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Abstract

Using a multi-period mean-variance model, we investigate an asset-liability portfolio man-

agement problem with probability constraints, where an investor intends to control the

probability of bankruptcy before the terminal time in the investment. In our model, the

wealth process is influenced not only by return on assets and liability but also by uncon-

trolled cash flows. Applying a mean-field formulation, we obtain closed-form expressions

for an efficient investment strategy and its corresponding mean-variance efficient frontier.

Sensitivity analysis is also presented to help investors understand the influences of cash

flows and probability constraints better.

Keywords: Mean-field formulation; multi-period mean-variance model; asset-liability

management; probability constraints; cash flow.

1. Introduction

Since introduced by Markowitz (1952), the mean-variance portfolio selection model

has become one of the central themes of modern portfolio theory. In recent years, Li and

Ng (2000) and Zhou and Li (2000) respectively extend the Markowitz’s mean-variance
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model to dynamic discrete-time and continuous-time settings by deriving analytical op-

timal solutions using embedding techniques. The past decade has witnessed numerous

extensions of the mean-variance portfolio analysis in dynamic settings, for example, Li

et al. (2002), Li and Zhou (2006), Fu et al. (2010), Li and Xie (2010), Chiu and Wong

(2011), Wu and Li (2012), Cui et al (2014a, 2014b).

Along another line, it is well known that asset-liability management (ALM) is ex-

tremely important to financial security systems such as pension funds, insurance compa-

nies and banks. In ALM, the main concern is the surplus, i.e., the net wealth. Accord-

ingly, ALM is also known as surplus management. Based on a mean-variance criterion,

Sharpe and Tint (1990) initiate an ALM problem in a single-period setting. Leippold et

al. (2004) discuss a multi-period ALM problem using a geometric approach and Yi et

al. (2008) extend their work to the case with uncertain exit time. In addition, Cui et al.

(2018) study the same problem by taking advantage of the mean-field formulation. Ferstl

and Weissensteiner (2011) consider a multi-stage setting under time-varying investment

opportunities and analyze ALM by stochastic programming. Gülpinar and Pachamanova

(2013) propose a robust optimization approach to dynamic ALM under time-varying in-

vestment opportunities. Consigli et al. (2017) adopt a fairly general framework to study

a variety of financial dynamic optimization models including ALM. Chiu and Li (2006)

investigate continuous-time ALM problems, where the liability process is described by a

geometric Brownian motion. Xie et al. (2008) further consider the case where the liability

is described as a Brownian motion with drift. Zeng and Li (2011) propose continuous-

time ALM under benchmark in a jump diffusion market, where the risky asset’s price is

governed by an exponential Levy process and the liability evolves according to a Levy

process. Yao et al. (2013a) consider mean-variance portfolio selection problems with

endogenous liabilities in a multi-period setting. The ALM problems are also studied as-

sociating with regime switching, with asset correlation risks, with constant elasticity of

variance processes, with state-dependent risk aversion, and with stochastic interest rates

and inflation risks. See Chen and Yang (2011), Chiu and Wong (2014), Zhang and Chen

(2016), Zhang et al. (2017), Pan and Xiao (2017), for details.

However, there still exists a gap between academic research and practice. The liter-

ature mentioned above ignores cash flows of investors including individual investors and

financial institutions. In the real-world, investors might face the situations of capital in-

jections or withdrawals during their investment processes. For example, households may

need cash to maintain their daily lives or add their residual income into the investment;

insurers can receive insurance premium and need to pay for claim; pension funds may get
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contributions or issue distributions for their members. In most cases, cash flows are ran-

dom. Hence, many investors, such as households, insures, pension funds and banks, need

to take into account their stochastic cash flows during their investments and ALM pro-

cesses. Recently, Yao et al. (2013b) study a multi-period mean-variance ALM problem

with uncontrolled cash flow in the liability process. Yao et al. (2016) incorporate stochas-

tic cash flow in both the liability and wealth processes, and investigate an ALM problem

in the Markov regime-switching setting. In this paper, we incorporate stochastic cash

flow into the wealth process, and study an ALM problem with probability constraints.

Our model with stochastic cash flow in the wealth process is useful for real-life investors.

For example, a company may unexpectedly receive government subsidies for its product

development and a household may receive income. This type of cash flow substantially

tests an investor’s investment and ALM skills.

For another example, the optimal investment policies of Yao et al. (2013b, 2016)

do not eliminate the possibility that investors may go bankruptcy on or before the ter-

minal time. In practice, when investors (e.g., pension funds, insurance companies and

banks, etc.) go bankruptcy, the benefits of investors cannot be guaranteed. Therefore,

it is important and meaningful to choose optimal ALM strategies under the bankruptcy

control. Technically, the bankruptcy control (probability constraints) is not directly in-

corporated, and therefore we characterize this constraint using the Tchebycheff inequality.

Under the mean-variance criterion, Zhu et al. (2004) and Bielecki et al. (2005) consider

multi-period and continuous-time portfolio selection problems with bankruptcy control,

respectively; Wei and Ye (2007) investigate a multi-period portfolio selection problem

with bankruptcy control in the Markov regime-switching market; Wu and Zeng (2013)

study the case in the regime-switching market with a state of bankruptcy. In particu-

lar, Li and Xu study continuous-time mean-variance portfolio within the framework of

no-shorting and bankruptcy prohibition. But all these studies on dynamic portfolio selec-

tions with bankruptcy control do not consider the ALM problem. For the ALM problem,

Li and Li (2012) discuss a multi-period portfolio selection problem with bankruptcy con-

trol; Wu et al. (2018) study the case with probability constraints using the mean-filed

formulation. However, they do not consider the cash flow. In the above multi-period

models, researchers do not successfully obtain analytical solutions for the auxiliary prob-

lem induced by the embedding scheme. They use a numerical algorithm to compute both

the Lagrangian multiplier vector and the embedding parameter vector. In this work, we

introduce mean-field formulation to overcome its fundamental difficulty and derive ana-

lytical policies of the Lagrangian problem involved in bankruptcy probability. We only
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need to use an analytical iterative algorithm to compute the Lagrangian multiplier vec-

tor. Therefore, the mean-field formulation powerfully offers a more efficient and more

accurate solution scheme in solving the multi-period portfolio selection problem with

bankruptcy control.

To our knowledge, all the existing literature on dynamic ALM analysis is either with-

out cash flow or without probability constraints (or bankruptcy control). This is the

first study considering a multi-period ALM problem with both cash flows and proba-

bility constraints. In this paper, incorporating the uncontrolled cash flow factor into

the wealth dynamic process, we further explore the multi-period ALM problem with

probability constraints under the mean-variance criterion. From the mathematical point

of view, consideration of a stochastic cash flow and the probability constraints makes

the problem harder. The probability constraints lead to inequality constraints on the

surplus over intermediate periods in our model. Incorporating stochastic cash flow into

the wealth dynamic process further increases the computational complexity in obtaining

closed-form solutions to the model. Different from most literature of multi-period ALM

mean-variance models which adopt the embedding technique, we apply the mean-field

formulation initiated by Cui et al. (2014b) to the proposed model in this paper. Com-

pared to the embedding technique, the mean-field approach is relatively simple yet more

direct. However, Cui et al. (2014b) study one state process only including the wealth

process without the liability process and cash flow. We further develop the mean-field

formulation to consider a more general model of two state processes including not only the

wealth but also the liability and cash flow within framework of probability constraints.

Our work, therefore, is fundamental yet important for dynamic mean-variance portfolio.

This paper proceeds as follows. In Section 2, we describe our multi-period mean-

variance ALM problem with both cash flows and probability constraints. In Section 3,

using mean-field formulation, we derive the explicit expressions of the optimal strategy

and the efficient frontier for the problem. In Section 4, we present results from numerical

analysis. Finally, we conclude this paper in Section 5.

2. Formulation

Assume that the capital market consists of one risk-free asset, n risky assets and one

liability. An investor joining the market at the beginning of period 0 with an initial

wealth x0 and initial liability l0, plans to invest his/her wealth within a time horizon

T . And there would be a cash flow during the investment process. The investor can

reallocate his/her portfolio at the beginning of each following T − 1 consecutive periods.
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At time period t, the given deterministic return of the risk-free asset, the random returns

of the n risky assets, the random return of the liability and the uncontrolled cash flow are

denoted by st (> 1), vector et = [e1
t , · · · , ent ]′, qt and ct, respectively. The random vector

et, the random variables qt and ct are defined over the probability space (Ω,F , P ) and

are supposed to be statistically independent at different time period. We further assume

that the only information known about et, qt and ct are their first two unconditional

moments, E[et] =
(
E[e1

t ], · · · ,E[ent ]
)′

, E[qt], E[ct] and (n + 2) × (n + 2) positive definite

covariance

Cov


et

qt

ct


 = E


et

qt

ct

(e′t qt ct

)− E


et

qt

ct


E

[(
e′t qt ct

)]
.

From the above assumptions, we have
s2
t stE[e′t] stE[qt] stE[ct]

stE[et] E[ete
′
t] E[etqt] E[etct]

stE[qt] E[qte
′
t] E[q2

t ] E[qtct]

stE[ct] E[cte
′
t] E[ctqt] E[c2

t ]

 � 0.

We further define the excess return vector of risky assets Pt = (P 1
t , · · · , P n

t )′ as (e1
t −

st, · · · , ent − st)′. Then the following is held for t = 0, 1, · · · , T − 1:
s2
t stE[P′t] stE[qt] stE[ct]

stE[Pt] E[PtP
′
t] E[Ptqt] E[Ptct]

stE[qt] E[qtP
′
t] E[q2

t ] E[qtct]

stE[ct] E[ctP
′
t] E[ctqt] E[c2

t ]



=


1 0′ 0 0

−1 I 0 0

0 0′ 1 0

0 0′ 0 1




s2
t stE[e′t] stE[qt] stE[ct]

stE[et] E[ete
′
t] E[etqt] E[etct]

stE[qt] E[qte
′
t] E[q2

t ] E[qtct]

stE[ct] E[cte
′
t] E[ctqt] E[c2

t ]




1 −1′ 0 0

0 I 0 0

0 0′ 1 0

0 0′ 0 1

 � 0,

where 1 and 0 are the n-dimensional all-one and all-zero vectors, respectively, and I is

the n× n identity matrix. The above positive definite matrix further implies

E[PtP
′
t] � 0,

s2
t (1− E[P′t]E−1[PtP

′
t]E[Pt]) > 0,

E[q2
t ]− E[qtP

′
t]E−1[PtP

′
t]E[Ptqt] > 0,

E[c2
t ]− E[ctP

′
t]E−1[PtP

′
t]E[Ptct] > 0,

5



for t = 0, 1, · · · , T − 1.

For later use, denote

Bt
∆
= E[P′t]E−1[PtP

′
t]E[Pt],

B̂t
∆
= E[qtP

′
t]E−1[PtP

′
t]E[Pt],

B̃t
∆
= E[qtP

′
t]E−1[PtP

′
t]E[Ptqt],

B̂Ct
∆
= E[ctP

′
t]E−1[PtP

′
t]E[Pt],

B̃Ct
∆
= E[ctP

′
t]E−1[PtP

′
t]E[Ptct],

BCt
∆
= E[ctP

′
t]E−1[PtP

′
t]E[Ptqt],

where E−1[PtP
′
t] is the inverse of matrix E[PtP

′
t](� 0). Similar to Cui et al (2014b), we

have 0 < Bt < 1, E[q2
t ]− B̃t > 0 and E[c2

t ]− B̃Ct > 0 for t = 0, 1, · · · , T − 1.

Let xt and lt be the wealth and liability of the investor at the beginning of period t

respectively, then xt − lt is the surplus. At period t, if πit (i = 1, 2, · · · , n) is the amount

invested in the i-th risky asset, then, xt −
∑n

i=1 π
i
t is the amount invested in the risk-

free asset. We assume in this paper that the liability is exogenous, which means it is

uncontrollable and cannot be affected by the investor’s strategies. Denote the information

set at the beginning of period t, t = 1, 2, · · · , T − 1, as

Ft = σ(P0,P1, · · · ,Pt−1, c0, c1, · · · , ct−1, q0, q1, · · · , qt−1)

and the trivial σ-algebra over Ω as F0, where Pt = (P 1
t , · · · , P n

t )′ = (e1
t − st, · · · , ent − st)′

is the excess return vector of risky assets during period t. Therefore, E[·|F0] is just the

unconditional expectation E[·]. We confine all admissible investment strategies to be

Ft-adapted Markov controls, i.e., πt = (π1
t , π

2
t , · · · , πnt )′ ∈ Ft. Then, Pt and πt are

independent, {xt, lt} is an adapted Markovian process and Ft = σ(xt, lt).

The mean-variance model for multi-period assets and liability portfolio selection with

cash flows and probability constraints is to seek the best strategy, π∗t = [(π1
t )
∗, (π2

t )
∗, · · · , (πnt )∗]′,

t = 0, 1, · · · , T − 1, which is the optimizer of the following optimal stochastic control

problem, 

min Var(xT − lT )− wE[xT − lT ],

s.t. xt+1 =
n∑
i=1

eitπ
i
t +

(
xt −

n∑
i=1

πit

)
st + ct

= stxt + P′tπt + ct, t = 0, 1, · · · , T − 1,

lt+1 = qtlt, t = 0, 1, · · · , T − 1,

Pr(xt ≤ lt) ≤ at, t = 1, 2, · · · , T − 1,

(1)
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where w > 0 is the trade-off parameter between the mean and the variance, and at is the

probability of bankruptcy, that is, the probability of the wealth less than the liability at

period t.

Remark 1. We consider stochastic cash flows in the wealth process. This setting allows
us cover different types of ALM, which can be applied by many kinds of investors, includ-
ing household, firm, investment company (e.g. mutual fund and pension fund) and bank.
Now we give some examples for some cases.

Case 1 (general case): ct 6= 0 for t = 0, 1, · · · , T − 1. There is a stochastic cash flow
in the wealth process. For example, a firm can receive subsidies from various government
agencies; a firm is required to make contingent payments; a pension fund can receive
contributions from pensioners and/or make pension payments to beneficiaries.

Case 2: ct = 0 for t = 0, 1, · · · , T − 1. There is no stochastic cash flow in the wealth
process. For example, when a company makes purchases/sales on credit.

Case 3: l0 = 0 for t = 0, 1, · · · , T − 1. There is no liability. For example, an equity
financed firm.

Case 4: l0 = 0 and ct = 0 for t = 0, 1, · · · , T − 1. There is no liability and no cash
flow. In this case our model degenerates to a conventional portfolio selection model.

Since the probability constraint Pr(xt ≤ lt) is not easy to conquer in dynamic portfolio

selection, we turn it to its upper bound Var(xt− lt)/(E[xt− lt])2 by Tchebycheff inequal-

ity. Then the mean-variance model (1) can be equivalently re-written to the following

problem, 

min Var(xT − lT )− wE[xT − lT ],

s.t. xt+1 = stxt + P′tπt + ct, t = 0, 1, · · · , T − 1,

lt+1 = qtlt, t = 0, 1, · · · , T − 1,

Var(xt − lt) ≤ at(E[xt − lt])2, t = 1, · · · , T − 1.

(2)

The optimal solution to problem (2) is feasible in problem (1), thus it serves as an

approximated solution to problem (1). To solve problem (2), we consider the following

Lagrangian minimization problem,
min Var(xT − lT )− wE[xT − lT ] +

T−1∑
t=1

λt

(
Var(xt − lt)− at(E[xt − lt])2

)
,

s.t. xt+1 = stxt + P′tπt + ct, t = 0, 1, · · · , T − 1,

lt+1 = qtlt, t = 0, 1, · · · , T − 1,

(3)

where λ = (λ1, λ2, ..., λT−1)′ ∈ RT−1
+ is the vector of Lagrangian multiplier.
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Due to the fact that variance operation does not satisfy the smoothing property,

problem (3) is nonseparable in the sense of dynamic programming, i.e., it can not be

decomposed by a stage-wise backward recursion and then is difficult to be solved directly.

Recently, Elliott et al. (2013), Cui et al. (2014) and Ni et al. (2015) introduce mean-field

formulations to deal with a class of discrete-time/multi-period nonseparable problems.

We further develop their mean-field formulations to tackle our model in this paper. For

t = 0, 1, · · · , T − 1, taking the expectation operator of the dynamic system specified in

(3), we can derive 

E[xt+1] = stE[xt] + E[P′t]E[πt] + E[ct],

E[lt+1] = E[qt]E[lt],

E[x0] = x0,

E[l0] = l0,

(4)

since Pt is independent of xt and πt, and qt is independent of lt. Combining the dynamic

system of (3) and (4) yields the following for t = 0, 1, · · · , T − 1,

xt+1 − E[xt+1] = st
(
xt − E[xt]

)
+ P′tπt − E[P′t]E[πt] + ct − E[ct]

= st
(
xt − E[xt]

)
+ P′t

(
πt − E[πt]

)
+
(
P′t − E[P′t]

)
E[πt]

+ct − E[ct],

lt+1 − E[lt+1] = qtlt − E[qt]E[lt]

= qt
(
lt − E[lt]

)
+
(
qt − E[qt]

)
E[lt],

x0 − E[x0] = 0,

l0 − E[l0] = 0.

(5)

Then the state space (xt, lt) and the control space (πt) are enlarged into (E[xt], xt −
E[xt],E[lt], lt − E[lt]) and (E[πt], πt − E[πt]), respectively. Although we can select the

control vector E[πt] and πt − E[πt] independently at time t, they should be chosen such

that

E(πt − E[πt]) = 0, t = 0, 1, · · · , T − 1,

and then

E(xt − E[xt]) = 0, t = 0, 1, · · · , T − 1,
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is satisfied. We also confine admissible investment strategies (E[πt], πt − E[πt]) to be

Ft-measurable Markov controls.

Problem (3) can be now reformulated as the following mean-field type of linear

quadratic optimal stochastic control problem

min E
[(
xT − lT − E[xT − lT ]

)2]− wE[xT − lT ]

+
T−1∑
t=1

{
λtE
[(
xt − lt − E[xt − lt]

)2]− λtat(E[xt − lt])2
}
,

s.t. {E[xt],E[lt],E[πt]} satisfies dynamic equation (4),

{xt − E[xt], lt − E[lt], πt − E[πt]} satisfies dynamic equation (5),

E(πt − E[πt]) = 0, t = 0, 1, · · · , T − 1.

(6)

It is indeed a separable linear quadratic optimal stochastic control problem which can be

solved by classic dynamic programming approach.

3. The Optimal Strategy

In order to obtain the explicit expressions of the the cost-to-go functional and the

optimal strategy for Problem (6), we define nine deterministic sequences of parameters

{ξt}, {ηt}, {εt}, {βt}, {ζt}, {φt}, {θt}, {δt} and {ψt} by the following backward recursions

as follows

ξt = ξt+1s
2
t (1−Bt) + λt,

ηt = ηt+1st(E[qt]− B̂t)− λt,

εt = εt+1E[q2
t ]−

η2
t+1

ξt+1

B̃t + λt,

βt = βt+1s
2
t −

β2
t+1s

2
tBt

ξt+1(1−Bt) + βt+1Bt

− λtat,

ζt =
(
2βt+1E[ct] + ζt+1

)
st −

2Bt

ξt+1(1−Bt) + βt+1Bt

βt+1st
(
(βt+1 − ξt+1)E[ct] +

1

2
ζt+1

)
− 2B̂Ct

ξt+1(1−Bt) + βt+1Bt

βt+1stξt+1,

φt = φt+1stE[qt]−
Bt

ξt+1(1−Bt) + βt+1Bt

βt+1st
(
φt+1 − ηt+1

)
E[qt]

− B̂t

ξt+1(1−Bt) + βt+1Bt

βt+1stηt+1 + λtat,
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θt = θt+1E[qt] + 2ηt+1(E[qtct]− E[qt]E[ct]) + 2φt+1E[qt]E[ct]

− 2Bt

ξt+1(1−Bt) + βt+1Bt

(
φt+1 − ηt+1

)
E[qt]

(
(βt+1 − ξt+1)E[ct] +

1

2
ζt+1

)
− 2B̂Ct

ξt+1(1−Bt) + βt+1Bt

(
φt+1 − ηt+1

)
E[qt]ξt+1

− 2B̂t

ξt+1(1−Bt) + βt+1Bt

ηt+1

(
(βt+1 − ξt+1)E[ct] +

1

2
ζt+1

)
− 2
( (1− βt+1

ξt+1
)B̂tB̂Ct

ξt+1(1−Bt) + βt+1Bt

+
1

ξt+1

BCt

)
ηt+1ξt+1,

δt = δt+1

(
E[qt]

)2
+ εt+1

(
E[q2

t ]− (E[qt])
2
)
− Bt

ξt+1(1−Bt) + βt+1Bt

(
φt+1 − ηt+1

)2(E[qt]
)2

−
( (1− βt+1

ξt+1
)B̂2

t

ξt+1(1−Bt) + βt+1Bt

+
1

ξt+1

B̃t

)
η2
t+1

− 2B̂t

ξt+1(1−Bt) + βt+1Bt

(
φt+1 − ηt+1

)
E[qt]ηt+1 − λtat,

ψt = ψt+1 + βt+1

(
E[ct]

)2
+ ζt+1E[ct] + ξt+1E[(ct − E[ct])

2]

− Bt

ξt+1(1−Bt) + βt+1Bt

(
(βt+1 − ξt+1)E[ct] +

1

2
ζt+1

)2

−
( (1− βt+1

ξt+1
)B̂C

2

t

ξt+1(1−Bt) + βt+1Bt

+
1

ξt+1

B̃Ct

)
ξ2
t+1

− 2B̂Ct

ξt+1(1−Bt) + βt+1Bt

(
(βt+1 − ξt+1)E[ct] +

1

2
ζt+1

)
ξt+1,

for t = T − 1, T − 2, · · · , 0, with terminal conditions

ξT = 1, ηT = −1, εT = 1, βT = 0, ζT = −w, φT = 0, θT = w, δT = 0, ψT = 0,

where λ0 = 0.

Now, we present the solution to the cost-to-go functional and the optimal portfolio

strategy of Problem (3) by the following theorem.

Theorem 1. Assume that the assets and liability are correlated at every period. Then,
the cost-to-go functional is presented by

Jt
(
E[xt], xt − E[xt],E[lt], lt − E[lt]

)
= ξt

(
xt − E[xt]

)2
+ 2ηt

(
lt − E[lt]

)(
xt − E[xt]

)
+ εt

(
lt − E[lt]

)2

+ βt(E[xt])
2 + ζtE[xt] + 2φtE[lt]E[xt] + θtE[lt] + δt(E[lt])

2 + ψt, (7)
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and the optimal strategy of Problem (3) is given by

π∗t = −E−1[PtP
′
t]E[Pt]

(
stxt −

(ξt+1 − βt+1)(1−Bt)

ξt+1(1−Bt) + βt+1Bt

stE[xt]

+
φt+1E[qt] + ηt+1

(
(1− βt+1

ξt+1
)B̂t − E[qt]

)
ξt+1(1−Bt) + βt+1Bt

E[lt]

+

(
βt+1 − ξt+1

)
E[ct] + 1

2
ζt+1 + (ξt+1 − βt+1)B̂Ct

ξt+1(1−Bt) + βt+1Bt

)
−ηt+1

ξt+1

E−1[PtP
′
t]E[Ptqt]lt − E−1[PtP

′
t]E[ctPt],

(8)

where

E[xt] =x0

t−1∏
j=0

ξj+1(1−Bj)sj
ξj+1(1−Bj) + βj+1Bj

−
t−1∑
k=0

( t−1∏
j=k+1

ξj+1(1−Bj)sj
ξj+1(1−Bj) + βj+1Bj

)

×
(
φk+1E[qk]Bk + ηk+1

(
B̂k − E[qk]Bk

)
ξk+1(1−Bk) + βk+1Bk

( k−1∏
j=0

E[qj]
)
l0

+
ξk+1E[ck]− 1

2
ζk+1Bk

ξk+1(1−Bk) + βk+1Bk

− ξk+1B̂Ck

ξk+1(1−Bk) + βk+1Bk

)
. (9)

for t = 0, 1, · · · , T − 1.

The detailed proof of Theorem 1 can be found in Appendix A. By dynamic program-

ming method, we post the cost-to-go functional at terminal time T according to our

model first. Then we present and prove the expression of the cost-to-go functional at

time t. The optimal strategy is obtained in the procedure of this proof.

Remark 2. We observe from Theorem 1 that the cost-to-go functional is a quadratic
polynomial function of E[xt], xt − E[xt],E[lt] and lt − E[lt], and the optimal strategy is
a linear function of the current wealth xk and the current liability lk. To express the
structure of the optimal strategy more clearly, we simply reformulate the optimal strategy
(8) to the following form:

π∗t = Ht,1xt +Ht,2lt +Ht,3, (10)
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where

Ht,1 = −stE−1[PtP
′
t]E[Pt],

Ht,2 = −ηt+1

ξt+1

E−1[PtP
′
t]E[Ptqt],

Ht,3 = −
1
2
ζt+1 + (ξt+1 − βt+1)(B̂Ct − E[ct])

ξt+1(1−Bt) + βt+1Bt

E−1[PtP
′
t]E[Pt]− E−1[PtP

′
t]E[ctPt]

+
−E−1[PtP

′
t]E[Pt]

ξt+1(1−Bt) + βt+1Bt

·
(
− (ξt+1 − βt+1)(1−Bt)stE[xt] +

[
φt+1E[qt] + ηt+1

(
(1− βt+1

ξt+1
)B̂t − E[qt]

)]
E[lt]

)
.

It is obvious that the derived analytical optimal portfolio policy consists of three terms:
the investor’s current wealth, current liability, and current cash flow with his risk attitude
specified by w and at. It is also a function of the initial wealth x0 and the initial liability
l0. In other words, it is of a feedback form, but not Markovian. At each period t, the
optimal control policy depends on two pieces of information from the given information
set, the current state (xt, lt) and the initial state (x0, l0).

Remark 3. Let ζk = E−1[PtP
′
t]E[Pt], ξk = E−1[PtP

′
t]E[Ptqt] and χk = E−1[PtP

′
t]E[ctPt].

Also, let

µ1
k = −

(
stxt − (ξt+1−βt+1)(1−Bt)

ξt+1(1−Bt)+βt+1Bt
stE[xt] +

φt+1E[qt] + ηt+1

(
(1− βt+1

ξt+1
)B̂t − E[qt]

)
ξt+1(1−Bt) + βt+1Bt

E[lt],

+

(
βt+1 − ξt+1

)
E[ct] + 1

2
ζt+1 + (ξt+1 − βt+1)B̂Ct

ξt+1(1−Bt) + βt+1Bt

)
µ2
k = −ηt+1

ξt+1
lt,

µ3
k = −1,

which depend only on the current market parameters. Then, the optimal strategy can be
expressed as another simple structure which is a linear function of ζk, ξk and χk, i.e.,

π∗t = µ1
kζk + µ2

kξk + µ3
kχk. (11)

If one takes ζk, ξk and χk as three mutual funds, then the corresponding investment
amount invested in these three mutual funds are µ1

k, µ2
k and µ3

k, respectively. This leads
to a three-fund separation theorem, which means that though there are one risk-free asset
and n risky assets in the market, the investor only need to allocate his/her wealth among
the risk-free asset and three artificial mutual funds of ζk, ξk and χk.
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Remark 4. If the assets, the liability and the cash flow are uncorrelated with each other,
the optimal strategy can be simplified as

π∗t = −E−1[PtP
′
t]E[Pt]

(
stxt −

(ξt+1 − βt+1)(1−Bt)stE[xt] + φt+1E[qt]E[lt]

ξt+1(1−Bt) + βt+1Bt

−ηt+1

ξt+1

E[qt]
(
lt − E[lt]

)
+

1
2
ζt+1 + βt+1

ξt+1(1−Bt) + βt+1Bt

E[ct]

)
,

where

E[xt] =x0

t−1∏
j=0

ξj+1(1−Bj)sj
ξj+1(1−Bj) + βj+1Bj

−
t−1∑
k=0

( t−1∏
j=k+1

ξj+1(1−Bj)sj
ξj+1(1−Bj) + βj+1Bj

)

×
(

φk+1E[qk]Bk

ξk+1(1−Bk) + βk+1Bk

( k−1∏
j=0

E[qj]
)
l0 +

ξk+1(1−Bk)E[ck]− 1
2
ζk+1Bk

ξk+1(1−Bk) + βk+1Bk

)
.

In this case, the optimal strategy is linear in ζk = E−1[PtP
′
t]E[Pt]. Then our three-fund

separation theorem aforementioned degenerates to the well-known one-fund theorem in the
conventional dynamic portfolio selection problem with neither cash flows nor probability
constraints (see Li and Ng (2000) for more details), which means that the investor only
need to allocate his/her wealth among the risk-free asset and the artificial mutual fund
ζk, and can obtain the exact investment effect as that invested in the risk-free asset and
the n risky asset. This finding implies that the correlation among the assets, the liability
and the cash flow is the hidden reason behind the transition from the three-fund property
to the one-fund property in the optimal strategy.

Based on the proof of Theorem 1, the optimal objective of problem (3) is as follows:

J0

(
E[x0], 0,E[l0], 0

)
= β0x

2
0 + ζ0x0 + 2φ0l0x0 + θ0l0 + δ0l

2
0 + ψ0. (12)

By sequences {βt}, {ζt}, {φt}, {θt}, {δt} and {ψt} (see the beginning of this section for

more details), we know that {β0}, {ζ0}, {φ0}, {θ0}, {δ0} and {ψ0} depend on the vector

of Lagrangian multiplier λ = (λ1, λ2, ..., λT−1)′. It follows from the Lagrange dual theory

(see Luenberger (1968)) that the optimal value for the original mean-variance Problem

(3) can be obtained by maximizing J0

(
E[x0], 0,E[l0], 0;λ

)
over λ ∈ RT−1

+ . According to

(12), we can also derive the minimum variance term as below.

Theorem 2. Assume that the assets and liability are correlated at every period. Then,
the efficient frontier of problem (3) is given by

Var(xT − lT ) = max
λ∈RT−1

+

J0

(
x0, 0, l0, 0

)
+ wE[xT − lT ] (13)

for E[xT − lT ] ≥ ζ0x0 − θ0l0.
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Remark 5. We calculate E[xt − lt] and Var(xt − lt), t = 1, 2, · · · , T − 1 in Appendix
B. In addition, See Table 2 and 3 in the following section. In fact, J0(·) is convex in
λ = (λ1, λ2, ..., λT−1)′ ∈ RT−1

+ . From its explicit form, we can find an optimal Lagrangian
multiplier vector λ∗ using the steepest descent algorithm or interior point algorithm di-
rectly in the code via MATLAB.

4. Numerical examples

4.1. An empirical example

In this subsection, using the data from Yao et al. (2016), we consider an empirical

example for the ALM of a defined contribution pension fund based on the real market

data in USA. In this example, we calculate the relevant market parameters according to

real data. Moreover, we further obtain the dynamic optimal investment strategy, and

the mean and variance of the terminal surplus using our theoretical results established.

As a result, we illustrate how the pension fund can keep a tradeoff between its return

and risk measured by variance.

With an initial wealth x0 = 3, an initial liability l0 = 1 and a trade-off parameter

w = 1, an pension fund is scheduled to enter the market at time 0, where the unit

is one thousand dollars. We adopt monthly data and take one month as time unit in

this scenario. An investment plan for T = 5 periods (months) is made by the pension

fund manager. At the beginning of each period, the wealth of the pension fund can

be dynamically allocated in the risk-free asset and three risky assets. We choose Cisco

Systems, Forest City Enterprises and Tandy Brands Accessories as three risky assets from

NYSE, AMEX and NASDAQ. The sample size is 156 months between January 2000 and

December 2012. The monthly American BAA corporate bonds is used as a proxy of the

uncontrollable liability return and the pension contributions for each period are modeled

as stochastic cash flows. We adopt American average monthly salary level to calibrate

these stochastic cash flows and assume that the pension fund charges 12.4 percent of

monthly wages as contributions. This fixed proportion is consistent with the retirement

401(k) plan in USA. The BAA bond and three stocks returns data come from CRSP

(Center for Research in Security Prices) database, while average hourly wage data are

from Bureau of labor statistics. For simplicity, we assume that there are four members

in the pension fund and parameters of this model are independent of the time period

t. Using the data stated above, we calculate the related parameters of the model for

t = 0, 1, · · · , T − 1, as follows:

E[Ptct] = (−0.0065,−0.0055, 0.0001)′,
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E[Ptqt] = ( 0.0140,−0.0054,−0.0055)′,

E[Pt] = (0.0139,−0.0054,−0.0054)′,

E[PtP
′
t] =

 0.0257 0.0046 0.006

0.0046 0.0135 0.0046

0.006 0.0046 0.0194

 ,

E[ct] = 0.4284, E[c2
t ] = 0.6355,

E[qt] = 1.0056, E[q2
t ] = 1.0113, E[ctqt] = 0.4308.

Next, we choose average interest rates on American total marketable treasury securities

as the risk-free interest1. Since the annual rate (average interest rates on American

total marketable treasury securities) of the last month (December 2012) in our sample

is 2.103%. Hence, the monthly risk-free interest is st = 1 + 2.103%/12. Using the data

above, we have

K1 = E−1[PtP
′
t]E[Pt] = (0.7219,−0.5168,−0.3791)′,

K2 = E−1[PtP
′
t]E[Ptqt] = (0.7273,−0.5163,−0.3860)′,

K3 = E−1[PtP
′
t]E[Ptct] = (−0.2222,−0.3882, 0.1659)′.

According to Theorem 1, we can derive the optimal strategy of problem (3) as follows

π∗0 = −s0(x0 − 2.9479)K1 + 1.0218K2l0 −K3,

π∗1 = −s1(x1 − 3.3851)K1 + 1.0163K2l1 −K3,

π∗2 = −s2(x2 − 3.8224)K1 + 1.0108K2l2 −K3,

π∗3 = −s3(x3 − 4.2598)K1 + 1.0054K2l3 −K3,

π∗4 = −s4(x4 − 4.6972)K1 + 1.0000K2l4 −K3.

The final optimal expected expectation and variance of the surplus are E[x5−l5] = 4.1981

and Var(x5− l5) = 2.1757, respectively. In Table 1, we choose at = 0.2 and w from 0.5 to

1.25 with a step size 0.05. We can see from Table 1 that both the final expectation and

variance of the surplus increase. This is obvious and coincident with the real financial

market. As we all know, the investor who can bear a higher risk may achieve more

wealth. In addition, the higher the risk, the easier to go bankruptcy.

1The average interest rates are calculated on the total un-matured interest-bearing debt. See

http://www.treasurydirect.gov/govt/rates/pd/avg/avg.htm
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Table 1: The impact of w (at = 0.2)

w 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

E[xT − lT ] 4.1786 4.1806 4.1825 4.1845 4.1864 4.1884 4.1903 4.1922

Var(xT − lT ) 2.1611 2.1621 2.1632 2.1644 2.1657 2.1671 2.1687 2.1703

w 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

E[xT − lT ] 4.1942 4.1961 4.1981 4.2000 4.2020 4.2039 4.2059 4.2078

Var(xT − lT ) 2.1720 2.1738 2.1757 2.1776 2.1797 2.1819 2.1842 2.1866

4.2. Another example

Since the above empirical example is the correlated case, in this subsection we provide

another example to let readers/practitioners know how to calculate numerical example

for the correlated and the uncorrelated cases using our theoretical results, and present

the difference between these two cases.

We consider another example of constructing a pension fund consisting of S&P 500

(SP), the index of Emerging Market (EM), Small Stock (MS) of US market and a bank

account. Based on the data provided in Elton et al. (2007), Table 2 presents the expected

values, standard deviations and correlation coefficients of the annual return rates of these

three indices, the liability and the cash flow per thousand dollars (see Yao et al. (2016)).

Table 2: Data

SP EM MS liability cash flow

(thousand dollars)

Expected return 14% 16% 17% 10% 0.438

Standard deviation 18.5% 30% 24% 20% 0.672

Correlation coefficient

SP 1 0.64 0.79 ρ1 ρ1c

EM 0.64 1 0.75 ρ2 ρ2c

MS 0.79 0.75 1 ρ3 ρ3c

liability ρ1 ρ2 ρ3 1 ρlc

cash flow ρ1c ρ2c ρ3c ρlc 1

(thousand dollars)

Thus, for any time t, we have

E[Pt] =

0.09

0.11

0.12

 , Cov(Pt) =

0.0342 0.0355 0.0351

0.0355 0.0900 0.0540

0.0351 0.0540 0.0576

 ,
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E[PtP
′
t] =

0.0423 0.0454 0.0459

0.0454 0.1021 0.0672

0.0459 0.0672 0.0720

 .

We consider 5 time periods and the annual risk-free rate is 5% (st = 1.05). Assume that

the investor has an initial wealth x0 = 3 (thousand dollars), an initial liability l0 = 1

(thousand dollars), a trade-off parameter w = 1. Furthermore, for t = 0, 1, 2, 3, 4, assume

that the probability at = 0.1, the correlation of assets and liability is ρ = (ρ1, ρ2, ρ3),

where

ρi =
Cov(qt, P

i
t )√

Var(qt)
√

Var(P i
t )

is the correlation coefficient of the i-th asset and liability. This means

E[P i
t qt] = E[qt]E[P i

t ] + ρi
√

Var(qt)
√

Var(P i
t ).

Also, the correlation of assets and cash flow is defined as ρc = (ρ1c, ρ2c, ρ3c), where

ρic =
Cov(ct, P

i
t )√

Var(ct)
√

Var(P i
t )

is the correlation coefficient of the i-th asset and cash flow. Hence,

E[P i
t ct] = E[ct]E[P i

t ] + ρic
√

Var(ct)
√

Var(P i
t ).

The correlation of the liability and cash flow is defined as

ρlc =
Cov(qt, ct)√

Var(qt)
√

Var(ct)
,

and thus

E[qtct] = E[qt]E[ct] + ρlc
√

Var(qt)
√

Var(ct).

4.2.1. Correlation example

In this subsection, assume that the returns of the assets and liability are correlated

with ρ = (ρ1, ρ2, ρ3) = (−0.25, 0.5, 0.25), the returns of the assets and cash flow are

correlated with ρc = (ρ1c, ρ2c, ρ3c) = (0.25, 0.25, 0.25) and the correlation of the liability
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and cash flow is ρqc = 0.25. Hence,

Cov


Pt

qt

ct


 =

 Cov(Pt) Cov(qt,Pt) Cov(ct,Pt)

Cov(qt,P
′
t) Var(qt) Cov(qt, ct)

Cov(ct,P
′
t) Cov(qt, ct) Var(ct)



=


0.0342 0.0355 0.0351 −0.0092 0.0311

0.0355 0.0900 0.0540 0.0300 0.0504

0.0351 0.0540 0.0576 0.0120 0.0403

−0.0092 0.0300 0.0120 0.0400 0.0336

0.0311 0.0504 0.0403 0.0336 0.4516

 � 0.

Using the above formula of E[P i
t qt], we have E[Ptqt] = (0.0898, 0.1510, 0.1440)′. Similarly,

we obtain E[Ptct] = (0.0705, 0.0986, 0.0929)′. Moreover,

K1 = E−1[PtP
′
t]E[Pt] = (1.0580,−0.1207, 1.1052)′,

K2 = E−1[PtP
′
t]E[Ptqt] = (−0.2398, 0.4374, 1.7446)′,

K3 = E−1[PtP
′
t]E[Ptct] = (0.8152, 0.2481, 0.5390)′.

By interior point algorithm of “fmincon” with the initial point λ = (0.5, 0.5, 0.5, 0.5)′,

we can obtain λ∗ = (0, 0.082, 0, 0)′. According to Theorem 1, we can derive the optimal

strategy of problem (3) as follows

π∗0 = −1.05(x0 − 3.3047)K1 + 1.1877K2l0 −K3,

π∗1 = −1.05(x1 − 3.8005)K1 + 1.1335K2l1 −K3,

π∗2 = −1.05(x2 − 4.3634)K1 + 1.0979K2l2 −K3,

π∗3 = −1.05(x3 − 4.9122)K1 + 1.0478K2l3 −K3,

π∗4 = −1.05(x4 − 5.4884)K1 + 1.0000K2l4 −K3.

The terminal optimal expected expectation and variance of the surplus are E[x5 − l5] =

5.2628 and Var(x5−l5) = 1.8843, respectively. In addition, the expectations and variances

of the surplus at other periods are also given in Table 3.
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Table 3: The expectations and variances of the surplus

t 1 2 3 4

λt 0 0.082 0 0

E[xt − lt] 2.6714 3.3233 3.9767 4.6215

Var(xt − lt) 0.6431 1.1044 1.4567 1.7069

Var(xt − lt)− at
(
E[xt − lt]

)2
-0.0706 0 -0.1247 -0.4289

Table 4 and Table 5 present the impact of the risk aversion factor w and the probability

of bankruptcy at on the the expectations and variances of the surplus, respectively. In

Table 4, we choose at = 0.1 and w from 0.5 to 8 with a step size 0.5. In Table 5, w is fixed

to 5 and at changes from 0.1 to 0.25 with a step size 0.01. We can see from the two tables

that when w and at increase respectively, both the final expectation and variance of the

surplus increase. Since both of the parmeters w and at represent the risk, these results

are coincident with the real financial market as the empirical example in subsection 4.1.

Table 4: The impact of w (at = 0.1)

w 0.5 1 1.5 2 2.5 3 3.5 4

E[xT − lT ] 4.7215 5.2628 5.5301 5.7018 5.8573 5.9589 6.0273 6.0956

Var(xT − lT ) 1.4880 1.8843 2.2183 2.5154 2.8652 3.1395 3.3616 3.6178

w 4.5 5 5.5 6 6.5 7 7.5 8

E[xT − lT ] 6.1639 6.2322 6.3005 6.3688 6.4371 6.5054 6.5737 6.6420

Var(xT − lT ) 3.9082 4.2326 4.5912 4.9839 5.4108 5.8718 6.3670 6.8963

Table 5: The impact of at (w = 5)

at 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17

E[xT − lT ] 6.2322 6.4977 6.7388 6.9663 7.1854 7.3984 7.5791 7.7151

Var(xT − lT ) 4.2326 4.6992 5.1977 5.7342 6.3125 6.9352 7.4606 7.8021

at 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25

E[xT − lT ] 7.8491 7.9815 8.1129 8.2436 8.3740 8.5024 8.5750 8.6472

Var(xT − lT ) 8.1636 8.5458 8.9498 9.3764 9.8266 10.2922 10.4957 10.7069
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4.2.2. Uncorrelation example

In this subsection, assume that the returns of the assets, liability and cash flow are

uncorrelated. Hence,

Cov


Pt

qt

ct


 =

 Cov(Pt) Cov(qt,Pt) Cov(ct,Pt)

Cov(qt,P
′
t) Var(qt) Cov(qt, ct)

Cov(ct,P
′
t) Cov(qt, ct) Var(ct)



=


0.0342 0.0355 0.0351 0 0

0.0355 0.0900 0.0540 0 0

0.0351 0.0540 0.0576 0 0

0 0 0 0.04 0

0 0 0 0 0.4516

 � 0.

By interior point algorithm of “fmincon” with the initial point λ = (0.5, 0.5, 0.5, 0.5)′,

we can obtain λ∗ = (0, 1.1829, 0, 0)′. According to Theorem 1, we can derive the optimal

strategy of problem (3) as follows

π∗0 = −1.05(x0 − 3.9938 + 1.1558l0)K1,

π∗1 = −1.05(x1 − 4.5631 + 1.1032l1)K1,

π∗2 = −1.05(x2 − 5.4046 + 1.1498l2)K1,

π∗3 = −1.05(x3 − 6.0443 + 1.0975l3)K1,

π∗4 = −1.05(x4 − 6.7161 + 1.0476l4)K1.

Remark 6. From the above numerical results, we find that the optimal investment strat-
egy depends on K1,K2 and K3 for the correlated case but the optimal investment strategy
only depends on K1 for the uncorrelated case. In fact, K1 = ζk = E−1[PtP

′
t]E[Pt],

K2 = ξk = E−1[PtP
′
t]E[Ptqt] and K3 = χk = E−1[PtP

′
t]E[ctPt] are the three mutual

funds. As stated in Remark 3 and Remark 4 in Section 3, the three-fund separation the-
orem holds and the optimal strategy can be expressed as a line function of three mutual
funds for the correlated case; however, for the uncorrelated case, the one-fund separation
theorem holds and the optimal strategy can be expressed as a line function of only one
mutual fund.

The expectation and variance of the terminal optimal surplus are E[x5− l5] = 5.5519

and Var(x5 − l5) = 2.4118, respectively. In addition, the expectations and variances of

the surplus at other periods are given in Table 6.
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Table 6: The expectations and variances of the surplus

t 1 2 3 4

λt 0 1.1829 0 0

E[xt − lt] 2.6637 3.3249 4.0694 4.8100

Var(xt − lt) 0.6046 1.1055 1.6267 2.0510

Var(xt − lt)− at
(
E[xt − lt]

)2
-0.1049 0 -0.0294 -0.2626

In the following, we give two tables to show the impact of w and at when the returns of

assets and liability and cash flow are all uncorrelated. That is, ρ = (ρ1, ρ2, ρ3) = ρc =

(ρ1c, ρ2c, ρ3c) = (0, 0, 0) and ρqc = 0. It is easy to see that the results are similar with

that of correlated case in the last subsection.

Table 7: The impact of w (at = 0.1)

w 0.5 1 1.5 2 2.5 3 3.5 4

E[xT − lT ] 5.2249 5.5519 5.7484 5.9037 6.0421 6.1104 6.1787 6.2470

Var(xT − lT ) 2.1789 2.4118 2.6510 2.9229 3.2307 3.4185 3.6405 3.8967

w 4.5 5 5.5 6 6.5 7 7.5 8

E[xT − lT ] 6.3153 6.3836 6.4519 6.5202 6.5885 6.6568 6.7251 6.7934

Var(xT − lT ) 4.1869 4.5114 4.8699 5.2626 5.6895 6.1505 6.6456 7.1749

Table 8: The impact of at (w = 5)

at 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17

E[xT − lT ] 6.3836 6.8327 7.1548 7.4368 7.6981 7.9406 8.1000 8.2539

Var(xT − lT ) 4.5114 5.1664 5.7902 6.4430 7.1382 7.8548 8.2302 8.6268

at 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25

E[xT − lT ] 8.4041 8.5515 8.6969 8.8409 8.9687 9.0482 9.1269 9.2050

Var(xT − lT ) 9.0457 9.4882 9.9553 10.4483 10.8911 11.1108 11.3389 11.5758

Remark 7. From the numerical results between Tables 3-5 and Tables 6-8, we find that
both the E[xT − lT ] and Var(xT − lT ) in the uncorrelated case are greater than those in
the correlated case. This mean that, in the uncorrelated market, the investor will become
more radical, he is willing to take on greater risks to get a higher return.
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5. Conclusion

In this paper, we consider a multi-period asset-liability mean-variance portfolio selec-

tion problem with probability constraints and cash flows. Using mean-field formulation,

the analytical optimal strategy and efficient frontier are strictly derived. The numerical

examples show how to apply the theoretical results. We also present the impact of the

risk aversion fact and bankruptcy probability on the expectation and variance of the

terminal surplus via numerical examples, which coincides with the real life.

Appendix A

Appendix A.1. Lemmas 1 and 2

In this appendix, we present some lemmas which are useful for us to prove the The-

orem 1 in this paper.

Lemma 1 (Sherman-Morrison formula). Suppose that A is an invertible square ma-
trix and µ and ν are two given vectors. If

1 + ν ′A−1µ 6= 0,

then the following holds

(A+ µν ′)−1 = A−1 − A−1µν ′A−1

1 + ν ′A−1µ
.

Lemma 2. Suppose that z1 6= 0, z2 6= 0 and z1(1−Bt) + z2Bt 6= 0 hold. Then

(i)
(
z1E[PtP

′
t]−

(
z1 − z2

)
E[Pt]E[P′t]

)−1

E[Pt] =
1

z1(1−Bt) + z2Bt

E−1[PtP
′
t]E[Pt];

(ii)
(
z1E[PtP

′
t]−

(
z1 − z2

)
E[Pt]E[P′t]

)−1

E[Ptqt]

=

(
1− z2

z1

)
B̂t

z1(1−Bt) + z2Bt

E−1[PtP
′
t]E[Pt] +

1

z1

E−1[PtP
′
t]E[Ptqt];

(iii)
(
z1E[PtP

′
t]−

(
z1 − z2

)
E[Pt]E[P′t]

)−1

E[Ptct]

=

(
1− z2

z1

)
B̂Ct

z1(1−Bt) + z2Bt

E−1[PtP
′
t]E[Pt] +

1

z1

E−1[PtP
′
t]E[Ptct];

(iv) E[P′t]
(
z1E[PtP

′
t]−

(
z1 − z2

)
E[Pt]E[P′t]

)−1

E[Ptqt] =
B̂t

z1(1−Bt) + z2Bt

;
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(v) E[P′t]
(
z1E[PtP

′
t]−

(
z1 − z2

)
E[Pt]E[P′t]

)−1

E[Ptct] =
B̂Ct

z1(1−Bt) + z2Bt

;

(vi) E[qtP
′
t]
(
z1E[PtP

′
t]−

(
z1 − z2

)
E[Pt]E[P′t]

)−1

E[Ptqt] =
1− z2

z1

z1(1−Bt) + z2Bt

B̂2
t +

1

z1

B̃t;

(vii) E[ctP
′
t]
(
z1E[PtP

′
t]−

(
z1 − z2

)
E[Pt]E[P′t]

)−1

E[Ptct] =
1− z2

z1

z1(1−Bt) + z2Bt

B̂C
2

t +
1

z1

B̃Ct.

Proof. (i) Applying Sherman-Morrison formula yields(
z1E[PtP

′
t]−

(
z1 − z2

)
E[Pt]E[P′t]

)−1

E[Pt]

=

(
z−1

1 E−1[PtP
′
t] +

z−1
1 E−1[PtP

′
t](z1 − z2)E[Pt]E[P′t]z

−1
1 E−1[PtP

′
t]

1− z−1
1 (z1 − z2)E[P′t]E−1[PtP′t]E[Pt]

)
E[Pt]

=
1

z1(1−Bt) + z2Bt

E−1[PtP
′
t]E[Pt].

(ii) Applying Sherman-Morrison formula yields(
z1E[PtP

′
t]−

(
z1 − z2

)
E[Pt]E[P′t]

)−1

E[Ptqt]

=

(
z−1

1 E−1[PtP
′
t] +

z−1
1 E−1[PtP

′
t](z1 − z2)E[Pt]E[P′t]z

−1
1 E−1[PtP

′
t]

1− z−1
1 (z1 − z2)E[P′t]E−1[PtP′t]E[Pt]

)
E[Ptqt]

=

(
1− z2

z1

)
B̂t

z1(1−Bt) + z2Bt

E−1[PtP
′
t]E[Pt] +

1

z1

E−1[PtP
′
t]E[Ptqt].

(iii) Applying Sherman-Morrison formula yields(
z1E[PtP

′
t]−

(
z1 − z2

)
E[Pt]E[P′t]

)−1

E[ctPt]

=

(
z−1

1 E−1[PtP
′
t] +

z−1
1 E−1[PtP

′
t](z1 − z2)E[Pt]E[P′t]z

−1
1 E−1[PtP

′
t]

1− z−1
1 (z1 − z2)E[P′t]E−1[PtP′t]E[Pt]

)
E[ctPt]

=

(
1− z2

z1

)
B̂Ct

z1(1−Bt) + z2Bt

E−1[PtP
′
t]E[Pt] +

1

z1

E−1[PtP
′
t]E[ctPt].

(iv) Applying the above (ii) yields

E[P′t]
(
z1E[PtP

′
t]−

(
z1 − z2

)
E[Pt]E[P′t]

)−1

E[Ptqt]

=

(
1− z2

z1

)
B̂t

z1(1−Bt) + z2Bt

Bt +
1

z1

B̂t

=
B̂t

z1(1−Bt) + z2Bt

.
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(v) Applying the above (iii) yields

E[P′t]
(
z1E[PtP

′
t]−

(
z1 − z2

)
E[Pt]E[P′t]

)−1

E[Ptct]

=

(
1− z2

z1

)
B̂Ct

z1(1−Bt) + z2Bt

Bt +
1

z1

B̂Ct

=
B̂Ct

z1(1−Bt) + z2Bt

.

(vi) Applying the above (ii) yields

E[qtP
′
t]
(
z1E[PtP

′
t]−

(
z1 − z2

)
E[Pt]E[P′t]

)−1

E[Ptqt]

=

(
1− z2

z1

)
B̂t

z1(1−Bt) + z2Bt

B̂t +
1

z1

B̃t

=
1− z2

z1

z1(1−Bt) + z2Bt

B̂2
t +

1

z1

B̃t.

(vii) Applying the above (iii) yields

E[ctP
′
t]
(
z1E[PtP

′
t]−

(
z1 − z2

)
E[Pt]E[P′t]

)−1

E[Ptct]

=

(
1− z2

z1

)
B̂Ct

z1(1−Bt) + z2Bt

B̂Ct +
1

z1

B̃Ct

=
1− z2

z1

z1(1−Bt) + z2Bt

B̂C
2

t +
1

z1

B̃Ct.

This completes the proof. �

Appendix A.2: The Proof of Theorem 1

Proof. We prove the main results by dynamic programming approach. For the informa-

tion set Ft, the cost-to-go functional at period t is calculated by

Jt(E[xt], xt − E[xt],E[lt], lt − E[lt])

= min
{πt−E[πt],E[πt]}

E
[
Jt+1

(
E[xt+1], xt+1 − E[xt+1],E[lt+1], lt+1 − E[lt+1]

)∣∣Ft]
+ λt

(
xt − lt − E[xt − lt]

)2 − λtat
(
E[xt − lt]

)2
.

The cost-to-go functional at terminal time T is

JT
(
E[xT ], xT − E[xT ],E[lT ], lT − E[lT ]

)
=
(
xT − lT − E[xT − lT ]

)2 − wE
[
xT − lT

]
= ξT

(
xT − E[xT ]

)2
+ 2ηT

(
lT − E[lT ]

)(
xT − E[xT ]

)
+ εT

(
lT − E[lT ]

)2

+ βT (E[xT ])2 + ζTE[xT ] + 2φTE[lT ]E[xT ] + θTE[lT ] + δT (E[lT ])2 + ψT .
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Assume that the cost-to-go functional at time t+ 1 is the following expression

Jt+1

(
E[xt+1], xt+1 − E[xt+1],E[lt+1], lt+1 − E[lt+1]

)
= ξt+1

(
xt+1 − E[xt+1]

)2
+ 2ηt+1

(
lt+1 − E[lt+1]

)(
xt+1 − E[xt+1]

)
+ εt+1

(
lt+1 − E[lt+1])2

+βt+1(E[xt+1])2 + ζt+1E[xt+1] + 2φt+1E[lt+1]E[xt+1] + θt+1E[lt+1] + δt+1(E[lt+1])2 + ψt+1.

We prove that the above statement still holds at time t. For given information set Ft,
we have

E
[
Jt+1

(
E[xt+1], xt+1 − E[xt+1],E[lt+1], lt+1 − E[lt+1]

)∣∣Ft]
= E

[
ξt+1

[
st
(
xt − E[xt]

)
+ P′t

(
πt − E[πt]

)
+
(
P′t − E[P′t]

)
E[πt] +

(
ct − E[ct]

)]2

+ 2ηt+1

[
qt
(
lt − E[lt]

)
+
(
qt − E[qt]

)
E[lt]

]
×
[
st
(
xt − E[xt]

)
+ P′t

(
πt − E[πt]

)
+
(
P′t − E[P′t]

)
E[πt] +

(
ct − E[ct]

)]
+ εt+1

[
qt(lt − E[lt]) + (qt − E[qt])E[lt]

]2
+ βt+1

(
stE[xt] + E[P′t]E[πt] + E[ct]

)2

+ ζt+1

(
stE[xt] + E[P′t]E[πt] + E[ct]

)
+ 2φt+1E[qt]E[lt]

(
stE[xt] + E[P′t]E[πt] + E[ct]

)
+ θt+1E[qt]E[lt] + δt+1(E[qt]E[lt])

2 + ψt+1

∣∣∣∣Ft]
= ξt+1

[
s2
t

(
xt − E[xt]

)2
+
(
πt − E[πt]

)′E[PtP
′
t]
(
πt − E[πt]

)
+ 2st

(
xt − E[xt]

)
E[P′t]

(
πt − E[πt]

)
+ E[π′t]

(
E[PtP

′
t]− E[Pt]E[P′t]

)
E[πt]

+ 2
(
πt − E[πt]

)′(E[PtP
′
t]− E[Pt]E[P′t]

)
E[πt] + 2

(
E[ctP

′
t]− E[ct]E[P′t]

)(
πt − E[πt]

)
+ 2
(
E[ctP

′
t]− E[ct]E[P′t]

)
E[πt] + E[(ct − E[ct])

2]
]

+ 2ηt+1

[
stE[qt]

(
lt − E[lt]

)(
xt − E[xt]

)
+ E[qtP

′
t]
(
lt − E[lt]

)(
πt − E[πt]

)
+
(
E[qtP

′
t]− E[qt]E[P′t]

)(
E[lt]

(
πt − E[πt]

)
+
(
lt − E[lt]

)
E[πt] + E[lt]E[πt]

)
+
(
E[qtct]− E[qt]E[ct]

)((
lt − E[lt]

)
+ E[lt]

)]
+ εt+1

[
E[q2

t ](lt − E[lt])
2 + 2(E[q2

t ]− (E[qt])
2)(lt − E[lt])E[lt] + (E[q2

t ]− (E[qt])
2)(E[lt])

2
]

+ βt+1

[
s2
t

(
E[xt]

)2
+ 2stE[xt]E[P′t]E[πt] + E[π′t]E[Pt]E[P′t]E[πt]

+ 2stE[ct]E[xt] + 2E[ct]E[P′t]E[πt] +
(
E[ct]

)2
]

+ ζt+1

(
stE[xt] + E[P′t]E[πt] + E[ct]

)
+ 2φt+1E[qt]E[lt]

(
stE[xt] + E[P′t]E[πt] + E[ct]

)
+ θt+1E[qt]E[lt] + δt+1(E[qt]E[lt])

2 + ψt+1.

25



Since any admissible strategy of (E[πt], πt − E[πt]) satisfies E[πt − E[πt]] = 0 and E[lt −
E[lt]] = 0 holds, we have

E
[(
πt − E[πt]

)′(E[PtP
′
t]− E[Pt]E[P′t]

)
E[πt]

∣∣∣F0

]
= 0,

E
[(
E[qtP

′
t]− E[qt]E[P′t]

)
E[lt]

(
πt − E[πt]

)∣∣∣F0

]
= 0,

E
[(
E[ctP

′
t]− E[ct]E[P′t]

)(
πt − E[πt]

)∣∣∣F0

]
= 0,

E
[(
E[qtP

′
t]− E[qt]E[P′t]

)(
lt − E[lt]

)
E[πt]

∣∣∣F0

]
= 0,

E
[
(E[q2

t ]− (E[qt])
2)(lt − E[lt])E[lt]

∣∣∣F0

]
= 0.

We first identify the optimal solution (E[π∗t ], π
∗
t − E[π∗t ]) by minimizing the following

equivalent cost functional,

E
[
Jt+1

(
E[xt+1], xt+1 − E[xt+1],E[lt+1], lt+1 − E[lt+1]

)∣∣Ft]
= ξt+1

[
s2
t

(
xt − E[xt]

)2
+
(
πt − E[πt]

)′E[PtP
′
t]
(
πt − E[πt]

)
+ 2st

(
xt − E[xt]

)
E[P′t]

(
πt − E[πt]

)
+ E[π′t]

(
E[PtP

′
t]− E[Pt]E[P′t]

)
E[πt]

+ 2
(
E[ctP

′
t]− E[ct]E[P′t]

)
E[πt] + E[(ct − E[ct])

2]
]

+ 2ηt+1

[
stE[qt]

(
lt − E[lt]

)(
xt − E[xt]

)
+ E[qtP

′
t]
(
lt − E[lt]

)(
πt − E[πt]

)
+
(
E[qtP

′
t]− E[qt]E[P′t]

)
E[lt]E[πt] +

(
E[qtct]− E[qt]E[ct]

)
E[lt]

]
+ εt+1

[
E[q2

t ](lt − E[lt])
2 + (E[q2

t ]− (E[qt])
2)(E[lt])

2
]

+ βt+1

[
s2
t

(
E[xt]

)2
+ 2stE[xt]E[P′t]E[πt] + E[π′t]E[Pt]E[P′t]E[πt]

+ 2stE[ct]E[xt] + 2E[ct]E[P′t]E[πt] +
(
E[ct]

)2
]

+ ζt+1

(
stE[xt] + E[P′t]E[πt] + E[ct]

)
+ 2φt+1E[qt]E[lt]

(
stE[xt] + E[P′t]E[πt] + E[ct]

)
+ θt+1E[qt]E[lt] + δt+1(E[qt]E[lt])

2 + ψt+1

= ξt+1

[
s2
t

(
xt − E[xt]

)2
+
(
πt − E[πt]

)′E[PtP
′
t]
(
πt − E[πt]

)
+ 2st

(
xt − E[xt]

)
E[P′t]

(
πt − E[πt]

)]
+ E[π′t]

(
ξt+1E[PtP

′
t]− (ξt+1 − βt+1)E[Pt]E[P′t]

)
E[πt] + 2ξt+1

(
E[ctP

′
t]− E[ct]E[P′t]

)
E[πt]

+ 2ηt+1

[
stE[qt]

(
lt − E[lt]

)(
xt − E[xt]

)
+ E[qtP

′
t]
(
lt − E[lt]

)(
πt − E[πt]

)
+
(
E[qtP

′
t]− E[qt]E[P′t]

)
E[lt]E[πt] +

(
E[qtct]− E[qt]E[ct]

)
E[lt]

]

26



+ εt+1

[
E[q2

t ](lt − E[lt])
2 + (E[q2

t ]− (E[qt])
2)(E[lt])

2
]

+ ξt+1E[(ct − E[ct])
2]

+ βt+1

[
s2
t

(
E[xt]

)2
+ 2stE[xt]E[P′t]E[πt] + 2stE[ct]E[xt] + 2E[ct]E[P′t]E[πt] +

(
E[ct]

)2
]

+ ζt+1

(
stE[xt] + E[P′t]E[πt] + E[ct]

)
+ 2φt+1E[qt]E[lt]

(
stE[xt] + E[P′t]E[πt] + E[ct]

)
+ θt+1E[qt]E[lt] + δt+1(E[qt]E[lt])

2 + ψt+1.

It is easy to see that π∗t − E[π∗t ] can be expressed by the linear form of states and their

expected states, and E[π∗t ] can be constructed by the linear form of the expected states,

i.e.,

π∗t − E[π∗t ] =− E−1[PtP
′
t]E[Pt]st

(
xt − E[xt]

)
− ηt+1

ξt+1

E−1[PtP
′
t]E[Ptqt]

(
lt − E[lt]

)
, (14)

E[π∗t ] = −
(
ξt+1E[PtP

′
t]− (ξt+1 − βt+1)E[Pt]E[P′t]

)−1
(
βt+1stE[xt]E[Pt] + ξt+1E[ctPt]

+
((
βt+1 − ξt+1

)
E[ct] +

1

2
ζt+1

)
E[Pt] + φt+1E[qt]E[Pt]E[lt]

+ ηt+1

(
E[Ptqt]− E[qt]E[Pt]

)
E[lt]

)
= −

(
ξt+1E[PtP

′
t]− (ξt+1 − βt+1)E[Pt]E[P′t]

)−1
(
Kt+1,1E[Pt]E[xt]

+Kt+1,2E[Pt]E[lt] +Kt+1,3E[Ptqt]E[lt] +Kt+1,4E[Pt] +Kt+1,5E[ctPt]

)
= − E−1[PtP

′
t]E[Pt]

1

ξt+1(1−Bt) + βt+1Bt

(
βt+1stE[xt] +

(
βt+1 − ξt+1

)
E[ct]

+
1

2
ζt+1 + (ξt+1 − βt+1)B̂Ct + φt+1E[qt]E[lt] + ηt+1

(
(1− βt+1

ξt+1

)B̂t − E[qt]
)
E[lt]

)
− E−1[PtP

′
t]E[ctPt]−

ηt+1

ξt+1

E−1[PtP
′
t]E[Ptqt]E[lt], (15)

where 

Kt+1,1 = βt+1st,

Kt+1,2 =
(
φt+1 − ηt+1

)
E[qt],

Kt+1,3 = ηt+1,

Kt+1,4 =
(
βt+1 − ξt+1

)
E[ct] + 1

2
ζt+1,

Kt+1,5 = ξt+1.

Hence, combining with (14) and (15), we derive the desired result (8).

In order to get the explicit expression of the cost-to-go functional at time t, we substi-

tute π∗t −E[π∗t ] and E[π∗t ] back to E
[
Jt+1

(
E[xt+1], xt+1−E[xt+1],E[lt+1], lt+1−E[lt+1]

)∣∣Ft],
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and further derive

Jt
(
E[xt], xt − E[xt],E[lt], lt − E[lt]

)
= min
{πt−E[πt],E[πt]}

E
[
Jt+1

(
E[xt+1], xt+1 − E[xt+1],E[lt+1], lt+1 − E[lt+1]

)∣∣Ft]
+ λt

(
xt − lt − E[xt − lt]

)2 − λtat
(
E[xt − lt]

)2

= ξt+1s
2
t

(
xt − E[xt]

)2
+ 2ηt+1stE[qt]

(
lt − E[lt]

)(
xt − E[xt]

)
+ βt+1s

2
t

(
E[xt]

)2

+
(
2βt+1E[ct] + ζt+1

)
stE[xt] +

(
θt+1E[qt] + 2ηt+1(E[qtct]− E[qt]E[ct]) + 2φt+1E[qt]E[ct]

)
E[lt]

+ εt+1

[
E[q2

t ](lt − E[lt])
2 + (E[q2

t ]− (E[qt])
2)(E[lt])

2
]

+ 2φt+1stE[qt]E[lt]E[xt]

+ βt+1

(
E[ct]

)2
+ ζt+1E[ct] + δt+1(E[qt]E[lt])

2 + ξt+1E[(ct − E[ct])
2] + ψt+1

− ξt+1

[
− E[Pt]st

(
xt − E[xt]

)
− ηt+1

ξt+1

E[Ptqt]
(
lt − E[lt]

)]′
× E−1[PtP

′
t]
[
− E[Pt]st

(
xt − E[xt]

)
− ηt+1

ξt+1

E[Ptqt]
(
lt − E[lt]

)]
−
[
Kt+1,1E[Pt]E[xt] +Kt+1,2E[Pt]E[lt] +Kt+1,3E[Ptqt]E[lt] +Kt+1,4E[Pt] +Kt+1,5E[ctPt]

]′
×
(
ξt+1E[PtP

′
t]− (ξt+1 − βt+1)E[Pt]E[P′t]

)−1

×
[
Kt+1,1E[Pt]E[xt] +Kt+1,2E[Pt]E[lt] +Kt+1,3E[Ptqt]E[lt] +Kt+1,4E[Pt] +Kt+1,5E[ctPt]

]
+ λt

(
xt − lt − E[xt − lt]

)2 − λtat
(
E[xt − lt]

)2

= ξt+1s
2
t (1−Bt)

(
xt − E[xt]

)2
+ 2ηt+1st(E[qt]− B̂t)

(
lt − E[lt]

)(
xt − E[xt]

)
+
(
εt+1E[q2

t ]−
η2
t+1

ξt+1

B̃t

)
(lt − E[lt])

2 + βt+1s
2
t

(
E[xt]

)2

+
(
2βt+1E[ct] + ζt+1

)
stE[xt] +

(
θt+1E[qt] + 2ηt+1(E[qtct]− E[qt]E[ct]) + 2φt+1E[qt]E[ct]

)
E[lt]

+ εt+1(E[q2
t ]− (E[qt])

2)(E[lt])
2 + 2φt+1stE[qt]E[lt]E[xt]

+ βt+1

(
E[ct]

)2
+ ζt+1E[ct] + δt+1(E[qt]E[lt])

2 + ξt+1E[(ct − E[ct])
2] + ψt+1

− Bt

ξt+1(1−Bt) + βt+1Bt

K2
t+1,1

(
E[xt]

)2 − Bt

ξt+1(1−Bt) + βt+1Bt

K2
t+1,2

(
E[lt]

)2

−
( (1− βt+1

ξt+1
)B̂2

t

ξt+1(1−Bt) + βt+1Bt

+
1

ξt+1

B̃t

)
K2
t+1,3

(
E[lt]

)2 − Bt

ξt+1(1−Bt) + βt+1Bt

K2
t+1,4

−
( (1− βt+1

ξt+1
)B̂C

2

t

ξt+1(1−Bt) + βt+1Bt

+
1

ξt+1

B̃Ct

)
K2
t+1,5 −

2Bt

ξt+1(1−Bt) + βt+1Bt

Kt+1,1Kt+1,2E[lt]E[xt]

− 2B̂t

ξt+1(1−Bt) + βt+1Bt

Kt+1,1Kt+1,3E[lt]E[xt]−
2Bt

ξt+1(1−Bt) + βt+1Bt

Kt+1,1Kt+1,4E[xt]
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− 2B̂Ct

ξt+1(1−Bt) + βt+1Bt

Kt+1,1Kt+1,5E[xt]−
2B̂t

ξt+1(1−Bt) + βt+1Bt

Kt+1,2Kt+1,3

(
E[lt]

)2

− 2Bt

ξt+1(1−Bt) + βt+1Bt

Kt+1,2Kt+1,4E[lt]−
2B̂Ct

ξt+1(1−Bt) + βt+1Bt

Kt+1,2Kt+1,5E[lt]

− 2B̂t

ξt+1(1−Bt) + βt+1Bt

Kt+1,3Kt+1,4E[lt]− 2
( (1− βt+1

ξt+1
)B̂tB̂Ct

ξt+1(1−Bt) + βt+1Bt

+
1

ξt+1

BCt

)
Kt+1,3Kt+1,5E[lt]

− 2B̂Ct

ξt+1(1−Bt) + βt+1Bt

Kt+1,4Kt+1,5 + λt
(
xt − lt − E[xt − lt]

)2 − λtat
(
E[xt − lt]

)2
.

Also, we have

Jt
(
E[xt], xt − E[xt],E[lt], lt − E[lt]

)
=
(
ξt+1s

2
t (1−Bt) + λt

)(
xt − E[xt]

)2

+ 2
(
ηt+1st(E[qt]− B̂t)− λt

)(
lt − E[lt]

)(
xt − E[xt]

)
+
(
εt+1E[q2

t ]−
η2
t+1

ξt+1

B̃t + λt

)
(lt − E[lt])

2

+
(
βt+1s

2
t −

Bt

ξt+1(1−Bt) + βt+1Bt

K2
t+1,1 − λtat

)(
E[xt]

)2

+
[(

2βt+1E[ct] + ζt+1

)
st −

2Bt

ξt+1(1−Bt) + βt+1Bt

Kt+1,1Kt+1,4

− 2B̂Ct

ξt+1(1−Bt) + βt+1Bt

Kt+1,1Kt+1,5

]
E[xt]

+ 2
[
φt+1stE[qt]−

Bt

ξt+1(1−Bt) + βt+1Bt

Kt+1,1Kt+1,2

− B̂t

ξt+1(1−Bt) + βt+1Bt

Kt+1,1Kt+1,3 + λtat

]
E[lt]E[xt]

+
[
θt+1E[qt] + 2ηt+1(E[qtct]− E[qt]E[ct]) + 2φt+1E[qt]E[ct]

− 2Bt

ξt+1(1−Bt) + βt+1Bt

Kt+1,2Kt+1,4 −
2B̂Ct

ξt+1(1−Bt) + βt+1Bt

Kt+1,2Kt+1,5

− 2B̂t

ξt+1(1−Bt) + βt+1Bt

Kt+1,3Kt+1,4 − 2
( (1− βt+1

ξt+1
)B̂tB̂Ct

ξt+1(1−Bt) + βt+1Bt

+
1

ξt+1

BCt

)
Kt+1,3Kt+1,5

]
E[lt]
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+

[
δt+1

(
E[qt]

)2
+ εt+1

(
E[q2

t ]− (E[qt])
2
)
− Bt

ξt+1(1−Bt) + βt+1Bt

K2
t+1,2

−
( (1− βt+1

ξt+1
)B̂2

t

ξt+1(1−Bt) + βt+1Bt

+
1

ξt+1

B̃t

)
K2
t+1,3 −

2B̂t

ξt+1(1−Bt) + βt+1Bt

Kt+1,2Kt+1,3 − λtat
](
E[lt]

)2

+ βt+1

(
E[ct]

)2
+ ζt+1E[ct] + ξt+1E[(ct − E[ct])

2] + ψt+1

− Bt

ξt+1(1−Bt) + βt+1Bt

K2
t+1,4 −

( (1− βt+1

ξt+1
)B̂C

2

t

ξt+1(1−Bt) + βt+1Bt

+
1

ξt+1

B̃Ct

)
K2
t+1,5

− 2B̂Ct

ξt+1(1−Bt) + βt+1Bt

Kt+1,4Kt+1,5

= ξt
(
xt − E[xt]

)2
+ 2ηt

(
lt − E[lt]

)(
xt − E[xt]

)
+ εt

(
lt − E[lt]

)2

+ βt(E[xt])
2 + ζtE[xt] + 2φtE[lt]E[xt] + θtE[lt] + δt(E[lt])

2 + ψt.

This is the desired result of cost-to-fuctional (7). Substituting E[π∗t ] to dynamics of E[xt]

in (4) yields

E[xt+1] = stE[xt] + E[P′t]E[πt] + E[ct]

= stE[xt]−
1

ξt+1(1−Bt) + βt+1Bt

E[P′t]E−1[PtP
′
t]

(
βt+1stE[xt]E[Pt] + ξt+1E[ctPt]

+
((
βt+1 − ξt+1

)
E[ct] +

1

2
ζt+1

)
E[Pt] + φt+1E[qt]E[Pt]E[lt]

+ ηt+1

(
E[Ptqt]− E[qt]E[Pt]

)
E[lt]

)
+ E[ct]

=
ξt+1(1−Bt)st

ξt+1(1−Bt) + βt+1Bt

E[xt]−
φt+1E[qt]Bt + ηt+1

(
B̂t − E[qt]Bt

)
ξt+1(1−Bt) + βt+1Bt

E[lt]

−
(
βt+1 − ξt+1

)
E[ct]Bt + 1

2
ζt+1Bt

ξt+1(1−Bt) + βt+1Bt

− ξt+1B̂Ct

ξt+1(1−Bt) + βt+1Bt

+ E[ct]

=
ξt+1(1−Bt)st

ξt+1(1−Bt) + βt+1Bt

E[xt]−
φt+1E[qt]Bt + ηt+1

(
B̂t − E[qt]Bt

)
ξt+1(1−Bt) + βt+1Bt

E[lt]

+
ξt+1E[ct]− 1

2
ζt+1Bt

ξt+1(1−Bt) + βt+1Bt

− ξt+1B̂Ct

ξt+1(1−Bt) + βt+1Bt

, (16)

which implies the expression of E[xt] in (9).

Finally, we show that this optimal strategy satisfies the linear constraints. At time

0, E[π∗0 − E[π∗0]] = 0 is obvious due to x0 = E[x0] and l0 = E[l0]. Then, according to the

dynamic system of (5), we have E[x1 − E[x1]] = 0 and E[l1 − E[l1]] = 0, which further

implies E[π∗1 −E[π∗1]] = 0. Repeating this argument, we have E[π∗t −E[π∗t ]] = 0 holds for

all t. �
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Appendix B: Calculation for E[xt − lt] and Var(xt − lt)

It follows from (10) that we have

x2
t+1 = s2

tx
2
t + π′tPtP

′
tπt + c2

t + 2stxtP
′
tπt + 2stxtct + 2P′tπtct

= s2
tx

2
t + (Ht,1xt +Ht,2lt +Ht,3)′PtP

′
t(Ht,1xt +Ht,2lt +Ht,3) + c2

t

+ 2stxtP
′
t(Ht,1xt +Ht,2lt +Ht,3) + 2stxtct + 2P′tct(Ht,1xt +Ht,2lt +Ht,3)

and

xt+1lt+1 = (stxt + P′tπt + ct)ltqt

= stqtxtlt + P′tqtπtlt + qtctlt

= stqtxtlt + P′tqt(Ht,1xtlt +Ht,2l
2
t +Ht,3lt) + qtctlt.

Hence,

E[x2
t+1] = s2

t (1−Bt)E[x2
t ] +H ′t,2E[PtP

′
t]Ht,2E[l2t ] +H ′t,3E[PtP

′
t]Ht,3

+ 2H ′t,1E[PtP
′
t]Ht,2E[xtlt] + 2H ′t,1E[PtP

′
t]Ht,3E[xt] + 2H ′t,2E[PtP

′
t]Ht,3E[lt]

+ E[c2
t ] + 2stE[P′t]Ht,2E[xtlt] + 2stE[P′t]Ht,3E[xt] + 2stE[xt]E[ct]

+ 2E[ctP
′
t]Ht,1E[xt] + 2E[ctP

′
t]Ht,2E[lt] + 2E[ctP

′
t]Ht,3

= s2
t (1−Bt)E[x2

t ] +H ′t,2E[PtP
′
t]Ht,2E[l2t ] +H ′t,3E[PtP

′
t]Ht,3

+ 2H ′t,1E[PtP
′
t]Ht,2E[xtlt] + 2H ′t,1E[PtP

′
t]Ht,3E[xt] + 2H ′t,2E[PtP

′
t]Ht,3E[lt]

+ E[c2
t ] + 2stE[P′t]Ht,2E[xtlt] + 2stE[P′t]Ht,3E[xt] + 2stE[xt]E[ct] + 2E[ctP

′
t]E[πt]

and

E[xt+1lt+1] = stE[qt]E[xtlt] + E[P′tqt](Ht,1E[xtlt] +Ht,2E[l2t ] +Ht,3E[lt]) + E[qtct]E[lt],

=
(
stE[qt] + E[P′tqt]Ht,1

)
E[xtlt] + E[P′tqt]Ht,2E[l2t ] +

(
E[P′tqt]Ht,3 + E[qtct]

)
E[lt].

Moreover, we have

Var(xt+1 − lt+1)

= Var(xt+1)− 2Cov(xt+1, lt+1) + Var(lt+1)

= E[x2
t+1]−

(
E[xt+1]

)2 − 2
(
E[xt+1lt+1]− E[xt+1]E[lt+1]

)
+ E[l2t+1]−

(
E[lt+1]

)2
.

Thus, we can calculate E[xt − lt] and Var(xt − lt) for t = 1, 2, · · · , T − 1 by (16) and the

above formula.
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