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A parallel beamforming system with real-time
implementation

K.F.C. Yiu

Abstract For voice control applications, it is common to employ a micro-
phone array to enhance received signals via beamforming techniques. In de-
signing beamformers, different criteria will lead to different signal performance.
It is known that speech recognition accuracy relies heavily on the trade-off be-
tween signal distortion and noise reduction. In this paper, we propose a novel
beamformer structure which can give a continuous profile in signal distortion
and noise reduction. The proposed structure combines two existing optimal
beamformers to form the final filter. Moreover, since both optimal beamform-
ing filters can be executed in parallel, a method is proposed to implement the
noise reduction algorithm in the frequency domain. By studying the accuracy
and efficiency of different modules, a hybrid fixed-floating point arithmetic is
proposed within an FPGA hardware architecture to form an embedded system
for industrial applications.

1 Introduction

The Internet of Things is impacting on our daily life. A variety of sensors
are distributed in our environments and are also embedded in many electrical
and electronic equipment, which can be deployed for data collection. Many
researchers have explored sensor fusion techniques to detect and recognize ac-
tivities [1–4,6]. Smartphone sensors are particularly popular [5,7] for collecting
useful data. When microphone sensors are applied, acoustic signals can be col-
lected which can induce the development of voice input systems. Indeed, these
kind of systems have been widely applied in industry and everyday life, in-
cluding factory automation [8], robot control [9], voice telematics systems in

K.F.C. Yiu
Department of Applied Mathematics,
The Hong Kong Polytechnic University,
Hunghom, Kowloon, Hong Kong, PR China
Tel.: +852-34008981
E-mail: cedric.yiu@polyu.edu.hk

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use 
(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post- 
acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s11042-019-7590-8

This is the Pre-Published Version.



cars [10], and many other speech recognition devices including the iPhone siri
system. These advances play a part in modern cyber-physical systems with
multimedia applications [11–13]. For such applications, it is crucial to control
noise and to enhance the received signal. An essential technique is to employ
a microphone array so that beamforming techniques can be applied to filter
noise and enhance the speech signal.

Beamforming techniques exploit fundamental properties about spatial and/or
temporal distribution of both speech and noise sources in order to enhance per-
ception [15,16]. An example is the delay and sum beamformer where received
microphone signals are aligned in time to extract signals from the direction
of interest [17]. An alternative to the delay and sum beamformer is adaptive
beamforming, where noise signals from all directions are suppressed continu-
ously and adaptively, whilst the direction of interest is maintained at around
the same power level [18,19]. In situations where calibration signals can be
collected, certain optimal beamformer designs can be obtained as described in
[25,26]. More comprehensive review of beamforming techniques can be found
in [20,21].

When it comes to employ filtered signals for voice control, one needs to
concern about accuracy in the speech recognition and not much about the
actual speech quality. In fact, it was found that the trade-off between the level
of signal distortion and the level of noise suppression is the determining factor
in enhancing speech recognition accuracy for voice control devices [22–24]. In
most current beamformer designs, this bi-criteria requirement has not been
taken into account.

In this paper, the first contribution is to develop a beamforming algorithm
which can adjust for the level of signal distortion and noise suppression. We
explore the most commonly used optimal beamformer designs including least-
squares technique (LS) [27] and signal-to-noise ratio (SNR) [28]. It is known
that least-squares technique tends to concentrate on distortion control with
deficiency in noise suppression [29]. Similarly, using signal-to-noise ratio, dis-
tortion is usually significant, although high level of noise suppression can be
achieved. Here, we propose a novel parallel beamformer structure which com-
bines performance of both LS and SNR filters. We show that a continuous
speech quality profile can be constructed.

The second contribution of the paper is to design and develop a real-time
implementation for the proposed parallel beamforming system. In this way, if
both filters can be adaptive to the changing environment and give real-time
response. Since optimization algorithms for both filters are independent from
each other and they share a common structure, they can be implemented effi-
ciently if subband processing is employed. The structure of a subband proces-
sor consists of a multichannel analysis filter-bank and a set of adaptive filters,
each adapting on the subband signals. A synthesis filter-bank will gather sub-
band signals and re-create a time domain output signal. Adaptive algorithms
for the changing noise are executed continuously. For the design of the result-
ing embedded system, since we need to adapt two filters at the same time, in
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order to achieve real-time performance, it is advantageous to implement it on
a machine which allows massive parallelism.

The third contribution of the paper is the design and build a FPGA hard-
ware architecture to implement the proposed parallel beamformers. In general,
microprocessor is not fast enough and ASIC is too inflexible when the filter
coefficients are adaptively changing. FPGA is an excellent alternative for this
kind of implementation. In the literature, it has been reported the implemen-
tation of a time-delay sonar beamformer on reconfigured devices [30]. The
beamformer achieved six times speed up over dedicated DSP systems. An-
other beamformer implementation involves delta-sigma modulation, and the
beamformer is applied to medical ultrasonic application [31]. There are also
implementation for antenna signals [32] or for audio applications [33]. How-
ever, these studies do not consider subband processing and have not considered
parallel filter structure.

Indeed, the implementation on FPGA is not straightforward when we need
to maintain accuracy and achieve sufficient computational speedup. If the ar-
chitecture contains only fixed point arithmetic, we found that there are certain
steps producing excessive rounding errors. As a result, a novel hybrid fixed-
floating point arithmetic is proposed here where fixed point arithmetics are
applied mostly except for certain part of the calculations in which floating
point arithmetics are carried out due to rounding errors. Based on a careful
calibration on the required numerical operations, we show that required float-
ing point operations remain to be a very small proportion relative to fixed
point operations while maintaining accuracy in the final results. In addition,
optimization based on bitwidth analysis to explore suitable bitwidth of the sys-
tem is carried out. The optimized integer and fraction size using fixed point
arithmetic can reduce the overall circuit size by up to 80% when compared
with a direct realization of the software onto an FPGA platform. The perfor-
mance criteria based on distortion and noise reduction are employed to assess
the accuracy in the optimized system. In achieving computational speedup,
we identify common computational intensive operations for both filters and
design dedicated hardware accelerators to perform the most time consuming
part of the algorithm. The performance can be boosted further by optimizing
on the resource to pack multiple instances of the accelerators in a single large
FPGA. The acceleration is evaluated on a Virtex-4 platform, showing that the
FPGA-based implementation at 184MHz can achieve real-time performance
by processing a maximum of 27804 samples per second.

2 Formulation

Assume there are M elements in the microphone array. In general, signals
received by microphone elements can be represented by

xi(n) = si(n) + vi(n), i = 1, 2, · · · ,M, (1)
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where si(n) and vi(n) is the source signal and the noise signal, respectively.
Note that noise signal could include a sum of fixed point noise sources together
with a mixture of coherent and incoherent noise sources. The speech signal is
located near a uniform linear array of M microphones. Each microphone has
an FIR filter behind (Fig. 1). The output of the beamformer is given by

y(n) =

M∑
i=1

L−1∑
j=0

wi(j)xi(n− j) (2)

where L− 1 is the order of the FIR filters and wi(j), j = 0, 1, · · · , L− 1, are
the FIR filter taps for channel number i. Note that n denotes a continuous
stream of samples for signals and a block of samples for processing is taken to
be N . The signals, xi(n), are digitally sampled microphone observations and
the beamformer output signal is denoted by y(n).

Fig. 1 The beamformer structure

By using a subband beamforming scheme, each microphone signal is filtered
through a subband filter. A digital filter with the same impulse response is used
for all channels so that all spatial characteristics are kept. This means that a
large filtering problem is divided into a number of smaller problems and the
computational burden will become substantially lower.

The signal model can equivalently be described in the frequency domain
and the filtering operations will in this case become multiplications with num-

ber K complex frequency domain representation weights, w
(k)
i . For a specific

frequency, k, the output is given by

y(k)(n) =

M∑
i=1

w
(k)
i x

(k)
i (n) (3)

where the signals x
(k)
i (n) and y(k)(n) are narrow band signals containing es-

sentially components with frequency k. The observed microphone signals are
given in the same way as

x
(k)
i (n) = s

(k)
i (n) + v

(k)
i (n). (4)
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The objectives in subband levels are typically the following [34]:

maxw(k)

[
y(k)(n) ∼= s(k)(n)

]
minw(k)

∣∣∣∣∣∣∣∣ M∑
i=1

w
(k)
i v

(k)
i (n)

∣∣∣∣∣∣∣∣
∀k (5)

where
[
y(k)(n) ∼= s(k)(n)

]
refers to some measure of resemblance. There are

different ways to achieve these objectives, depending on the metric used for
the objective optimization. In the following sections, we deal with the specifi-
cations of some objective functions and their corresponding solutions .

3 First filter with least-squares criterion

If a least-squares criterion is used to measure the mismatch for each subband,
a least squares solution can be solved based on N samples. A calibration
sequence gathered in a quiet environment is used as the reference source signal.
This calibration signal (denoted by sr(n)) will represent the temporal and
spatial information about the source. The least-squares objective is

min
w(k)

{
N−1∑
n=0

[
|y(k)(n)− s(k)r (n)|2

]}
, (6)

which can be solved as

w
(k)
opt(N) =

[
R̂(k)
ss (N) + R̂(k)

xx (N)
]−1

r̂(k)s (N) (7)

where the real frequency f = Fsk/K, with Fs the sampling frequency and K

the total number of subbands, and where the array weight vector, w
(k)
opt for the

subband k is defined as

w
(k)
opt = [w

(k)
1 w

(k)
2 . . . w

(k)
M ]T . (8)

The source correlation estimates can be pre-calculated in the calibration phase
as

R̂(k)
ss (N) =

1

N

N−1∑
n=0

s(k)(n)s(k)
H

(n) (9)

r̂(k)s (N) =
1

N

N−1∑
n=0

s(k)(n)s(k)r

∗
(n) (10)

where the superscript ∗ denotes conjugation while the superscript H denotes
Hermitian transpose, and

s(k)[n] = [s
(k)
1 [n], s

(k)
2 [n], . . . , s

(k)
M [n]]T

are microphone observations when the calibration source signal is active alone,

while the observed data correlation matrix estimate R̂
(k)
xx (N) can be calculated

recursively from the received data.
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3.1 Adaptive algorithm

For each subband, the correlation matrix, R̂
(k)
ss , and the source signal cross

correlation vector, r̂
(k)
s , are estimated in the initialization phase using calibra-

tion signals. The observed data correlation matrix estimate can be decomposed
into the form: (

R̂(k)
ss (N) + R̂(k)

xx (N)
)

= Q(k)HΓ(k)Q(k)

where the eigenvectors are

Q(k) = [q
(k)
1 , q

(k)
2 , . . . q

(k)
I ]

and the eigenvalues are

Γ(k) = diag([γ
(k)
1 , γ

(k)
2 , . . . γ

(k)
I ]).

For each subband signal, k = 0, 1, · · · ,K − 1, where for each subband the
corresponding normalized frequency is f = 2πk/K and each sample instant n,

the observed microphone signals in subband number k are denoted x
(k)
i (n), i =

1, 2, · · · ,M . The number of available samples in the acquisition phase is N .
The algorithm can be stated as follows [34]:

With multiple sources being active simultaneously, for n = 1, 2, · · · , com-
pute

x
(k)
n = [x

(k)
1 (n), x

(k)
2 (n), . . . x

(k)
I (n)]T

P(k) = λ−1P
(k)
n−1 −

λ−2P
(k)
n−1x

(k)
n x(k)

n

H
P

(k)
n−1

1+λ−1x
(k)
n

H
P

(k)
n−1x

(k)
n

P
(k)
n = P(k) − γp(1−λ)P(k)q(k)

p q(k)
p

H
P(k)

1+γp(1−λ)q(k)
p

H
P(k)q

(k)
p

(11)

where index p = (nmodM) + 1,

w(k)
n = αw

(k)
n−1 + (1− α)P(k)

n r̂(k)s .

The output from each subband is

y(k)(n) = w(k)
n

H
x(k)
n .

In the operation phase, microphone signals are decomposed continuously into

frequency subbands. The inversion of the total correlation matrix (R̂
(k)
ss (N) +

R̂
(k)
xx (N)) and its subsequent update can be carried out sequentially by adding

a rank one correction to the matrix at each sample instant [35]. The filter
weights in each subband are then updated via a first order smoothing model.
The output from each subband signal is finally reconstructed using a recon-
struction filter-bank to yield an estimate of the sound source of interest. The
algorithm is adapting continuously once the correlation estimates are placed
into memory.
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4 Second filter with signal-to-noise criterion

By measuring the output signal-to-noise power ratio (SNR), it becomes max-
imizing a ratio between two quadratic forms of positive definite matrices as

wopt = arg max
w

{
wHRssw

wHRxxw

}
(12)

is referred to as the generalized eigenvector problem, [36]. The solution can be
found by solving the following relation

Rxx
−H/2RssRxx

−1/2vopt = λvopt (13)

and the final optimal weights are given by the inverse of the linear variable
transformation

wopt = Rxx
−1/2vopt. (14)

The formulation of the optimal signal-to-noise beamformer can be carried
out in each subband. The optimal weights can then be sought in the subband
level. For frequency subband k, the quadratic ratio between the output signal
power, and the output noise power is

w
(k)
opt = arg max

w(k)

{
w(k)HR

(k)
ss w(k)

w(k)HR
(k)
xxw(k)

}
(15)

where the superscript H denotes hermitian transpose and

R(k)
ss = E{s(k)(n)s(k)(n)

H
} (16)

in which

s(k)(n) =
[
s
(k)
1 (n) s

(k)
2 (n) . . . s

(k)
M (n)

]T
. (17)

Similarly, the observed data correlation matrix R
(k)
xx can be defined. We can

then employed Eq. (14) to find the optimal for each subband.

A well-known iterative method for finding the eigenvector v
(k)
opt correspond-

ing to the largest eigenvalue of the problem (13) for each frequency band f is
the power method, which makes use of the recursion

v
(k)
opt(p+ 1) =

Rxx
−HRssv

(k)
opt(p)

‖Rxx
−HRssv

(k)
opt(p)‖

, (18)

with an arbitrary initial vector v
(k)
opt(0). The eigenvector components will de-

cay in the order of pth power of the associated eigenvalues. Thus, as long as

the initial vector v
(k)
opt(0) has a component in the direction of the dominant

eigenvector, convergence to the desired solution will be guaranteed .
In finding the inverse of Rxx, a fast and accurate algorithm is required. If a

matrix is inverted using Gaussian elimination, a lot of if-branches are required
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to implement the pivoting, which is very expensive in hardware implementa-
tion. Another way is to use Cramer’s rule, which does not need pivoting and
requires only one division (calculation of the reciprocal of the determinant).
The steps are as follows:

1. Calculate all cofactors of the matrix and form a cofactor matrix.

2. Calculate the determinant of the given matrix.

3. Multiply the matrix obtained in step 2 by the reciprocal of the determi-
nant.

Comparing with Gaussian elimination, Cramer’s Rule should not be used for
large matrices due to a large number of multiplication operations in the process
of calculating the determinant and the cofactors. However, for inversion of
matrices with small dimensions, Cramer’s rule yields a performance gain. Since
subband matrices are generally rather small, we adopt the use of Cramer’s rule
here and illustrate the performance gain over the use of Gaussian elimination.

5 FPGA Embedded System Design

Let the optimal weights for the kth subband be w
(k)
LS and w

(k)
SNR. Each filter

weight has its unique property in noise suppression and signal distortion. Due
to the linearity of the filtering process, we attempt to form a linear combination
of these two filter weights which will adjust the distortion and noise suppression
continuously

w
(k)
θ = θ ∗w

(k)
LS + (1− θ) ∗w

(k)
SNR. (19)

This new filter weight is then used in (3) for filtering subband signals. In order
to illustrate the complete algorithm, Figure 2 depicts the parallel structure of
the proposed beamformer and the basic signal flowchart.

In mapping the algorithms to hardware, we explore the synergy between
the two parallel filters to achieve computational efficiency. Apart from the
essential FFT/IFFT hardware module, we analyze the computational inten-
sive steps (11) and (18) and extract the fundamental numerical operations.
Since operations are essentially independent for different subbands, it is na-
ture to attempt executing more subbands in parallel [37]. Furthermore, when
the number of subband increases, the size of linear system we need to solve
for each subband is reducing. Consequently, we build a functional module for
complex matrix inversion at the subband level so that several subbands can be
processed in parallel quickly. As for computational accuracy, there are a few
numerical operations that might incur numerical errors larger than expected
under fixed point arithmetic. Therefore we proposed a hybrid fixed-floating
point scheme to resolve this problem without completely resorting to the use
of floating point arithmetic. More details are described in the following.
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Fig. 2 A parallel filter system

5.1 Hardware Architecture

The optimized beamformer algorithms described in Section 3.1 and 4 are fea-
sible to be implemented into reconfigurable hardware. In order to reduce the
size of the circuit and increase the performance, several techniques have been
applied which exploits the flexibility of reconfigurable hardware.

In the time domain, the main operations of the beamformers are the compu-
tation of the equations (7) and (11). The computation time is greatly reduced
by implementing the actual filtering in the frequency domain. It involves the
signal transformations from time domain to frequency domain and vice versa.
The main steps including the following calculations:

1. Transform the input signals to their frequency domain representations via
FFT;

2. Filter the subband signals by the subband impulse response estimates;
3. Synthesize the impulse response estimates back to the time domain via

IFFT (inverse FFT).

The algorithms are analyzed to determine an optimized way to translate
them to the reconfigurable hardware. The translation guarantee computational
efficiency by exploiting the independence of subband processing as well as
matrix and vector operations, which can be optimized at several levels:
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– Loop level parallelism, consecutive loop iterations can be executed in par-
allel;

– Task level parallelism, that entire procedures inside the program can be
executed in parallel;

– Data parallelism

The algorithms involves control components and computation components.
To determine suitable components to be implemented by hardware, we first
identify computationally intensive kernels in the algorithms by profiling. When
profiling is carried out, time consuming operations can be determined and will
be implemented by hardware. The profiling results of the main operations are
shown in Table 1, indicating that the FFT/IFFT and two UPDATE operations
are the best candidates. They occupy 80% of the CPU time. These kernels are
mapped on dedicated processing engines of the system, optimized to operate
on large amounts of data, while the remaining parts of the code is imple-
mented by software running on the PowerPC processor. In our experiment, we
find that FPGA device embedded with processors is a suitable platform for
this system. For instance, we choose Xilinx Virtex-4 FX FPGA device is the
target platform. The Auxiliary Processor Unit (APU) interface in the device
simplifies the integration of hardware accelerators and co-processors. One can
easily offload computational intensive tasks from the CPU to the hardware
accelerators.

Function %Overall Time
LS UPDATE 31.8%
24-bit FFT/IFFT (32pt) 28.8%
SNR UPDATE 19.4%
OTHERS 20.0%

Table 1 Profiling Results of the Main Operations

5.2 Fixed-floating point arithmetic

Different from traditional software development, designing a system on an
FPGA platform involves an estimation of the length of bitwidth. This has a
significant effect on the circuit size and the accuracy of calculations. Typically
fixed point arithmetic is employed together with saturation arithmetic [38] to
handle the overflow case, due to its inherent speed advantage over floating
point arithmetic. Therefore, a set of fixed point library is developed which
allows bitwidth analysis to identify suitable hardware configuration which can
retend signal quality with less area consumption. We run an experiment using
a 32-bit fixed point representation to vary the integer size to learn a suitable
integer size in this system. The integer size is finally determined as 12-bit,
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and suitable scaling have been employed in the hardware implementation to
minimize the impact of overflow.

In the adaptation of the SNR beamformer, it is needed to compute the
eigenvectors and eigenvalues of the estimated source covariance matrix. This
is a generalized complex non-Hermitian matrix eigenvalue problem. Due to
computational complexity, it is hard to compute eigenvalues and correspond-
ing eigenvectors in such 32-bit fixed point arithmetic. As we can see from
Table 2, the maximum and mean absolute errors are rather large when calcu-
lating eigenvalues and eigenvectors by the QR method. Consequently, a hybrid
fixed-floating point data representation is adopted here, where floating point
arithmetic is employed for computing the complex matrix inversion. In calcu-
lating the actual eigenvectors using the Power method, fixed point arithmetic
can be applied for the other steps.

Complex matrix inversion is the most time-consuming process in the Power
method. As discussed earlier, the use of pivoting in Gaussian elimination in-
volves many branches, which slow down the overall calculations. Since our
matrices are of rather small dimensions, it’s suitable to implement the inver-
sions using Cramer’s Rule. Table 3 shows that using Cramer’s Rule is 3.7 times
faster than Gaussian elimination while performing 300000 times matrix inver-
sion in the beamformer program. Since it is the only operation which requires
floating point arithmetic, simulation shows that floating point computation
involvement is still relatively small in the whole iterative process and does not
impact the overall performance.

Type of LA Cases Max Err Mean Abs Err
Matrix Multiply 20 0.000156 0.0000002
FFT 20 0.000235 0.0000004
QR Method 20 33.0899467 0.2255622
Power Method 20 0.0000769 0.0000010
Matrix Inverse 20 42.2291222 0.0659830

Table 2 Error Estimation for Linear Algebra

Type of Matrix Inversion Dimension Cycles Time (s)
Gaussian elimination 4x4 300000 23.8922
Cramer’s Rule 4x4 300000 6.4573

Table 3 Performance Comparison for Matrix Inversion

6 Results

In the simulation, the total number of subbands is chosen as M = 128 with
a decimation factor of D = 64 and the size of a subband matrix equal to 4.
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Four microphones are employed in this simulation. Another setup has been
introduced for bitwidth analysis.

The fixed point and fixed-floating point structures are studied in Sec-
tion 5.2, also by varying the integer size in order to determine the suitable
integer size in this system. Speech distortion and noise suppression perfor-
mance measures [29,34] are applied in order to quantified the difference in
performance for different integer sizes. The normalized distortion quantity, D,
is introduced as

D =
1

2π

∫ π

−π
|CdP̂ys(w)− P̂xs

(w)|dw (20)

where w = 2πf , and f is normalized frequency. The constant, Cd, is defined
as

Cd =

∫ π
−π P̂xs

(w)dw∫ π
−π P̂ys(w)dw

(21)

where P̂xs(w) is a spectral power estimate of a single sensor observation and
P̂ys(w) is the spectral power estimate of the beamformer output, when the
source signal is active alone. The constant Cd normalizes the mean output
spectral power to that of the single sensor spectral power. The single sensor
observation is chosen as the reference microphone observation. In order to
measure the noise suppression the normalized noise suppression quantity, SN ,
is introduced as

SN = Cs

∫ π
−π P̂yN (w)dw∫ π
−π P̂xN

(w)dw
(22)

The results are summarized in Table 4. The appropriate integer size is 12 and
further increase does not improve the results significantly. Table 5 represents
the implementation results of the proposed hardware design on both Xilinx
XC4VSX55-12 and Xilinx XC2VP30-7-FF896 FPGA devices.

For each θ, the pair (SN , D) can be calculated. In order to understand
the trade-off between signal distortion and noise suppression, a range of θ is
applied and a solution set can be constructed by employing Eq. (19). The
result is depicted in Figure 3. From the Figure, it is observed that different
speech quality can be achieved in a continuous manner by varying the value
of θ.

An estimation has been made to evaluate the performance of the FPGA-
based LS and SNR beamformer that is equipped with one FFT/IFFT and one
filter update hardware accelerator. Assuming one block of data contains 64
samples under a 16kHz sampling rate, the number of clock cycle required for
processing the block of data in the frequency domain is measured as 823600.
Therefore, given that the period of one clock cycle is 1/(184MHz) = 5.43ns
on a Virtex4 FPGA, the FPGA-based beamformer can perform one step of
speech enhancement in 0.0045s, or equivalently 14311 samples per second.

Multiple instances of LS and SNR beamformers can be packed in a single
large FPGA to boost the performance further. This is very useful here because
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Bitwidth
LS (Fixed point)
Speech Distor-
tion [dB]

Noise Suppres-
sion [dB]

I=12, F=20 -31.2943 4.5154
I=12, F=18 -31.2958 4.5149
I=16,F=16 -31.3020 4.5127
I=14,F=14 -31.2972 4.5020
I=12,F=12 -31.2197 4.4431
I=10,F=10 -28.9885 4.2677
I=8,F=8 overflow overflow

Bitwidth
SNR (Fixed-Floating point)
Speech Distor-
tion [dB]

Noise Suppres-
sion [dB]

I=12, F=20 -24.2352 29.3429
I=12, F=18 -24.2352 29.4348
I=16,F=16 -24.2354 29.6685
I=14,F=14 -24.2362 28.8212
I=12,F=12 -24.2408 23.7736
I=10,F=10 -24.2382 10.4378
I=8,F=8 overflow overflow

Bitwidth
SNR (Fixed point)
Speech Distor-
tion [dB]

Noise Suppres-
sion [dB]

I=12, F=20 -28.1280 15.3718
I=12, F=18 -28.1284 15.3726
I=16,F=16 -28.1296 15.3741
I=14,F=14 -28.1364 15.3244
I=12,F=12 -28.1770 14.8667
I=10,F=10 -28.3267 12.1612
I=8,F=8 overflow overflow

Table 4 Performance for different integer sizes
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Fig. 3 Trade-off between noise and distortion levels.
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FPGA device XC4VSX55-12 XC2VP30-7

Slices used 55882 (42%) 27783(71%)
Block RAM used 18 (8%) 14 (11%)
Frequency (MHz) 184.8 141.7

Table 5 Implementation results of the LS and SNR beamformer. Note that the hardware
accelerator only contains one FFT/IFFT and one UPDATE modules.

of the design has multiple channels. In this way, the resource can be fully uti-
lized on FPGA. On the other hand, with an increase in logic utilization, the
speedup amount will slow down, due to the increased routing congestion and
delay. In view of this, a medium size FPGA is used here to implement the hard-
ware accelerator and can accommodate different combinations of FFT/IFFT
and UPDATE within the hardware accelerator, which provides flexible solu-
tions between speed and area trade-off.

Table 6 summarizes the implementation results when adding more in-
stances of the filter in an XC4VSX55-12-FF1148 FPGA chip and shows how
the number of instances affects the speedup. A XC4VSX55-12-FF1148 chip can
accommodate at most two FFT/IFFT and UPDATE hardware accelerators,
so the sampling rate will be 27804 samples per second. It achieves real-time
performance.

To summarize some of the pros and cons of the proposed signal enhance-
ment architecture and its implementation, the advantages include flexibility
in achieving varying signal quality, which is important for voice control ap-
plications. Moreover, the proposed implementation is fast enough to process
enough samples per seconds for most practical applications. The disadvan-
tages are that it requires a hardware architecture that supports fast parallel
processing, and also one needs to optimize on θ in order to design for dedicated
applications.

Samples/s
Number of Instances Slices DSP

FFT/IFFT Filter update Used Used
14311 1 1 42% 12%
20035 1 2 64% 19%
26169 1 3 87% 26%
19627 2 1 62% 16%
27804 2 2 84% 23%
20444 3 1 77% 21%
20853 4 1 92% 24%

Table 6 Slices and DSPs used, maximum frequency and sampling rate when implementing
multiple instance on an XC4VSX55-12-FF1148 FPGA device.
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7 Conclusions

In this paper, a novel beamforming structure together with an embedded sys-
tem has been proposed, which involves designing a set of parallel beamforming
filter weights. We have demonstrated the final beamformer is equipped with
varying speech quality. By exploring the parallel nature of the beamformers
and subband operations, a hardware implementation of the algorithm on an
FPGA virtex-4 system has been described using the proposed fixed-float arith-
metic. The algorithm have been simulated in hardware and results have shown
that real-time performance can be achieved when an FPGA-based hardware
accelerator performs the critical parts of the algorithm. The resulting embed-
ded system will find applications in modern multimedia systems. As a future
extension, it is possible to speed up the implementation further by designing
the beamformers under the power-of-two space [39]. Also, it would certainly
be of interest to optimize further on the configuration of the microphone array
[40], and to include beamforming filters designed via model-based approach,
such as [41]
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