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Abstract

In this paper, we study asymptotic behaviors of semidefinite programming with a
covariance perturbation. We obtain some moderate deviations, Cramér-type moderate
deviations and a law of the iterated logarithm of estimates of the respective optimal value
and optimal solutions when the covariance matrix is estimated by its sample covariance.
As an example, we also apply the main results to the Minimum Trace factor Analysis.

Keywords: Asymptotic, law of the iterated logarithm, minimum trace factor analysis,
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1 Introduction

Let Sp denote the linear space of p×p symmetric matrices. For A ∈ Sp, A < 0 means that the
matrix A is positive semidefinite. Let Σ0 and Ai, i = 1, · · · , n be p × p symmetric matrices.
Shapiro ([26]) considered the following semidefinite programming (SDP) problem

min
x∈Rn

cTx subject to Σ0 +A(x) < 0, (1.1)

where A : Rn → Sp is the linear mapping A(x) :=
∑n

i=1 xiAi, Σ0 is viewed as a covariance
matrix of a p× 1 random vector Y . The Factor Analysis model is a classical example of the
models (see Bentler ([1]), Shapiro ([26]) ).

A stochastic average approximation (SAA) of the original problem(1.1) is defined by

min
x∈Rn

cTx subject to S +A(x) < 0, (1.2)
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where

S =
1

N − 1

N∑
i=1

(Yi − Ȳ )(Yi − Ȳ )T

is the sample covariance matrix based on a sample Y1, · · · , YN of the random vector Y , and
Ȳ = 1

N

∑N
i=1 Yi is the sample mean.

Let x∗ and ϑ∗ denote an optimal solution and the optimal value of problem (1.1), respec-
tively, and let x̂N and ϑ̂N be their counterparts of the problem (1.2). Shapiro ([26]) studied
the central limit theorems of x̂N and ϑ̂N based on the modern theory of sensitivity analysis
of parameterized SDP problems.

The asymptotic distributions and the consistency of general SAA estimators were derived
in [15], [22], [23]. Asymptotic confidence intervals on the optimal value of stochastic programs
are given in e.g., [3], [5], [12] for risk-neutral problems and in [9] for risk-averse programs.
Nonasymptotic confidence intervals on the optimal value and large deviation estimates are
obtained in [7], [8], [12], [13], [16], [29]. Pflug [17] constructed universal confidence sets for the
true solution of a stochastic optimization problem based on properties about boundedness in
probability with known tail behavior. For further references, we refer to see [28].

In this paper, we are interesting in convergence rates on x̂N and ϑ̂N . For the weak
convergence rate, we present some moderate deviation results. Under some conditions, we
prove that there exists v > 0 such that for any x > 0,

lim
N→∞

1

b2N
logP

(√
N

bN
|x̂N − x∗| ≥ x

)
= − x2

2v2
(1.3)

where
bN →∞ and b2N/N → 0 as N →∞; (1.4)

and that under some conditions, there exists ν > 0 such that as N →∞, for 0 ≤ x = o(N1/6)
uniformly,

P
(√

N(ϑ̂N − ϑ∗) ≤ −νx
)

Φ(−x)
→ 1 and

P
(√

N(ϑ̂N − ϑ∗) ≥ νx
)

1− Φ(x)
→ 1, (1.5)

where Φ(x) is the cumulative distribution function of the standard normal distribution. For
the strong convergence rate, we will show that under some conditions, the following law of
the iterated logarithm holds, i.e., there exists ν > 0 such that

P

(
lim sup
N→∞

√
N

2ν2 log logN
(ϑ̂N − ϑ∗) = 1

)
= 1. (1.6)

The results on moderate deviations can be applied to asymptotic confidence intervals and
hypotheses testing (e.g., see [6]).

Our main results are stated and proved in Section 2. We also apply the main results to the
Minimum Trace factor Analysis in Section 3. For convenience, we introduce differentiability
properties of the optimal value and optimal solutions in Appendix A.

We conclude the section by introducing some notations and terminology. Let Sp+ and
Sp++ denote cones of symmetric positive semidefinite and positive definite p × p matrices,
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respectively. As usual, tr (A) =
∑p

i=1 aii denotes the trace of p × p square matrix A = [aij ]
and A•B = tr (AB) for A,B ∈ Sp. A⊗B denotes Kronecker product of p×q matrix A = [aij ]
and r × s matrix B = [bij ]. For a p× q matrix A, vec (A) denotes the pq-dimensional vector
obtained by stacking columns of matrix A. By A† we denote the Moore-Penrose pseudoinverse
of matrix A. For A ∈ Sp with rank r, A = NDNT is its singular value decomposition, i.e.,
NTN = Ir and D is r× r diagonal matrix with diagonal entries given by nonzero eigenvalues
of A, then A† = ND−1NT .

2 Asymptotic behaviors

Let Y be a Rp-valued random variable with the covariance matrix Σ0.
(A0). Assume that there exists ε0 > 0 such that

E
(
exp

{
ε0|Y |2

})
<∞.

Let Y1, · · · , YN be a sample of size N of the random vector Y , Ȳ = 1
N

∑N
i=1 Yi, and

S =
1

N − 1

N∑
i=1

(Yi − Ȳ )(Yi − Ȳ )T

denote the sample mean and the sample covariance matrix, respectively.
For given matrix Σ ∈ Sp, let ϑ(Σ) and x̄(Σ) be the optimal value and an optimal solution

of the problem (A.1) in Appendix A (see [26]). Define

ϑ̂N = ϑ(S), x̂N = x̄(S); ϑ∗ = ϑ(Σ0), x∗ = x̄(Σ0). (2.1)

Shapiro([26]) studied the central limit theorems of ϑ̂N and x̂N . He obtained the following
results.

• Under the condition of Proposition A.1,

N1/2(ϑ̂N − ϑ∗)→ N (0, λT0 Γλ) in law,

where λ0 = vec (Λ0), and Γ is p2×p2 covariance matrix. In particular, if Y ∼ N(µ,Σ0),
then

Γ = 2Mp(Σ0 ⊗ Σ0), (2.2)

and Mp =
[

1
2(δikδjl + δilδjk)

]
ij,kl

is p2 × p2 symmetric matrix, δik = 1{i}(k).

• Under the condition of Proposition A.2,

N1/2(x̂N − x∗)→ N (0, JTΓJ) in law.

In this section, we establish moderate deviations, Cramér-type moderate deviations and a
law of the iterated logarithm for ϑ̂N and x̂N . Our proofs are based on Bernstein’s inequality,
Cramér-type moderate deviations and the law of the iterated logarithm for independent and
identically distributed random variables.
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2.1 Moderate deviations

Lemma 2.1 (Bernstein’s inequality (cf. Proposition 3.3.1 in [31])). Let ξi, i ≥ 1 be a sequence
of independent real random variables with mean E(ξi) = 0. Assume that there exist constants
vi > 0 and H > 0 such that for all k ≥ 2

E(|ξi|k) ≤
1

2
k!v2

iH
k−2.

Set BN =
√
v2

1 + · · ·+ v2
N . Then for all x > 0,

P

(
N∑
i=1

ξi ≥ xBN

)
≤ exp

{
−1

2
x2(1 + xH/BN )−1

}
.

Lemma 2.2 (cf. Theorem 1 in Chapter VIII, [14] ). Let ξ, ξi, i ≥ 1 be a sequence of inde-
pendent and identically distributed real random variables with mean E(ξ) = 0 and variance
E(ξ2) = 1. Assume that there exists ε0 > 0 such that

E(eε0|ξ|) <∞.

Then for all 0 ≤ x = o(
√
N),

P
(∑N

i=1 ξi ≥ x
√
N
)

1− Φ(x)
= exp

{
x3

√
N
λ

(
x√
N

)}(
1 +O

(
1 + x√
N

))
, (2.3)

and
P
(∑N

i=1 ξi ≤ −x
√
N
)

Φ(−x)
= exp

{
− x3

√
N
λ

(
− x√

N

)}(
1 +O

(
1 + x√
N

))
, (2.4)

where Φ(x) is the standard normal distribution function and λ(t) =
∑∞

k=0 akt
k is a power

series with coefficients depending on the cumulants of the random variable ξ which converges
for sufficiently small values of |t|.

In particular, for all 0 ≤ x = O(N1/6), uniformly

P
(∑N

i=1 ξi ≥ x
√
N
)

1− Φ(x)
= 1 +O

(
1 + x3

√
N

)
(2.5)

and
P
(∑N

i=1 ξi ≤ −x
√
N
)

Φ(−x)
= 1 +O

(
1 + x3

√
N

)
. (2.6)

Theorem 2.1. Let the condition (A0) hold. Suppose that the optimal value ϑ∗ is finite and
Slater condition for the true problem holds. Then

(1). For any ε > 0,

lim sup
N→∞

1

b2N
logP

(√
N

bN

∣∣∣∣∣ϑ̂N − ϑ∗ − sup
Λ∈Sol (D)

Λ • (S − Σ0)

∣∣∣∣∣ ≥ ε
)

= −∞. (2.7)
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Moreover, if Sol (D) = {Λ0} is a singleton, then for any ε > 0,

lim sup
N→∞

1

b2N
logP

(√
N

bN

∣∣∣∣∣ϑ̂N − ϑ∗ − 1

N

N∑
i=1

Zi

∣∣∣∣∣ ≥ ε
)

= −∞. (2.8)

where

Zi =tr (Λ0(YiY
T
i − E(Y )Y T

i − YiE(Y T )))− E
(
tr (Λ0(YiY

T
i − E(Y )Y T

i − YiE(Y T )))
)

=λT0 vec
(
(YiY

T
i − E(Y )Y T

i − YiE(Y T )))− E
(
YiY

T
i − E(Y )Y T

i − YiE(Y T )
))

(2.9)
(2). If Sol (D) = {Λ0} is a singleton, then for any x > 0,

lim
N→∞

1

b2N
logP

√N
bN

1√
λT0 Γλ0

(
ϑ̂N − ϑ∗

)
≥ x

 = −x
2

2
, (2.10)

and

lim
N→∞

1

b2N
logP

√N
bN

1√
λT0 Γλ0

(
ϑ̂N − ϑ∗

)
≤ −x

 = −x
2

2
. (2.11)

Proof. (1). Firstly, we show that there exist constants M > 0, L > 0 such that for any x > 0,

P (|vec (S)− vec (Σ0)| ≥ x) ≤M exp
{
−LN min{x, x2}

}
. (2.12)

We can write

S − Σ0 =
1

N − 1

N∑
i=1

(YiY
T
i − E(Y Y T ))− N

N − 1

(
Ȳ Ȳ T − E(Y )E(Y T )

)
,

and

Ȳ Ȳ T − E(Y )E(Y T ) = (Ȳ − E(Y ))(Ȳ T − E(Y T )) + E(Y )(Ȳ T − E(Y T )) + (Ȳ − E(Y ))E(Y T )

Then under the assumption (A0), for any k ≥ 2,

E
(∣∣vec (Y Y T )− E(vec (Y Y T ))

∣∣k) ≤2kE((|Y |2)k) ≤ k!

(
2

ε0

)k
E
(
exp{ε0|Y |2}

)
and

E
(
|Y − E(Y )|k

)
≤2kE(|Y |k) ≤ 2k(E((|Y |2)k))1/2 ≤ k!

(
2

ε0

)k
E
(
exp{ε0|Y |2}

)
Set u =

√
8E (exp{ε0|Y |2}) /ε20, H = 2

ε0
. Note that for a m-dimensional random vector

Z = (Z1, · · · , Zm)T , for any x > 0,

{|Z| ≥ x} ⊂ ∪mk=1{|Zk| ≥ x/m}.
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Then by Bernstein’s inequality for any x > 0,

P

(∣∣∣∣∣ 1

N

N∑
i=1

(vec (YiY
T
i )− E(vec (Y Y T )))

∣∣∣∣∣ ≥ xu
)
≤ 2p2 exp

{
− 1

2p4
Nx2(1 + xH/(p2u))−1

}
,

(2.13)

P

(∣∣∣∣∣ 1

N

N∑
i=1

(Yi − E(Y ))

∣∣∣∣∣ ≥ xu
)
≤ 2p exp

{
− 1

2p2
Nx2(1 + xH/(pu))−1

}
, (2.14)

and

P
(∣∣vec ((Ȳ − E(Y ))(Ȳ T − E(Y T )))

∣∣ ≥ xu) ≤P (∣∣∣∣∣ 1

N

N∑
i=1

(Yi − E(Y ))

∣∣∣∣∣ ≥ √xu
)

≤2p exp

{
− 1

2p2u
Nx(1 +

√
xH/(p

√
u))−1

}
.

(2.15)
Therefore, (2.12) holds.
Next, let us prove (2.7). By Proposition 3 in [26] (see Proposition A.1 in Appendix A),

for any ζ > 0, there exists η > 0, such that

{|vec (S)− vec (Σ0)| ≤ η}

⊂
{ ∣∣∣∣∣ϑ̂N − ϑ∗ − sup

Λ∈Sol (D)

Λ • (S − Σ0)

∣∣∣∣∣ ≤ ζ |vec (S)− vec (Σ0)|
}
.

Thus, for any ε > 0, ζ > 0,{√
N

bN

∣∣∣∣∣ϑ̂N − ϑ∗ − sup
Λ∈Sol (D)

Λ • (S − Σ0)

∣∣∣∣∣ ≥ ε
}

⊂{|vec (S)− vec (Σ0)| ≥ η} ∪

{√
N

bN
|vec (S)− vec (Σ0)| ≥ ε/ζ

}
.

Now, (2.7) follows from

lim
ζ→0

lim sup
N→∞

1

b2N
logP

(√
N

bN
|vec (S)− vec (Σ0)| ≥ ε/ζ

)
= −∞,

and

lim sup
N→∞

1

b2N
logP (|vec (S)− vec (Σ0)| ≥ η) = −∞.

If Sol (D) = {Λ0} is a singleton, then

sup
Λ∈Sol (D)

Λ • (S − Σ0)− 1

N − 1

N∑
i=1

Zi =
N

N − 1
Λ0(Ȳ − E(Y ))(Ȳ T − E(Y T ))ΛT0 .

Thus, by (2.15), we obtain (2.8) .
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(2). Note that
E
(
Z2

1

)
= λT0 Γλ0, (2.16)

and that for any x > 0, limN→∞
1
b2N

log(1− Φ(bNx)) = −1
2x

2, and

lim
N→∞

1

b2N

{
(bNx)3

√
N

λ

(
bNx√
N

)}
= 0, lim

N→∞

1

b2N
log

(
1 +O

(
1 + bNx√

N

))
= 0.

Thus, by (2.3) and (2.4), we obtain that

lim
N→∞

1

b2N
logP

 1√
NbN

1√
λT0 Γλ0

N∑
i=1

Zi ≥ x

 = −x
2

2
, (2.17)

and

lim
N→∞

1

b2N
logP

 1√
NbN

1√
λT0 Γλ0

N∑
i=1

Zi ≤ −x

 = −x
2

2
. (2.18)

Finally, since for all x > 0, 0 < ε < x,

P

 √
N

bN

√
λT0 Γλ0

(ϑ̂N − ϑ∗) ≥ x


≤P

 √
N

bN

√
λT0 Γλ0

(ϑ̂N − ϑ∗) ≥ x,
√
N

bN

∣∣∣∣∣ϑ̂N − ϑ∗ − 1

N

N∑
i=1

Zi

∣∣∣∣∣ ≤ ε


+ P

(√
N

bN

∣∣∣∣∣ϑ̂N − ϑ∗ − 1

N

N∑
i=1

Zi

∣∣∣∣∣ ≥ ε
)

≤P

 1√
NbN

1√
λT0 Γλ0

N∑
i=1

Zi ≥ x− ε

+ P

(√
N

bN

∣∣∣∣∣ϑ̂N − ϑ∗ − 1

N

N∑
i=1

Zi

∣∣∣∣∣ ≥ ε
)
.

and

P

 1√
NbN

1√
λT0 Γλ0

N∑
i=1

Zi ≥ x+ ε


≤P

 √
N

bN

√
λT0 Γλ0

(ϑ̂N − ϑ∗) ≥ x

+ P

(√
N

bN

∣∣∣∣∣ϑ̂N − ϑ∗ − 1

N

N∑
i=1

Zi

∣∣∣∣∣ ≥ ε
)
.

By (2.8) and (2.17), we have that

−(x+ ε)2

2
≤ lim inf

N→∞

1

b2N
logP

 √
N

bN

√
λT0 Γλ0

(ϑ̂N − ϑ∗) ≥ x


≤ lim sup

N→∞

1

b2N
logP

 √
N

bN

√
λT0 Γλ0

(ϑ̂N − ϑ∗) ≥ x

 ≤ −(x− ε)2

2
.
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Letting ε→ 0, we obtain (2.10). The proof of (2.11) is similar to (2.10).

Remark 2.1. (1). Applying the moderate deviation principle for independent and identically
distributed real random variables (cf. Theorem 3.7.1 in [4]) and the exponential approximation
(cf. Theorem 4.2.13 in [4])), by (2.8), we obtain a moderate deviation principle for ϑ̂N , that
is, for any open subset G of R,

lim inf
N→∞

1

b2N
logP

 √
N

bN

√
λT0 Γλ0

(ϑ̂N − ϑ∗) ∈ G

 ≥ − inf
x∈G

x2

2
, (2.19)

and for any closed subset F of R,

lim sup
N→∞

1

b2N
logP

 √
N

bN

√
λT0 Γλ0

(ϑ̂N − ϑ∗) ∈ F

 ≤ − inf
x∈F

x2

2
. (2.20)

(2). Theorem 2.1 can be obtained by using the delta methed in large deviations (see [6]) .

By Theorem 1 in [26] (see Proposition A.2 in Appendix), using the same proof in Theorem
2.1, we have the following result.

Theorem 2.2. Let the condition (A0) hold. Suppose that Sol (P ) = {x∗} is a singleton, and
that x∗ is a nondegenerate point of Σ0 +A(·) and the strict complementarity condition holds.
Then

(1). For any ε > 0,

lim sup
N→∞

1

b2N
logP

(√
N

bN

∣∣∣∣∣x̂N − x∗ − 1

N

N∑
i=1

Xi

∣∣∣∣∣ ≥ ε
)

= −∞, (2.21)

where

Xi = JT
(
vec (YiY

T
i − E(Y )Y T

i − YiE(Y T ))− E
(
vec (YiY

T
i − E(Y )Y T

i − YiE(Y T )
))
.

(2.22)
(2). For any r > 0,

lim
N→∞

1

b2N
logP

(√
N

bN
|x̂N − x∗| ≥ r

)
= − inf

|x|≥r
I(x), (2.23)

where

I(x) =
∑
α∈Rn

{
αTx− 1

2
αTJTΓJα

}
, x ∈ Rn, (2.24)

is called the rate function.

Proof. By the moderate deviation principle for independent and identically distributed ran-
dom variables (cf. Theorem 3.7.1 in [4]), for any open subset G of Rn,

lim inf
N→∞

1

b2N
logP

(
1√
NbN

N∑
i=1

Xi ∈ G

)
≥ − inf

x∈G
I(x), (2.25)
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and for any closed subset F of Rn,

lim sup
N→∞

1

b2N
logP

(
1√
NbN

N∑
i=1

Xi ∈ F

)
≤ − inf

x∈F
I(x). (2.26)

In particular, for any r > 0,

lim
N→∞

1

b2N
logP

(
1√
NbN

∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ r
)

= − inf
|x|≥r

I(x). (2.27)

Thus, by (2.21), (2.27) can be deduced by the same proof in Theorem 2.1 (2).

2.2 Cramér-type moderate deviations

Theorem 2.3. Let the condition (A0) hold. Suppose that Sol (P ) = {x∗} is a singleton, and
that x∗ is a nondegenerate point of Σ0 +A(·) and the strict complementarity condition holds.
Then

(1). For any ε > 0,

lim sup
N→∞

1

N1/3
logP

(
√
N

∣∣∣∣∣ϑ̂N − ϑ∗ − 1

N

N∑
i=1

Zi

∣∣∣∣∣ ≥ ε/N1/6

)
< 0. (2.28)

(2). For any 0 ≤ x = o(N1/6), uniformly

P

(√
N(ϑ̂N − ϑ∗) ≥ x

√
λT0 Γλ0

)
1− Φ(x)

= 1 +O

(
1 + x3

√
N

)
(2.29)

and

P

(√
N(ϑ̂N − ϑ∗) ≤ −x

√
λT0 Γλ0

)
Φ(−x)

= 1 +O

(
1 + x3

√
N

)
. (2.30)

Proof. (1). By Proposition A.2, there exist constants L > 0 and η > 0, such that

{|vec (S)− vec (Σ0)| ≤ η}

⊂
{ ∣∣∣ϑ̂N − ϑ∗ − Λ • (S − Σ0)

∣∣∣ ≤ L |vec (S)− vec (Σ0)|2
}
.

Thus, for any ε > 0,{√
N
∣∣∣ϑ̂N − ϑ∗ − Λ • (S − Σ0)

∣∣∣ ≥ ε/N1/6
}

⊂{|vec (S)− vec (Σ0)| ≥ η} ∪
{
|vec (S)− vec (Σ0)| ≥

√
ε√

LN1/3

}
.

By

lim sup
N→∞

1

N1/3
logP

(
|vec (S)− vec (Σ0)| ≥

√
ε√

LN1/3

)
< 0,
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and

lim sup
N→∞

1

N1/3
logP (|vec (S)− vec (Σ0)| ≥ η) = −∞,

we obtain

lim sup
N→∞

1

N1/3
logP

(√
N
∣∣∣ϑ̂N − ϑ∗ − Λ • (S − Σ0)

∣∣∣ ≥ ε/N1/6
)
< 0. (2.31)

This implies (2.28) from

Λ • (S − Σ0)− 1

N − 1

N∑
i=1

Zi =
N

N − 1
Λ(Ȳ − E(Y ))(Ȳ T − E(Y T ))ΛT

and for any ε > 0,

lim sup
N→∞

1

N1/3
logP

(√
N
∣∣vec ((Ȳ − E(Y ))(Ȳ T − E(Y T )))

∣∣ ≥ ε/N1/6
)
< 0.

(2). We only show (2.29). By condition (2.28), for any ε > 0, there exists C > 0 such
that for N large enough, and for all 0 ≤ x ≤ o(N1/6), uniformly

P
(√

N
∣∣∣ϑ̂N − ϑ∗ − 1

N

∑N
i=1 Zi

∣∣∣ ≥ ε/N1/6
)

1− Φ(x)
= O

(
e−CN

1/3
)
.

Thus, for all 0 ≤ x ≤ o(N1/6), uniformly

P

(√
N(ϑ̂N − ϑ∗) ≥ x

√
λT0 Γλ0

)
1− Φ(x)

≤
P

(√
N(ϑ̂N − ϑ∗) ≥ x

√
λT0 Γλ0,

√
N
∣∣∣ϑ̂N − ϑ∗ − 1

N

∑N
i=1 Zi

∣∣∣ ≤ ε/N1/6

)
1− Φ(x)

+
P
(√

N
∣∣∣ϑ̂N − ϑ∗ − 1

N

∑N
i=1 Zi

∣∣∣ ≥ ε/N1/6
)

1− Φ(x)

≤
P

(
1√
N

∑N
i=1 Zi ≥ x

√
λT0 Γλ0 − ε/N1/6

)
1− Φ(x)

+O
(
e−CN

1/3
)
.

Similarly, Then for all 0 ≤ x ≤ o(N1/6), uniformly

P

(√
N(ϑ̂N − ϑ∗) ≥ x

√
λT0 Γλ0

)
1− Φ(x)

≥
P

(
1√
N

∑N
i=1 Zi ≥ x

√
λT0 Γλ0 + ε

N1/6

)
1− Φ(x)

+O
(
e−CN

1/3
)
.
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By lemma 2.2,

P

(
1√
N

∑N
i=1 Zi ≥ x

√
λT0 Γλ0 ± ε

N1/6

)
1− Φ(x)

=

P

(
1√
N

∑N
i=1 Zi ≥ x

√
λT0 Γλ0 ± ε

N1/6

)
1− Φ

(
x
√
λT0 Γλ0 ± ε

N1/6

) 1− Φ

(
x
√
λT0 Γλ0 ± ε

N1/6

)
1− Φ(x)

=

(
1 +O

(
1 + x3

N1/3

))(
1 +O

(
1 + x2

N1/3

))
= 1 +O

(
1 + x3

N1/3

)
.

Thus, the first one of (2.29) holds.

2.3 A law of the iterated logarithm

In this subsection, we apply the moderate deviations to establish a law of the iterated loga-
rithm

Theorem 2.4. Let the condition (A0) hold. Suppose that Sol (P ) = {x∗} is a singleton, and
that x∗ is a nondegenerate point of Σ0 +A(·) and the strict complementarity condition holds.
Then

lim sup
N→∞

√
N

2λT0 Γλ0 log logN
(ϑ̂N − ϑ∗) = 1, a.s. (2.32)

and

lim inf
N→∞

√
N

2λT0 Γλ0 log logN
(ϑ̂N − ϑ∗) = −1, a.s. (2.33)

Proof. By Proposition A.2, there exist constants L > 0 and η > 0, such that

{|vec (S)− vec (Σ0)| ≤ η}

⊂
{ ∣∣∣∣∣ϑ̂N − ϑ∗ − 1

N

N∑
i=1

Zi

∣∣∣∣∣ ≤ L |vec (S)− vec (Σ0)|2
}
.

Thus, for any ε > 0,{
√
N

∣∣∣∣∣ϑ̂N − ϑ∗ − 1

N

N∑
i=1

Zi

∣∣∣∣∣ ≥ ε
}

⊂{|vec (S)− vec (Σ0)| ≥ η} ∪

{
√
N |vec (S)− vec (Σ0)| ≥ N1/4√ε√

L

}
.

By (2.12), there exist constants C1, C2 ∈ (0,∞) such that

P (|vec (S)− vec (Σ0)| ≥ η) ≤ C1 exp
{
−C2N min{η, η2}

}
11



and

P

(
√
N |vec (S)− vec (Σ0)| ≥ N1/4√ε√

L

)
≤ C1 exp

{
−C2N min

{ √
ε

N1/4
√
L
,

ε

N1/2L

}}
.

Thus,
∞∑
N=1

P

(
√
N

∣∣∣∣∣ϑ̂N − ϑ∗ − 1

N

N∑
i=1

Zi

∣∣∣∣∣ ≥ ε
)
<∞,

and so, by the Borel-Cantelli lemma,

lim
N→∞

√
N

∣∣∣∣∣ϑ̂N − ϑ∗ − 1

N

N∑
i=1

Zi

∣∣∣∣∣ = 0, a.s. (2.34)

Finally, (2.32) and (2.33) follow from (2.34) and the law of the iterated logarithm for inde-
pendent and identically distributed random variables (see Theorem 8 in Chapter X of [14]):

lim sup
N→∞

1√
2λT0 Γλ0N log logN

N∑
i=1

Zi = 1, a.s.

and

lim inf
N→∞

1√
2λT0 Γλ0N log logN

N∑
i=1

Zi = −1, a.s.

3 Factor analysis

In this section we apply general results of Section 2 to the so-called Minimum Trace Factor
Analysis (MTFA) problem

min
x∈Rp

1Tx subject to Σ0 +X < 0, (3.1)

where the (population) covariance matrix Σ0 is decomposed into (Σ0−Ψ) + Ψ with Ψ being
a diagonal matrix and matrix Σ0 − Ψ < 0 having rank r < p, 1 = (1, ..., 1)T and X =
diag (x1, ..., xp), i.e., in (1.1), Ai = diag (0, ..., 0, 1, 0, ..., 0), i = 1, ..., p, c = 1.

Consider now the estimates ϑ̂N and x̂N of the optimal value and optimal solution of the
MTFA problem (3.1).

The stochastic Minimum Trace Factor Analysis problem associated with SDP problem
(3.1) is defined by

min
x∈Rp

1Tx subject to S +X < 0, (3.2)

Now let ϑ̂N and x̂N be the estimates of the optimal value and optimal solution of the
problem (3.2). Then the moderate deviations of ϑ̂N follows from Theorem 2.1. Furthermore,
if the nondegeneracy and strict complementarity conditions hold, then the set of optimal
solutions of the primal problem (3.1) is a singleton. Let x∗ be the optimal solution of the
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MTFA problem (3.1) and let Λ be an optimal solution of the dual problem. Set X∗ =
diag (x∗1, · · · , x∗p) and Υ = Σ0 +X∗. Then the problem (A.5) takes here the following form min

h∈Rp
hT
(

Λ ◦Υ†
)
h+ 2tr

(
HΛ∆Υ†

)
s.t. ETHE + ET∆E = 0,

(3.3)

where H = diag (h1, · · · , hp) and the symbol ◦ denotes Hadamard product.
The moderate deviations of x̂N and the Cramér-type moderate deviations and the law of

iterated logarithm of ϑ̂N can be obtained from Theorem 2.2, Theorem 2.3 and Theorem 2.4.

Theorem 3.1. Let x∗ be the optimal solution of the MTFA problem (3.1), Υ = Σ0 + X∗

and r = rank (Υ). Suppose that the point x∗ is nondegenerate and the strict complementarity
condition holds. Then

(1). For any r > 0, (2.23) holds for x̂N with rate function

I(x) =
∑
α∈Rn

{
αTx− 1

2
αTJTΓJα

}
, x ∈ Rn. (3.4)

where J is a p2 × n matrix such that JT δ is the optimal solution of problem (3.1).
(2). (2.29) and (2.30) hold uniformly for any 0 ≤ x = o(N1/6).
(3). (2.32) and (2.33) hold for ϑ̂N .

A Differentiability properties of the optimal value and an op-
timal solution

For convenience, in this Appendix, we recall some results on differentiability properties of the
optimal value ϑ(Σ) and an optimal solution x̄(Σ) of the following problem (A.1) considered
as functions of matrix Σ ∈ Sp (see [26]):

min
x∈Rn

cTx subject to Σ +A(x) < 0, (A.1)

which can be viewed as an SDP problem parameterized by matrix Σ ∈ Sp.
The (Lagrangian) dual of problem (A.1) can be written as

max
Λ∈Sp+

Λ • Σ subject to Λ •Ai = ci, i = 1, · · · , n (A.2)

The problems (A.1) and (A.2) are refered as the primal (P) and dual (D) problems, respec-
tively. We also use notation σ := vec (Σ), x̄(σ) := x̄(Σ) and ϑ(σ) := ϑ(Σ).

Slater condition. It is said that Slater condition holds for the primal problem (P)
if there exists x∗ ∈ Rn such that Σ + A(x∗) ∈ Sp++. If Slater condition holds, then optimal
values of problems (P) and (D) are equal to each other.

Let Wr denote the space of matrices A ∈ Sp of rank (A) = r ≤ p. Then by Proposition
1.1, Chapter 5 in [10], Wr is a smooth manifold of dimension

dim (Wr) = p(p+ 1)/2− (p− r)(p− r + 1)/2 = pr − r(r − 1)/2,
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and the tangent space of the manifold Wr at A ∈ Wr is

TWr(A) =
{

∆A+A∆T ; ∆ is p× p matrix
}
.

Nondegenerate point. It is said that x∗ ∈ Rn is a nondegenerate point of mapping
x→ Σ +A(x) if for Υ := Σ +A(x∗) and r := rank (Υ) it follows that

A(Rn) + TWr(Υ) = Sp,

otherwise point x∗ is said to be degenerate.

A.1 Differentiability of the optimal value ϑ(Σ)

Let Sol (P ) denote the set of optimal solutions of the reference (true) problem (1.1), and let
Sol (D) be the set of optimal solutions of its dual problem (A.1) for Σ = Σ0. By the classical
convex analysis and Theorem 4.1.9 in [25], the following result holds.

Proposition A.1. (Proposition 3 in [26]) Suppose that Slater condition holds for the refer-
ence problem (1.1) and its optimal value ϑ(Σ0) is finite. Then the set Sol (D) is nonempty,
convex and compact and the optimal value function ϑ(·) is continuous convex function and
Fréchet directionally differentiable at Σ0 with

ϑ′(Σ0, H) = sup
Λ∈Sol (D)

Λ •H. (A.3)

That is,
ϑ(Σ)− ϑ(Σ0) = sup

Λ∈Sol (D)

Λ • (Σ− Σ0) + o(‖σ − σ0‖) (A.4)

A.2 The second order differentiability of the optimal value ϑ(Σ)

Suppose that Sol (P ) = {x∗} and that x∗ is a nondegenerate point of Σ0 + A(·), and so
Sol (D) = {Λ} is a singleton.

Complementarity condition. Assume that Slater condition holds for the reference
problem (1.1). Then by the first order optimality conditions we have that for x∗ ∈ Sol (P )
and Λ ∈ Sol (D) the following complementarity condition follows

(Σ0 +A(x∗)) • Λ = 0.

Note that since (Σ0 +A(x∗)) < 0 and Λ < 0, this complementarity condition is equivalent to
(Σ0 +A(x∗))Λ = 0 and hence rank (Λ) ≤ p− r, where

r := rank (Σ0 +A(x∗)).

It is said that the strict complementarity condition holds at Λ ∈ Sol (D) if rank (Λ) =
p− r.

Suppose also that the strict complementarity condition holds. Let Υ = NDNT be the
spectral decomposition of matrix Υ = Σ0 +A(x∗), and Λ = EET for some p× (p− r) matrix
E of rank p − r such that NTE = 0. It is known (see [26]) that the following optimization
problem (A.5) depending on ∆ ∈ Sp has a unique optimal solution JT δ and the optimal value
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is a quadratic function δTQδ where δ := vec (∆), J is a p2 × n matrix and Q is a p2 × p2

matrix.  min
h∈Rn

tr
(

Λ(A(h) + ∆)Υ†(A(h) + ∆)
)

s.t. ETA(h)E + ET∆E = 0.
(A.5)

The following result is Theorem 1 in [26] which can be obtained from Section 5.3.6 in [2].

Proposition A.2 (Theorem 1 in [26]). Suppose that Sol (P ) = {x∗} is a singleton, and that
x∗ is a nondegenerate point of Σ0+A(·) and the strict complementarity condition holds. Then
x̄(·) is differentiable at σ0 = vec (Σ0) and

x̄(σ) = x̄(σ0) + JT (σ − σ0) + o(‖σ − σ0‖), (A.6)

where JT δ is the optimal solution of problem (A.5). Moreover

ϑ(σ) = ϑ(σ0) + Λ • (Σ− Σ0) + (σ − σ0)TQ(σ − σ0) + o(‖σ − σ0‖2), (A.7)

where Λ is the optimal solution of the dual problem and δTQδ is the optimal value of problem
(A.5).
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Modeling and Theory. second edition, SIAM, Philadelphia, 2014.

[29] A. Shapiro and T. Homem de Mello. On rate of convergence of optimal solutions of
Monte Carlo approximations of stochastic programs. SIAM J. Optim., 11:70–86, 2000.

[30] A.W. Van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes with
Applications to Statistics. Springer, New York, 1996.

[31] V. Yurinsky. Sum and Gaussian Vectors. Lecture Notes in Mathematics 1617. Springer,
New York, 1995.

17




