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Abstract

In this paper, we focus on a class of linear-quadratic (LQ) mean-field games driven
by forward-backward stochastic differential equations, in which the individual control
process is constrained in a closed convex subset. The decentralized strategies and con-
sistency condition are represented by a class of coupled mean-field forward-backward
stochastic differential equation (MF-FBSDE) with projection operators. The well-
posedness of consistency condition system is obtained using the monotonicity condi-
tion method. The ε-Nash equilibrium property is discussed as well.
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1 Introduction

The control of stochastic multi-agent systems has attracted large attentions by many re-
searchers. As well-known, the large population systems arise naturally in various different
fields (e.g., biology, engineering, social science, economics and finance, operational re-
search and management, etc.). Readers interested in this topic may refer [25, 26, 27, 28]
for more details of their solid backgrounds and real applications. The agents (or players) in
large population system are individually negligible but their collective behaviors will make
some significant impact on all agents. This trait can be captured by the weakly-coupling
structure in the individual dynamics and cost functionals through the state-average. The
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individual behaviors of all agents in micro-scale can make their mass effects in the macro-
scale.

As for the controlled large population system, it is intractable for a given agent to collect
the of all agents due to the highly complex interactions among its colleagues. Consequently,
the centralized controls, which are built upon the full information of all agents, are not
implementable and not efficient in large population framework. Alternatively, it is more
reasonable and effective to study the decentralized strategies which depend on the local
information1 only. The mean-field type stochastic control problem is of both great interest
and importance in various fields such as science, engineering, economics, management,
and particularly in financial investment. In contrast with the standard stochastic control
problems, the underlying dynamic system and the cost functional involve state processes
as well as their expected values (hence the name mean-field). In financial investment,
however, one frequently encounters interesting problems which are closely related to money
managers’ performance evaluation and incentive compensation mechanisms. Together with
MF-FSDEs, research is naturally required on optimal control problems based on mean-
field forward-backward stochastic differential equations (hereafter MF-FBSDEs). Hence,
one powerful tool employed is so-called mean-field games (see [33]). The basic idea is to
approximate the initial large population control problem by its limiting problem via some
mean-field term (i.e., the asymptotic limit of state-average). There are huge literature
can be found in [33, 3, 12, 11, 16, 13, 29, 32] for the study of mean-field games; [27] for
cooperative social optimization; [25], [34] and [35] and references therein for models with
a major player; [1, 4, 44] for optimal control with a mean term in the dynamics and cost,
etc.

The main contribution of this paper is to study the forward backward mean-field LQG
of large population systems for which the individual states follow some forward backward
stochastic differential equations (FBSDEs in short). This franework makes our setting very
different to existing works of mean-field LQG games wherein the individual states evolve
by some forward stochastic differential equations. In contrast to classical stochastic differ-
ential equations, the terminal condition of BSDE should be specified as the priori random
variable, which means, the BSDE will admit one pair of adapted solutions, in which the
second solution component (the diffusion term) is naturally appeared here by virtue of the
martingale representation theorem and the adaptiveness requirement for filtration. The
linear BSDEs are first introduced in [2] for studying the optimal control problems, and the
general nonlinear BSDEs are developed by Pardoux and Peng in 1992 [36]. Since then, the
study of BSDE has initiated consistent and intense discussions, moreover, it has been used
in many applications of diverse areas. For instance, the BSDE takes very important role
to characterize the nonlinear expectation (g-expectation, see [38]), or the stochastic differ-
ential recursive utility (see, [14]). Subsequently, El Karoui, Peng, and Quenez [30] presents
many applications of BSDE in mathematical finance and optimal control theory. Pardoux
and Peng establish a kind of stochastic partial differetnial equations with backward dou-
bly SDE (see [37]). Therefore, it is very natural to study its dynamic optimization in

1Here local information means the optimal control regulator for a given agent, is designed on its own
individual state and some quantity which can be obtained in off-line way.
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large-population setting. Indeed, the dynamic optimization of backward large population
system is inspired by a variety of scenarios. For example, the dynamic economic models
for which the participants are of some recursive utilities or nonlinear expectations, or some
production planning problems with some tracking terminal objectives but affected by the
market price via production average.

Another example arises from the risk management when considering the relative or
comparable criteria based on the average performance of all other peers through the whole
sector. This is the case for a given pension fund to evaluate its own performance by
setting the average performance (say, average hedging cost or initial deposit, surplus) as
its benchmark. In addition, the controlled forward large population systems, which are
subjected to some terminal constraints, can be reformulated by some backward large pop-
ulation systems, as motivated by [31]. Applying to performance evaluation and incentive
compensation of fund managers in the field of financial engineering is of both academic
and practical importance. Findings from FBSDEs and mean-field stochastic optimal con-
trols will not only contribute to the academic literature by shedding light on performance
evaluation and incentive compensation schemes, but also provide practical applications to
fund management and risk control, especially under the current circumstances with on-
going economic recession. More importantly, research outcomes in this field are expected
to add to our knowledge based on economic theory about providing appropriate incentives
for managers in an agency framework. They can also be generalized to various indus-
tries and economic regions to provide policy makers with a theoretical basis during their
decision-making processes. Inspired by above mentioned motivations, this paper studies
the forward backward mean-field linear-quadratic-Gaussian (BMFLQG) games.

We concern on the linear-quadratic (LQ) mean-field game where the individual control
domain is convex subset of Rm. The LQ problems with convex control domain comes
naturally from various practical applications. For instance, the no-shorting constraint in
portfolio selection leads to the LQ control with positive control (Rm+ , the positive orthant).
Moreover, due to general market accessibility constraint, it is also interesting to study the
LQ control with more general closed convex cone constraint (see [17]). As a response, this
paper investigates the LQ dynamic game of large-population system with general closed
convex control constraint.

The control constraint brings some new features to our study here: (1) The related
consistency condition (CC) system is no longer linear, and it becomes a class of nonlinear
FBSDE with projection operator. (2) Due to the nonlinearity of (1), the standard Riccati
equation with feedback control is no longer valid to represent the consistency condition of
limit state-average process. Instead, the consistency condition is embedded into a class of
mean-field coupled FBSDE with a generic driven Brownian motion.

Simialrly like in Hu et al. [22]. We first apply the stochastic maximum principle for
convex control domain of the optimal decentralized response through some Hamiltonian
system with projection operator upon the control set U . Then, the consistency condition
system is connected to the well-posedness of some mean-field coupled forward-backward
stochastic differential equation (MF-FBSDE). Next, we state some monotonicity condition
of this MF-FBSDE to obtain its uniqueness and existence. At last, the related approximate
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Nash equilibrium property is also established. The MFG strategy derived is an open-
loop manner. Consequently, the approximate Nash equilibrium property is verified under
the open-loop strategies perturbation and some estimates of forward-backward SDE are
involved. In addition, all agents are set to be statistically identical thus the limiting control
problem and fixed-point arguments are given for a representative agent.

This paper is organized as follows. Section 2 formulates the LQ MFGs of BSDEs type
with convex control domain. The decentralized strategies are derived with the help of a
mean field forward-backward SDEs with projection operators. The consistency condition
is also established. Section 3 verifies the ε-Nash equilibrium of the decentralized strategies.
Some proofs can be found in Section 4, Appendix.

2 Preliminaries

Throughout this paper, we denote the k-dimensional Euclidean space by Rk with standard
Euclidean norm | · | and standard Euclidean inner product 〈·, ·〉. The transpose of a vector
(or matrix) x is denoted by x>. Tr(A) denotes the trace of a square matrix A. Let Rm×n

be the Hilbert space consisting of all (m × n)-matrices with the inner product 〈A,B〉 :=

Tr(AB>) and the norm |A| := 〈A,A〉
1
2 . Denote the set of symmetric k×k matrices with real

elements by Sk. If M ∈ Sk is positive (semi)definite, we write M > (≥) 0. L∞(0, T ;Rk)
is the space of uniformly bounded Rk−valued functions. If M(·) ∈ L∞(0, T ;Sk) and
M(t) > (≥) 0 for all t ∈ [0, T ], we say that M(·) is positive (semi) definite, which is
denoted by M(·) > (≥) 0. L2(0, T ;Rk) is the space of all Rk−valued functions satisfying∫ T

0 |x(t)|2dt <∞.
Consider a finite time horizon [0, T ] for fixed T > 0. We assume (Ω,F , {Ft}0≤t≤T , P )

is a complete, filtered probability space on which a standard N -dimensional Brownian
motion {Wi(t), 1 ≤ i ≤ N}0≤t≤T is defined. For given filtration F = {Ft}0≤t≤T , let
L2
F(0, T ;Rk) denote the space of all Ft-progressively measurable Rk-valued processes sat-

isfying E
∫ T

0 |x(t)|2dt < ∞. Let L2,E0
F (0, T ;Rk) ⊂ L2

F(0, T ;Rk) be the subspace satisfying
Ext ≡ 0 for x ∈ L2,E0

F (0, T ;Rk). Let L2
FT

(Rk) denote the space of all FT -measurable Rk-
valued random variable satisfying E|ξ|2 <∞.

Now let us consider a large-population system with N weakly-coupled negligible agents
{Ai}1≤i≤N . The state xi yi for each Ai satisfies the following controlled linear stochastic
system:

dxit =
(
Atx

i
t +Btu

i
t + Ftx

(N)
t + bt

)
dt+

(
Dtu

i
t + σt

)
dW i

t ,

dyit = −
(
Mtx

i
t + Uty

i
t +Htx

(N)
t + Vty

(N)
t +Ktu

i
t + ft

)
dt+ zitdW

i
t ,

xi0 = x ∈ Rn, yiT = ΦxiT , 0 ≤ t ≤ T,

(1)

where x(N)(·) =
1

N

N∑
i=1

xi(·) and y(N)(·) =
1

N

N∑
i=1

yi(·) is the state-average, (A,B, F, b,D, σ,M,N,H, V, U,K, f,Φ)

are matrix-valued functions with appropriate dimensions to be identified. For sake of pre-
sentation, we set all agents are homogeneous or statistically symmetric with same coeffi-
cients (A,B, F, b,D, σ,M,U,H, V, U,K, f,Φ) and deterministic initial states x.
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Now we identify the information structure of large population system: Fi = {F it}0≤t≤T
is the natural filtration generated by {Wi(t), 0 ≤ t ≤ T} and augmented by all P−null sets
in F . F = {Ft}0≤t≤T is the natural filtration generated by {Wi(t), 1 ≤ i ≤ N, 0 ≤ t ≤ T}
and augmented by all P−null sets in F . Thus, Fi is the individual decentralized information
of ith Brownian motion while F is the centralized information driven by all Brownian motion
components. Note that the heterogeneous noise Wi is specific for individual agent Ai but
xi(t) is adapted to Ft instead of F it due to the coupling state-average x(N).

The (centralized) admissible control ui ∈ Ucad where the (centralized) admissible control
set Ucad is defined as

Ucad := {ui(·)|ui(·) ∈ L2
F(0, T ;U), 1 ≤ i ≤ N},

where U ⊂ Rm is a closed convex set. By “centralized”, we mean F is the centralized
information generated by all Brownian motion components. Typical examples of such set
is U = Rm+ which represents the positive control. Moreover, we also define decentralized
control as ui ∈ Ud,iad , where the decentralized admissible control set Ud,iad is defined as

Ud,iad := {ui(·)|ui(·) ∈ L2
Fi(0, T ;U), 1 ≤ i ≤ N}.

Note that both Ud,iad and Ucad are defined in open-loop sense, and Ud,iad ⊂ U
c
ad. Let u =

(u1, · · · , ui, · · · , uN ) denote the set of control strategies of all N agents and u−i =

(u1, · · · , ui−1, ui+1, · · · , uN ) denote the control strategies set except the ith agent Ai.
Introduce the cost functional of Ai as

Ji
(
ui, u−i

)
=

1

2
E

[∫ T

0

[ 〈
Qt

(
xit − x

(N)
t

)
, xit − x

(N)
t

〉
+ Lt

(
yit − y

(N)
t

)2

+
〈
Rtu

i
t, u

i
t

〉 ]
dt+

〈
G
(
xiT − x

(N)
T

)
, xiT − x

(N)
T

〉]
. (2)

Remark 1. Observe that in (2), there should appear a term yi0 − y
(N)
0 . Nonetheless, it

is deterministic constant, whenever taking expectation, it will disappear (more details see
below). In contrast to Huang et al. [22, 23], our framework considers the state variables(
xi, yi

)
.

(A1) Assume A(·), F (·),M(·), U(·), H(·), V (·) ∈ L∞(0, T ;Sn), and B(·), D(·), K (·) ∈
L∞(0, T ;Rn×m), b(·), σ(·), f (·) ∈ L∞(0, T ;Rn);

(A2) Q(·), L (·) ∈ L∞(0, T ;Sn), Q(·), L (·) ≥ 0, R(·) ∈ L∞(0, T ;Sm), R(·) > 0 and
R−1(·) ∈ L∞(0, T ;Sm), G ∈ Sn, G > 0.

From the theory of mean field BSDEs, under the assumptions (A1)-(A2), Eq. (1) ad-
mits a unique solution

(
xi, yi, zi

)
∈ L2

FW (0, T ;Rn) ×L2
FW (0, T ;Rn)× L2

FW (0, T ;Rn) under
admissible control ui ∈ Ucad with (A1) and (A2). Now, we formulate the large population
LQG with control constraint (CC).

5



Problem (CC). Find an open-loop Nash equilibrium strategies set ū = (ū1, ū2, · · · , ūN )

satisfying
Ji(ūi(·), ū−i(·)) = inf

ui(·)∈Uc
ad

Ji(ui(·), ū−i(·)),

where ū−i represents (ū1, · · · , ūi−1, ūi+1, · · · , ūN ), the strategies of all agents except Ai.
Observe that the problem (CC) is of large computational issue since the highly-

complicated coupling structure among these agents. Alternatively, the mean-field game
theory employed is to search the approximate Nash equilibrium, which bridges the “cen-
tralized" LQG to the limiting LQG control problems, as the number of agents tends to
infinity. Similar in [22], we need to construct some auxiliary control problem using the
frozen state-average limit. Based on it, we can find the decentralized strategies by consis-
tency condition. Consider the following auxiliary problem for Ai :

dxi,�t =
(
Atx

i,�
t +Btu

i
t + Ftφ

1
t + bt

)
dt+

(
Dtu

i
t + σt

)
dW i

t ,

dyi,�t = −
(
Mtx

i,�
t + Uty

i,�
t +Htφ

1
t + Vtφ

2
t +Ktu

i
t + ft

)
dt+ zi,�t dW i

t ,

xi,�0 = x ∈ Rn, yi,�T = Φxi,�T , 0 ≤ t ≤ T,

(3)

and limiting cost functional is given by

Ji
(
ui
)

=
1

2
E

[∫ T

0

[ 〈
Qt

(
xi,�t − φ1

t

)
, xi,�t − φ1

t

〉
+ Lt

(
yi,�t − φ2

t

)2

+
〈
Rtu

i
t, u

i
t

〉 ]
dt+

〈
G
(
xi,�T − φ

1
T

)
, xi,�T − φ

1
T

〉]
(4)

where φi, i = 1, 2 are the average limit of realized states which should be determined by
the consistency-condition (CC) in our later analysis (see (10)). Note that the auxiliary
state

(
xi,�t , y

i,�
t , zi,�t

)
is different to the true state

(
xi, yi, zi

)
. Also, the admissible control

ui in (3), (4) ∈ Ud,iad whereas in (1), (2), the admissible control ∈ Ucad (for sake of simplicity,
we still denote them with the same notation).

Now we formulate the following limiting stochastic optimal control problem with control
constraint (LCC).

Problem (LCC). For the ith agent, i = 1, 2, · · · , N, find ui,∗(·) ∈ Ud,iad satisfying

Ji(u
i,∗(·)) = inf

ui(·)∈Ud,i
ad

Ji(u
i(·)).

Then ui,∗(·) is called a decentralized optimal control for Problem (LCC). Now we apply
the well known maximum principle (Theorem 3.3 in [41]) to characterize ui,∗ with the
optimal state xi,∗. To this end, let us introduce the following adjoint process

dpit =
[
Utp

i
t − Lt

(
yi,∗t − φ2

t

)]
dt,

dqit =
[
−Mtp

i
t −Atqit +Qt

(
xi,∗t − φ1

t

)]
dt+ kitW

i
t ,

pi0 = −Ψ
(
yi,∗0 − φ2

0

)
, qiT = Φ>piT −G

(
xi,∗T − φ1

T

)
.
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The Hamiltonian function can be expressed by

Hi , Hi
(
t, pi, qi, ki, xi, yi, zi, ui

)
=

〈
pi,Mxi + Uyi +Hφ1 + V φ2 +Kui + f

〉
+
〈
qi, Axi +Bui + Fφ1 + b

〉
+
〈
ki, Dui + σ

〉
−1

2

〈
Q
(
xi − φ1

)
, xi − φ1

〉
− 1

2

〈
L
(
yi − φ2

)
, yi − φ2

〉
− 1

2

〈
Rui, ui

〉
. (5)

Since U is a closed convex set, then maximum principle reads as the following local form〈
∂Hi

(
t, pi,∗, qi,∗, ki,∗, xi,∗, yi,∗, zi,∗, ui,∗

)
∂ui

, u− ui,∗
〉
≤ 0, for all u ∈ U, a.e. t ∈ [0, T ] , P -a.s.

(6)
Hereafter, time argument is suppressed in case when no confusion occurs. Noticing (5),
then (6) yields that〈

BT qi,∗ +KT pi,∗ +DTki,∗ −Rui,∗, u− ui,∗
〉
, for all u ∈ U, a.e. t ∈ [0, T ] , P -a.s.

or equivalently (noticing R > 0),〈
R

1
2
[
R−1

(
BT qi,∗ +KT pi,∗ +DTki,∗

)
− ui,∗

]
, R

1
2
(
u− ui,∗

)〉
, for all u ∈ U, a.e. t ∈ [0, T ] , P -a.s.

(7)
As R > 0, we take the following norm on U ⊂ Rm (which is equivalent to its Euclidean
norm)

‖x‖2R = 〈〈x, x〉〉 :=
〈
R

1
2x,R

1
2x
〉
,

and by the well-known results of convex analysis, we obtain that (7) is equivalent to

ui,∗t = PU

[
R−1
t

(
BT
t q

i,∗
t +KT

t p
i,∗
t +DT

t k
i,∗
t

)]
.

where PU (·) is the projection mapping from Rm to its closed convex subset Γ under the
norm ‖ · ‖R. For more details, see Appendix. Hereafter, denote

ϕ (t, p, q, k) = PU

[
R−1
t

(
BT
t q +KT

t p+DT
t k
)]

Here, for simplicity, the dependence of ϕ on time variable t is suppressed. The related
Hamiltonian system becomes

dxi,∗t =
[
Atx

i,∗
t +Btϕ

(
pi,∗t , q

i,∗
t , ki,∗t

)
+ Ftφ

1
t + bt

]
dt

+
[
Dtϕ

(
pi,∗t , q

i,∗
t , ki,∗t

)
+ σt

]
dW i

t ,

dyi,∗t = −
[
Mtx

i,∗
t + Uty

i,∗
t +Htφ

1
t + Vtφ

2
t +Ktϕ

(
pi,∗t , q

i,∗
t , ki,∗t

)
+ ft

]
dt+ zi,∗t dW i

t

dpi,∗t =
[
Utp

i,∗
t − Lt

(
yi,∗t − φ2

t

)]
dt,

dqi,∗t =
[
−Mtp

i,∗
t −Atq

i,∗
t +Qt

(
xi,∗t − φ1

t

)]
dt+ ki,∗t dW i

t ,

xi,∗0 = x ∈ Rn, yi,∗T = Φxi,∗T , p
i,∗
0 = 0, qi,∗T = ΦT pi,∗T −G

(
xi,∗T − φ1

T

)
.
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After above preparations, it follows that

φ1
· = lim

N→+∞

1

N

N∑
i=1

xi,∗· = Exi,∗· , (8)

φ2
· = lim

N→+∞

1

N

N∑
i=1

yi,∗· = Eyi,∗· . (9)

Here, the first equality of (8) and (9) is due to the consistency condition: the frozen term
φ1 and φ2 should equal to the average limit of all realized states

(
xi,∗, yi,∗

)
; the second

equality is due to the law of large numbers. Thus, by replacing
(
φ1, φ2

)
by
(
Exi,∗,Eyi,∗

)
in above Hamiltonian system, we get the following system

dxi,∗t =
[
Atx

i,∗
t +Btϕ

(
pi,∗t , q

i,∗
t , ki,∗t

)
+ FtExi,∗t + bt

]
dt

+
[
Dtϕ

(
pi,∗t , q

i,∗
t , ki,∗t

)
+ σt

]
dW i

t ,

dyi,∗t = −
[
Mtx

i,∗
t + Uty

i,∗
t +HtExi,∗t + VtEyi,∗t +Ktϕ

(
pi,∗t , q

i,∗
t , ki,∗t

)
+ ft

]
dt+ zi,∗t dW i

t ,

dpi,∗t =
[
Ntp

i,∗
t − Lt

(
yi,∗t − Eyi,∗t

)]
dt+ Utp

i,∗
t dW i

t ,

dqi,∗t =
[
−Mtp

i,∗
t −Atq

i,∗
t +Qt

(
xi,∗t − Exi,∗t

)]
dt+ ki,∗t dW i

t ,

xi,∗0 = = x ∈ Rn, yi,∗T = Φxi,∗T , p
i
0 = 0,

qi,∗T = ΦT pi,∗T −G
(
xi,∗T − Exi,∗T

)
.

As all agents are statistically identical, thus we can suppress subscript “i” and the following
consistency condition system arises for generic agent:

dx = [Ax+Bϕ (p, q, k) + FEx+ b] dt+ [Dϕ (p, q, k) + σ] dWt,

dy = − [Mx+ Uy +HEx+ V Ey +Kϕ (p, q, k) + f ] dt+ zdWt,

dp = [Np− L (y − Ey)] dt+ UpdWt,

dq = [−Mp−Aq +Q (x− Ex)] dt+ kWt,

x0 = x ∈ Rn, yT = ΦxT , p0 = 0,

qT = ΦT pT −G (xT − ExT ) .

(10)

Here, W stands for a generic Brownian motion on (Ω,F , P ), and denote FW the natural
filtration generated by it and augmented by all null-sets. L2

FW , L
2,E0
FW are defined in the

similar way with L2
F, L

2,E0
F before. The system (10) is a nonlinear mean-field forward-

backward SDE (MF-FBSDE) with projection operator. It characterizes the state-average
limit φ1 = Ex, φ2 = Ey and MFG strategies ūi = ϕ(p, q, k) for a generic agent in the
combined manner, which is totally different from [22, 23]. As you may concern, we need
to prove the above consistency condition system admits a unique solution. We have the
following uniqueness and existence result.

Theorem 2. Assume that (A1) and (A2) are in force. There exists a unique adapted
solution (x, y, z, p, q, k) ∈ L2

FW (0, T ;Rn)×L2
FW (0, T ;Rn)×L2

FW (0, T ;Rn)×L2,E0
FW (0, T ;Rn)×

L2,E0
FW (0, T ;Rn)× L2

FW (0, T ;Rn) to system (10).

For simplicity, we put the proof of Theorem 2 in the Appendix.
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3 Main result

In above sections, we can characterize the decentralized strategies {ūit, 1 ≤ i ≤ N} of Prob-
lem (CC) through the auxiliary (LCC) and consistency condition system. For sake of pre-
sentation, we alter the notation of consistency condition system to be (αi, βi, γi, θi, κi, γi):

dαi =
[
Aαi +Bϕ

(
χi, βi, γi

)
+ FEαi + b

]
dt+

[
Dϕ

(
χi, βi, γi

)
+ σ

]
dW i

t ,

dθi = −
[
Mαi + Uθi +HEαi + V Eθi +Kϕ

(
χi, βi, γi

)
+ f

]
dt+ κidW i

t ,

dχi =
[
Nχi − L

(
θi − Eθi

)]
dt,

dβi =
[
−Mχi −Aβi +Q

(
αi − Eαi

)]
dt+ γiW i

t ,

αi0 = x ∈ Rn, θiT = ΦαiT , χ
i
0 = 0,

βiT = ΦT
Tχ

i −G
(
αiT − EαiT

)
.

(11)

Now, we are in position to verify the ε-Nash equilibrium of them. To this end, let us first
present the definition of ε-Nash equilibrium.

Definition 3. A set of strategies, ūit ∈ Ucad, 1 ≤ i ≤ N , for N agents, is called to satisfy
an ε-Nash equilibrium with respect to costs J i, 1 ≤ i ≤ N, if there exists ε = ε(N) ≥
0, lim
N→+∞

ε(N) = 0, such that for any 1 ≤ i ≤ N , we have

J i(ūit, ū−it ) ≤ J i(uit, ū−it ) + ε, (12)

when any alternative strategy ui ∈ Ucad is applied by Ai.

Remark 4. If ε = 0, then Definition 3 is reduced to the usual exact Nash equilibrium.

Now, we give the main result of this paper and its proof will be shown step by step.

Theorem 5. Assume that (A1) and (A2) are in force. Then, (ū1, ū2, · · · , ūN ) is an ε-Nash
equilibrium of Problem (CC).

In order to prove the main Theorem 5, we needs several lemmas which are pre-
sented later. For agent Ai, recall that its decentralized open-loop optimal strategy is
ūi = ϕ

(
χi, βi, γi

)
. The decentralized state

(
x̆it, y̆

i, κi
)
, is

dx̆i =
[
Ax̆i +Bϕ

(
χi, βi, γi

)
+ Fx̆(N) + b

]
dt+

[
Dϕ

(
χi, βi, γi

)
+ σ

]
dW i

t ,

dy̆i = −
[
Mx̆i + Uy̆i +Hx̆(N) + V y̆(N) +Kϕ

(
χi, βi, γi

)
+ f

]
dt+ z̆idW i

t ,

dαi =
[
Aαi +Bϕ

(
χi, βi, γi

)
+ FEαi + b

]
dt+

[
Dϕ

(
χi, βi, γi

)
+ σ

]
dW i

t ,

dθi = −
[
Mαi + Uθi +HEαi + V Eθi +Kϕ

(
χi, βi, γi

)
+ f

]
dt+ κidW i

t ,

dχi =
[
Nχi − L

(
θi − Eθi

)]
dt,

dβi =
[
−Mχi −Aβi +Q

(
αi − Eαi

)]
dt+ γiW i

t ,

x̆i0 = αi0 = x, y̆iT = Φx̆iT ,

θiT = ΦαiT , χ
i
0 = −Ψ

(
θi0 − Eθi0

)
,

βiT = ΦT
Tχ

i −G
(
αiT − EαiT

)
.

(13)

where x̆(N) = 1
N

∑N
i=1 x̆

i and y̆(N) = 1
N

∑N
i=1 y̆

i Note that (αi, βi, γi, θi, κi, γi) satisfies
(11).
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For each 1 ≤ i ≤ N , the monotonic fully coupled FBSDEs (11) has a unique so-
lution (αi, βi, γi) ∈ L2

Fi(0, T ;Rn) × L2
Fi(0, T ;Rn) × L2

Fi(0, T ;Rn). Thus, the system of
all first equation of (13), 1 ≤ i ≤ N , has also a unique solution

(
(x̆i)i, (y̆

i)i, (κ̆
i)i
)
∈

(L2
F(0, T ;Rn))⊗N × (L2

F(0, T ;Rn))⊗N × (L2
F(0, T ;Rn))⊗N , where ⊗N denotes the n-tuple

Cartesian product. Moreover, since {Wi}Ni=1 is N -dimensional Brownian motions whose
components are independent and identically distributed, we have (αi, βi, γi, θi, κi, γi), 1 ≤
i ≤ N are independent and identically distributed.

Lemma 6. If (A1) and (A2) hold, then

E sup
0≤t≤T

∣∣∣x̆(N)(t)
∣∣∣2 ≤ C2,

E sup
0≤t≤T

∣∣∣y̆(N)(t)
∣∣∣2 ≤ C2.

The proof of Lemma 6 is classical by virtue of B-D-G inequality and Schwarz inequality,
so we omit it.

Lemma 7. If (A1) and (A2) hold, then

E sup
0≤t≤T

∣∣∣x̆(N)(t)− Eαi(t)
∣∣∣2 = O

( 1

N

)
, (14)

E sup
0≤t≤T

∣∣∣y̆(N)(t)− Eθi(t)
∣∣∣2 = O

( 1

N

)
. (15)

Proof. Let us add up both sides of the first and second equation of (13) with respect to
all 1 ≤ i ≤ N and multiply 1

N , we obtain (recall that x̆(N) = 1
N

∑N
i=1 x̆

i, y̆(N) = 1
N

∑N
i=1 y̆

i

and z̆(N) = 1
N

∑N
i=1 z̆

i

dx̆(N) =
[
Ax̆(N) + 1

N

∑N
i=1Bϕ

(
χi, βi, γi

)
+ Fx̆(N) + b

]
dt

+
1

N

N∑
i=1

[
Dϕ

(
χi, βi, γi

)
+ σ

]
dW i

t ,

dy̆(N) = −
[
Mx̆(N) + Uy̆(N) +Hx̆(N) + V y̆(N) + 1

N

∑N
i=1Kϕ

(
χi, βi, γi

)
+ f

]
dt

+
1

N

N∑
i=1

z̆idW i
t ,

x̆
(N)
0 = x, y̆

(N)
T = Φx̆

(N)
T .

(16)
On the other hand, by taking the expectation on both sides of the second equation of (13),
it follows from Fubini’s theorem that Eαi satisfies the following equation:

d
(
Eαi

)
=
[
AEαi +BEϕ

(
χi, βi, γi

)
+ FEαi + b

]
dt,

d
(
Eθi
)

= −
[
MEαi + UEθi +HEαi + V Eθi +KEϕ

(
χi, βi, γi

)
+ f

]
dt,

Eαi0 = x, EθiT = ΦEαiT .
(17)

From (16) and (17), by denoting

∆1
t : = x̆(N)(t)− Eαi(t), (18)

∆2
t : = y̆(N)(t)− Eθi(t), (19)
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we have

d∆1 =
[
A∆1 + 1

N

∑N
i=1Bϕ

(
χi, βi, γi

)
−BEϕ

(
χi, βi, γi

)
+ F∆1

]
dt

+
1

N

N∑
i=1

[
Dϕ

(
χi, βi, γi

)
+ σ

]
dW i

t ,

d∆2 = −
[
M∆1 +N∆2 +H∆1 + V∆2

+
1

N

N∑
i=1

Kϕ
(
χi, βi, γi

)
−KEϕ

(
χi, βi, γi

) ]
dt+

1

N

N∑
i=1

z̆idW i
t ,

∆1
0 = 0, ∆2

T = Φ∆1
T .

and the inequality (x+ y)2 ≤ 2x2 + 2y2 yields that, for any t ∈ [0, T ],

E
[

sup
0≤s≤t

∣∣∆1
s

∣∣2] ≤ 2E sup
0≤s≤t

∣∣∣∣∣
∫ s

0

[
(A+ F ) ∆1

s

+
1

N

N∑
i=1

Bϕ
(
χi, βi, γi

)
−BEϕ

(
χi, βi, γi

) ]
dr

∣∣∣∣∣
2

+2E sup
0≤s≤t

∣∣∣∣∣ 1

N

N∑
i=1

∫ s

0

[
Dϕ

(
χi, βi, γi

)
+ σ

]
dW i

t

∣∣∣∣∣
2

.

From the well-known Cauchy-Schwartz inequality and the B-D-G inequality, we obtain
that there exists a constant C0 independent of N (which may vary line by line) such that

E
[

sup
0≤s≤t

∣∣∆1
s

∣∣2] ≤ C0E sup
0≤s≤t

∣∣∣∣∣
∫ s

0

[ ∣∣∆1
s

∣∣2 +

∣∣∣∣∣ 1

N

N∑
i=1

Bϕ
(
χi, βi, γi

)
−BEϕ

(
χi, βi, γi

)∣∣∣∣∣
2 ]

dr

∣∣∣∣∣
2

+
C0

N
E

∣∣∣∣∣
N∑
i=1

∫ s

0

∣∣Dϕ (χi, βi, γi)+ σ
∣∣2 dt

∣∣∣∣∣
2

. (20)

Since (χi, βi, γi), 1 ≤ i ≤ N are independent identically distributed, for each fixed s ∈
[0, T ], let us denote that µ(s) = Eϕ(χi, βi, γi)) (note that µ does not depend on i), we
have

E

∣∣∣∣∣ 1

N

N∑
i=1

ϕ
(
χi, βi, γi

)
− Eϕ

(
χi, βi, γi

)∣∣∣∣∣
2

=
1

N2
E

∣∣∣∣∣
N∑
i=1

ϕ
(
χi, βi, γi

)
− µs

∣∣∣∣∣
2

=
1

N2
E

N∑
i=1

∣∣ϕ (χi, βi, γi)− µs∣∣2
+

2

N2
E

 N∑
i=1,j=1,j 6=i

〈
ϕ
(
χi, βi, γi

)
− µs, ϕ

(
χj , βj , γj

)
− µs

〉 .
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Since (χi, βi, γi), 1 ≤ i ≤ N are independent, we have

2

N2
E

 N∑
i=1,j=1,j 6=i

〈
ϕ
(
χi, βi, γi

)
− µs, ϕ

(
χj , βj , γj

)
− µs

〉
=

2

N2

N∑
i=1,j=1,j 6=i

〈
Eϕ
(
χi, βi, γi

)
− µs,Eϕ

(
χj , βj , γj

)
− µs

〉
= 0.

Then, due to the fact that (χi, βi, γi), 1 ≤ i ≤ N are identically distributed, there exists a
constant C0 independent of N such that

E
∫ t

0

∣∣∣∣∣ 1

N

N∑
i=1

Bϕ
(
χi, βi, γi

)
−BEϕ

(
χi, βi, γi

)∣∣∣∣∣
2

dr

≤ C0

∫ t

0
E

∣∣∣∣∣ 1

N

N∑
i=1

ϕ
(
χi, βi, γi

)
− µs

∣∣∣∣∣
2

dr

≤ C0

N2

∫ t

0
E

N∑
i=1

∣∣ϕ (χi, βi, γi)− µs∣∣2 dr

=
C0

N

∫ t

0
E
∣∣ϕ (χi, βi, γi)− µs∣∣2 dr

= O

(
1

N

)
,

where the last equality comes from the fact that ϕ(χi, βi, γi) ∈ L2
F i(0, T ; Γ).

We proceed the second term of (20), using the fact that (χi, βi, γi) are identically
distributed as follows:

C0

N2
E

[
N∑
i=1

∫ t

0

∣∣Dϕ(χi, βi, γi) + σ(s)
∣∣2 ds] = O

( 1

N

)
.

Moreover, we obtain from (20) that

E sup
0≤s≤t

|∆1
s|2 ≤ C0E

∫ t

0
|∆1

s|2 +O
( 1

N

)
, for any t ∈ [0, T ].

Consequently, by virtue of Gronwall’s inequality, we get the first estimate (18).
We now handle the estimates (19). Applying Itô’s formula again, we have

∣∣∆2
t

∣∣2 +
1

N

N∑
i=1

∫ T

t

∣∣z̆is∣∣2 ds =
∣∣∆2

T

∣∣2 + 2

∫ T

t

〈
∆2,M∆1 +N∆2 +H∆1 + V∆2

+
1

N

N∑
i=1

Kϕ
(
χi, βi, γi

)
−KEϕ

(
χi, βi, γi

) 〉
ds

−2
1

N

N∑
i=1

∫ T

t

〈
∆2, z̆i

〉
dW i

s .
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Using B-D-G inequalities, we show that there exists a constant C1, modifying C1 if neces-
sary,

E

[
sup

0≤t≤T

∣∣∆2
t

∣∣2 +
1

N

N∑
i=1

∫ T

t

∣∣z̆i∣∣2 ds

]

≤ E
∣∣Φ∆1

T

∣∣2 + C1E

[∫ T

0

〈
∆2,M∆1

〉
+
〈

∆2, N∆2
〉

+
〈

∆2, H∆1
〉

+
〈

∆2, V∆2
〉

+
〈

∆2,
1

N

N∑
i=1

Kϕ
(
χi, βi, γi

)
−KEϕ

(
χi, βi, γi

) 〉
ds

+
1

N

N∑
i=1

(∫ T

0

∣∣∆2
∣∣2 ∣∣z̆i∣∣2 ds

) 1
2

]

≤ E
∣∣Φ∆1

T

∣∣2 + C1E

[∫ T

0

∣∣∆2
∣∣ ( ∣∣M∆1

∣∣+
∣∣N∆2

∣∣
+
∣∣H∆1

∣∣+
∣∣V∆2

∣∣+

∣∣∣∣∣ 1

N

N∑
i=1

Kϕ
(
χi, βi, γi

)
−KEϕ

(
χi, βi, γi

)∣∣∣∣∣ )ds

+
1

N

N∑
i=1

(∫ T

0

∣∣∆2
∣∣2 ∣∣z̆i∣∣2 ds

) 1
2

]
.

Employing the classical Cauchy-Schwarz inequality and Gronwall’s inequality with estima-
tion (14), we get (15). �

Lemma 8. Assume that (A1) and (A2) are in force. Then, we have

sup
1≤i≤N

E

[
sup

0≤t≤T

∣∣∣x̆it − αit∣∣∣2
]

= O
( 1

N

)
, (21)

sup
1≤i≤N

E

[
sup

0≤t≤T

∣∣∣y̆it − θit∣∣∣2
]

= O
( 1

N

)
. (22)

Proof. From (13) and (11), we have that

dx̆i =
[
Ax̆i +Bϕ

(
χi, βi, γi

)
+ Fx̆(N) + b

]
dt+

[
Dϕ

(
χi, βi, γi

)
+ σ

]
dW i

t ,

dy̆i = −
[
Mx̆i + Uy̆i +Hx̆(N) + V y̆(N) +Kϕ

(
χi, βi, γi

)
+ f

]
dt+ z̆idW i

t ,

dαi =
[
Aαi +Bϕ

(
χi, βi, γi

)
+ FEαi + b

]
dt+

[
Dϕ

(
χi, βi, γi

)
+ σ

]
dW i

t ,

dθi = −
[
Mαi + Uθi +HEαi + V Eθi +Kϕ

(
χi, βi, γi

)
+ f

]
dt+ κidW i

t ,

x̆i0 = αi0 = x, y̆iT = Φx̆iT , θ
i
T = ΦαiT ,

(23)

where (βi, χi, γi) is the unique solution to the following FBSDEs:
dχi =

[
Nχi − L

(
θi − Eθi

)]
dt,

dβi =
[
−Mχi −Aβi +Q

(
αi − Eαi

)]
dt+ γiW i

t ,

x̆i0 = x, χi0 = −Ψ
(
θi0 − Eθi0

)
,

βiT = ΦT
Tχ

i −G
(
αiT − EαiT

)
.
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From (23), we have  d(x̆i − αi) =
[
A(x̆i−αi)+F (x̆(N)−Eαi)

]
dt,

x̆i(0)− x̄i(0) = 0.

The classical estimate for the SDE yields that

E sup
0≤t≤T

∣∣∣x̆it − αit∣∣∣2 ≤ C0E
∫ T

0

∣∣∣x̆(N)
s − Eαis

∣∣∣2 ds,

where C0 is a constant independent of N . Noticing (14) of Lemma 7, we obtain (21). We
consider 

d
(
y̆it − θit

)
= −

[
M
(
x̆i − αi

)
+ U

(
y̆it − θit

)
+F

(
x̆(N) − Eαi

)
+ V

(
y̆(N) − Eθi

) ]
dt+

(
z̆i − κi

)
dW i

t ,

y̆iT − θiT = Φ
(
x̆iT − αiT

)
.

By classical estimation for BSDE, we have

sup
1≤i≤N

E

[
sup

0≤t≤T

∣∣∣y̆it − θit∣∣∣2
]

+ E
∫ T

0

∣∣z̆i − κi∣∣2 ds

≤ C0E
∫ T

0

(∣∣∣x̆(N) − Eαi
∣∣∣2 +

∣∣∣y̆(N) − Eθi
∣∣∣2

+
∣∣∣x̆i − αi∣∣∣2 +

∣∣∣y̆it − θit∣∣∣2
)

ds.

where C0 is a constant independent of N . By Gronwall’s inequality, we get the desired
result. �

Lemma 9. For all 1 ≤ i ≤ N , we have∣∣∣Ji(ūi, ū−i)− Ji(ūi)∣∣∣ = O
( 1√

N

)
.

Proof. From the definition of (2), (4) and (13), we have

Ji
(
ūi, ū−i

)
=

1

2
E

[∫ T

0

[ 〈
Qt

(
x̆it − x̆

(N)
t

)
, x̆it − x̆

(N)
t

〉
+
〈
Lt

(
y̆it − y̆

(N)
t

)
, y̆it − y̆

(N)
t

〉
+
〈
Rtū

i
t, ū

i
t

〉 ]
dt+

〈
G
(
x̆iT − x̆

(N)
T

)
, x̆iT − x̆

(N)
T

〉]

and

Ji
(
ūi
)

=
1

2
E

[∫ T

0

[ 〈
Qt
(
αit − Eαit

)
, αit − Eαit

〉
+
〈
Lt
(
θit − Eθit

)
, θit − Eθit

〉
+
〈
Rtū

i
t, ū

i
t

〉 ]
dt+

〈
G
(
αiT − EαiT

)
, αiT − EαiT

〉 ]
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then

Ji
(
ūi, ū−i

)
− Ji

(
ūi
)

=
1

2
E

[∫ T

0

[ 〈
Qt

(
x̆it − x̆

(N)
t

)
, x̆it − x̆

(N)
t

〉
−
〈
Qt
(
αit − Eαit

)
, αit − Eαit

〉
+
〈
Lt

(
y̆it − y̆

(N)
t

)
, y̆it − y̆

(N)
t

〉
−
〈
Lt
(
θit − Eθit

)
, θit − Eθit

〉
dt

+
〈
G
(
x̆iT − x̆

(N)
T

)
, x̆iT − x̆

(N)
T

〉
−
〈
G
(
αiT − EαiT

)
, αiT − EαiT

〉 ]
.(24)

We will use the following

〈Q(a− b), a− b〉 − 〈Q(c− d), c− d〉
=〈Q(a− b− (c− d)), a− b− (c− d)〉+ 2〈Q(a− b− (c− d)), c− d〉,

and Lemma 7, Lemma 8 as well as E sup0≤t≤T
∣∣αi(t)∣∣2 ≤ C0, for some constant C0 inde-

pendent of N which may vary line by line in the following, we have∣∣∣∣∣E
[∫ T

0

[ 〈
Qt

(
x̆it − x̆

(N)
t

)
, x̆it − x̆

(N)
t

〉
−
〈
Qt
(
αit − Eαit

)
, αit − Eαit

〉
dt

∣∣∣∣∣
≤ C0

∫ T

0
E
∣∣∣x̆it − x̆(N)

t −
(
αit − Eαit

)∣∣∣2 dt

+C0

∫ T

0
E
∣∣∣x̆it − x̆(N)

t −
(
αit − Eαit

)∣∣∣ · ∣∣(αit − Eαit
)∣∣dt

≤ C0

∫ T

0
E
∣∣x̆it − αit∣∣2 dt+ C0

∫ T

0
E
∣∣∣x̆(N)
t − Eαit

∣∣∣2 dt

≤ O

(
1√
N

)
.

With similar argument, using (15) and (22), one can show that∣∣∣∣∣E [〈G(x̆iT − x̆(N)
T

)
, x̆iT − x̆

(N)
T

〉
−
〈
G
(
αiT − EαiT

)
, αiT − EαiT

〉] ∣∣∣∣∣ ≤ O

(
1√
N

)
,∣∣∣∣∣E

∫ T

0

[〈
Lt

(
y̆it − y̆

(N)
t

)
, y̆it − y̆

(N)
t

〉
−
〈
Lt
(
θit − Eθit

)
, θit − Eθit

〉]
dt

∣∣∣∣∣ ≤ O

(
1√
N

)
.

The proof is completed by noticing (24). �

We will prove the control strategies set (ū1, ū2, . . . , ūN ) is an ε-Nash equilibrium for
Problem (CC). For any fixed i, 1 ≤ i ≤ N , we consider the perturbation control ui ∈ Ud,iad
and we have the following state dynamics (j 6= i):

dx̃i =
[
Ax̃i +Bui + Fx̃(N) + b

]
dt+

[
Dui + σ

]
dW i

t ,

dỹi = −
[
Mx̃i + Uỹi +Hx̃(N) + V ỹ(N) +Kui + f

]
dt+ z̃idW i

t ,

dx̃j =
[
Ax̃j +Bϕ

(
χj , βj , γj

)
+ Fx̃(N) + b

]
dt+

[
Dϕ

(
χj , βj , γj

)
+ σ

]
dW i

t ,

dỹj = −
[
Mx̃j + Uỹj +Hx̃(N) + V ỹ(N) +Kϕ

(
χj , βj , γj

)
+ f

]
dt+ z̃jdW j

t ,

dαj =
[
Aαj +Bϕ

(
χj , βj , γj

)
+ FEαj + b

]
dt+

[
Dϕ

(
χj , βj , γj

)
+ σ

]
dW j

t ,

dθj = −
[
Mαj + Uθj +HEαj + V Eθj +Kϕ

(
χj , βj , γj

)
+ f

]
dt+ κidW j

t ,

x̃j0 = x̃i0 = αj0 = x, ỹiT = Φx̃iT , ỹ
j
T = Φx̃jT , θ

j
T = ΦαjT ,

(25)
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where x̃(N) =
1

N

N∑
i=1

x̃i, ỹ(N) =
1

N

N∑
i=1

ỹi. The wellposedness of above system is easily

to obtain. To prove (ū1, ū2, . . . , ūN ) is an ε-Nash equilibrium, we need to show that for
1 ≤ i ≤ N ,

inf
ui∈U i

ad

Ji(ui, ū−i) ≥ Ji(ūi, ū−i)− ε.

Then we only need to consider the perturbation ui ∈ Ud,iad such that Ji(ui, ū−i) ≤ Ji(ūi, ū−i).
Thus we have

E
[∫ T

0
〈Rui(t), ui(t)〉dt

]
≤ Ji(ui, ū−i) ≤ Ji(ūi, ū−i) ≤ Ji(ūi) +O

( 1√
N

)
,

which implies that

E
∫ T

0
|ui(t)|2dt ≤ C0, (26)

where C0 is a constant independent of N .
Now, for the ith agent, we consider the perturbation in the Problem (LCC). We

introduce the following system of the decentralized limiting state with perturbation control
(j 6= i):

dx̊i =
[
Ax̊i +Bui + FEαi + b

]
dt+

[
Dui + σ

]
dW i

t ,

dẙi = −
[
Mx̊i + Uẙi +HEαi + V Eθ̊i +Kui + f

]
dt+ z̊idW i

t ,

dαi =
[
Aαi +Bϕ

(
χi, βi, γi

)
+ FEαi + b

]
dt+

[
Dϕ

(
χi, βi, γi

)
+ σ

]
dW i

t ,

dθi = −
[
Mαi + Uθi +HEαi + V Eθi +Kϕ

(
χi, βi, γi

)
+ f

]
dt+ κidW i

t ,

x̊i0 = αi0 = x, ẙiT = Φx̊iT , θ
i
T = ΦαiT ,

(27)

We have the following results:

Lemma 10. Let (A1) and (A2) hold, then

E

[
sup

0≤t≤T

∣∣∣x̃(N)
t − Eαi(t)

∣∣∣2] = O
( 1

N

)
, (28)

E

[
sup

0≤t≤T

∣∣∣ỹ(N)
t − Eθi(t)

∣∣∣2] = O
( 1

N

)
. (29)

Proof. By (25), we get

dx̃(N) =
[

(A+ F ) x̃(N) + 1
NBu

i + 1
N

∑N
j=1,j 6=iBϕ

(
χj , βj , γj

)
+b
]
dt+ 1

NDu
iW i

t + 1
N

∑N
j=1 σdW j

t

+ 1
N

∑N
j=1,j 6=iBϕ

(
χj , βj , γj

)
dW j

t ,

dỹ(N) = −
[

(M +H) x̃(N) + (U + V ) ỹ(N) + 1
NKu

i

+ 1
N

∑N
j=1,j 6=iBϕ

(
χj , βj , γj

)
+ f

]
dt+ 1

N

∑N
j=1 z̃

jdW j
t ,

x̃
(N)
0 = x, ỹ

(N)
T = Φx̃

(N)
T .

(30)

Let us denote

Π : = x̃(N) − Eαi,

Λ : = ỹ(N) − Eθi,

16



and recall (17) which is
dEαi =

[
(A+ F )Eαi +BEϕ

(
χi, βi, γi

)
+ b
]

dt,

dEθi = −
[
(M +H)Eαi + (U + V )Eθi +KEϕ

(
χi, βi, γi

)
+ f

]
dt,

Eαi0 = x, EθiT = ΦEαiT ,

we have 

dΠ =
[

(A+ F ) Π + 1
NBu

i

+
(

1
N

∑N
j=1,i 6=j Bϕ

(
χi, βi, γi

)
− EBϕ

(
χi, βi, γi

)) ]
dt

+ 1
NDuiW

i
t + 1

N

∑N
j=1 σdW j

t

+ 1
N

∑N
j=1,j 6=iBϕ

(
χj , βj , γj

)
dW j

t ,

dΛ =
[

(M +H) Π + (U + V ) Λ + 1
NKu

i

+
(

1
N

∑N
j=1,i 6=j Bϕ

(
χi, βi, γi

)
− EBϕ

(
χi, βi, γi

)) ]
dt

+ 1
N

∑N
j=1 z̃

idW i
t

Π0 = 0, ΛT = ΦΠT .

By the Cauchy-Schwartz inequality as well as the B-D-G inequality, we obtain that there
exists a constant C0 independent of N which may vary line by line such that, for any
t ∈ [0, T ],

E sup
0≤s≤t

|Πs|2 ≤C0E
∫ t

0

(
|Πs|2 +

1

N2
|uis|2

)
ds

+ C0E
∫ t

0

∣∣∣∣∣∣ 1

N

N∑
j=1,j 6=i

ϕ(χj , βj , γj)− Eϕ(χj , βj , γj)

∣∣∣∣∣∣
2

ds

+
C0

N2
E

N∑
j=1

∫ t

0
|σs|2 ds

+
C0

N2
E
∫ t

0
|uis|2ds+

C0

N2
E

N∑
j=1,j 6=i

∫ t

0
|ϕ(χj , βj , γj |2ds.

(31)

On the one hand, by denoting µ(s) := Eϕ(χj , βj , γj) (note that since (χj , βj , γj , 1 ≤ j ≤ N ,
j 6= i, are independent identically distributed, thus µ is independent of j), we have

E

∣∣∣∣∣∣ 1

N

N∑
j=1,j 6=i

ϕ(χj , βj , γj)− µs

∣∣∣∣∣∣
2

≤ 2E

∣∣∣∣∣∣ 1

N

N∑
j=1,j 6=i

ϕ(χj , βj , γj)− N − 1

N
µs

∣∣∣∣∣∣
2

+ 2E
∣∣∣∣ 1

N
µs

∣∣∣∣2

= 2
(N − 1)2

N2
E

∣∣∣∣∣∣ 1

N − 1

N∑
j=1,j 6=i

ϕ(χj , βj , γj)− µs

∣∣∣∣∣∣
2

+
2

N2
E|µs|2.

Then, due to the fact that (χi, βi, γi), 1 ≤ i ≤ N are identically distributed and ϕ(χi, βi, γi) ∈
L2
Fi(0, T ;U), similarly to Lemma 7 we can obtain that there exists a constant C0 indepen-
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dent of N such that

∫ t

0
E

∣∣∣∣∣∣ 1

N

N∑
j=1,j 6=i

ϕ(χj , βj , γj)− Eϕ(χj , βj , γj)

∣∣∣∣∣∣
2

≤ C0(N − 1)2

N2

∫ t

0
E

∣∣∣∣∣∣ 1

N − 1

N∑
j=1,j 6=i

ϕ(χj , βj , γj)− µs

∣∣∣∣∣∣
2

ds+
C0

N2

∫ t

0
E|µs|2ds

=
C0(N − 1)

N2

∫ t

0
E
∣∣ϕ(χj , βj , γj)− µs

∣∣2 ds+
C0

N2

∫ t

0
E|µs|2ds

=O
( 1

N

)
.

In addition, due to (26), we get

C0

N2
E
∫ t

0
|uis|2ds+

C0

N2
E

N∑
j=1

∫ t

0
|σs|2 ds = O

( 1

N

)
,

and similarly, since (χj , βj , γj), 1 ≤ j ≤ N , j 6= i, are identically distributed, we have

C0

N2
E

N∑
j=1,j 6=i

∫ t

0
|ϕ(χj , βj , γj |2ds = O

( 1

N

)
.

Therefore, from above estimates, we get from (31) that, for any t ∈ [0, T ],

E sup
0≤s≤t

|Πs|2 ≤ C0E
∫ t

0
|Πs|2ds+O

( 1

N

)
.

Finally, by using Gronwall’s inequality, we get (28). We now proceed the second inequality.
Applying Itô’s formula again, we have

|Λt|2 +
1

N

N∑
j=1

z̃itdt = |ΛT |2 + 2

∫ T

t

〈
Λt, (M +H) Π + (U + V ) Λ +

1

N
Kui

+

 1

N

N∑
j=1,i 6=j

Bϕ
(
χi, βi, γi

)
− EBϕ

(
χi, βi, γi

)〉ds

−2
1

N

N∑
i=1

∫ T

t

〈
Λt, z̆

i
〉

dW i
s .

18



Still using B-D-G inequalities, we show that there exists a constant C2, modifying C2 if
necessary,

E

[
sup

0≤t≤T
|Λt|2 +

1

N

N∑
i=1

∫ T

0

∣∣z̆i∣∣2 ds

]

≤ E |ΦΛT |2 + C2E

[∫ T

0

〈
Λt, (M +H) Π

〉
+
〈

Λt, (U + V ) Λ
〉

+
〈

Λt,
1

N
Kui

〉
+
〈

Λt,
1

N

N∑
i=1

Kϕ
(
χi, βi, γi

)
−KEϕ

(
χi, βi, γi

) 〉
ds

+
1

N

N∑
i=1

(∫ T

0
|Λt|2

∣∣z̆it∣∣2 dt

) 1
2

]

≤ E
∣∣Φ∆1

T

∣∣2 + C1E

[∫ T

t
|Λt|

(
|(M +H) Π|+ |(U + V ) Λ|

+

∣∣∣∣ 1

N
Kui

∣∣∣∣+

∣∣∣∣∣ 1

N

N∑
i=1

Kϕ
(
χi, βi, γi

)
−KEϕ

(
χi, βi, γi

)∣∣∣∣∣ )dt

+
1

N

N∑
i=1

(∫ T

0
|Λt|2

∣∣z̆i∣∣2 dt

) 1
2

]
.

By employing the classical Cauchy-Schwarz inequality and Gronwall’s inequality, we obtain
get (29). �

Lemma 11.

E

[
sup

0≤t≤T

∣∣∣x̃it − x̊it∣∣∣2
]

= O
( 1

N

)
, (32)

E

[
sup

0≤t≤T

∣∣∣ỹit − ẙit∣∣∣2
]

= O
( 1

N

)
. (33)

Proof. From respectively the first equation of (25) and (27), we obtain
d
(
x̃i − x̊i

)
=
[
A
(
x̃i − x̊i

)
+ F

(
x̃(N) − Eαi

)]
dt

d
(
ỹi − ẙi

)
= −

[
M
(
x̃i − x̊i

)
+ U

(
ỹi − ẙi

)
+H

(
x̃(N) − Eαi

)
+ V

(
ỹ(N) − Eθi

) ]
dt+

(
z̃i − z̊i

)
dW i

t ,

x̃i0 − x̊i0 = 0, ỹiT − ẙiT = Φ
(
x̃iT − x̊iT

)
.

With the help of classical estimates of SDE and BSDE, Gronwall’s inequality and (28) and
(29) of Lemma 10, it is easily to obtain (32) and (33). The proof is completed. �

Lemma 12. For all 1 ≤ i ≤ N, for the perturbation control ui, we have∣∣∣Ji(ui, ū−i)− Ji(ui)∣∣∣ = O
( 1√

N

)
.
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Proof. Recall (2), (4), (8), and (9), we have

Ji
(
ui, u−i

)
− Ji

(
ui
)

=
1

2
E

[∫ T

0

[ 〈
Qt

(
x̃it − x̃

(N)
t

)
, x̃it − x̃(N)

〉
+
〈
Lt

(
ỹit − ỹ

(N)
t

)
, ỹit − ỹ

(N)
t

〉
−
〈
Qt
(
x̊it − Eαit

)
, x̊it − Eαit

〉
−
〈
Lt
(
ẙit − Eθit

)
, ẙit − Eθit

〉 ]
dt

+
〈
G
(
xiT − φ1

T

)
, xiT − φ1

T

〉
−
〈
G
(
x̊iT − EαiT

)
, xiT − EαiT

〉
Using Lemma 10 and Lemma 11 as well as E sup0≤t≤T

(
|ȳi(t)|2 + |αi(t)|2

)
≤ C0, for some

constant C independent of N which may vary line by line in the following, we have∣∣∣∣∣E
[∫ T

0

[ 〈
Qt

(
x̃it − x̃

(N)
t

)
, x̃it − x̃(N)

〉
+
〈
Lt

(
ỹit − ỹ

(N)
t

)
, ỹit − ỹ

(N)
t

〉
−
〈
Qt
(
x̊it − Eαit

)
, x̊it − Eαit

〉
−
〈
Lt
(
ẙit − Eθit

)
, ẙit − Eθit

〉 ]
dt

∣∣∣∣∣
≤ C

∫ T

0
E
∣∣∣x̃it − x̃(N)

t −
(
x̊it − Eαit

)∣∣∣2 dt

+C

∫ T

0
E
∣∣∣x̃it − x̃(N)

t −
(
x̊it − Eαit

)∣∣∣ · ∣∣̊xit − Eαit
∣∣ dt

+C

∫ T

0
E
∣∣∣ỹit − ỹ(N)

t −
(
ẙit − Eθit

)∣∣∣2 dt

+C

∫ T

0
E
∣∣∣ỹit − ỹ(N)

t −
(
ẙit − Eθit

)∣∣∣ · ∣∣̊yit − Eθit
∣∣ dt

≤ C

∫ T

0
E
[∣∣∣x̃it − x̃(N)

t

∣∣∣2 +
∣∣̊xit − Eαit

∣∣2]dt

+C

∫ T

0
E
(∣∣∣x̃it − x̃(N)

t

∣∣∣2 +
∣∣̊xit − Eαit

∣∣2) 1
2

+C

∫ T

0
E
[∣∣∣ỹit − ỹ(N)

t

∣∣∣2 +
∣∣̊yit − Eθit

∣∣2]dt

+C

∫ T

0
E
(∣∣∣ỹit − ỹ(N)

t

∣∣∣2 +
∣∣̊yit − Eθit

∣∣2) 1
2

≤ O

(
1

N

)
.

With similar argument, we can show that∣∣E [〈G (xiT − φ1
T

)
, xiT − φ1

T

〉
−
〈
G
(
x̊iT − EαiT

)
, xiT − EαiT

〉]∣∣ ≤ O( 1

N

)
.

Hence, we get the desired result. �

Proof of Theorem 5: Now, we consider the ε-Nash equilibrium for Ai for Problem
(CC). Combining Lemma 9 and Lemma 12, we have

Ji(ūi, ū−i) = Ji(ū
i) +O

( 1√
N

)
≤ Ji(ui) +O

( 1√
N

)
= Ji(ui, ū−i) +O

( 1√
N

)
.

Consequently, Theorem 5 holds with ε = O
(

1√
N

)
. �
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A Proof of theorem

Proof of Theorem 2. (Uniqueness) Suppose that there exists two solutions: (x1, y1, z1, p1, q1, k1),

(x2, y2, z2, p2, q2, k2) and denote

x̂ = x1 − x2, ẑ = z1 − z2,

ŷ = y1 − y2, p̂ = p1 − p2,

q̂ = q1 − q2, k̂ = k1 − k2,

Then, we have

dx̂ = [Ax̂+Bϕ̂ (p, q, k) + FEx̂] dt+
[
Dϕ̂

(
p̂, q̂, k̂

)]
dWt,

dŷ = −
[
Mx̂+ Uŷ +HEx̂+ V Eŷ +Kϕ̂

(
p̂, q̂, k̂

)]
dt+ ẑdWt,

dp̂ = [Up̂− L (ŷ − Eŷ)] dt,

dq̂ = [−Mp̂−Aq̂ +Q (x̂− Ex̂)] dt+ k̂dWt,

x̂0 = 0 ∈ Rn, ŷT = Φx̂T , p̂0 = −Ψ (ŷ0 − Eŷ0) ,

q̂T = ΦT p̂T −G (xT − ExT ) .

(34)

with

ϕ̂
(
p̂, q̂, k̂

)
= ϕ

(
p1, q1, k1

)
− ϕ

(
p2, q2, k2

)
= PΓ

[
R−1

(
BT q1 +KT p1 +DTk1

)]
−PΓ

[
R−1

(
BT q2 +KT p2 +DTk2

)]
Taking the expectation in the second equation of (34) yields Ep̂ = 0. Applying Itô’s formula
to
〈
q̂, x̂
〉
−
〈
p̂, ŷ
〉
and taking expectations on both sides (also, noting Ep̂ = 0, which derives

that Eq̂ = 0, and the monotonicity property of ϕ̂), we arrive at

0 = E [〈G (x̂T − Ex̂T ) , x̂T 〉+ Ψŷ0 (ŷ0 − Eŷ0)]

+E
∫ T

0

〈
BT q̂s +DT k̂s +KT p̂s, ϕ̂

(
p̂, q̂, k̂

)〉
ds

+E
∫ T

0
[〈x̂s, Q (x̂s − Ex̂s)〉+ Lŷs · (ŷs − Eŷs)] ds

+E
∫ T

0
[〈p̂s, HEx̂s〉+ p̂sV Eŷs + 〈q̂s, FEx̂s〉] ds

≥ E
[〈
G

1
2 (x̂T − Ex̂T ) , G

1
2 (x̂T − Ex̂T )

〉
+ Ψ (ŷ0 − Eŷ0) · (ŷ0 − Eŷ0)

]
+E

∫ T

0

[〈
Q

1
2 (x̂s − Ex̂s) , Q

1
2 (x̂s − Ex̂s)

〉
+ L (ŷs − Eŷs) · (ŷs − Eŷs)

]
ds

Thus, G
(
x̂T − Ex̂T

)
= 0, Q

(
x̂ − Ex̂

)
= 0, Ψ (ŷ0 − Eŷ0) = 0 and L (ŷs − Eŷs) = 0 which

according to the uniqueness and existences of classical BSDE theory implies p̂s ≡ 0, q̂s ≡ 0.

Next, we have ϕ̂(p̂, q̂, k̂) ≡ 0 which further implies Ex̂s ≡ 0, hence x̂s ≡ 0.Moreover, ŷT = 0

yields, by Theorem 3.1 in [6], ŷ = 0. Hence the uniqueness follows. �

In order to prove the existence for FBSDE (10), we need the following result. It involves
a priori estimates of solutions of the following family of mean fields FBSDEs parameterized
by α ∈ [0, 1].

21



Before that, we denote

B , Ax+Bϕ (p, q, k) + FEx+ b,

Σ , Dϕ (p, q, k) + σ,

F , − [Mx+ Uy +HEx+ V Ey +Kϕ (p, q, k) + f ] ,

Ξ , Up− L (y − Ey) ,

Υ , −Mp−Aq +Q (x− Ex) ,

Consider the following a family of FBSDEs with parameter α ∈ R,

dx = [αB (x,Ex, p, q, k) + b0] dt+ [αΣ (p, q, k) + σ0] dWt,

dy = [αF (x,Ex, y,Ey, p, q, k) + γ − Eγ] dt+ zdWt,

dp = [αΞ (y,Ey, p) + λ0 − Eλ0] dt,

dq = [αΥ (x,Ex, p, q) + ψ0 − Eψ0] dt+ kdWt,

x0 = x ∈ Rn, yT = αΦxT + υ − Eυ,
p0 = ς − Eς,
qT = αΦT p̂T − αG (xT − ExT ) + ξ − Eξ,

(35)

where (b0, σ0, γ0, λ0, µ0, ψ0) ∈ L2
FW (0, T ;Rn × Rn × R× Rn×Rn × R), and υ (ξ) is a R-

valued (Rn-valued) square integrable random varible which is FWT -measurable. Note the
coefficient Ξ,Np−L (y − Ey) . It is easy to check Epα = 0, then by uniqueness of BSDE,
Eqα = 0. Specifically, letting α = 0, one immediately has

dx = b0dt+ σ0dWt,

dy = (γ0 − Eγ0) dt+ zdWt,

dp = λ0dt,

dq = (ψ0 − Eψ0) dt+ kdWt,

xα0 = x ∈ Rn, yαT = υ − Eυ,
pα0 = ς − Eς, qαT = ξ − Eξ.

(36)

Obviously, (36) is kind of decoupled FBSDEs whose solvability is trivial.

Lemma 13. Assume that (A1) and (A2) are in force, there exists a positive constant δ0 ∈
[0, 1], such that if, a priori, for some α0 ∈ [0, 1), for each x0 ∈ Rn, (b0, σ0, γ0, λ0, µ0, ψ0) ∈
L2
FW (0, T ;Rn×Rn×Rn×Rn×Rn×Rn), mean field FBSDEs (35) have a unique adapted

solution in L2
FW (0, T ;Rn × Rn × Rn × Rn × Rn × Rn), then for each δ ∈ [α0, α0 + δ0], for

each x0 ∈ Rn, (b0, σ0, γ0, λ0, µ0, ψ0) ∈ L2
FW (0, T ;Rn ×Rn ×Rn ×Rn ×Rn ×Rn), Eq. (35)

also have a unique solution in L2
FW (0, T ;Rn × Rn × Rn × Rn × Rn × Rn).

Proof. Define

M (0, T ) = L2
FW (0, T ;Rn × Rn × Rn)× L2,E0

FW (0, T ;Rn × Rn)× L2
FW (0, T ;Rn).
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We set
(
x0,Ex0, y0,Ey0, z0, p0, q0, k0

)
= 0, and solve iteratively the following equations:

dxi+1 =
[
αB

(
xi+1,Exi+1, pi+1, qi+1, ki+1

)
+ δB

(
xi,Exi, pi, qi, ki

)
+ b0

]
dt

+
[
αΣ
(
pi+1, qi+1, ki+1

)
+ δΣ

(
pi, qi, ki

)
+ σ0

]
dWt,

dyi+1 =
[
αF
(
xi+1,Exi+1, yi+1,Eyi+1, pi+1, qi+1, ki+1

)
+δF

(
xi,Exi, yi,Eyi, pi, qi, ki

)
+ γ − Eγ

]
dt+ zi+1dWt,

dpi+1 =
[
αΞ
(
yi+1,Eyi+1, pi+1

)
+ δΞ

(
yi,Eyi, pi

)
+ λ0 − Eλ0

]
dt

dqi+1 =
[
αΥ

(
xi+1,Exi+1, pi+1, qi+1

)
+ δΥ

(
xi,Exi, pi, qi

)
+ψ0 − Eψ0

]
dt+ ki+1dWt,

x0 = x ∈ Rn, yi+1
T = αΦxi+1

T + δΦxiT + υ − Eυ, p0 = ς − Eς,
qi+1
T = αΦT pi+1

T − αG
(
xi+1
T − Exi+1

T

)
+ δΦT p̂iT − δG

(
xiT − ExiT

)
+ ξ − Eξ,

(37)

We set

x̂i+1 = xi+1 − xi, ŷi+1 = yi+1 − yi,
ẑi+1 = zi+1 − zi, p̂i+1 = pi+1 − pi,
q̂i+1 = qi+1 − qi, k̂i+1 = ki+1 − ki,
B̂ = B

(
xi+1,Exi+1, pi+1, qi+1, ki+1

)
−B

(
xi,Exi, pi, qi, ki

)
,

Σ̂ = Σ
(
pi+1, qi+1, ki+1

)
− Σ

(
pi, qi, ki

)
,

F̂ = F
(
xi+1,Exi+1, yi+1,Eyi+1, zi+1, pi+1, qi+1, ki+1

)
−F

(
xi,Exi, yi,Eyi, zi, pi, qi, ki

)
,

Ξ̂ = Ξ
(
yi+1,Eyi+1pi+1

)
− Ξ

(
yi,Eyi, pi

)
,

Υ̂ = Υ
(
xi+1,Exi+1, pi+1, qi+1

)
−Υ

(
xi,Exi, pi, qi

)
with

ϕ̂ = ϕ
(
pi+1, qi+1, ki+1

)
− ϕ

(
pi, qi, ki

)
= PΓ

[
R−1
t

(
BT
t q

i+1 +KT
t p

i+1 +DT
t k

i+1
)]
−PΓ

[
R−1
t

(
BT
t q

i +KT
t p

i +DT
t k

i
)]

Now introduce a map Iα0 :
(
xi, yi, zi, pi, qi, ki

)
→

(
xi+1, yi+1, zi+1, pi+1, qi+1, ki+1

)
∈

M (0, T ) by the following mean fields FBSDEs:

dx̂i+1 =
[
α0B̂

(
x̂i+1,Ex̂i+1, p̂i+1, q̂i+1, k̂i+1

)
+ δB

(
x̂i,Ex̂i, p̂i, q̂i, k̂i

) ]
dt

+
[
α0Σ

(
p̂i+1, q̂i+1, k̂i+1

)
+ δΣ

(
p̂i, q̂i, k̂i

)]
dWt,

dŷi+1 =
[
α0F̂

(
x̂i+1,Ex̂i+1, ŷi+1,Eŷi+1, ẑi+1, p̂i+1, q̂i+1, k̂i+1

)
+δF̂

(
x̂i,Ex̂i, ŷi,Eŷi, ẑi, p̂i, q̂i, k̂i

) ]
dt+ ẑi+1dWt,

dp̂i+1 =
[
α0Ξ̂

(
ŷi+1,Eŷi+1, p̂i+1

)
+ δΞ̂

(
ŷi,Eŷi, p̂i

) ]
dt

dq̂i+1 =
[
α0Υ̂

(
x̂i+1,Ex̂i+1, p̂i+1, q̂i+1

)
+ δΥ̂

(
x̂i,Ex̂i, p̂i, q̂i

) ]
dt+ k̂i+1dWt,

x0 = x ∈ Rn, ŷi+1
T = αΦx̂i+1

T + δΦx̂iT , p0 = 0,

q̂i+1
T = αΦT p̂i+1

T − αG
(
x̂i+1
T − Ex̂i+1

T

)
+ δΦT p̂iT − δG

(
x̂iT − Ex̂iT

)
.

(38)

Applying the Itô’s formula to
〈
x̂i+1, q̂i+1

〉
−
〈
ŷi+1, p̂i+1

〉
on [0, T ] , we have
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E
[〈
q̂i+1
T , x̂i+1

T

〉
−
〈
ŷi+1
T , p̂i+1

T

〉]
= α0

[
E
∫ T

0

〈
q̂i+1, B̂

(
x̂i+1,Ex̂i+1, p̂i+1, q̂i+1, k̂i+1

)〉
+
〈
x̂i+1, Υ̂

(
x̂i+1,Ex̂i+1, p̂i+1, q̂i+1

)〉
+
〈
k̂i+1,Σ

(
p̂i+1, q̂i+1, k̂i+1

)〉
−
〈
ŷi+1, Ξ̂

(
ŷi+1,Eŷi+1, p̂i+1

)〉
−
〈
p̂i+1, F̂

(
x̂i+1,Ex̂i+1, ŷi+1,Eŷi+1, p̂i+1, q̂i+1, k̂i+1

)〉
dt

]
+δ

[
E
∫ T

0

〈
q̂i+1,B

(
x̂i,Ex̂i, p̂i, q̂i, k̂i

)〉
+
〈
x̂i+1, Υ̂

(
x̂i,Ex̂i, p̂i, q̂i

)〉
+
〈
k̂i+1,Σ

(
p̂i, q̂i, k̂i

)〉
−
〈
ŷi+1, Ξ̂

(
ŷi,Eŷi, p̂i

)〉
−p̂i+1, F̂

(
x̂i,Ex̂i, ŷi,Eŷi, p̂i, q̂i, k̂i

)
dt

]
= α0

[
E
∫ T

0

〈
p̂i+1 + q̂i+1 + k̂i+1, ϕ̂

(
p̂i+1, q̂i+1, k̂i+1

)〉
+
〈
x̂i+1, Q

(
x̂i+1 − Ex̂i+1

)〉
+
〈
ŷi+1, L

(
ŷi+1 − Eŷi+1

)〉
dt

]
+δ

[
E
∫ T

0

〈
q̂i+1, δB

(
x̂i,Ex̂i, p̂i, q̂i, k̂i

)〉
+
〈
x̂i+1, Υ̂

(
x̂i,Ex̂i, p̂i, q̂i

)〉
+
〈
k̂i+1,Σ

(
p̂i, q̂i, k̂i

)〉
−
〈
ŷi+1, Ξ̂

(
ŷi,Eŷi, p̂i

)〉
−p̂i+1, F̂

(
x̂i,Ex̂i, ŷi,Eŷi, p̂i, q̂i, k̂i

)
dt

]
.

After simple computation, we have

E
〈
x̂i+1
T , α0G

(
x̂i+1 − Ex̂i+1

)〉
+ α0

[
E
∫ T

0

〈
p̂i+1 + q̂i+1 + k̂i+1, ϕ̂

(
p̂i+1, q̂i+1, k̂i+1

)〉
+
〈
x̂i+1, Q

(
x̂i+1 − Ex̂i+1

)〉
+
〈
ŷi+1, L

(
ŷi+1 − Eŷi+1

)〉
dt

]
= −δ

[
E
∫ T

0

〈
q̂i+1, δB

(
x̂i,Ex̂i, p̂i, q̂i, k̂i

)〉
+
〈
x̂i+1, Υ̂

(
x̂i,Ex̂i, p̂i, q̂i

)〉
+
〈
k̂i+1,Σ

(
p̂i, q̂i, k̂i

)〉
−
〈
ŷi+1, Ξ̂

(
ŷi,Eŷi, p̂i

)〉
−p̂i+1, F̂

(
x̂i,Ex̂i, ŷi,Eŷi, p̂i, q̂i, k̂i

)
dt

]
+δ
〈
x̂i+1
T ,ΦT p̂iT −G

(
x̂iT − Ex̂iT

)〉
− δ

〈
x̂iT ,Φ

T p̂i+1
T

〉
By using the monotonicity property of ϕ (p, q, k) (Proposition 17 below and the classical
geometric inequality and Lipschitz property of projection operator (Proposition 16), it
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follows that.

α0E
〈
x̂i+1
T , G

(
x̂i+1
T − Ex̂i+1

T

)〉
+ α0

[
E
∫ T

0

〈
x̂i+1, Q

(
x̂i+1 − Ex̂i+1

)〉
+
〈
ŷi+1, L

(
ŷi+1 − Eŷi+1

)〉
dt

]
≤ −δ

[
E
∫ T

0

〈
q̂i+1, δB

(
x̂i,Ex̂i, p̂i, q̂i, k̂i

)〉
+
〈
x̂i+1, Υ̂

(
x̂i,Ex̂i, p̂i, q̂i

)〉
+
〈
k̂i+1,Σ

(
p̂i, q̂i, k̂i

)〉
−
〈
ŷi+1, Ξ̂

(
ŷi,Eŷi, p̂i

)〉
−p̂i+1, F̂

(
x̂i,Ex̂i, ŷi,Eŷi, p̂i, q̂i, k̂i

)
dt

]
+δ
〈
x̂i+1
T ,ΦT p̂iT −G

(
x̂iT − Ex̂iT

)〉
− δ

〈
x̂iT ,Φ

T p̂i+1
T

〉
≤ δC1

[
E
∫ T

0

(∣∣x̂i∣∣2 +
∣∣ŷi∣∣2 +

∣∣p̂i∣∣2 +
∣∣q̂i∣∣2 +

∣∣∣k̂i∣∣∣2) dt

+δC1

[
E
∫ T

0

(∣∣x̂i+1
∣∣2 +

∣∣ŷi+1
∣∣2 +

∣∣p̂i+1
∣∣2 +

∣∣q̂i+1
∣∣2 +

∣∣∣k̂i+1
∣∣∣2) dt

+δC1E
∣∣x̂i+1
T

∣∣2 + δC1E
∣∣x̂iT ∣∣2 + δC1E

∣∣p̂i+1
T

∣∣2 + δC1E
∣∣p̂iT ∣∣2 . (39)

Next by baisc technique in SDE, BSDE, we have

E
[∫ T

0

∣∣p̂i+1
∣∣2 dt

]
+ E

∣∣p̂i+1
T

∣∣2
≤ δC2E

∫ T

0

(∣∣ŷi∣∣2 +
∣∣p̂i∣∣2) ds+ C2E

∫ T

0

∣∣L (ŷi+1 − Eŷi+1
)∣∣2 ds, (40)

E
[∫ T

0

∣∣q̂i+1
∣∣2 dt+

∫ T

0

∣∣∣k̂i+1
∣∣∣2 ds

]
≤ δC3E

∫ T

0

(∣∣x̂i∣∣2 +
∣∣p̂i∣∣2 +

∣∣q̂i∣∣2) ds+ C3E
∫ T

0

∣∣Q (x̂i+1 − Ex̂i+1
)∣∣2 ds

+C3E
∣∣G (x̂i+1

T − Ex̂i+1
T

)∣∣2 + δC3E
[∣∣p̂iT ∣∣2 +

∣∣x̂iT ∣∣2] , (41)

and

E
∫ T

0

∣∣x̂i+1
t

∣∣2 dt+ E
∣∣x̂i+1
T

∣∣2
≤ δC4E

∫ T

0

(∣∣x̂i∣∣2 +
∣∣p̂i∣∣2 +

∣∣q̂i∣∣2 +
∣∣∣k̂i∣∣∣2)ds

+C4E
∫ T

0

( ∣∣p̂i+1
∣∣2 +

∣∣q̂i+1
∣∣2 +

∣∣∣k̂i+1
∣∣∣2 )ds. (42)
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Moreover,

E
∫ T

0

(∣∣ŷi+1
∣∣2 +

∣∣ẑi+1
∣∣2)dt

≤ δEC5

∫ T

0

(∣∣x̂i∣∣2 +
∣∣ŷi∣∣2 +

∣∣p̂i∣∣2 +
∣∣q̂i∣∣2 +

∣∣∣k̂i∣∣∣2) ds

+C5E
∫ T

0

( ∣∣p̂i+1
∣∣2 +

∣∣q̂i+1
∣∣2 +

∣∣∣k̂i+1
∣∣∣2 )ds

+C5E
∣∣x̂i+1
T

∣∣2 + δC4E
∣∣x̂iT ∣∣2 , (43)

Observe that inequality (40) does not contain x̂i+1 and ŷi+1. Combining (39)-(43), by
similar method used in [], we have, for some δ0 ∈ (0, 1) ,

E
∫ T

0

(∣∣p̂i+1
∣∣2 +

∣∣q̂i+1
∣∣2 +

∣∣∣k̂i+1
∣∣∣2) ds+ E

∣∣p̂i+1
T

∣∣2
≤ δ0C5E

∫ T

0

(∣∣p̂i∣∣2 +
∣∣q̂i∣∣2 +

∣∣∣k̂i∣∣∣2)ds+ E
∣∣p̂iT ∣∣2

which means that the map Iα0+δ0 is a contraction. �

(Existence) We can solve Eq. (35) successively for the case α ∈ [0, δ0] , [δ0, 2δ0] , · · ·When
α = 1, we deduce immediately that the solution to Eq. (10) exists. �

B Properties of projection

We recall the following properties of projection PU onto a closed convex set U , see [9],
Chapter 5.

Theorem 14. For a nonempty closed convex set U ⊂ Rm, for every x ∈ Rm, there exists
a unique x∗ ∈ U , such that

|x− x∗| = min
y∈Γ
|x− y| =: dist(x, U).

Moreover, x∗ is characterized by the property

x∗ ∈ U,
〈
x∗ − x, x∗ − y

〉
≤ 0 ∀y ∈ U. (44)

The above element x∗ is called the projection of x onto U and is denoted by PU [x].

One can immediately obtain the following

Proposition 15. Let U ⊂ Rm be a nonempty closed convex set, then we have∣∣PU [x]−PU [y]
∣∣2 ≤ 〈PU [x]−PU [y], x− y

〉
. (45)

Proposition 16. Let U ⊂ Rm be a nonempty closed convex set, then the projection PU

does not increase the distance, i.e.∣∣PU [x]−PU [y]
∣∣ ≤ ∣∣x− y∣∣. (46)
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Now let us consider Rm and the projection PU both with the norm ‖ · ‖R0 := 〈R
1
2
0 ·, R

1
2
0 ·〉,

from (45), we have

Proposition 17. Let U ⊂ Rm be a nonempty closed convex set, then

〈〈PU [x]−PU [y], x− y〉〉 =

〈
R

1
2

(
PU [x]−PU [y]

)
, R

1
2 (x− y)

〉
≥ 0.

The proofs of Proposition 15-Proposition 17 can be found in [7, 9].
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