(ηηη), the pos-
terior distribution density for ηηη is proportional to

f (ηηη |b) ∝ g(ηηη)
s

∏
i=1

ϕq(φi|0,D(ηηη)),

where φ1, . . . ,φs are the distinct values of bi, i = 1, . . . ,m.

Updating the hyperparameter γ is similar to Step 2 of updat-
ing α .
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4 Simulation Studies

We conduct a series of simulation studies to demonstrate the
performance of the proposed method (EL-DPM) and com-
pare it with several alternative methods. We consider both
mean regression and median regression models under the
mixed effects model setting. In the mean regression scenar-
ios, we consider the two cases where the true random effects
are normally distributed and non-normally distributed. In
the median regression scenarios, we consider the full model
with AR(1) errors and a sub-model without AR(1) errors.

4.1 Normal random effects

In this scenario, 500 datasets are generated from the linear
mixed effects model

yi j = β0+β1xi j,1+β2xi j,2+bi+wi j, j = 1, . . . ,ni, i= 1, . . . ,m,

(11)

with m = 30 and ni generated from Binom(2,0.5)+ 4, i.e.,
the value of ni is 4, 5 or 6 with equal probability. We set β0 =

β1 = β2 = 1 and bi ∼ N(0,σ2
b ) with σ2

b = 1; xi j,1 and xi j,2
independent with xi j,1 ∼ Binom(1,0.5) and xi j,2 ∼ N(0,3);
and wi j = ρwi, j−1+εi j with ρ = 0.5 and εi j ∼ 0.5(N(2,0.5)
+LN(0,0.35)−exp(0.175))+0.5(N(−2,0.5)+LN(0,0.35)
−exp(0.175)), where LN(0,0.35) is the lognormal distribu-
tion with mean exp(0.175) and variance exp(0.35)×
(exp(0.35)− 1). The term exp(0.175) is subtracted to keep
the mean of εi j zero. This is a case in which the noise comes
from a nonsymmetric bimodal distribution with a slightly
heavy tail for each component.

We compare the EL-DPM model with the centered stick-
breaking mixture (CSBM) model proposed by Yang et al
(2010), the DP mixture model (DPM) without zero-mean
adjustment, the Bayesian parametric model with normal like-
lihood (Normal) and the Bayesian parametric model with
t-likelihood (t-dist). For all the five methods, we assume a
relatively flat prior N(0,100×I3×3) for βββ = (β0,β1,β2). An
inverse-gamma prior IG(1,1) is set for both σ2

b and σ2. This
vague prior is proper and has no mean. We use the uniform
prior U(−1,1) for ρ . For the three methods related to DP, the
hyperprior for the precision parameter α is the gamma dis-
tribution Ga(1,0.5), with mean 2 and variance 4. We set the
hyperparameter σ2

0 of the base distribution G0 = N(0,σ2
0 )

to be the maximum likelihood estimate of the variance of
residuals when the noise distribution is normal.

For each replication, after a burn-in of 5,000 iterations,
5,000 samples are obtained, with every 10th saved for pos-
terior inference due to the autocorrelation between the iter-
ations. The convergence of the Markov chains is evaluated
by Geweke’s method (Geweke, 1992) using the R package

Table 1 Bias, MSE, SD, SE and CP from different methods with nor-
mal random effects

β0

Method Bias MSE SD SE CP
EL-DPM 0.0636 0.2128 0.4574 0.5152 0.9660
CSBM 0.0317 0.2292 0.4781 0.5289 0.9400
DPM 0.1406 0.2574 0.4880 0.9782 0.9980

Normal 0.0317 0.2486 0.4981 0.5950 0.9640
t-dist 0.0209 0.1371 0.3701 0.4020 0.9580

β1

EL-DPM -0.0108 0.0499 0.2233 0.2222 0.9540
CSBM -0.0079 0.0540 0.2326 0.2464 0.9660
DPM -0.0095 0.0623 0.2496 0.2859 0.9800

Normal -0.0113 0.1474 0.3842 0.3707 0.9400
t-dist -0.0037 0.1344 0.3669 0.3476 0.9380

β2

EL-DPM 0.0041 0.0043 0.0657 0.0648 0.9460
CSBM 0.0037 0.0048 0.0690 0.0716 0.9620
DPM 0.0019 0.0050 0.0711 0.0836 0.9780

Normal -0.0022 0.0115 0.1075 0.1074 0.9480
t-dist 0.0005 0.0097 0.0983 0.1012 0.9400

ρ

EL-DPM 0.0324 0.0043 0.0571 0.0587 0.9000
CSBM 0.0729 0.0089 0.0602 0.0718 0.8040
DPM 0.0535 0.0065 0.0608 0.0728 0.8940

Normal 0.0180 0.0098 0.0974 0.1053 0.9520
t-dist -0.0784 0.0148 0.0933 0.1061 0.9300

σ2
b

EL-DPM 0.0874 0.1692 0.4023 0.6611 0.9980
CSBM 0.1872 0.1723 0.3708 0.8836 1.0000
DPM -0.1197 0.0560 0.2042 0.6421 1.0000

Normal 0.4920 0.4853 0.4937 1.2033 1.0000
t-dist 0.4358 0.4831 0.5419 0.9015 0.9940

coda. The Geweke statistics is a standard Z-score that in-
dicates plausible convergence if its absolute value is less
than 1.96. We obtain realizations of the Geweke statistics of
each parameter for each replication. For each parameter, the
percentage of observations of the Geweke statistic that fall
into (-1.96, 1.96) is approximately 85%, which indicates that
convergence is good for 10,000 iterations. We also conduct
a few simulations with more MCMC iterations and find that
the percentage increases. Taking the time issue into account,
for simulation studies, 10,000 MCMC iterations is sufficient
for convergence.

Table 1 reports the estimated bias (Bias) given by the
mean of the estimates minus the true values, the mean squared
error of the estimates (MSE), the standard deviations of the
posterior means (SD), the averaged posterior standard devi-
ations of the estimates (SE), and the empirical 95% coverage
probabilities (CP). For each parameter, the smallest MSE is
set in bold type.

From Table 1 we know that the bias of the intercept β0
estimated by the DPM method is the largest, and its 95%
coverage probability is far from the nominal value. For the
EL-DPM method, there might be some inflation of the esti-
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mation of the intercept β0 because the constraint is over the
mean function, but it performs comparably with the CSBM
method and better than the DPM and the Normal model.
For the estimation of β1, β2 and ρ , our EL-DPM method
uniformly beats the other four methods, especially the Nor-
mal model and the t-model, with the consistently smallest
MSE values of the estimates. The EL-DPM method yields
stable estimates of the 95% coverage probabilities, which
are close to the nominal value, whereas the DPM model has
much higher coverage probabilities. The EL-DPM model
also presents the smallest bias of σ2

b . We conclude that our
method works well in this situation.

4.2 Non-normal random effects

We further consider the case where the true random effects
are non-normally distributed. The sampling model follows
equation (11), except that the random effects are bi∼ 0.5N(

√
1.5,

0.5)+0.5N(−
√

1.5,0.5), a two-component mixture of nor-
mal distributions. All the other simulation settings and the
priors of the parameters follow those in Section 4.1.

We compare the performance of the EL-DPM model with
that of the other four methods in Section 4.1. For the two
Bayesian parametric models, the priors of the random ef-
fects are both normal distributions. For the DPM model, we
assume a DP prior on the distribution of the random effects.
For the CSBM model, we assume the CSBP (Yang et al,
2010) prior on the distribution of the random effects. Ta-
ble 2 reports the posterior inference with the five models.
Since σ2

b is estimated with the nonparametric priors for the
EL-DPM, DPM and the CSBM methods, we report only the
estimations of the parameters that are estimated with para-
metric priors. We can see that our EL-DPM model is consis-
tently better than the CSBM, DPM and Normal model and
yields much smaller MSEs for β1, β2 and ρ than those of the
t-model.

4.3 Median regression

We illustrate another application of the EL-DPM method
with a different constraint through a median regression model
for longitudinal data. For median regression, the only change
in the algorithm is to replace the zero-mean constraint with
that in Remark 1. We consider two models in the following:

– Model 1:

yi = xiβββ + zibi + εεε i;

εεε i = (εi1, . . . ,εini), i = 1, . . . ,m.

– Model 2:

yi = xiβββ + zibi +wi, i = 1, . . . ,m;

wi = (wi1, . . . ,wini); wi j = ρwi, j−1 + εi j, j = 2, . . . ,ni.

Table 2 Bias, MSE, SD, SE and CP from different methods with non-
normal random effects

β0

Method Bias MSE SD SE CP
EL-DPM 0.0369 0.1688 0.4096 0.5890 0.9900
CSBM -0.0071 0.2036 0.4516 0.7714 0.9940
DPM 0.0920 0.2360 0.4774 1.1785 1.0000

Normal -0.0088 0.2122 0.4611 0.6940 0.9920
t-dist 0.0146 0.1037 0.3220 0.4334 0.9860

β1

EL-DPM -0.0053 0.0546 0.2338 0.2403 0.9540
CSBM -0.0066 0.0629 0.2509 0.2735 0.9620
DPM -0.0053 0.0711 0.2669 0.3056 0.9740

Normal -0.0068 0.1486 0.3858 0.3706 0.9360
t-dist -0.0122 0.1322 0.3637 0.3528 0.9280

β2

EL-DPM 0.0024 0.0053 0.0728 0.0699 0.9440
CSBM 0.0008 0.0062 0.0785 0.0789 0.9540
DPM 0.0015 0.0068 0.0826 0.0885 0.9660

Normal 0.0016 0.0128 0.1134 0.1073 0.9400
t-dist 0.0011 0.0111 0.1053 0.1021 0.9340

ρ

EL-DPM 0.0746 0.0099 0.0658 0.0636 0.7360
CSBM 0.1337 0.0214 0.0597 0.0712 0.4760
DPM 0.1012 0.0144 0.0645 0.0731 0.6780

Normal 0.0664 0.0147 0.1017 0.1045 0.8700
t-dist -0.0634 0.0146 0.1030 0.1141 0.9520

Clearly, Model 1 is a sub-model as well as a special case
of Model 2. For both models, we assume that the distribution
of εi j follows the mixture distribution fG(ε) =

∫
ϕ(ε|u,σ2)

dG(u) and that the median of fG(ε) is zero. In this case, the
constraint in Remark 1 should be added to G.

For each model, 500 datasets are generated. We assume
that εi js are generated from a three-component mixture of
normals, p1ϕ(·|µ1,σ

2
1 )+ p2ϕ(·|µ2,σ

2
2 )+(1− p1− p2)ϕ(·|µ3,

σ2
3 ), with p1 = 0.435, p2 = 0.43,µ1 = −0.4,σ1 = 1,µ2 =

0,σ2 = 1.5,µ3 = 5 and σ3 = 2. The median of the distribu-
tion is equal to 0 up to two decimal points. All the other sim-
ulation settings follow from Section 4.1, except for Model 2,
where the true value of ρ is set to 0.2.

We compare the performance of the EL-DPM method
for Model 1 with that of two existing approaches. The first
is the fully Bayesian quantile regression model for longitu-
dinal data proposed by Luo et al (2012). They assumed that
the error term is subject to an asymmetric Laplace distri-
bution and established a hierarchical Bayesian model. They
developed both a Metropolis-Hastings algorithm and Gibbs
sampling algorithm for posterior inference. We compare our
results with those of their Gibbs sampling approach (Para).
The other approach is a flexible Bayesian quantile regres-
sion model proposed by Reich et al (2010). They assumed
that the error distribution is an infinite mixture of Gaussian
densities subject to a stochastic constraint. They extended
the proposed approach to analyze conditional and marginal
models for clustered data. We compare our results with those
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Table 3 Bias, MSE, SD, SE and CP from different methods for Model
1

β0

Method Bias MSE SD SE CP
EL-DPM 0.0955 0.0782 0.2632 0.2789 0.9460

Para 0.0992 0.0837 0.2720 0.2893 0.9480
FBQR 0.0193 0.0716 0.2672 0.2769 0.9460

β1

EL-DPM 0.0064 0.0836 0.2894 0.2806 0.9460
Para 0.0059 0.0960 0.3100 0.3165 0.9560

FBQR 0.0056 0.0856 0.2928 0.2792 0.9420
β2

EL-DPM -0.0074 0.0067 0.0819 0.0814 0.9480
Para -0.0084 0.0083 0.0907 0.0924 0.9480

FBQR -0.0065 0.0069 0.0829 0.0815 0.9320
σ2

b

EL-DPM 0.0664 0.1407 0.3695 0.4143 0.9540
Para 0.0626 0.1599 0.3954 0.4461 0.9700

FBQR 0.0528 0.1344 0.3632 0.4120 0.9560

Table 4 Bias, MSE, SD, SE and CP from different methods for Model
2

β0

Method Bias MSE SD SE CP
EL-DPM 0.1020 0.0961 0.2930 0.3420 0.9640

Para 0.0606 0.0931 0.2993 0.3575 0.9700
β1

EL-DPM 0.0067 0.0926 0.3045 0.3042 0.9440
Para 0.0024 0.1116 0.3343 0.3407 0.9540

β2

EL-DPM -0.0045 0.0076 0.0874 0.0880 0.9420
Para -0.0022 0.0087 0.0932 0.0981 0.9500

ρ

EL-DPM 0.0391 0.0095 0.0894 0.0813 0.8900
Para 0.0546 0.0120 0.0952 0.0937 0.8920

σ2
b

EL-DPM 0.0230 0.7928 0.3402 0.5277 0.9960
Para 0.0041 0.7735 0.3566 0.5687 0.9940

of their conditional model with homogeneous regression er-
rors (FBQR). For Model 2, we compare the modified Gibbs
sampling algorithm of Luo et al (2012) for the AR(1) model
setting.

Table 3 and Table 4 report the posterior inference for
Model 1 and Model 2 from different methods, respectively.
Table 3 shows that our EL-DPM method performs compa-
rably with the FBQR method and is uniformly better than
the fully parametric Bayesian method, with smaller MSE,
SD and SE for all the parameters. The 95% coverage proba-
bilities are also reasonable. From Table 4, we know that the
EL-DPM method yields smaller MSE, SD and SE of β1, β2
and ρ than those of the fully parametric Bayesian method.
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Fig. 2 Spaghetti plot of observed data

5 Application

We apply our method to analyze the data from a psychi-
atric study described in Reisby et al (1977). This dataset
was also considered in Hedeker and Gibbons (2006). The
sample consists of m = 66 depressed inpatients, with 29 pa-
tients classified as nonendogenous (NE) and 37 as endoge-
nous (E). The dependent variable measured across time is
the Hamilton Depression Rating Scale (HDRS). Subjects
were rated twice during the baseline placebo week (at the
start and end of the week) as well as at the end of each of
the four treatment weeks of the study. The number of longi-
tudinal measurements varies from 4 to 6 across patients. For
more details of the data, see Hedeker and Gibbons (2006).
Figure 2 shows the HDRS scores for all patients in the two
groups (E and NE).

We consider the following model

yi j = b0i +b1iti j +wi j, j = 1, . . . ,ni, i = 1, . . . ,m, (12)
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where

b0i = β0 +β2DXi + v0i, b1i = β1 +β3DXi + v1i. (13)

Here, DX = 0 or 1 indicates NE or E, respectively, and ti j
is the week (starting at 0). β0 represents the intercept co-
efficient of NE patients, and β1 is the coefficient of time
for NE patients. Likewise, β2 represents the intercept co-
efficient difference for E patients relative to NE patients,
and β3 is the difference in the coefficient of time for E pa-
tients relative to NE patients. Moreover, v0i and v1i are ran-
dom effects. Equations (12)–(13) correspond to equation (1)
by letting xi j = (1, ti j,DXi, ti jDXi)

T , βββ = (β0,β1,β2,β3)
T ,

zi j = (1, ti j)
T and bi = (v0i,v1i)

T . We assume that

wi j = ρwi, j−1 + εi j, j = 2, . . . ,ni, (14)

where εi j is zero-mean error.
The prior distribution for the fixed effects (β0,β1) is cho-

sen as N(0,104I2×2). For the random effects (v0i,v1i), we
assume a N(0,R) prior, and R is also a 2×2 covariance ma-
trix with an inverse Wishart prior distribution IW(2,2×S).
As in Lee and Niu (1999), S is set as diagonal with diago-
nal elements being the sample variances of the correspond-
ing regression coefficients when each subject is regressed on
the corresponding design matrix with normal residuals. For
the other nuisance parameters, we assume that σ2 follows
IG(1,1) and that ρ follows U(−1,1). We assume Ga(2.5,0.5)
for the precision parameter α .

We first consider a special case of equations (12)–(14),
where ρ is fixed at 0. In this case, G0 is chosen as N(0,12.22),
with the variance of 12.22 being the variance of the residuals
under the normality assumption. After a burn-in of 5,000 it-
erations, 10,000 samples are obtained, with every 10th saved
for posterior inference. The trace plots and the Geweke’s
statistics suggest convergence of the Markov chains. We re-
port the posterior means (Post.Mean), posterior standard de-
viations (Post.SD) and 95% confidence intervals (95% CI)
of this scenario in Table 5. These results are consistent with
those in Hedeker and Gibbons (2006).

Table 5 Results of the first scenario

Parameter Post.Mean Post.SD 95% CI
β0 22.5075 0.7772 (21.0195,24.0813)
β1 -2.3248 0.3185 (−2.9640,−1.6644)
β2 2.0364 1.0555 (−0.1656,4.0013)
β3 -0.0965 0.4281 (−0.9388,0.7351)
σ2

v0
11.7838 3.3556 (6.4497,19.3617)

σv0v1 -1.3141 1.0041 (−3.4488,0.3115)
σ2

v1
2.2272 0.5431 (1.3797,3.5417)

We then consider fitting the whole model equations (12)–
(14). First, we fit the model under the normality assumption
of the noise. The normal Q-Q plot of the noise in Figure 3
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Fig. 3 Q-Q plot of the noises under normality assumption

indicates that the distribution of the noise is heavy tailed.
Additionally, the p-values of both the Shapiro-Wilk normal-
ity test statistic and the one-sample Kolmogrov-Smirnov test
statistic are below 0.05, which suggests that the normality
assumption is improper. This result supports the use of the
DPM model for the noise.

The difference in the implementation of Gibbs sampling
between fitting the whole model and the first scenario (ρ =

0) is that the baseline distribution G0 is chosen as N(0,17.97),
with the variance 17.97 being the variance of the residuals
under the normality assumption. The estimation results in
this scenario are listed in Table 6.

The two tables show that the autoregressive coefficient
ρ is significant, which indicates that the second model is
reasonable. The effect of time (β1) is significant, and we can
conclude that the rate of improvement in the HDRS scores of
the patients is significantly different from zero in this study.
Additionally, there is no strong evidence that the two diag-
nostic groups differ in terms of HDRS scores across time.

For comparison, we also report the posterior inference
from the CSBM and DPM models in Table 6. We can see
that, generally, all three methods yield similar estimation
patterns, and the EL-DPM model provides smaller poste-
rior standard deviations and 95% confidence interval lengths
than those of the other two.

Finally, we perform a sensitivity analysis of the proposed
method with respect to α by considering another gamma
prior Ga(1,0.5) for α for both scenarios. The results (not
shown) follow the same patterns as those in the above two
tables. We also conduct multivariate normality tests for the
posterior means of bi =(v0i,v1i)

T . The p-values of the Henze-
Zirkler’s, Mardia’s and Royston’s multivariate normality tests
are all much larger than 0.05, which suggests that the poste-
rior means of these random effects are multivariate-normal
distributed. Therefore, it is not necessary to assume a DP
prior for the random effects in this data example.
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Table 6 Results of the second scenario

NE intercept β0

Method Post.Mean Post.SD 95% CI
EL-DPM 21.3427 2.1491 (17.1466,25.4609)
CSBM 21.5512 2.7489 (15.7885,26.7857)
DPM 20.9347 3.3847 (13.7177,27.2725)

NE slope β1

EL-DPM -2.0664 0.4938 (−3.0108,−1.0678)
CSBM -2.0794 0.5820 (−3.1322,−0.8895)
DPM -1.9985 0.6511 (−3.2267,−0.6461)

E intercept difference β2

EL-DPM 4.3099 3.2799 (−1.7065,10.7073)
CSBM 4.2358 4.2909 (−2.8734,13.3420)
DPM 5.3382 4.5618 (−2.2576,15.1822)

E slope difference β3

EL-DPM -0.6008 0.7355 (−2.0852,0.7454)
CSBM -0.5688 0.8443 (−2.1753,1.0005)
DPM -0.7437 0.9007 (−2.6204,1.0037)

ρ

EL-DPM 0.4837 0.0976 (0.2873,0.6690)
CSBM 0.5494 0.1031 (0.3501,0.7562)
DPM 0.5753 0.0921 (0.3964,0.7430)

σ2
v0

EL-DPM 15.7999 9.8262 (4.8476,40.8242)
CSBM 16.1515 12.5371 (4.2617,47.7944)
DPM 17.4419 15.7057 (4.3455,53.8513)

σ2
v0v1

EL-DPM -1.8723 2.4444 (−7.7006,1.1521)
CSBM -1.8017 2.6177 (−8.3923,1.2613)
DPM -2.3215 3.2227 (−10.2081,0.9836)

σ2
v1

EL-DPM 2.0412 0.8403 (0.8786,3.9470)
CSBM 1.9241 0.8610 (0.7680,4.0403)
DPM 1.9168 0.8962 (0.7565,4.1008)

6 Discussion

In this paper, we present a Bayesian nonparametric model
for mixing distributions subject to moment constraints within
a longitudinal data setting. A useful fact that acts as the step-
ping stone of our methodology is that we obtain a posterior
sampler in the form of a Pólya Urn representation by the
conjugation of a DP prior when there are no restrictions.

In the presence of auxiliary information in the form of
moment constraints, we employ the empirical likelihood tech-
nique to adjust the posterior sampler of the mixing distribu-
tion. In the establishment of our method, the EL plays the
role of a distance measure to search for zero-mean approx-
imate distributions that are the nearest to the posterior sam-
ples of the mixing distribution. Our EL-based adjustment
method is actually a projection technique. Other projection
methods include Choi (2016), Kitamura and Otsu (2011)
and Shin (2014). However, in the presence of auxiliary in-
formation, our strategy of Bayesian inference is different
from existing methods. For instance, Choi (2016) modified

the prior to incorporate expert information via the Kullback-
Leibler distance so that the analysis could be performed un-
der the usual Bayesian framework. We approximate the pos-
terior sampler by adjusting the Gibbs sampling algorithm to
incorporate the moment constraints through the EL distance.

Our EL-DPM Gibbs sampler procedure is an approxi-
mate Markov Chain Monte Carlo (MCMC) method in the
sense that we actually modify the standard MCMC by the
proposed posterior sampler. Numerically, in our simulation
section, we report that the resultant Markov Chain converges
according to the criterion of Geweke’s method; refer to Geweke
(1992). However, theoretically, it is challenging to guaran-
tee convergence for two reasons: the infinite dimensionality
of the prior and the fact that the EL measurement and the
Cressie-Read divergence are not metrics. To the best of our
knowledge, the convergence results of perturbed chains are
usually described by metric distances such as the Wasser-
stein distance or the total variation distance. For example,
Roberts et al (1998) and Alquier et al (2016) studied the
convergence properties of perturbed and unperturbed chains
with metric distances and within a finite-dimensional metric
space.

On the other hand, the empirical likelihood can be seen
as the likelihood of the multinomial distribution where the
support of the distribution is given by the empirical observa-
tions. Hence, the empirical likelihood is not the real likeli-
hood since those observations are randomly distributed. In
this way, some properties of the Gibbs sampling method
based on the real likelihood may not be inherited by our
method. Therefore, theoretical proof of the proposed method
requires further exploration.

Finally, note that our proposed posterior sampling may
act as a tool to facilitate Bayesian analysis that involves un-
known distributions subject to moment constraints, regard-
less of the data setting or models.
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