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Abstract

Finding the worst-case value of a preference over a set of plausible models is a

well-established approach to address the issue of model uncertainty or ambiguity.

In this paper, we study the worst-case evaluation of Yaari’s dual utility functionals

of an aggregate risk under dependence uncertainty along with its decision-theoretic

implications. To arrive at our main findings, we introduce a technical notion of con-

ditional joint mixability. Lower and upper bounds on dual utilities with dependence

uncertainty are established and, in the presence of conditional joint mixability, they

are shown to be exact bounds. Moreover, conditional joint mixability is indeed nec-

essary for attaining these exact bounds when the distortion functions are strictly

inverse-S-shaped. A particular economic implication of our results is what we call

the pessimism effect. We show that a (generally non-convex/non-concave) dual

utility-based decision maker under dependence uncertainty behaves as if she had a

more pessimistic risk-averse dual utility but free of dependence uncertainty.
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1 Introduction

Expected utility theory (EUT) has been well studied in both the static and dynamic

settings, ranging from investment problems to corporate finance. However, behavioral

patterns that are inconsistent with EUT have been observed. For instance, EUT fails to

explain many paradoxes and puzzles such as the Allais paradox, the Ellesberg paradox,

the Friedman and Savage puzzle, and the equity premium puzzle. Considerable attempts

and efforts have been made to overcome the drawbacks of EUT; for example, Yaari’s dual

theory of choice (DT; Yaari (1987)), Quiggin’s rank-dependent utility theory (RDUT;

Quiggin (1982); Schmeidler (1989)), and Lopes’ SP/A theory (Lopes (1987)). Among

many others, Kahneman and Tversky’s cumulated prospect theory (CPT; Kahneman

and Tversky (1979); Tversky and Kahneman (1992)) is arguably the most prominent

alternative to EUT. Probability weighting (or distortion) – the assumption that indi-

viduals overweight unlikely and extreme events, as a key ingredient of the theory, is

proposed to capture a different dimension of risk preference over the tail events. It can

in turn explain many phenomena; e.g. how hope and fear, properly defined through

probability weighting, are present simultaneously for the same individual (see He and

Zhou (2016)).

In decision theory, a decision maker’s preference, denoted by a binary relationship

≺, is often modeled by a preference functional U . That is, for any two random outcomes

X and Y ,

X ≺ Y ⇔ U(X) 6 U(Y ), (1.1)

where X ≺ Y means that the decision maker prefers Y at least as much as X. A decision

maker whose preference satisfies (1.1) will be referred to as a U-decision maker in this

paper.

Typically, the evaluation of U(X), such as in EUT, DT, RDUT or CPT, requires

that the underlying probability measure (or the distribution of X) to be specified. In

practice, though, it is more likely that a decision maker is unable to know the exact

probability measure governing the random outcome of a decision (as in the Ellsberg

paradox). In such cases the decision maker may be concerned about the utility of her

decisions under the “worst-case”. This leads to the theory of ambiguity/uncertainty
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aversion (or robust theory) of Gilboa and Schmeidler (1989) and Hansen and Sargent

(2001). In mathematical terms, this means

X ≺ Y ⇔ inf
Q∈Q
UQ(X) 6 inf

Q∈Q
UQ(Y ),

where Q is a collection of possible probability measures, and UQ is the utility of X

evaluated under Q ∈ Q.

In this paper we address a particular type of uncertainty: the uncertainty in the

dependence structure among random variables. This setting, termed dependence uncer-

tainty by Bernard et al. (2014), is relevant in many practical cases in which a precise

knowledge or modeling for dependence among many random variables is unavailable or

simply impossible. Under this setting, the preference of the decision maker is dictated

by the worst-case (or best-case) aggregate value of her preference functional. The math-

ematical formulation is the following: given several distributions F1, . . . , Fn, one needs

to evaluate

inf or sup of U

(
n∑
i=1

Xi

)
subject to Xi ∼ Fi , i = 1, . . . , n. (1.2)

As a concrete example, an investor (a U-decision maker), on top of her financial in-

vestment outcome X, has an additional income Y whose distribution F is known but

its dependence with the financial market is unspecified (such a Y is termed intractable

claim in Hou and Xu (2016)). In this case, the worst-case value of her utility for a

financial investment outcome X is

inf {U(X + Y ) : Y ∼ F} , (1.3)

which is a special case of (1.2). More examples of (1.2) in decision analysis will be given

in Section 5.

The values of (1.2) can be very difficult to evaluate, especially in the case when

U is neither concave or convex. In this paper we focus on the case in which U in (1.2)

is Yaari’s dual utility (see (2.1) below for definition). When U is a quantile (i.e. VaR),

problem (1.2) has recently led to an active stream of research in the risk management

literature; see e.g. Embrechts et al. (2013, 2015) and McNeil et al. (2015, Section 8.4).

The paper by Embrechts et al. (2014) contains a survey on risk aggregation with de-

pendence uncertainty in the context of regulatory capital calculation. Unfortunately,
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the mathematical results from risk management cannot be applied directly to general

dual utilities. A major difficulty associated with dual utilities is that commonly used

dual utilities are neither convex nor concave functionals, whereas in risk management

typically one considers either convex functionals (called convex risk measures in finance)

or quantile functionals (which have nice properties, even if not convex or concave).

In this paper, we focus on the calculation of (1.2) and its economic implications.

Our main contribution is threefold. First we introduce a notion of conditional joint

mixability, a generalization of joint mixability by Wang et al. (2013), which itself is of

mathematical interest. Second, we establish bounds on the worst- and best-case values

of dual utilities and show that, under an assumption of conditional joint mixability,

the above bounds are indeed the exact values of (1.2). For strict inverse-S-shaped

distortion functions, conditional joint mixability is shown to be necessary and sufficient

for the attainability of the above bounds. These mathematical results will serve as

a building block for future research on behavioral investment problems and decision

analysis under model uncertainty. Furthermore, we discuss a particular application of

our main results, which we call a pessimism effect. We shall see that, with the aversion

to dependence uncertainty, a decision maker makes decisions according to an auxiliary

risk-averse dual utility that is more pessimistic than her original utility functional, but

with the dependence uncertainty removed. This shows that the uncertainty aversion can

be “transferred” and built into the dual utility itself.

The rest of the paper is organized as follows. In Section 2 we gather some pre-

liminaries on dual utilities. In Section 3 we introduce conditional joint mixability and

present some of its basic properties. In Section 4 bounds on dual utilities are estab-

lished, and their sharpness is shown under conditional joint mixability; moreover we

discuss particular results in the case of inverse-S-shaped distortion functions and in the

case n = 2. Through two concrete examples, in Section 5 we illustrate the pessimism

effect derived from our main results. Finally we conclude in Section 6 with discussions

on related results in the literature, the interpretation of conditional joint mixability, and

the dependence structure used in the main result.
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2 Preliminaries

2.1 Dual utilities

We first fix some notation. Let L0 be the set of all random variables in an atomless

probability space (Ω,F ,P). In the following, for any X ∈ L0, we use FX for the cdf of

X. For any distribution (cdf) F , its generalized inverse (or quantile) F−1 is given by

F−1(t) = inf {x ∈ R : F (x) > t}, t ∈ (0, 1].

Let UX be a uniform random variable such that X = F−1X (UX) almost surely; such UX

is called a uniform transform of X and always exists. Let L∞ be the set of essentially

bounded random variables in this probability space, D the set of distributions of essen-

tially bounded random variables, and D0 the set of all distributions on R. For F ∈ D0,

write BF = {Y ∈ L0 : Y ∼ F}. Throughout this paper n represents a fixed positive

integer.

Denote by H the set of non-decreasing functions h : [0, 1] 7→ [0, 1] with h(0) =

h(0+) = 0 and h(1−) = h(1) = 1. In this paper, a dual utility Uh : L∞ → R with h ∈ H

is defined as

Uh(X) =

∫ ∞
0

h(P(X > x)) dx+

∫ 0

−∞
(h(P(X > x))− 1) dx, X ∈ L∞. (2.1)

The function h is called a probability perception function, a weighting function or a

distortion function in the economic literature. Due to the work of Yaari (1987), the

functional Uh is also often referred to as a Yaari’s dual utility (functional).

If at least one of h and F−1X is continuous, then through an integration by parts

and a change of variable, Uh can be written as

Uh(X) =

∫ 1

0
F−1X (1− t) dh(t), X ∈ L∞. (2.2)

In the risk management literature, a distortion risk measure is defined, by convention,

as ρg(X) =
∫ 1
0 F

−1
X (t) dg(t), X ∈ L∞; see e.g. McNeil et al. (2015). It is easy to

see that the two definitions reconcile if g is taken as the so-called dual of h, namely,

g(t) = 1− h(1− t), t ∈ [0, 1].

The main objective of this paper is to study the infimum and the supremum of

Uh (
∑n

i=1 Yi) over all random variables Y1, . . . , Yn with given respective distributions
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F1, . . . , Fn ∈ D0; that is, to find the values of

inf
Yi∈BFi ,i=1,...,n

Uh

(
n∑
i=1

Yi

)
(2.3)

and

sup
Yi∈BFi ,i=1,...,n

Uh

(
n∑
i=1

Yi

)
. (2.4)

Problems (2.3) and (2.4) represent the worst-case and the best-case dual utility of an

aggregate risk under dependence uncertainty, respectively. We emphasize that in this

paper we do not assume the probability distortion function h to be concave or convex.

For instance, h may be inverse-S-shaped (see Section 4.2 below for a precise definition),

a prominent feature in behavioral economics and finance (e.g. in CPT and RDUT).

2.2 Properties of dual utilities

Let G be the set of all non-decreasing functions from [0, 1] to [0, 1]. For h ∈ H and

t ∈ [0, 1], define its concave and convex hulls h∗ and h∗ respectively by

h∗(t) = inf {g(t) : g ∈ G, g > h, g is concave on [0, 1]} ,

h∗(t) = sup {g(t) : g ∈ G, g 6 h, g is convex on [0, 1]} .

Figure 2.1 gives an illustration of h, h∗ and h∗, where h is the inverse-S-shaped function

in Tversky and Kahneman (1992).

We collect a few lemmas on properties of dual utilities which will be useful later in

the paper. Recall that two random variables X and Y are comonotonic if there exists

Ω0 ⊆ Ω with P(Ω0) = 1 such that

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) > 0 for all ω, ω′ ∈ Ω0.

For X,Y ∈ L∞, the convex order X 6cx Y means that E[f(X)] 6 E[f(Y )] for all convex

functions f such that the above expectations exist. A functional U on L∞ is said to

be superadditive (resp. subadditive) if U(X + Y ) > U(X) + U(Y ) (resp. U(X + Y ) 6

U(X) + U(Y )) for all X,Y ∈ L∞, and a functional U on L∞ is said to be cx-increasing

(resp. cx-decreasing) if U(X) 6 U(Y ) for all X 6cx Y (resp. Y 6cx X).

Below, Lemma 2.1 concerns comonotonic additivity, concavity and superadditivity

of dual utilities; Lemma 2.2 gives a simple relationship between Uh, Uh∗ and Uh∗ , and

6



Figure 2.1: h (black), h∗ (blue) and h∗ (red); we choose h(x) = xb/(xb+(1−x)b)1/b, x ∈

[0, 1] as in Tversky and Kahneman (1992) and set b = 0.6.

Lemma 2.3 is a classic property of the convex and concave hulls h∗ and h∗ in relation

to h (cf. Figure 2.1).

Lemma 2.1 (Theorems 1-2 of Yaari (1987) and Theorem 4.1 of Acerbi (2002)). For h ∈

H, Uh is comonotonic additive. Moreover, the following four statements are equivalent:

(i) h is convex; (ii) Uh is concave; (iii) Uh is superadditive; (iv) Uh is cx-decreasing.

Analogously, the following four statements are equivalent: (v) h is concave; (vi) Uh is

convex; (vii) Uh is subadditive; (viii) Uh is cx-increasing.

Lemma 2.2 (Lemma 3.1 of Wang et al. (2015)). For any h ∈ H, we have

(i) h∗ ∈ H and Uh∗ is the smallest subadditive dual utility dominating Uh;

(ii) h∗ ∈ H and Uh∗ is the largest superadditive dual utility dominated by Uh.

Lemma 2.3 (Lemma 5.1 of Brighi and Chipot (1994)). Suppose that h ∈ H is continu-

ous, then the set {t ∈ [0, 1] : h(t) 6= h∗(t)} (resp. {t ∈ [0, 1] : h(t) 6= h∗(t)}) is the union

of some (at most countably many) disjoint open intervals, and h∗ (resp. h∗) is linear

on each of the above intervals.
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Before ending this section, we present some well known results in the cases that h

is convex or concave. In particular, the case that h is convex corresponds to strong risk

aversion in decision theory (Lemma 2.1 (iv)). The following proposition is straightfor-

ward from the above lemmas.

Proposition 2.4. Let X1, . . . , Xn ∈ L∞ be random variables with respective distribu-

tions F1, . . . , Fn. If h ∈ H is convex, then

min
Yi∈BFi ,i=1,...,n

Uh

(
n∑
i=1

Yi

)
=

n∑
i=1

Uh(Xi). (2.5)

If h ∈ H is concave, then

max
Yi∈BFi ,i=1,...,n

Uh

(
n∑
i=1

Yi

)
=

n∑
i=1

Uh(Xi). (2.6)

Furthermore, these bounds are attained if Y1, . . . , Yn are comonotonic.

Proof. For Yi ∈ BFi , i = 1, . . . , n, by the superadditivity (Lemma 2.1) and law-invariance

of Uh, Uh (
∑n

i=1 Yi) >
∑n

i=1 Uh(Yi) =
∑n

i=1 Uh(Xi). Hence the “>” sign in (2.5) holds.

The “6” sign in (2.5) follows directly from comonotonic additivity of Uh (Lemma 2.1)

and the definition of minimum. Equation (2.6) is similar.

For the upper bound in the case of a convex h and the lower bound in the case of

a concave h, explicit results are available for n = 2, and these bounds are attained by

counter-monotonic random variables. Two random variables X1 and X2 are said to be

counter-monotonic if X1 and −X2 are comonotonic.

Proposition 2.5. Let X1 and X2 be counter-monotonic random variables with respective

distributions F1 and F2, and U ∼ U(0, 1). If h ∈ H is convex, then

max
Yi∈BFi ,i=1,2

Uh (Y1 + Y2) = Uh(X1 +X2) = Uh(F−11 (U) + F−12 (1− U)).

If h ∈ H is concave, then

min
Yi∈BFi ,i=1,2

Uh (Y1 + Y2) = Uh(X1 +X2) = Uh(F−11 (U) + F−12 (1− U)).

Proof. Among all dependence structures, counter-monotonicity minimizes the sum of

two random variables with given marginal distributions F1 and F2 in convex order (see
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e.g. Corollary 3.28 of Rüschendorf (2013)). From Lemma 2.1, Uh is cx-decreasing if h is

convex, and hence Uh(Y1 + Y2) is maximized by a countermonotonic pair (Y1, Y2). On

the other hand, Uh is cx-increasing if h is concave, and hence Uh(Y1 + Y2) is minimized

by a countermonotonic pair (Y1, Y2).

Bounds of the type in Proposition 2.5 cannot be generalized to n > 3 since the

concept of counter-monotonicity cannot be trivially extended to n > 3; see Puccetti and

Wang (2015a) for extremal dependence concepts. As mentioned above, result in the case

that h is neither convex or concave is very limited in the literature except for the case

that Uh is a quantile (see Embrechts et al. (2015)). The next few sections are dedicated

to the study of this problem for general h ∈ H and n ∈ N.

3 Conditional joint mixability

In this section, we first recall the definition of joint mixability in Wang et al.

(2013), and then introduce a concept most relevant to the study of dual utilities under

dependence uncertainty.

Definition 3.1. An n-tuple (F1, . . . , Fn) of probability distributions on R is jointly

mixable if there exist n random variables X1 ∼ F1, . . . , Xn ∼ Fn such that X1 + · · ·+Xn

is almost surely a constant.

The determination of whether a given tuple of distributions is jointly mixable is a

highly non-trivial task. Some analytically characterized classes of distributions that are

jointly mixable are given in Wang and Wang (2011, 2016). In the simplest case of n = 2,

the joint mixability of (F,G) is equivalent to that F and G are symmetric to each other,

i.e., there exists c ∈ R such that F (c+ x) = 1−G(c− x) for almost every x ∈ R.

Joint mixability has shown to be instrumental in calculating worst-case values for

quantile (VaR) aggregation under dependence uncertainty; see e.g. Embrechts et al.

(2013). For general dual utility functionals, we generalize this idea to a concept of

conditional joint mixability. Here and henceforth, for any distribution F and 0 6 a <

b 6 1, we denote by F (a,b) the distribution of F−1(U) where U ∼ U(a, b). Clearly,

F (0,1) = F .
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Definition 3.2 (Conditional joint mixability). Let I be a set of open subintervals of

(0, 1). The n-tuple of distributions (F1, . . . , Fn) is I-jointly mixable if (F I1 , . . . , F
I
n) is

jointly mixable for each interval I ∈ I.

The term “conditional” in Definition 3.2 originates from the fact that (F I1 , . . . , F
I
n)

are conditional distributions. By convention any n-tuple of distributions is ∅-jointly

mixable (here and hereafter ∅ denotes the empty set). Obviously, {(0, 1)}-joint mixa-

bility is equivalent to joint mixability defined in Definition 3.1.

It is not hard to see that conditional joint mixability shares many common prop-

erties as joint mixability, such as those in Proposition 2.3 of Wang and Wang (2016).

However, since a general analytical determination of joint mixability is still unavail-

able, so is conditional joint mixability. Below we collect some elementary results on

conditional joint mixability.

Proposition 3.1. Let I be a set of disjoint open subintervals of (0, 1). For any F ∈ D0

(resp. F ∈ D), there exists G ∈ D0 (resp. G ∈ D) such that (F,G) is I-jointly mixable.

Proof. We only show the case of F ∈ D0 since the case of F ∈ D is implied from the

construction of G below. As I is a set of disjoint open intervals, it is at most countable.

Write I = {Ik : k ∈ K}, K ⊂ N, Ik = (ak, bk), and denote by I =
⋃
k∈K Ik. Define for

u ∈ [0, 1],

T (u) =
∑
k∈K

(F−1(bk) + F−1(ak)− F−1(ak + bk − u))I{u∈Ik} + F−1(u)I{u∈Ic}.

Let G be the distribution of T (U) where U ∼ U(0, 1). Note that for k ∈ K, T is

increasing on Ik and for u ∈ Ik,

T (ak) = F−1(ak) 6 T (u) 6 F−1(bk) = T (bk).

Therefore, T is an increasing function on [0, 1], and thus T = G−1 almost everywhere on

(0, 1). One can easily check that for k ∈ K, if Uk ∼ U(ak, bk), then F−1(bk)+F−1(ak)−

F−1(ak + bk −Uk) ∈ BGIk and F−1(ak + bk −Uk) ∈ BF Ik . This shows that (F Ik , GIk) is

jointly mixable for each k ∈ K.

Proposition 3.1 will become useful later in the proof of Theorem 5.1 when we discuss

the pessimism effect which will be introduced in Section 5. In the next result, joint
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mixability and conditional joint mixability can be explicitly characterized for uniform

distributions.

Proposition 3.2. Suppose that for i = 1, . . . , n, Fi is a uniform distribution on an

interval of length ai > 0. The following statements are equivalent.

(i)
∑n

i=1 ai > 2 max{ai : i = 1, . . . , n}.

(ii) (F1, . . . , Fn) is jointly mixable.

(iii) (F1, . . . , Fn) is I-jointly mixable for all sets I of open subintervals of (0, 1).

(iv) (F1, . . . , Fn) is I-jointly mixable for some non-empty set I of open subintervals of

(0, 1).

Proof. By Theorem 3.1 of Wang and Wang (2016), an n-tuple of uniform distribu-

tions with lengths b1, . . . , bn > 0 is jointly mixable if and only if
∑n

i=1 bi > 2 max{bi :

i = 1, . . . , n}. Note that for each I ∈ I with length |I|, (F I1 , . . . , F
I
n) is an n-tuple

of uniform distributions with lengths a1|I|, . . . , an|I|. From there, the implications

(ii)⇔(i)⇒(iii)⇒(iv)⇒(i) are all straightforward.

In Proposition 3.2, condition (i) means that the length of the support of one uniform

distribution cannot be too long compared to the sum of the lengths. Otherwise, the

random variable with the largest support will always dominate the sum of the other

ones and joint mixability is impossible; see discussions in Wang and Wang (2016) for

this condition. Intuitively, the equivalence of joint mixability and conditional joint

mixability comes from the fact that the conditional distributions of (F1, . . . , Fn) on any

open interval are simply the same tuple of uniform distributions with a different scale.

Remark 3.1. Verifying conditional joint mixability is equivalent to verifying joint mixa-

bility of tuples of conditional distributions. Therefore, numerical procedures for verify-

ing joint mixability can be used for conditional joint mixability as well. Some efficient

algorithms to numerically check joint mixability are provided by Puccetti and Wang

(2015b).
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4 Dual utilities with dependence uncertainty

In this section we partially solve the problems (2.3) and (2.4) with the help of

conditional joint mixability. We first present some general results, followed by a special

case when the distortion functions are inverse-S-shaped.

4.1 General results

Recall that the set L∞ consists of essentially bounded random variables; so Uh(X)

is properly defined for all h ∈ H and X ∈ L∞. We first show that if h ∈ H is continuous,

then the infimum in (2.3) can always be attained and thus it is a minimum. Similar for

the supremum in (2.4).

Lemma 4.1. Suppose that h ∈ H is continuous and F1, . . . , Fn ∈ D. Then there exist

Xi ∈ BFi, i = 1, . . . , n, such that

Uh

(
n∑
i=1

Xi

)
= min

Yi∈BFi ,i=1,...,n
Uh

(
n∑
i=1

Yi

)
. (4.1)

Proof. Denote by S = {X1 + · · · + Xn : Xi ∈ BFi , i = 1, . . . , n}. We use two facts

about the set S. First, by Theorem 2.4 of Embrechts et al. (2015), the continuity of h

implies that Uh is continuous on S with respect to weak convergence. Second, for any

sequence T1, T2, · · · ∈ S, there exists a subsequence Tk1 , Tk2 , . . . and T ∈ S such that

Tkj → T weakly as j →∞; see Theorem 2.1 (vii) of Bernard et al. (2014) and its proof.

Combining the above two facts establishes the desired result.

Note that the attainability in Lemma 4.1 is generally not true for a non-continuous

distortion function h, as illustrated by the following example.

Example 4.1 (Non-attainability). For p ∈ (0, 1), let h(t) = I{t>1−p}, t ∈ [0, 1]. By

definition in (2.1), the functional Uh : L∞ → R is the right-p-quantile, namely,

Uh(X) =

∫ ∞
0

I{P(X>x)>1−p} dx−
∫ 0

−∞
I{P(X>x)<1−p} dx

= inf{x ∈ R : P(X > x) < 1− p}.
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Let F be a uniform distribution on [0, 1]. Then by Lemma 4.5 of Bernard et al. (2014)

and Proposition 8.31 of McNeil et al. (2015),

inf
Y1,Y2∈BF

Uh (Y1 + Y2) = inf
x∈[0,p]

{F−1(x) + F−1(p− x)} = p.

Now we verify that for any X1, X2 ∼ F one has Uh(X1 + X2) > p. Suppose otherwise,

that is, inf{x ∈ R : FX1+X2(x) > p} = p. Because the cdf FX1+X2 is right-continuous,

we have FX1+X2(p) > p. Note that {X1 + X2 6 p} ⊂ {Xi 6 p} and P(Xi 6 p) = p 6

P(X1 +X2 6 p), i = 1, 2. It follows that {X1 +X2 6 p} = {X1 6 p} = {X2 6 p} almost

surely, and as a consequence, {X1 + X2 > p} = {X1 > p} = {X2 > p} almost surely.

This implies P(X1 + X2 > 2p) = P(X1 > p) = 1 − p, and hence P(X1 + X2 6 2p) = p.

Finally,

Uh(X1 +X2) = inf {x ∈ R : P(X1 +X2 6 x) > p} > 2p.

Thus, the minimum in (4.1) is not attainable.

For any continuous, non-concave distortion function h ∈ H, from Lemma 2.3, there

exist (countably many) disjoint open intervals on which h 6= h∗. For h ∈ H, write

g(t) = 1 − h(1 − t), g1(t) = 1 − h∗(1 − t) and g2(t) = 1 − h∗(1 − t), t ∈ [0, 1]. Denote

by Ih the set of disjoint open intervals on which g 6= g1. In other words, Ih contains

intervals (1−b, 1−a) where (a, b) is an open interval on which h 6= h∗. Similarly, denote

by J h the set of disjoint open intervals on which g 6= g2. The following theorem contains

our main technical result, which gives upper and lower bounds on Uh (
∑n

i=1Xi) based

on
∑n

i=1 Uh∗(Xi) and
∑n

i=1 Uh∗(Xi), and establishes their sharpness under conditional

joint mixability.

Theorem 4.2. Suppose that h ∈ H and X1, . . . , Xn ∈ L∞ with respective distributions

F1, . . . , Fn.

(i) We have

n∑
i=1

Uh∗(Xi) 6 inf
Yi∈BFi ,i=1,...,n

Uh

(
n∑
i=1

Yi

)

6 sup
Yi∈BFi ,i=1,...,n

Uh

(
n∑
i=1

Yi

)
6

n∑
i=1

Uh∗(Xi). (4.2)
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(ii) If h is continuous on [0, 1] and (F1, . . . , Fn) is Ih-jointly mixable, then

min
Yi∈BFi ,i=1,...,n

Uh

(
n∑
i=1

Yi

)
=

n∑
i=1

Uh∗(Xi). (4.3)

(iii) If h is continuous on [0, 1] and (F1, . . . , Fn) is J h-jointly mixable, then

max
Yi∈BFi ,i=1,...,n

Uh

(
n∑
i=1

Yi

)
=

n∑
i=1

Uh∗(Xi). (4.4)

Proof. We only show (i) and (ii), as (iii) is symmetric to (ii).

(i) From Lemma 2.2, we have

n∑
i=1

Uh∗(Xi) 6 Uh∗

(
n∑
i=1

Xi

)

6 Uh

(
n∑
i=1

Xi

)
6 Uh∗

(
n∑
i=1

Xi

)
6

n∑
i=1

Uh∗(Xi).

By taking infimum and supremum in the above inequality over random variables

with distributions respective distributions F1, . . . , Fn, we obtain (4.2).

(ii) Since h is continuous, we directly work with (2.2). Write Ih = {Ik, k ∈ K} where

K ⊂ N and Ik = (ak, bk), k ∈ K. Since (F1, . . . , Fn) is Ih-jointly mixable, for each

k ∈ K there exist random variables Y1k, . . . , Ynk, such that Yik is distributed as

F Iki , i = 1, . . . , n, and Y1k + · · ·+ Ynk is a constant µk where

µk =

n∑
i=1

E[Yik] =

n∑
i=1

∫
(ak,bk)

F−1i (t)dt

bk − ak
, k ∈ K. (4.5)

Take U ∼ U(0, 1) independent of Yik, i = 1, . . . , n, k ∈ K. It is harmless to assume

the existence of U , as we have only imposed some requirement on the distributions

of Yik, i = 1, . . . , n, k ∈ K. Write

Sn = F−11 (U) + · · ·+ F−1n (U). (4.6)

and

Y ∗i = F−1i (U)I{U 6∈∪k∈KIk} +
∑
k∈K

YikI{U∈Ik}, i = 1, . . . , n.
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It is easy to check that Y ∗i ∈ BFi , i = 1, . . . , n, and due to the comonotonic

additivity of Uh∗ in Lemma 2.1,

Uh∗(Sn) =

n∑
i=1

Uh∗(F−1i (U)) =

n∑
i=1

Uh∗(Xi).

Denote by Rn = Y ∗1 + · · ·+ Y ∗n and write

G(u) =

 F−11 (u) + · · ·+ F−1n (u), u ∈ (0, 1) \ (∪k∈KIk),

µk, u ∈ Ik, k ∈ K.
(4.7)

Clearly Rn = G(U). Noting that G is an increasing function on (0, 1), we have

G(t) = F−1Rn
(t) for almost every t ∈ (0, 1). Write g(t) = 1 − h(1 − t) and g1(t) =

1− h∗(1− t), t ∈ [0, 1]. From the fact that g1 is linear on each Ik, k ∈ K, and

F−1Sn
(t) =

n∑
i=1

F−1i (t) for t ∈ (0, 1),

we obtain∫
(ak,bk)

F−1Sn
(t)dg1(t)−

∫
(ak,bk)

F−1Rn
(t)dg1(t)

=
g1(bk)− g1(ak)

bk − ak

n∑
i=1

∫
(ak,bk)

F−1i (t)dt−
n∑
i=1

∫
(ak,bk)

µkdg1(t) = 0.

It follows that

Uh∗(Sn)− Uh∗(Rn) =

∫ 1

0
F−1Sn

(1− t)dh∗(t)−
∫ 1

0
F−1Rn

(1− t)dh∗(t)

=

∫ 1

0
F−1Sn

(t)dg1(t)−
∫ 1

0
F−1Rn

(t)dg1(t)

=
∑
k∈K

[∫ bk

ak

F−1Sn
(t)dg1(t)−

∫ bk

ak

F−1Rn
(t)dg1(t)

]
= 0, (4.8)

that is, Uh∗(Sn) = Uh∗(Rn). Integration by parts yields

Uh∗(Rn)− Uh(Rn) =

∫ 1

0
F−1Rn

(t)dg1(t)−
∫ 1

0
F−1Rn

(t)dg(t)

=

∫ 1

0
(g(t)− g1(t)) dF−1Rn

(t)

=
∑
k∈K

∫
(ak,bk)

(g(t)− g1(t)) dF−1Rn
(t) = 0, (4.9)

where the last equality follows since F−1Rn
(t) is a constant on (ak, bk).
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Therefore,

Uh(Rn) = Uh∗(Sn) =
n∑
i=1

Uh∗(Xi), (4.10)

and from part (i), we obtain (4.3).

Remark 4.1. Theorem 4.2 implies the classic results for convex or concave h in Proposi-

tion 2.4. If h is convex, then it is continuous and equal to h∗. Moreover, Ih is an empty

set, hence (F1, . . . , Fn) is always Ih-jointly mixable. Therefore, (4.3) is equivalent to

(2.5). The case of a concave h is similar.

Remark 4.2. Assuming (4.3) holds, the dependence structure that attains the bound is

generally not unique. Indeed, for n > 3 and a tuple of marginal distributions, there

can be many dependence structures that lead to a constant sum. Another question is

whether the conditional joint mixability is necessary for (4.3) to hold. In Theorem 4.4

below, we show that, for strict inverse-S-shaped distortion functions, this condition is

indeed necessary and sufficient for (4.3) to hold. In general, such an equivalence may

fail to hold; see Remark 4.5 for further discussions.

For general distributions, the Ih- and J h-joint mixability in Theorem 4.2 is not

easy to verify. One particularly useful result for this verification is Theorem 3.2 of Wang

and Wang (2016) on the joint mixability of an n-tuple of distributions with increasing

(or decreasing) densities: If for each i = 1, . . . , n, Fi has mean µi and an increasing

density on its finite support [ai − li, ai], then (F1, . . . , Fn) is jointly mixable if and only

if
n∑
i=1

ai −
n∑
i=1

µi > max
i=1,...,n

li. (4.11)

Condition (4.11) is straightforward to check and will be used in Section 5 later.

Remark 4.3. Throughout this paper we work with the set L∞ of essentially bounded

random variables so that all dual utilities Uh, Uh∗ and Uh∗ are properly defined on the

same domain L∞. If one likes to study Uh defined on a set Y larger than L∞, then it

has to be assumed that both Uh∗(Y ) and Uh∗(Y ) are finite for all Y ∈ Y. In that case,

the results in Theorem 4.2 are still valid based on the same proof.

Remark 4.4. The asymptotics as n → ∞ of the worst-case aggregate values of dual

utilities (under the term distortion risk measures) has been studied in Wang et al.
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(2015) and Cai et al. (2018) under different settings. In particular, Cai et al. (2018)

showed that the ratio

sup {Uh (
∑n

i=1 Yi) : Yi ∈ BFi , i = 1, . . . , n}∑n
i=1 Uh∗(Xi)

is 1 asymptotically as n → ∞, under some regularity conditions on the distributions

F1, F2, . . . and the distortion function h. In other words, for large n, the bounds in

Theorem 4.2 provide reasonable approximations for the values of (2.3) and (2.4), even

when the assumption of conditional joint mixability is violated.

Example 4.2 (Uniform risks). Suppose that h ∈ H is continuous and for i = 1, . . . , n,

Fi is a uniform distribution on an interval [bi, bi + ai], ai > 0, and
∑n

i=1 ai > 2 max{ai :

i = 1, . . . , n}. The Ih-joint mixability of (F1, . . . , Fn) is given by Proposition 3.2. For a

Uh-decision maker, the worst-case utility for an aggregation with marginal distributions

F1, . . . , Fn is given by

min
Yi∈BFi ,i=1,...,n

Uh

(
n∑
i=1

Yi

)
=

n∑
i=1

(
ai

∫ 1

0
(1− t) dh∗(t) + bi

)
.

4.2 Inverse-S-shaped distortion functions

An inverse-S-shaped function is arguably the most prominent example of probabil-

ity distortion function in a dual utility used in behavioral economics and finance (such

as in CPT or RDUT); see Tversky and Kahneman (1992) and Prelec (1998).

Definition 4.1. A distortion function h ∈ H is inverse-S-shaped if h is twice differ-

entiable on (0, 1), and there exists th ∈ [0, 1] such that h is concave on [0, th] and h is

convex on [th, 1]. Moreover, h is strict if it is strictly convex on [0, th] and strictly convex

on [th, 1] for some th ∈ [0, 1].

A typical inverse-S-shaped distortion function is presented in Figure 2.1. The

following proposition can be easily verified from Lemma 2.3.

Proposition 4.3. For an inverse-S-shaped distortion function h, there exist ph, qh ∈

[0, 1] such that

(i) h = h∗ on [ph, 1], h > h∗ on (0, ph) and h∗ is linear on [0, ph];
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(ii) h = h∗ on [0, qh], h < h∗ on (qh, 1) and h∗ is linear on [qh, 1].

It is immediate that ph 6 th 6 qh, h is concave on [0, qh] and h is convex on [ph, 1].

Note that th is in general not unique, unless we assume h is strict. On the other hand,

ph and qh are unique for a given inverse-S-shaped h.

For inverse-S-shaped h ∈ H, we have Ih = {(1− ph, 1)} and J h = {(0, 1− qh)}. In

the following, if ph = 0 (resp. qh = 1), we interpret {(1−ph, 1)} = ∅ (resp. {(0, 1−qh)} =

∅). Using Theorem 4.2, for F1, . . . , Fn ∈ D, and Xi ∈ BFi , i = 1, . . . , n,

min
Yi∈BFi ,i=1,...,n

Uh

(
n∑
i=1

Yi

)
>

n∑
i=1

Uh∗(Xi), (4.12)

and

max
Yi∈BFi ,i=1,...,n

Uh

(
n∑
i=1

Yi

)
6

n∑
i=1

Uh∗(Xi). (4.13)

Moreover, the inequalities in (4.12) and (4.13) and hold as equalities under conditional

joint mixability specified in Theorem 4.2. In the following theorem, we establish a

stronger claim: for a strict inverse-S-shaped distortion function h, the above bounds are

attainable only if conditional joint mixability holds. This result suggests that conditional

joint mixability is essential to the problem of dual utilities with dependence uncertainty,

and under some conditions it gives the only possible dependence structure that attains

the bounds.

Theorem 4.4. Suppose that h ∈ H is inverse-S-shaped and strict, F1, . . . , Fn ∈ D,

and Xi ∈ BFi, i = 1, . . . , n. The inequality in (4.12) holds as an equality if and only

if (F1, . . . , Fn) is {(1 − ph, 1)}-jointly mixable, and the inequality in (4.13) holds as an

equality if and only if (F1, . . . , Fn) is {(0, 1− qh)}-jointly mixable.

Proof. Theorem 4.2 gives the “if” statements. We only show the first “only-if” state-

ment: the inequality in (4.12) is an equality only if (F1, . . . , Fn) is {(1 − ph, 1)}-jointly

mixable. The second “only-if” statement is analogous.

There is nothing to show if ph = 0, and below we assume ph > 0. Denote by I the

interval (1− ph, 1). Suppose that there exist Yi ∈ BFi , i = 1, . . . , n such that they attain

the minimum

Uh

(
n∑
i=1

Yi

)
=

n∑
i=1

Uh∗(Yi). (4.14)
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Denote by T =
∑n

i=1 Yi. Note that (4.14) implies

n∑
i=1

Uh∗(Yi) = Uh

(
n∑
i=1

Yi

)
> Uh∗

(
n∑
i=1

Yi

)
>

n∑
i=1

Uh∗(Yi).

and hence Uh(T ) = Uh∗(T ). By definition of Uh in (2.1), we have∫ ∞
−∞

(h(P(T > x))− h∗(P(T > x))) dx = 0.

As h > h∗, we have h(P(T > x)) = h∗(P(T > x)) a.e. x ∈ R. Further, by Proposition

4.3, h(t) > h∗(t) for t ∈ (0, ph). Therefore, P(T > x) does not take values in (0, ph). As

a consequence, there exists M ∈ R such that P(T 6M) = 1 and P(T = M) > ph.

For i = 1, . . . , n, let Ai ∈ F be an event of probability ph on which Yi takes its

largest possible values (that is, Ai = {UYi > 1− ph} a.s. for a uniform transform UYi of

Yi), and let A ∈ F be an event of probability ph on which T takes its largest possible

values. Note that Yi ∼ F Ii conditional on Ai, i = 1, . . . , n. Denote by

M ′ =
n∑
i=1

E[Yi|Ai] =
n∑
i=1

∫
I
F−1i (t) dt.

Note that since P(T = M) > ph, we have

M = E[T |A] =

n∑
i=1

E[Yi|A] 6
n∑
i=1

E[Yi|Ai] = M ′.

Assume for the moment that M = M ′. We have, for each i, E[Yi|A] = E[Yi|Ai], and as

a consequence, Yi also takes its largest possible values on A. Hence, Yi ∼ F Ii conditional

on A. Since Y1 + · · · + Yn = M conditional on A, we conclude that (F1, . . . , Fn) is

I-jointly mixable. Thus, our desired statement holds if M = M ′. It remains to show

M = M ′, which we illustrate below.

Let the function G be given by, as in (4.7),

G(u) =

 F−11 (u) + · · ·+ F−1n (u), u ∈ (0, 1− ph],

M ′, u ∈ (1− ph, 1]
(4.15)

and R = G(U), where U ∼ U(0, 1). By (4.10), Uh∗(R) = Uh∗(T ). Let 6mps denote the

mean-preserving spread order in Definition 1.5.25 of Müller and Stoyan (2002), which

is stronger than 6cx. Write S =
∑n

i=1 F
−1
i (U). As comonotonicity maximizes convex

order of the sum, we have T 6cx S, which implies E[(T − x)−] > E[(S − x)−] for all
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x ∈ R. In particular, since S = R for U 6 1 − ph, and E[T ] = E[S] = E[R], for

all x 6 F−11 (1 − ph) + · · · + F−1n (1 − ph), we have E[(T − x)−] > E[(R − x)−], and

equivalently, E[(T − x)+] 6 E[(R − x)+]. For x > F−11 (1 − ph) + · · · + F−1n (1 − ph),

it is clear that E[(R − x)+] = E[(M ′ − x)+] > E[(M − x)+] > E[(T − x)+]. Therefore,

E[(T −x)+] 6 E[(R−x)+] for all x ∈ R. By Theorem 1.5.7 of Müller and Stoyan (2002),

together with the fact that E[T ] = E[R], we have T 6cx R.

By Theorem 1.5.27 of Müller and Stoyan (2002), there exists a sequence {T1, T2, . . . }

with Tk 6mps Tk+1 for all k, such that T = T1 and Tk → R in distribution. Since Uh∗ is

cx-decreasing (Lemma 2.1), and 6mps is stronger than 6cx, we have

Uh∗(T ) = Uh∗(T1) > Uh∗(T2) > . . . > Uh∗(R) = Uh∗(T ).

Therefore, Uh∗(Tk) = Uh∗(Tk+1).

By definition of 6mps, there exists x0 ∈ R such that FTk(x) 6 FTk+1
(x) for x < x0

and FTk(x) > FTk+1
(x) for x > x0. Inverting the distribution functions, there exists

t0 ∈ (0, 1) such that F−1Tk
(t) > F−1Tk+1

(t) for t < t0 and F−1Tk
(t) 6 F−1Tk+1

(t) for t > t0. Let

Φ(t) = F−1Tk+1
(t) − F−1Tk

(t), t ∈ (0, 1). Then Φ(t) 6 0 for t ∈ (0, t0) and Φ(t) > 0 for

t ∈ (t0, 1).

Since Tk and Tk+1 have the same mean because Tk 6mps Tk+1, we have
∫ 1
0 Φ(t)dt =

E[Tk+1]− E[Tk] = 0, and hence,

−
∫ t0

0
Φ(t) dt =

∫ 1

t0

Φ(t) dt. (4.16)

On the other hand, Uh∗(Tk) = Uh∗(Tk+1) implies

−
∫ t0

0
Φ(t)h′∗(1− t) dt =

∫ 1

t0

Φ(t)h′∗(1− t) dt, (4.17)

where h′∗ is the left-derivative of h∗. Let ξ = inft∈(0,t0) h
′
∗(1 − t). Putting (4.16) and

(4.17) together, we have

−
∫ t0

0
Φ(t)(h′∗(1− t)− ξ) dt =

∫ 1

t0

Φ(t)(h′∗(1− t)− ξ) dt. (4.18)

Note that the left-hand side of (4.18) is non-negative since h′∗(1 − t) > ξ and Φ(t) 6 0

for t ∈ (0, t0), and the right-hand side of (4.18) is non-positive since h′∗(1 − t) 6 ξ and

Φ(t) > 0 for t ∈ (t0, 1). Therefore, we have∫ t0

0
Φ(t)(h′∗(1− t)− ξ) dt = 0 =

∫ 1

t0

Φ(t)(h′∗(1− t)− ξ) dt. (4.19)
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As h (and h∗) is strictly convex on (0, ph), we know that h′∗(t) > h′∗(s) a.e. for t ∈ (ph, 1)

and s ∈ (0, ph). There are two possibilities:

(a) t0 6 1−ph. In this case, h′∗(1− t) < ξ for t ∈ (1−ph, 1), and (4.19) implies Φ(t) = 0

for t ∈ (1− ph, 1).

(b) t0 > 1−ph. In this case, h′∗(1− t) > ξ for t ∈ (0, 1−ph), and (4.19) implies Φ(t) = 0

for t ∈ (0, 1− ph).

In both cases, by (4.16), we have
∫ 1
1−ph Φ(t) = 0. Therefore, for all k ∈ N,∫ 1

1−ph
F−1Tk

(t) dt =

∫ 1

1−ph
F−1Tk+1(t) dt. (4.20)

Note that Tk 6cx R implies Tk 6 M ′ a.s. Since F−1Tk
→ F−1R = M a.e. and F−1Tk

is

bounded above by M ′, the Bounded Convergence Theorem gives, as k →∞,

phM =

∫ 1

1−ph
F−1T (t) =

∫ 1

1−ph
F−1Tk

(t) dt→
∫ 1

1−ph
F−1R (t) dt = phM

′.

That is, M = M ′ and the proof is complete.

As a special case of Theorem 4.4, if h is strictly convex, then

max
Yi∈BFi ,i=1,...,n

Uh

(
n∑
i=1

Yi

)
=

n∑
i=1

E[Yi]. (4.21)

if and only if (F1, . . . , Fn) is jointly mixable. This fact can be verified directly. Intuitively,

for a risk-averse decision maker, the best-possible risk given its mean is a constant.

Remark 4.5. As we can see from the proof of Theorem 4.4, the strictness assumption

of h is used to assure h′∗(t) > h′∗(s) a.e. for t ∈ (ph, 1) and s ∈ (0, ph). Hence, this

assumption can be weakened to that h∗ is not linear in a neighbourhood of ph. If h∗ is

indeed linear in a neighbourhood (a, b) of ph, using the same proof of Theorem 4.2, we

can see that the bound (4.12) is attainable if (F1, . . . , Fn) is {(1− b, 1)}-jointly mixable

but not necessarily {(1−ph, 1)}-jointly mixable. Note that {(1−b, 1)}- and {(1−ph, 1)}-

joint mixability do not imply each other in general. Hence, such an assumption is not

dispensable.

Remark 4.6. Commonly used distortion functions in decision theory are strict. For

instance, the famous probability perception functions (distortion functions) introduced

by Tversky and Kahneman (1992) and Prelec (1998) are both strict.
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5 The pessimism effect

In this section we present an application of our main results to decision theory in

terms of what we call the pessimism effect. Let us first look at an inverse-S-shaped

distortion function as in Figure 2.1. To compare h and h∗, one can see that h puts

high weights on both extreme gains and extreme losses, whereas h∗ puts the same high

weight on the losses but much less weight for gains. Chateauneuf et al. (2005) define

the index of pessimism for Uh as

Ph = inf
v∈(0,1)

{
(1− h(v))v

h(v)(1− v)

}
.

It is clear from the definition that Ph∗ > Ph as h∗ 6 h. Therefore, a Uh∗-decision maker

is more pessimistic (i.e. with a greater index of pessimism) than a Uh-decision maker,

and for this statement to hold we do not need to restrict ourselves to inverse-S-shaped

distortion functions. Note that if the index of pessimism corresponding to an identify

function h is 1 by definition.

From Theorem 4.2, we have seen that the two dual utilities Uh and Uh∗ are already

very well connected in the presence of dependence uncertainty. Below we make this con-

nection more precise from a decision analysis perspective, via two concrete examples.

We will see that a Uh-decision maker with dependence uncertainty may act like the (ar-

tificial) concave Uh∗-decision maker without dependence uncertainty; thus, conceptually,

the fear for uncertainty translates into a more pessimistic preference.

Example 5.1. The first example concerns insurance risks with a truncated Pareto

distribution. For θ > 1, let the distribution of a random variable Xθ be given by

P(Xθ 6 x) =


0, x < 1,

1− x−2, 1 6 x < θ,

1, x > θ.

That is, Xθ has a truncated Pareto(2) distribution with truncation point θ. Let Fθ be

the distribution of −Xθ. The distribution Fθ is often used to model insurance losses
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with a limit θ in the payment (e.g. in auto insurance). It is straightforward that

F−1θ (t) =


−θ, 0 < t 6 θ−2,

−t−1/2, θ−2 < t 6 1.

Suppose that h ∈ H is inverse-S-shaped with ph = 0.84 (see e.g. Figure 2.1; the

value ph = 0.84 is chosen for the ease of calculation), and an insurer A with utility

functional Uh insures n risks Y1, . . . , Yn identically distributed as Fθ with uncertain

dependence. Insurer A collects a premium p(θ) for each risk she insures, in which p is

an increasing function determined by the market. Her problem is to design an insurance

policy, i.e. to determine θ over θ ∈ [2.5,∞) to maximize her utility.

For given θ ∈ [2.5,∞), the utility for A under dependence uncertainty is

min
Yi∈BFθ ,i=1,...,n

Uh

(
np(θ) +

n∑
i=1

Yi

)
.

Note that 1− ph > θ−2, and F
(1−ph,1)
θ is the conditional distribution of Fθ on [F−1θ (1−

ph),−1] = [−2.5,−1], which has a mean of

µ =
1

ph

∫ 1

1−ph
−t−1/2 dt = −2

1− (1− ph)1/2

ph
= −10

7
.

Because F
(1−ph,1)
θ has an increasing density on its support, the joint mixability of the

n-tuple (F
(1−ph,1)
θ , . . . , F

(1−ph,1)
θ ) is equivalent to condition (4.11), which in the present

case is

n(F−1θ (1)− µ) > F−1θ (1)− F−1θ (1− ph) = 1.5,

or n > 3.5. Therefore, for n > 4, we know that the n-tuple (Fθ, . . . , Fθ) is (1 − ph, 1)-

jointly mixable. Now, by Proposition 4.3, we have, for n > 4,

min
Yi∈BFθ ,i=1,...,n

Uh

(
np(θ) +

n∑
i=1

Yi

)
= n(Uh∗(−Xθ) + p(θ)). (5.1)

Thus, insurer A will make decision over θ ∈ [2.5,∞) in the same way as she would

with the utility Uh∗(−Xθ) + p(θ), which is independent of n as long as n > 4. In other

words, due to the fear for dependence uncertainty, insurer A’s decision is dictated by

Uh∗ instead of her original utility Uh.

Note that if h is the identity in this example, then Uh∗(·) = Uh(·) = E[·], and (5.1)

always holds. In this case, there is no probability distortion, and dependence uncertainty

no longer affects the decision of the insurer.
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Before presenting the next example, we present another result which is interesting

in its own right. For any X,Y ∈ L∞, it follows from Theorem 4.2 that

Uh∗(X) + Uh∗(Y ) 6 Uh(X + Y ) 6 Uh∗(X) + Uh∗(Y ).

One may wonder for a given X ∈ L∞, whether there exist Y ∈ L∞ such that one of the

above two inequalities holds as an equality. The following theorem confirms that the

answer is positive: For any continuous h ∈ H and X ∈ L∞, there exist Y ∈ L∞ and

Z ∈ L∞ such that Uh(X + Y ) = Uh∗(X) + Uh∗(Y ) and Uh(X + Z) = Uh∗(X) + Uh∗(Z).

Hence, if we look at the risk aggregation problem of Uh(X + Y ) with the distribution

X specified but that of Y not specified, then the bounds in Theorem 4.2 are always

attainable by some Y ∈ L∞.

Theorem 5.1. For any continuous h ∈ H and X ∈ L∞, we have

min
Y ∈L∞

{Uh(X + Y )− Uh∗(Y )} = Uh∗(X), (5.2)

and

max
Y ∈L∞

{Uh(X + Y )− Uh∗(Y )} = Uh∗(X). (5.3)

Proof. We only show (5.2) since (5.3) is symmetric to (5.2). First, from Theorem 4.2

(i),

Uh(X + Y ) > Uh∗(X) + Uh∗(Y )

for all Y ∈ L∞. This shows

min
Y ∈L∞

{Uh(X + Y )− Uh∗(Y )} > Uh∗(X). (5.4)

Let F be the distribution of X. From Proposition 3.1, there exist G ∈ D such that (F,G)

is Ih-jointly mixable. By Theorem 4.2 (ii), there exist Y1 ∈ BF and Y2 ∈ BG such that

Uh(Y1+Y2) = Uh∗(Y1)+Uh∗(Y2). Take Y ∈ L∞ such that (X,Y ) is identically distributed

as (Y1, Y2); this is always possible by construction. Then we have Uh(X+Y )−Uh∗(Y ) =

Uh∗(X). This shows

min
Y ∈L∞

{Uh(X + Y )− Uh∗(Y )} 6 Uh∗(X). (5.5)

Combining (5.4)-(5.5) we obtain (5.2).
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Example 5.2. This example is based on Theorem 5.1, in which we do not need to

assume an inverse-S-shaped distortion function h. Suppose that a Uh-decision maker B

has an intractable claim Y , for which the only information that she knows is Uh∗(Y ) > k

where k is some constant. This may be interpreted as: an imaginary Uh∗-decision maker

C, who is more pessimistic than B, would agree that this risk Y has a utility at least k.

Hence, the utility of Y is also at least k for B, as Uh > Uh∗ .

Now, the decision maker B is concerned about the worst-case utility of her invest-

ment X over an admissible set A, that is, resulting utility of X ∈ A for her is

min
Y ∈L∞, Uh∗ (Y )>k

{Uh(X + Y )}.

By Theorem 5.1, there exists Z ∈ L∞ such that Uh(X + Z) = Uh∗(X) + Uh∗(Z). Take

Z ′ = Z − Uh∗(Z) + k ∈ L∞. Obviously Uh∗(Z ′) = k and

Uh(X + Z ′) = Uh∗(X) + Uh∗(Z)− Uh∗(Z) + k = Uh∗(X) + k.

Therefore,

min
Y ∈L∞, Uh∗ (Y )>k

{Uh(X + Y )} 6 Uh∗(X) + k.

On the other hand, by Theorem 4.2, for Y ∈ L∞ with Uh∗(Y ) > k,

Uh(X + Y ) > Uh∗(X) + Uh∗(Y ) > Uh∗(X) + k.

Therefore, resulting utility of X ∈ A for decision maker B is Uh∗(X) + k. In other

words, due to the fear for uncertainty in both the distribution of Y and the dependence

between X and Y , the investor B becomes pessimistic so that she would make decision

on X ∈ A according to the artificial concave utility functional Uh∗ . Note that the

imaginary investor, C, would have the same worst-case utility because (h∗)∗ = h∗.

A technical by-product is that, although the original optimization problem max
X∈A

Uh(X)

is not a convex problem, the optimization problem under uncertainty, max
X∈A

Uh∗(X),

becomes convex. This creates great convenience for further research on optimal invest-

ment.

The above two examples suggest that dual utilities are capable of absorbing peo-

ple’s attitude towards uncertainty into the functional forms and, in particular, into the

corresponding distortion functions.
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We can obtain the same conclusion by symmetry for an optimistic investor. For

instance, in the setup of Example 5.2, if a Uh-decision maker D is concerned about the

best-case utility of X + Y for an investment X ∈ A,

Uh(X + Y ) subject to Y ∈ L∞, Uh∗(Y ) 6 k,

then she will end up with

max {Uh(X + Y ) : Y ∈ L∞, Uh∗(Y ) 6 k} = Uh∗(X) + k.

That is, she is indeed as optimistic as a decision maker whose preference is modeled by

the convex utility functional Uh∗ , which only puts high weights on extreme gains.

6 Concluding remarks

In this paper we introduce the notion of conditional joint mixability, and establish

(under the assumption of conditional joint mixability) the exact best- and worst-case

values of dual utility functions for an aggregate risk in which the dependence is uncer-

tain. For strict inverse-S-shaped distortion functions, we show that the above bounds

are attainable if and only if the assumption of conditional joint mixability holds. An

economic implication of our results is what we call the pessimism effect: in the presence

of dependence uncertainty, a decision maker equipped with a dual utility tends to be

more pessimistic and she makes decision according to an auxiliary concave dual utility.

Comparing our results with those in the literature of risk aggregation with de-

pendence uncertainty, bounds on quantiles are obtained by Wang et al. (2013) and

Embrechts et al. (2013, 2015); note that quantiles are special cases of the dual utilities.

In the case h is concave, upper bound (Proposition 2.4) on Uh via comonotonicity and

lower bound (Proposition 2.5) in the case of n = 2 via countermonotonicity are essen-

tially a result of the Hardy-Littlewood inequalities and convex order; see e.g. Müller and

Stoyan (2002) and Rüschendorf (2013). For n > 3, lower bounds on Uh for concave h

are unclear. In the special case in which Uh is an Expected Shortfall (which has a con-

cave and piecewise linear h), some lower bounds are obtained by Bernard et al. (2014).

Asymptotic upper bounds with n → ∞ are studied by Wang et al. (2015) and Cai et
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al. (2018). Up to our knowledge, our paper is the first to study both lower and upper

bounds on risk aggregation for general h and finite n.

Joint mixability is a notion of negative dependence; see Puccetti and Wang (2015a)

on other notions of extreme negative dependence. As we have seen from Propositions 2.4

and 2.5, positive and negative dependence concepts generally give, respectively, lower

and upper bounds on Uh for a convex h, and the situation is the opposite for a concave

h. For a general h ∈ H which is neither convex or concave, we need a more sophisticated

notion of dependence that is partially positive and partially negative; that is where con-

ditional joint mixability becomes relevant. Roughly speaking, joint mixability requires

(F1, . . . , Fn) to support random variables with the corresponding distributions to have

a constant sum, and conditional joint mixability requires the same to hold but only on

some specified subsets of the sample space, allowing for a modeling of partial negative

dependence. From the proof of Theorem 4.2, we see that the construction generally

leads to a partially positive (comonotonicity) and partially negative (conditional joint

mixability) dependence structure via the two separate cases in equation (4.7).

The exact best and worst values in Theorem 4.2 require the rather strong assump-

tion of conditional joint mixability, which is not easy to check for general distributions.

Nevertheless, by imposing this condition we observe interesting consequences such as

those presented in Section 5, leading to a new interpretation of dependence uncertainty

in decision making. Moreover, the bounds in Theorem 4.2 may be used as approxima-

tions if the assumption of conditional joint mixability is dropped (see Remark 4.4).

Moving forward, various decision problems such as optimal consumption or port-

folio selection with dual utilities and dependence uncertainty may be studied. Another

possible direction of further research is to evaluate risk aggregation under uncertainty

for RDUT and CPT functionals. Although mathematical formulas for RDUT and CPT

may not be as elegant as in Theorem 4.2 of this paper, they may nonetheless serve well

for other broad classes of decision problems and applications.
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