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Abstract. In this paper, we investigate open-loop and weak closed-loop solvabilities of stochastic

linear quadratic (LQ, for short) optimal control problem of Markovian regime switching system.

Interestingly, these two solvabilities are equivalent on [0, T ). We first provide an alternative char-

acterization of the open-loop solvability of LQ problem using a perturbation approach. Then, we

study the weak closed-loop solvability of LQ problem of Markovian regime switching system, and

establish the equivalent relationship between open-loop and weak closed-loop solvabilities. Finally,

we present an example to shed on light on finding weak closed-loop optimal strategies within the

framework of Markovian regime switching system.
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1 Introduction

Linear quadratic (LQ, for short) optimal control can be traced back to the works of Kalman [13] for

the deterministic cases, and Wonham [25] for the stochastic cases (also see Davis [7], Bensoussan

[2], Yong and Zhou [28] and the references therein). In the classical setting, under some mild

conditions on the weighting coefficients in the cost functional such as positive definiteness of the

weighting control matrix, the stochastic LQ optimal control problems can be solved elegantly via

Riccati equation approach (see Yong and Zhou [28, Chapter 6]). Chen, Li and Zhou [3] studied

stochastic LQ optimal control problems with indefinite weighting control matrix as well as financial
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applications such as continuous time mean-variance portfolio selection problems (see Zhou and Li

[35], Li, Zhou and Lim [17]). Since then, there has been an increasing interest in the so-called

indefinite stochastic LQ optimal control (see Ait Rami, Moore and Zhou [1], Li, Zhou and Ait Rami

[16]).

A topic of state systems involving random jumps, such as Poisson jumps or regime switching

jumps, is of interest and of importance in various fields such as engineering, management, finance,

economics, and so on. For example, Wu and Wang [26] considered the stochastic LQ optimal control

problems with Poisson jumps and obtained the existence and uniqueness of the deterministic Riccati

equation. Using the technique of completing squares, Hu and Oksendal [10] discussed the stochastic

LQ optimal control problem with Poisson jumps and partial information. Yu [29] investigated a

kind of infinite horizon backward stochastic LQ optimal control problems. Li, Wu and Yu [14]

solved the indefinite stochastic LQ optimal control problem with Poisson jumps. Meanwhile, there

has been dramatically increasing interest in studying this family of stochastic control problems as

well as their financial applications, see, for examples, Zhou and Yin [36, 27], Zhang, Siu and Meng

[33], Zhang, Elliott and Siu [31], Zhang, Sun and Xiong [34], Mei and Yong [19], Hu, Liang and Tang

[8], Hu, Li and Wen [9], Sun and Wang [21] and Shi, Wen and Xiong [23]. Moreover, Ji and Chizeck

[11, 12] formulated a class of continuous-time LQ optimal controls with Markovian jumps. Zhang

and Yin [30] developed hybrid controls of a class of LQ systems modulated by a finite-state Markov

chain. Li, Zhou and Ait Rami [16] initiated indefinite stochastic LQ optimal controls with regime

switching jumps. Liu, Yin and Zhou [18] considered near-optimal controls of regime switching LQ

problems with indefinite control weight costs. Some other recent development concerning regime

switching jumps see Donnelly [5], Donnelly and Heunis [6], and Li and Zheng [15].

Recently, Sun and Yong [22] investigated the two-person zero-sum stochastic LQ differential

games. It was shown in [22] that the open-loop solvability is equivalent to the existence of an

adapted solution to a forward-backward stochastic differential equation (FBSDE, for short) with

constraint and the closed loop solvability is equivalent to the existence of a regular solution to the

Riccati equations. As a continuation work of [22], Sun, Li and Yong [20] fundamentally studied

the open-loop and closed-loop solvabilities for stochastic LQ optimal control problems. Moreover,

the equivalence between the strongly regular solvability of the Riccati equation and the uniform

convexity of the cost functional is established. Wang, Sun and Yong [24] introduced the notion of

weak closed-loop optimal strategy for LQ problems, and obtained its existence which is equivalent

to the open-loop solvability of the LQ problem. Zhang, Li and Xiong [32] studied the open-loop

and closed-loop solvabilities for stochastic LQ optimal control problems with Markovian regime

switching jumps, and established the equivalent relationship between the strongly regular solvability

of the Riccati equation and the uniform convexity of the cost functional in the circumstance of

Markovian regime switching system. In this paper, we further study the weak closed-loop solvability

of stochastic LQ optimal control problems with Markovian regime switching system. In order to

present our work more clearly, we describe the problem in detail.

Let (Ω,F ,F,P) be a complete filtered probability space on which a standard one-dimensional

Brownian motion W = {W (t); 0 6 t < ∞} and a continuous time, finite-state, Markov chain

α = {α(t); 0 6 t < ∞} are defined, where F = {Ft}t>0 is the natural filtration of W and α
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augmented by all the P-null sets in F , and Fα = {Fαt }t>0 is the filtration generated by α, with the

related expectation Eα. We identify the state space of the chain α with a finite set S , {1, 2 . . . , D},
whereD ∈ N and suppose that the chain is homogeneous and irreducible. Let 0 6 t < T and consider

the following controlled Markovian regime switching linear stochastic differential equation (SDE,

for short) over a finite time horizon [t, T ]:
dX(s) =

[
A(s, α(s))X(s) +B(s, α(s))u(s) + b(s)

]
ds

+
[
C(s, α(s))X(s) +D(s, α(s))u(s) + σ(s)

]
dW (s), s ∈ [t, T ],

X(t) = x, α(t) = i,

(1.1)

where A,C : [0, T ] × S → Rn×n and B,D : [0, T ] × S → Rn×m are given deterministic functions,

called the coefficients of the state equation (1.1); b, σ : [0, T ]×Ω→ Rn are F-progressively measurable

processes, called the nonhomogeneous terms; and (t, x, i) ∈ [0, T )×Rn×S is called the initial pair.

In the above, the process u(·), which belongs to the following space:

U [t, T ] ,
{
u : [t, T ]× Ω→ Rm

∣∣∣ u is F-progressively measurable and E
∫ T

t
|u(s)|2ds <∞

}
,

is called the control process, and the solution X(·) of (1.1) is called the state process corresponding

to (t, x, i) and u(·). To measure the performance of the control u(·), we introduce the following

quadratic cost functional:

J(t, x, i;u(·)) , E

{〈
G(α(T ))X(T ), X(T )

〉
+ 2
〈
g(α(T )), X(T )

〉
+

∫ T

t

[〈(
Q(s, α(s)) S(s, α(s))>

S(s, α(s)) R(s, α(s))

)(
X(s)

u(s)

)
,

(
X(s)

u(s)

)〉

+2

〈(
q(s, α(s))

ρ(s, α(s))

)
,

(
X(s)

u(s)

)〉]
ds

}
,

(1.2)

where G(i) ∈ Rn×n is a symmetric constant matrix, and g(i) is an FT -measurable random variable

taking values in Rn, with i ∈ S; Q : [0, T ]×S → Rn×n, S : [0, T ]×S → Rm×n and R : [0, T ]×S →
Rm×m are deterministic functions with both Q and R being symmetric; q : [0, T ] × S → Rn and

ρ : [0, T ] × S → Rm are deterministic functions. In the above, M> stands for the transpose of a

matrix M . The problem that we are going to study is the following:

Problem (M-SLQ). For any given initial pair (t, x, i) ∈ [0, T )×Rn ×S, find a control u∗(·) ∈
U [t, T ], such that

J(t, x, i;u∗(·)) = inf
u(·)∈U [t,T ]

J(t, x, i;u(·)), ∀u(·) ∈ U [t, T ]. (1.3)

The above is called a stochastic linear quadratic optimal control problem of the Markovian regime

switching system. Any u∗(·) ∈ U [t, T ] satisfying (1.3) is called an open-loop optimal control of Prob-

lem (M-SLQ) for the initial pair (t, x, i); the corresponding state process X(·) = X(· ; t, x, i, u∗(·))
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is called an optimal state process; and the function V (·, ·, ·) defined by

V (t, x, i) , inf
u(·)∈U [t,T ]

J(t, x, i;u(·)), (t, x, i) ∈ [0, T ]× Rn × S, (1.4)

is called the value function of Problem (M-SLQ). Note that in the special case when

b(·, ·), σ(·, ·), g(·), q(·, ·), ρ(·, ·) = 0, the state equation (1.1) and the cost functional (1.2), respec-

tively, become 
dX(s) =

[
A(s, α(s))X(s) +B(s, α(s))u(s)

]
ds

+
[
C(s, α(s))X(s) +D(s, α(s))u(s)

]
dW (s), s ∈ [t, T ],

X(t) = x, α(t) = i,

(1.5)

and

J0(t, x, i;u(·)) = E

{〈
G(α(T ))X(T ), X(T ))

〉
+

∫ T

t

〈(
Q(s, α(s)) S(s, α(s))>

S(s, α(s)) R(s, α(s))

)(
X(s)

u(s)

)
,

(
X(s)

u(s)

)〉
ds

}
.

(1.6)

We refer to the problem of minimizing (1.6) subject to (1.5) as the homogeneous LQ problem associ-

ated with Problem (M-SLQ), denoted by Problem (M-SLQ)0. The corresponding value function

is denoted by V 0(t, x, i). Moreover, when all the coefficients of (1.1) and (1.2) are independent of

the regime switching term α(·), the corresponding problem (1.3) is called Problem (SLQ).

Following the works of [22, 20], Zhang, Li and Xiong [32] investigated the open-loop and closed-

loop solvabilities for stochastic LQ problems of Markovian regime switching system. It was shown

that the open-loop solvability of Problem (M-SLQ) is equivalent to the solvability of a forward-

backward stochastic differential equation with constraint. They also showed that the closed-loop

solvability of Problem (M-SLQ) is equivalent to the existence of a regular solution of the following

general Riccati equation (GRE, for short):
Ṗ (s, i) + P (s, i)A(s, i) +A(s, i)>P (s, i) + C(s, i)>P (s, i)C(s, i) +Q(s, i)

−Ŝ(s, i)>R̂(s, i)−1Ŝ(s, i) +

D∑
k=1

λik(s)P (s, k) = 0, a.e. s ∈ [0, T ], i ∈ S,

P (T, i) = G(i),

(1.7)

where
Ŝ(s, i) = B(s, i)>P (s, i) +D(s, i)>P (s, i)C(s, i) + S(s, i),

R̂(s, i) = R(s, i) +D(s, i)>P (s, i)D(s, i).

It can be found (see Zhang, Li and Xiong [32]) that, for the stochastic LQ optimal control problem

of Markovian regime switching system, the existence of a closed-loop optimal strategy implies the

existence of an open-loop optimal control, but not vice versa. Thus, there are some LQ problems
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that are open-loop solvable, but not closed-loop solvable. Such problems cannot be expected to get

a regular solution (which does not exist) to the associated GRE (1.7). Therefore, the state feedback

representation of the open-loop optimal control might be impossible. To be more convincing, let us

look at the following simple example.

Example 1.1. Consider the following one-dimensional state equation{
dX(s) =

[
− α(s)X(s) + u(s)

]
ds+

√
2α(s)X(s)dW (s), s ∈ [t, 1],

X(t) = x, α(t) = i,

and the nonnegative cost functional

J(t, x, i;u(·)) = E|X(1)|2.

In this example, the GRE reads (noting that Q(·, i) = 0, R(·, i) = 0, D(·, i) = 0 for every i ∈ S, and

0−1 = 0): 
Ṗ (s, i) +

D∑
k=1

λik(s)P (s, k) = 0, a.e. s ∈ [t, 1],

P (T, i) = 1, i ∈ S.

(1.8)

It is not hard to check that GRE (1.8) has no regular solution (see Section 3 for the definition of

regular solution), thus the corresponding LQ problem is not closed-loop solvable. A usual Riccati

equation approach specifies the corresponding state feedback control as follows (noting that Q(·, i) =

0, R(·, i) = 0, D(·, i) = 0 for every i ∈ S, and 0−1 = 0):

u∗(s) , −
[
R(s, i)+D(s, i)>P (s, i)D(s, i)

]−1[
B(s, i)P (s, i)+D(s, i)>P (s, i)C(s, i)+S(s, i)

]
X(s)≡0,

which is not an open-loop optimal control for any nonzero initial state x. In fact, let (t, x, i) ∈
[0, 1) × R × S be an arbitrary but the fixed initial pair with x 6= 0. By Itô’s formula, the state

process X∗(·) corresponding to (t, x, i) and u∗(·) is expressed as

X∗(s) = x · exp

{
−2

∫ s

t
α(r)dr +

∫ s

t

√
2α(r)dW (r)

}
, s ∈ [t, 1].

Thus,

J(t, x, i;u∗(·)) = E|X∗(1)|2 = x2 > 0.

On the other hand, let ū(·) be the control defined by

ū(s) ≡ x

t− 1
· exp

{
−2

∫ s

t
α(r)dr +

∫ s

t

√
2α(r)dW (r)

}
, s ∈ [t, 1].

By the variation of constants formula, the state process X̄(·), corresponding to (t, x, i) and ū(·),
can be presented by

X̄(s) = exp

{
−2

∫ s

t
α(r)dr +

∫ s

t

√
2α(r)dW (r)

}
·
[
x+

∫ s

t
exp

{
2

∫ r

t
α(v)dv −

∫ r

t

√
2α(v)dW (v)

}
· ū(r)dr

]
= exp

{
−2

∫ s

t
α(r)dr +

∫ s

t

√
2α(r)dW (r)

}
·
[
x+

s− t
t− 1

x

]
, s ∈ [t, 1],
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which satisfies X̄(1) = 0. Hence,

J(t, x, i; ū(·)) = E|X̄(1)|2 = 0 < J(t, x, i;u∗(·)).

Since the cost functional is nonnegative, the open-loop control ū(·) is optimal for the initial pair

(t, x, i), but u∗(·) is not optimal.

The above example suggests that the usual solvability of the GRE (1.7) no longer helpfully

handles the open-loop solvability of certain stochastic LQ problems. It is then natural to ask:

When Problem (M-SLQ) is merely open-loop solvable, not closed-loop solvable, is it still possible to

get a linear state feedback representation for an open-loop optimal control within the framework of

Markovian regime switching system? The goal of this paper is to tackle this problem.

The contribution of this paper is to study the weak closed-loop solvability of stochastic LQ

optimal control problems with Markovian regime switching system. In detail, we provide an al-

ternative characterization of the open-loop solvability of Problem (M-SLQ) using the perturbation

approach adopted in [20]. In order to obtain a linear state feedback representation of open-loop

optimal control for Problem (M-SLQ), we introduce the notion of weak closed-loop strategies in the

circumstance of stochastic LQ optimal control problem of Markovian regime switching system. We

prove that as long as Problem (M-SLQ) is open-loop solvable, there always exists a weak closed-loop

strategy whose outcome actually is an open-loop optimal control. Consequently, the open-loop and

weak closed-loop solvability of Problem (M-SLQ) are equivalent on [0, T ). Comparing with [24], this

paper further develops the results in [24] to the case of stochastic LQ optimal control problems with

Markovian regime switching system, which could be applied to financial market models with Markov

process, such as interest rate, stocks return and volatility. However, the regime switching jumps will

bring some difficulties. For example, the first problem is how to define the closed-loop solvability

and weak closed-loop solvability in the circumstance of Markovian regime switching system. The

second problem is how to prove the equivalent between the open-loop and weak closed-loop solv-

ability of Problem (M-SLQ) in the circumstance of Markovian regime switching system. We will

use the methods of [20], [24] and [32] to overcome these difficulties.

The rest of the paper is organized as follows. In Section 2, we collect some preliminary results

and introduce a few elementary notions for Problem (M-SLQ). Section 3 is devoted to the study

of open-loop solvability by a perturbation method. In section 4, we show how to obtain a weak

closed-loop optimal strategy and establish the equivalence between open-loop and weak closed-loop

solvability. Finally, an example is presented in Section 5 to illustrate the results we obtained.

2 Preliminaries

Throughout this paper, and recall from the previous section, let (Ω,F ,F,P) be a complete filtered

probability space on which a standard one-dimensional Brownian motion W = {W (t); 0 6 t <∞}
and a continuous time, finite-state, Markov chain α = {α(t); 0 6 t < ∞} are defined, where

F = {Ft}t>0 is the natural filtration of W and α augmented by all the P-null sets in F . In the rest
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of our paper, we will use the following notation:

Rn the n-dimensional Euclidean space;

M> the transpose of any vector or matrix M ;

tr [M ] the trace of a square matrix M ;

R(M) the range of the matrix M ;

M−1 the Moore-Penrose pseudo-inverse of the matrix M ;

〈· , ·〉 the Frobenius inner products in possibly different Hilbert spaces;

Rn×m the Euclidean space of all n×m real matrices endowed with inner

product 〈M,N〉 7→ tr [M>N ] and the norm |M | =
√

tr [M>M ];

Sn the set of all n× n symmetric matrices,

and for an Sn-valued function F (·) on [t, T ], we use the notation F (·) � 0 to indicate that F (·) is

uniformly positive definite on [t, T ], i.e., there exists a constant δ > 0 such that

F (s) > δI, a.e. s ∈ [t, T ].

Next, for any t ∈ [0, T ) and Euclidean space H, we further introduce the following spaces of functions

and processes:

C([t, T ];H) =
{
ϕ : [t, T ]→ H

∣∣ ϕ(·) is continuous
}
,

Lp(t, T ;H) =

{
ϕ : [t, T ]→ H

∣∣∣∣ ∫ T

t
|ϕ(s)|pds <∞

}
, 1 6 p <∞,

L∞(t, T ;H) =

{
ϕ : [t, T ]→ H

∣∣∣∣ esssup
s∈[t,T ]

|ϕ(s)| <∞

}
,

and

L2
FT

(Ω;H) =
{
ξ : Ω→ H

∣∣ ξ is FT -measurable, E|ξ|2 <∞
}
,

L2
F(t, T ;H) =

{
ϕ : [t, T ]× Ω→ H

∣∣ ϕ(·) is F-progressively measurable, E
∫ T

t
|ϕ(s)|2ds <∞

}
,

L2
F(Ω;C([t, T ];H)) =

{
ϕ : [t, T ]× Ω→ H

∣∣ ϕ(·) is F-adapted, continuous, E

[
sup
s∈[t,T ]

|ϕ(s)|2
]
<∞

}
,

L2
F(Ω;L1(t, T ;H)) =

{
ϕ : [t, T ]× Ω→ H

∣∣ ϕ(·) is F-progressively measurable, E
(∫ T

t
|ϕ(s)|ds

)2

<∞
}
.

Now we start to formulate our system. We identify the state space of the chain α with a finite

set S , {1, 2 . . . , D}, where D ∈ N and suppose that the chain is homogeneous and irreducible. To

specify statistical or probabilistic properties of the chain α, for t ∈ [0,∞), we define the generator

λ(t) , [λij(t)]i,j=1,2,...,D of the chain under P. This is also called the rate matrix, or the Q-matrix.

Here, for each i, j = 1, 2, . . . , D, λij(t) is the constant transition intensity of the chain from state

i to state j at time t. Note that λij(t) > 0, for i 6= j and
∑D

j=1 λij(t) = 0, so λii(t) 6 0. In what

follows for each i, j = 1, 2, . . . , D with i 6= j, we suppose that λij(t) > 0, so λii(t) < 0. For each
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fixed i, j = 1, 2, · · · , D, let Nij(t) be the number of jumps from state i into state j up to time t and

set

λj(t) ,
∫ t

0
λα(s−) jI{α(s−) 6=j}ds =

D∑
i=1,i 6=j

λ̃ij(t), with λ̃ij(t) ,
∫ t

0
λij(s)I{α(s−)=i}ds.

Then for each i, j = 1, 2, · · · , D, the term Ñij(t) defined as follows is an (F,P)-martingale:

Ñii(t) ≡ 0, Ñij(t) = Nij(t)− λ̃ij(t), i 6= j.

To guarantee the well-posedness of the state equation (1.1), we adopt the following assumption:

(H1) For every i ∈ S, the coefficients and nonhomogeneous terms of (1.1) satisfy{
A(·, i) ∈ L1(0, T ;Rn×n), B(·, i) ∈ L∞(0, T ;Rn×m), b(·) ∈ L2

F(Ω;L1(0, T ;Rn)),

C(·, i) ∈ L2(0, T ;Rn×n), D(·, i) ∈ L∞(0, T ;Rn×m), σ(·) ∈ L2
F(0, T ;Rn).

The following result, whose proof is similar to the result in [22, Proposition 2.1], establishes the

well-posedness of the state equation under the assumption (H1).

Lemma 2.1. Under the assumption (H1), for any initial pair (t, x, i) ∈ [0, T )×Rn×S and control

u(·) ∈ U [t, T ], the state equation (1.1) has a unique adapted solution X(·) ≡ X(· ; t, x, i, u(·)).
Moreover, there exists a constant K > 0, independent of (t, x, i) and u(·), such that

E
[

sup
t6s6T

|X(s)|2
]
6 KE

[
|x|2 +

(∫ T

t
|b(s)|ds

)2
+

∫ T

t
|σ(s)|2ds+

∫ T

t
|u(s)|2ds

]
. (2.1)

To ensure that the random variables in the cost functional (1.2) are integrable, we assume the

following holds:

(H2) For every i ∈ S, the weighting coefficients in the cost functional (1.2) satisfy{
G(i) ∈ Sn, Q(·, i) ∈ L1(0, T ; Sn), S(·, i) ∈ L2(0, T ;Rm×n), R(·, i) ∈ L∞(0, T ;Sm),

g(i) ∈ L2
FT

(Ω;Rn), q(·, i) ∈ L2(0, T ;Rn), ρ(·, i) ∈ L2(0, T ;Rm).

Remark 2.2. Suppose that (H1) holds. Then according to Lemma 2.1, for any initial pair (t, x, i) ∈
[0, T )×Rn×S and control u(·) ∈ U [t, T ], the state equation (1.1) admits a unique (strong) solution

X(·) ≡ X(·; t, x, i, u(·)) which belongs to the space L2
F(Ω;C([t, T ];H)). In addition, if (H2) holds,

then the random variables on the right-hand side of (1.2) are integrable, and hence Problem (M-

SLQ) is well-posed.

Let us recall some basic notions of stochastic LQ optimal control problems.

Definition 2.3 (Open-loop). Problem (M-SLQ) is said to be

(i) (uniquely) open-loop solvable for an initial pair (t, x, i) ∈ [0, T ] × Rn × S if there exists a

(unique) u∗(·) = u∗(· ; t, x, i) ∈ U [t, T ] (depending on (t, x, i)) such that

J(t, x, i;u∗(·)) 6 J(t, x, i;u(·)), ∀u(·) ∈ U [t, T ]. (2.2)

Such a u∗(·) is called an open-loop optimal control for (t, x, i).
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(ii) (uniquely) open-loop solvable if it is (uniquely) open-loop solvable for all the initial pairs

(t, x, i) ∈ [0, T ]× Rn × S.

Definition 2.4 (Closed-loop). Let Θ : [t, T ] × S → Rm×n to be deterministic function and v :

[t, T ]× Ω→ Rm be an F-progressively measurable process.

(i) We call (Θ(·, ·), v(·)) a closed-loop strategy on [t, T ] if

E
∫ T

t
|Θ(s, α(s))|2ds <∞, and E

∫ T

t
|v(s)|2ds <∞. (2.3)

The set of all closed-loop strategies (Θ(·, ·), v(·)) on [t, T ] is denoted by C [t, T ].

(ii) A closed-loop strategy (Θ∗(·, ·), v∗(·)) ∈ C [t, T ] is said to be optimal on [t, T ] if

J(t, x, i; Θ∗(·, α(·))X∗(·) + v∗(·)) 6 J(t, x, i; Θ(·, α(·))X(·) + v(·)),
∀(x, i) ∈ Rn × S, ∀(Θ(·, ·), v(·)) ∈ C [t, T ],

(2.4)

where X∗(·) is the solution to the closed-loop system under (Θ∗(·, ·), v∗(·)):

dX∗(s) =
{[
A(s, α(s)) +B(s, α(s))Θ∗(s, α(s))

]
X∗(s) +B(s, α(s))v∗(s) + b(s)

}
ds

+
{[
C(s, α(s)) +D(s, α(s))Θ∗(s, α(s))

]
X∗(s)

+D(s, α(s))v∗(s) + σ(s)
}
dW (s), s ∈ [t, T ],

X∗(t) = x, α(t) = i,

(2.5)

and X(·) is the solution to the closed-loop system (2.5) corresponding to (Θ(·, ·), v(·)).

(iii) For any t ∈ [0, T ), if a closed-loop optimal strategy (uniquely) exists on [t, T ], Problem

(M-SLQ) is (uniquely) closed-loop solvable.

Remark 2.5. We emphasize that, in the above definition, Θ is a deterministic function, and in (2.3)

the randomness of Θ(·, α(·)) comes from α(·). Moreover, (2.4) must be true for all (x, i) ∈ Rn × S.

The same remark applies to the definition below.

Definition 2.6 (Weak closed-loop). Let Θ : [t, T ] × S → Rm×n be a deterministic function and

v : [t, T ]× Ω→ Rm be an F-progressively measurable process such that for any T ′ ∈ [t, T ),

E
∫ T ′

t
|Θ(s, α(s))|2ds <∞, and E

∫ T ′

t
|v(s)|2ds <∞.

(i) We call (Θ(·, ·), v(·)) a weak closed-loop strategy on [t, T ) if for any initial state (x, i) ∈ Rn×S,

the outcome u(·) ≡ Θ(·, α(·))X(·) + v(·) belongs to U [t, T ] ≡ L2
F(t, T ;Rm), where X(·) is the

solution to the weak closed-loop system:

dX(s) =
{[
A(s, α(s)) +B(s, α(s))Θ(s, α(s))

]
X(s) +B(s, α(s))v(s) + b(s)

}
ds

+
{[
C(s, α(s)) +D(s, α(s))Θ(s, α(s))

]
X(s)

+D(s, α(s))v(s) + σ(s)
}
dW (s), s ∈ [t, T ],

X(t) = x, α(t) = i.

(2.6)
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The set of all weak closed-loop strategies is denoted by Cw[t, T ].

(ii) A weak closed-loop strategy (Θ∗(·, ·), v∗(·)) ∈ Cw[t, T ] is said to be optimal on [t, T ) if

J(t, x, i; Θ∗(·, α(·))X∗(·) + v∗(·)) 6 J(t, x, i; Θ(·, α(·))X(·) + v(·)),
∀(x, i) ∈ Rn × S, ∀(Θ(·, ·), v(·)) ∈ Cw[t, T ],

(2.7)

where X(·) is the solution of the closed-loop system (2.6), and X∗(·) is the solution to the

weak closed-loop system (2.6) corresponding to (Θ∗(·, ·), v∗(·)).

(iii) For any t ∈ [0, T ), if a weak closed-loop optimal strategy (uniquely) exists on [t, T ), Problem

(M-SLQ) is (uniquely) weakly closed-loop solvable.

3 Open-Loop Solvability: A Perturbation Approach

In this section, we study the open-loop solvability of Problem (M-SLQ) through a perturbation

approach. We begin by assuming that, for any choice of (t, i) ∈ [0, T )× S,

J0(t, 0, i;u(·)) > 0, ∀u(·) ∈ U [t, T ], (3.1)

which is necessary for the open-loop solvability of Problem (M-SLQ) according to [32, Theorem 4.1].

In fact, assumption (3.1) means that u(·) → J0(t, 0, i;u(·)) is convex, and one can actually prove

that assumption (3.1) implies the convexity of the mapping u(·) → J(t, x, i;u(·)) for any choice of

(t, x, i) ∈ [0, T )× Rn × S (see [20, 32]).

For ε > 0, consider the LQ problem of minimizing the perturbed cost functional

Jε(t, x, i;u(·)) , J(t, x, i;u(·)) + εE
∫ T

t
|u(s)|2ds

= E

{〈
G(α(T ))X(T ), X(T )

〉
+ 2
〈
g(α(T )), X(T )

〉
+

∫ T

t

[〈(
Q(s, α(s)) S(s, α(s))>

S(s, α(s)) R(s, α(s)) + εIm

)(
X(s)

u(s)

)
,

(
X(s)

u(s)

)〉

+2

〈(
q(s, α(s))

ρ(s, α(s))

)
,

(
X(s)

u(s)

)〉]
ds

}
,

(3.2)

subject to the state equation (1.1). We denote this perturbed LQ problem by Problem (M-SLQ)ε
and its value function by Vε(·, ·, ·). Notice that the cost functional J0

ε (t, x, i;u(·)) of the homogeneous

LQ problem associated with Problem (M-SLQ)ε is

J0
ε (t, x, i;u(·)) = J0(t, x, i;u(·)) + εE

∫ T

t
|u(s)|2ds,

which, by (3.1), satisfies

J0
ε (t, 0, i;u(·)) > εE

∫ T

t
|u(s)|2ds.
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The Riccati equations associated with Problem (M-SLQ)ε follow
Ṗε(s, i) + Pε(s, i)A(s, i) +A(s, i)>Pε(s, i) + C(s, i)>Pε(s, i)C(s, i) +Q(s, i)

−Ŝε(s, i)>[R̂ε(s, i) + εIm]−1Ŝε(s, i) +

D∑
k=1

λik(s)Pε(s, k) = 0, a.e. s ∈ [0, T ], i ∈ S,

Pε(T, i) = G(i),

(3.3)

where for every (s, i) ∈ [0, T ]× S and ε > 0,

Ŝε(s, i) , B(s, i)>Pε(s, i) +D(s, i)>Pε(s, i)C(s, i) + S(s, i),

R̂ε(s, i) , R(s, i) +D(s, i)>Pε(s, i)D(s, i).
(3.4)

We say that a solution Pε(·, ·) ∈ C([0, T ]× S;Sn) of (3.3) is said to be regular if

R
(
Ŝε(s, i)

)
⊆ R

(
R̂ε(s, i)

)
, a.e. s ∈ [0, T ], i ∈ S, (3.5)

R̂ε(·, i)−1Ŝε(·, i) ∈ L2(0, T ;Rm×n), i ∈ S, (3.6)

R̂ε(s, i) > 0, a.e. s ∈ [0, T ], i ∈ S. (3.7)

A solution Pε(·, ·) of (3.3) is said to be strongly regular if

R̂ε(s, i) > λI, a.e. s ∈ [0, T ], (3.8)

for some λ > 0. The system of Riccati equations (3.3) is said to be (strongly) regularly solvable,

if it admits a (strongly) regular solution. Clearly, condition (3.8) implies (3.5)-(3.7). Thus, a

strongly regular solution Pε(·, ·) must be regular. Moreover, it follows from [32, Theorem 6.3]

that, under the assumption (3.1), Riccati equations (3.3) have a unique strongly regular solution

Pε(·, ·) ∈ C([0, T ]× S; Sn), and from (3.7), we have

R̂ε(s, i) + εIm > εIm, a.e. s ∈ [0, T ].

Furthermore, let (ηε(·), ζε(·), ξε(·)) be the adapted solution of the following BSDE:

dηε(s) = −
{[
A(s, α(s)) +B(s, α(s))Θε(s, α(s))

]>
ηε(s)

+
[
C(s, α(s)) +D(s, α(s))Θε(s, α(s))

]>
ζε(s)

+
[
C(s, α(s)) +D(s, α(s))Θε(s, α(s))

]>
Pε(s, α(s))σ(s)

+ Θε(s, α(s))>ρ(s, α(s)) + Pε(s, α(s))b(s) + q(s, α(s))
}
ds

+ζε(s)dW (s) +

D∑
k,l=1

ξεkl(s)dÑkl(s), s ∈ [0, T ],

ηε(T ) = g(α(T )),

(3.9)
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and let Xε(·) be the solution of the following closed-loop system:

dXε(s) =
{[
A(s, α(s)) +B(s, α(s))Θε(s, α(s))

]
Xε(s) +B(s, α(s))vε(s) + b(s)

}
ds

+
{[
C(s, α(s)) +D(s, α(s))Θε(s, α(s))

]
Xε(s)

+D(s, α(s))vε(s) + σ(s)
}
dW (s), s ∈ [t, T ],

Xε(t) = x, , α(t) = i,

(3.10)

where Θε : [0, T ]× S → Rm×n and vε : [0, T ]× Ω→ Rm are defined by

Θε(s, α(s)) = −[R̂ε(s, α(s)) + εIm]−1Ŝε(s, α(s)), (3.11)

vε(s) = −[R̂ε(s, α(s)) + εIm]−1ρ̂ε(s, α(s)), (3.12)

with

ρ̂ε(s, i) = B(s, i)>ηε(s) +D(s, i)>ζε(s) +D(s, i)>Pε(s, i)σ(s) + ρ(s, i). (3.13)

Then from Theorem 5.2 and Corollary 6.5 in Zhang, Li and Xiong [32], the unique open-loop optimal

control of Problem (M-SLQ)ε, for the initial pair (t, x, i), is given by

uε(s) = Θε(s, α(s))Xε(s) + vε(s), s ∈ [t, T ]. (3.14)

Before studying the main result of this section, we prove the following lemma.

Lemma 3.1. Under Assumptions (H1) and (H2), for any initial pair (t, x, i) ∈ [0, T )×Rn×S, one

has

lim
ε ↓ 0

Vε(t, x, i) = V (t, x, i). (3.15)

Proof. Let (t, x, i) ∈ [0, T )×Rn×S be fixed. On the one hand, for any ε > 0 and any u(·) ∈ U [t, T ],

we have

Jε(t, x, i;u(·)) = J(t, x, i;u(·)) + εE
∫ T

t
|u(s)|2ds > J(t, x, i;u(·)) > V (t, x, i).

Taking the infimum over all u(·) ∈ U [t, T ] on the left hand side implies that

Vε(t, x, i) > V (t, x, i). (3.16)

On the other hand, if V (t, x, i) is finite, then for any δ > 0, we can find a uδ(·) ∈ U [t, T ], independent

of ε > 0, such that

J(t, x, i;uδ(·)) 6 V (t, x, i) + δ.

It follows that

Vε(t, x, i) 6 J(t, x, i;uδ(·)) + εE
∫ T

t
|uδ(s)|2ds 6 V (t, x, i) + δ + εE

∫ T

t
|uδ(s)|2ds.

Letting ε→ 0, we obtain

lim
ε ↓ 0

Vε(t, x, i) 6 V (t, x, i) + δ. (3.17)

Since δ > 0 is arbitrary, by combining (3.16) and (3.17), we obtain (3.15). A similar argument

applies to the case when V (t, x, i) = −∞.
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Now, we present the main result of this section, which provides a characterization of the open-

loop solvability of Problem (M-SLQ) in terms of the family {uε(·)}ε>0.

Theorem 3.2. Let Assumptions (H1)-(H2) and (3.1) hold. For any given initial pair (t, x, i) ∈
[0, T ) × Rn × S, let uε(·) be defined by (3.14), which is the outcome of the closed-loop optimal

strategy (Θε(·, ·), vε(·)) of Problem (M-SLQ)ε. Then the following statements are equivalent:

(i) Problem (M-SLQ) is open-loop solvable at (t, x, i);

(ii) The family {uε(·)}ε>0 is bounded in L2
F(t, T ;Rm), i.e.,

sup
ε>0

E
∫ T

t
|uε(s)|2ds <∞;

(iii) The family {uε(·)}ε>0 is convergent strongly in L2
F(t, T ;Rm) as ε→ 0.

Proof. We begin by proving the implication (i) ⇒ (ii). Let v∗(·) be an open-loop optimal control

of Problem (M-SLQ) for the initial pair (t, x, i). Then for any ε > 0,

Vε(t, x, i) 6 Jε(t, x, i; v
∗(·)) = J(t, x, i; v∗(·)) + εE

∫ T

t
|v∗(s)|2ds

= V (t, x, i) + εE
∫ T

t
|v∗(s)|2ds.

(3.18)

On the other hand, since uε(·) is optimal for Problem (M-SLQ)ε with respect to (t, x, i), we have

Vε(t, x, i) = Jε(t, x, i; vε(·)) = J(t, x, i; vε(·)) + εE
∫ T

t
|vε(s)|2ds

> V (t, x, i) + εE
∫ T

t
|vε(s)|2ds.

(3.19)

Combining (3.18) and (3.19) yields that

E
∫ T

t
|uε(s)|2ds 6

Vε(t, x, i)− V (t, x, i)

ε
6 E

∫ T

t
|v∗(s)|2ds. (3.20)

This shows that {uε(·)}ε>0 is bounded in L2
F(t, T ;Rm).

For (ii) ⇒ (i), the proof is similar to [24] (See Remark 3.3 below), and the implication (iii) ⇒
(ii) is trivially true.

Finally, we prove the implication (ii) ⇒ (iii). We divide the proof into two steps.

Step 1: The family {uε(·)}ε>0 converges weakly to an open-loop optimal control of Problem

(M-SLQ) for the initial pair (t, x, i) as ε→ 0.

To verify this, it suffices to show that every weakly convergent subsequence of {uε(·)}ε>0 has the

same weak limit which is an open-loop optimal control of Problem (M-SLQ) for (t, x, i). Let u∗i (·),
i = 1, 2 be the weak limits of two different weakly convergent subsequences {ui,εk(·)}∞k=1 (i = 1, 2)
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of {uε(·)}ε>0. The same argument as in the proof of (ii) ⇒ (i) shows that both u∗1(·) and u∗2(·) are

optimal for (t, x, i). Thus, recalling that the mapping u(·) 7→ J(t, x, i;u(·)) is convex, we have

J

(
t, x, i;

u∗1(·) + u∗2(·)
2

)
6

1

2
J(t, x, i;u∗1(·)) +

1

2
J(t, x, i;u∗2(·)) = V (t, x, i).

This means that
u∗1(·)+u∗2(·)

2 is also optimal for Problem (M-SLQ) with respect to (t, x, i). Then we

can repeat the argument employed in the proof of (i) ⇒ (ii), replacing v∗(·) by
u∗1(·)+u∗2(·)

2 to obtain

(see (3.20))

E
∫ T

t
|ui,εk(s)|2ds 6 E

∫ T

t

(u∗1(s) + u∗2(s)

2

)2
ds, i = 1, 2.

Now, note that

0 6 E
∫ T

t
|ui,εk(s)− u∗i (s)|2ds = E

∫ T

t

[
|ui,εk(s)|2 − 2〈ui,εk(s), u∗i (s)〉+ |u∗i (s)|2

]
ds,

which implies that

2E
∫ T

t
〈ui,εk(s), u∗i (s)〉ds− E

∫ T

t
|u∗i (s)|2ds 6 E

∫ T

t
|ui,εk(s)|2ds.

By the definition of weak-convergence yields

E
∫ T

t
|u∗i (s)|2ds = 2 lim inf

εk→0
E
∫ T

t
〈ui,εk(s), u∗i (s)〉ds− E

∫ T

t
|u∗i (s)|2ds

6 lim inf
εk→0

E
∫ T

t
|ui,εk(s)|2ds 6 E

∫ T

t

(u∗1(s) + u∗2(s)

2

)2
ds i = 1, 2.

Adding the above two inequalities and then multiplying by 2, we get

2

[
E
∫ T

t
|u∗1(s)|2ds+ E

∫ T

t
|u∗2(s)|2ds

]
6 E

∫ T

t
|u∗1(s) + u∗2(s)|2ds,

or equivalently (by shifting the integral on the right-hand side to the left-hand side),

E
∫ T

t
|u∗1(s)− u∗2(s)|2ds 6 0.

It follows that u∗1(·) = u∗2(·), which establishes the claim.

Step 2: The family {uε(·)}ε>0 converges strongly as ε→ 0.

According to Step 1, the family {uε(·)}ε>0 converges weakly to an open-loop optimal control

u∗(·) of Problem (M-SLQ) for (t, x, i) as ε→ 0. By repeating the argument employed in the proof

of (i) ⇒ (ii) with u∗(·) replacing v∗(·), we obtain

E
∫ T

t
|uε(s)|2ds 6 E

∫ T

t
|u∗(s)|2ds, ε > 0. (3.21)
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On the other hand, since u∗(·) is the weak limit of {uε(·)}ε>0, we have

E
∫ T

t
|u∗(s)|2ds 6 lim inf

ε→0
E
∫ T

t
|uε(s)|2ds. (3.22)

Combining (3.21) and (3.22), we see that E
∫ T
t |uε(s)|

2ds actually has the limit E
∫ T
t |u

∗(s)|2ds.
Therefore (recalling that {uε(·)}ε>0 converges weakly to u∗(·)),

lim
ε→0

E
∫ T

t
|uε(s)− u∗(s)|2ds

= lim
ε→0

[
E
∫ T

t
|uε(s)|2ds+ E

∫ T

t
|u∗(s)|2ds− 2E

∫ T

t
〈u∗(s), uε(s)〉ds

]
= 0,

which means that {uε(·)}ε>0 converges strongly to u∗(·) as ε→ 0.

Remark 3.3. A similar result recently appeared in Zhang, Li and Xiong [32], which asserts that if

Problem (M-SLQ) is open-loop solvable at (t, x, i), then the limit of any weakly/strongly convergent

subsequence of {uε(·)}ε>0 is an open-loop optimal control for (t, x, i). Our result sharpens that in

[32] by showing the family {uε(·)}ε>0 itself is strongly convergent when Problem (M-SLQ) is open-

loop solvable. This improvement has at least two advantages. First, it serves as a crucial bridge to

the weak closed-loop solvability presented in the next section. Second, it is much more convenient

for computational purposes because subsequence extraction is not required.

Remark 3.4. In Example 1.1, since B = 1 and D = S = R = 0, we have

Ŝε(s, i) , B(s, i)>Pε(s, i) +D(s, i)>Pε(s, i)C(s, i) + S(s, i) = Pε(s, i) with Pε(T, i) = 1,

R̂ε(s, i) , R(s, i) +D(s, i)>Pε(s, i)D(s, i) = 0.

So the condition R
(
Ŝε(s, i)

)
⊆ R

(
R̂ε(s, i)

)
, a.e. s ∈ [0, T ], i ∈ S is not satisfied, which implies that

GRE (1.8) has no regular solution.

4 Weak Closed-Loop Solvability

In this section, we study the equivalence between open-loop and weak closed-loop solvabilities of

Problem (M-SLQ). We shall show that Θε(·, ·) and vε(·) defined by (3.11) and (3.12) converge locally

in [0, T ), and that the limit pair (Θ∗(·, ·), v∗(·)) is a weak closed-loop optimal strategy.

We start with a simple lemma, which enables us to work separately with Θε(·, ·) and vε(·). Recall

that the associated Problem (M-SLQ)0 is to minimize (1.6) subject to (1.5).

Lemma 4.1. Under Assumptions (H1) and (H2), if Problem (M-SLQ) is open-loop solvable, then

so is Problem (M-SLQ)0.
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Proof. For arbitrary (t, x, i) ∈ [0, T ) × Rn × S, we note that if b(·, ·), σ(·, ·), g(·), q(·, ·), ρ(·, ·) = 0,

then the adapted solution (ηε(·), ζε(·), ξε1(·), · · · , ξεD(·)) to BSDE (3.9) is identically zero, and hence

the process vε(·) defined by (3.12) is also identically zero. By Theorem 3.2, to prove that Problem

(M-SLQ)0 is open-loop solvable at (t, x, i), we need to verify that the family {uε(·)}ε>0 is bounded

in L2
F(t, T ;Rm), where (see (3.14) and note that vε(·) = 0),

uε(·) = Θε(·, α(·))Xε(·), (4.1)

with Xε(·) is the solution to the following equation:
dXε(s) =

[
A(s, α(s)) +B(s, α(s))Θε(s, α(s))

]
Xε(s)ds

+
[
C(s, α(s)) +D(s, α(s))Θε(s, α(s))

]
Xε(s)dW (s), s ∈ [t, T ],

Xε(t) = x, α(t) = i,

(4.2)

To this end, we return to Problem (M-SLQ). Let vε(·) be defined in (3.12) and denote by Xε(· ; t, x, i)
and Xε(· ; t, 0, i) solutions to (3.10) with respect to the initial pairs (t, x, i) and (t, 0, i), respectively.

Since Problem (M-SLQ) is open-loop solvable at both (t, x, i) and (t, 0, i), by Theorem 3.2, the

families

uε(s; t, x, i) , Θε(s, α(s))Xε(s; t, x, i) + vε(s),

uε(s; t, 0, i) , Θε(s, α(s))Xε(s; t, 0, i) + vε(s),
s ∈ [t, T ], (4.3)

are bounded in L2
F(t, T ;Rm). Note that due to that the process vε(·) is independent of the initial

state, the difference Xε(· ; t, x, i)−Xε(· ; t, 0, i) also satisfies the same equation (4.2). Then by the

uniqueness of adapted solutions of SDEs, we obtain that

Xε(·) = Xε(· ; t, x, i)−Xε(· ; t, 0, i),

which, combining (4.1) and (4.3), implies that

uε(·) = uε(·, t, x, i)− uε(·, t, 0, i).

Since {uε(·, t, x, i)}ε>0 and {uε(·, t, 0, i)}ε>0 are bounded in L2
F(t, T ;Rm), so is {uε(·)}ε>0. Finally,

it follows from Theorem 3.2 that Problem (M-SLQ)0 is open-loop solvable.

Next, we prove that the family {Θε(·, ·)}ε>0 defined by (3.11) is locally convergent in [0, T ).

Proposition 4.2. Let (H1) and (H2) hold. Suppose that Problem (M-SLQ)0 is open-loop solvable.

Then the family {Θε(·, ·)}ε>0 defined by (3.11) converges in L2(0, T ′;Rm×n) for any 0 < T ′ < T ;

that is, there exists a locally square-integrable deterministic function Θ∗ : [0, T )× S → Rm×n such

that

lim
ε→0

E
∫ T ′

0
|Θε(s, α(s))−Θ∗(s, α(s))|2ds = 0, ∀ 0 < T ′ < T.
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Proof. We need to show that for any 0 < T ′ < T , the family {Θε(·)}ε>0 is Cauchy in L2(0, T ′;Rm×n).

To this end, let us first fix an arbitrary initial (t, i) ∈ [0, T )×S and let Φε(·) ∈ L2
F(Ω;C([t, T ];Rn×n))

be the solution to the following SDE:
dΦε(s) =

[
A(s, α(s)) +B(s, α(s))Θε(s, α(s))

]
Φε(s)ds

+
[
C(s, α(s)) +D(s, α(s))Θε(s, α(s))

]
Φε(s)dW (s), s ∈ [t, T ],

Φε(t) = In, α(t) = i.

(4.4)

Clearly, for any initial state x, from the uniqueness of SDEs, the solution of (4.2) is given by

Xε(s) = Φε(s)x, s ∈ [t, T ].

Since Problem (M-SLQ)0 is open-loop solvable, by Theorem 3.2, the family

uε(s) = Θε(s, α(s))Xε(s) = Θε(s, α(s))Φε(s)x, s ∈ [t, T ], ε > 0

is strongly convergent in L2
F(t, T ;Rm) for any x ∈ Rn. It follows that {Θε(·, ·)Φε(·)}ε>0 converges

strongly in L2
F(t, T ;Rm×n) as ε→ 0. Denote Uε(·) = Θε(·, ·)Φε(·) and let U∗(·) be the strong limit

of Uε(·). By Jensen’s inequality, we get∫ T

t

∣∣E[Uε(s)]− E[U∗(s)]
∣∣2ds 6 E

∫ T

t

∣∣Uε(s)− U∗(s)∣∣2ds→ 0 as ε→ 0. (4.5)

Moreover, from (4.4), one see that Eαs [Φε(·)] satisfies the following ODE:dEαs [Φε(s)] =
{
A(s, α(s))Eαs [Φε(s)] +B(s, α(s))Eαs [Uε(s)]

}
ds, s ∈ [t, T ],

Eαt [Φε(t)] = In, α(t) = i.

By the standard results of ODE, combining (4.5), the family of continuous functions Eα[Φε(·)]
converges uniformly to the solution ofdEαs [Φ∗(s)] =

{
A(s, α(s))Eαs [Φ∗(s)] +B(s, α(s))Eαs [U∗(s)]

}
ds, s ∈ [t, T ],

Eαt [Φ∗(t)] = In, α(t) = i.

Thus, by noting that Eαt [Φ∗(t)] = In, we can choose some small constant ∆t > 0 such that for small

ε > 0,

(a) Eαs [Φε(s)] is invertible for all s ∈ [t, t+ ∆t], and

(b) |Eαs [Φε(s)]| > 1
2 for all s ∈ [t, t+ ∆t].

We claim that the family {Θε(·, i)}ε>0 is Cauchy in L2(t, t+ ∆t;Rm×n) for each i ∈ S. Indeed, first

note that when s ∈ [t, t+ ∆t], note that (a) and (b), one has

Uε(s) = Θε(s, α(s))Φε(s) =⇒ Eαs [Uε(s)] = Θε(s, α(s))Eαs [Φε(s)]
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=⇒ Θε(s, α(s)) = Eαs [Uε(s)]Eαs [Φε(s)]
−1.

Then we have

E
∫ t+∆t

t

∣∣Θε1(s, α(s))−Θε2(s, α(s))
∣∣2ds

= E
∫ t+∆t

t

∣∣∣Eαs [Uε1(s)]Eαs [Φε1(s)]−1 − E[Uε2(s)]Eαs [Φε2(s)]−1
∣∣∣2ds

6 2E
∫ t+∆t

t

∣∣Eαs [Uε1(s)− Uε2(s)]
∣∣2 · ∣∣Eαs [Φε1(s)]−1

∣∣2ds
+2E

∫ t+∆t

t

∣∣Eαs [Uε2(s)]
∣∣2 · ∣∣Eαs [Φε1(s)]−1 − Eαs [Φε2(s)]−1

∣∣2ds
= 2E

∫ t+∆t

t

∣∣Eαs [Uε1(s)− Uε2(s)]
∣∣2 · ∣∣Eαs [Φε1(s)]−1

∣∣2ds
+2E

∫ t+∆t

t

∣∣Eαs [Uε2(s)]
∣∣2 · ∣∣Eαs [Φε1(s)− Φε2(s)]

∣∣2 · ∣∣Eαs [Φε1(s)]−1
∣∣2 · ∣∣Eαs [Φε2(s)]−1

∣∣2ds
6 8

∫ t+∆t

t

∣∣E[Uε1(s)− Uε2(s)]
∣∣2ds+ 32

∫ t+∆t

t

∣∣E[Uε2(s)]
∣∣2ds · ( sup

t6s6t+∆t

∣∣E[Φε1(s)]− E[Φε2(s)]
∣∣2).

Since {Uε(·)}ε>0 is Cauchy in L2
F(t, T ;Rm×n) and {E[Φε(·)]}ε>0 converges uniformly on [t, T ], the

last two terms of the above inequality approach to zero as ε1, ε2 → 0, which implies that {Θε(·, i)}ε>0

is Cauchy in L2(t, t+ ∆t;Rm×n) for each i ∈ S.

Next we use a compactness argument to prove that, for each i ∈ S, {Θε(·, i)}ε>0 is actually

Cauchy in L2(0, T ′;Rm×n) for any 0 < T ′ < T . Take any T ′ ∈ (0, T ). From the preceding argument

we see that for each t ∈ [0, T ′], there exists a small ∆t > 0 such that {Θε(·, i)}ε>0 is Cauchy in

L2(t, t+∆t;Rm×n). Since [0, T ′] is compact, we can choose finitely many t ∈ [0, T ′], say, t1, t2, ..., tk,

such that {Θε(·, i)}ε>0 is Cauchy in each L2(tj , tj + ∆tj ;Rm×n) and [0, T ′] ⊆
⋃k
j=1[tj , tj + ∆tj ]. It

follows that

E
∫ T

t

∣∣Θε1(s, α(s))−Θε2(s, α(s))
∣∣2ds

6
k∑
j=1

E
∫ tj+∆tj

t

∣∣Θε1(s, α(s))−Θε2(s, α(s))
∣∣2ds→ 0 as ε1, ε2 → 0.

The proof is therefore completed.

The following result shows that the family {vε(·)}ε>0 defined by (3.12) is also locally convergent

in [0, T ).

Proposition 4.3. Let (H1) and (H2) hold. Suppose that Problem (M-SLQ) is open-loop solvable.

Then the family {vε(·)}ε>0 defined by (3.12) converges in L2(0, T ′;Rm) for any 0 < T ′ < T ; that

is, there exists a locally square-integrable deterministic function v∗(·) : [0, T )→ Rm such that

lim
ε→0

E
∫ T ′

0
|vε(s)− v∗(s)|2ds = 0, ∀ 0 < T ′ < T.
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Proof. Let Xε(s), 0 6 s 6 T , be the solution to the closed-loop system (3.10) with respect to initial

time t = 0. Then, on the one hand, from the linearity of the state equation (1.1) and Lemma 2.1,

we have

E
[

sup
06s6T

|Xε1(s)−Xε2(s)|2
]
6 KE

∫ T

0
|uε1(s)− uε2(s)|2ds.

On the other hand, since Problem (M-SLQ) is open-loop solvable, Theorem 3.2 implies that the

family

uε(s) = Θε(s, α(s))Xε(s) + vε(s), s ∈ [0, T ]; ε > 0 (4.6)

is Cauchy in L2
F(0, T ;Rm), i.e.,

E
∫ T

0
|uε1(s)− uε2(s)|2ds→ 0 as ε1, ε2 → 0. (4.7)

Therefore

E
[

sup
06s6T

|Xε1(s)−Xε2(s)|2
]
→ 0 as ε1, ε2 → 0. (4.8)

Now for every 0 < T ′ < T . Since Problem (M-SLQ) is open-loop solvable, according to Lemma 4.1

and Proposition 4.2, the family {Θε(·, i)}ε>0 is Cauchy in L2(0, T ′;Rm×n) for every i ∈ S. Thus,

combining (4.8), we have

E
∫ T ′

0

∣∣∣Θε1(s, α(s))Xε1(s)−Θε2(s, α(s))Xε2(s)
∣∣∣2ds

6 2E
∫ T ′

0
|Θε1(s, α(s))−Θε2(s, α(s))|2ds · E

[
sup

06s6T ′
|Xε1(s)|2

]
+2E

∫ T ′

0
|Θε2(s, α(s))|2ds · E

[
sup

06s6T ′
|Xε1(s)−Xε2(s)|2

]
−→ 0 as ε1, ε2 → 0,

which combing (4.6) and (4.7), implies that

E
∫ T ′

0
|vε1(s)− vε2(s)|2ds

= E
∫ T ′

0

∣∣∣[uε1(s)−Θε1(s, α(s))Xε1(s)]− [uε2(s)−Θε2(s, α(s))Xε2(s)]
∣∣∣2ds

6 2E
∫ T ′

0
|uε1(s)− uε2(s)|2ds+ 2E

∫ T ′

0
|Θε1(s, α(s))Xε1(s)−Θε2(s)Xε2(s, α(s))|2ds

−→ 0 as ε1, ε2 → 0.

This shows that the family {vε(·)}ε>0 converges in L2
F(0, T ′;Rm).

We are now ready to state and prove the main result of this section, which establishes the

equivalence between open-loop and weak closed-loop solvability of Problem (M-SLQ).
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Theorem 4.4. Let (H1) and (H2) hold. If Problem (M-SLQ) is open-loop solvable, then the limit

pair (Θ∗(·, ·), v∗(·)) obtained in Propositions 4.2 and 4.3 is a weak closed-loop optimal strategy of

Problem (M-SLQ) on any [t, T ). Consequently, the open-loop and weak closed-loop solvability of

Problem (M-SLQ) are equivalent.

Proof. From Definition 2.6, it is obvious that the weak closed-loop solvability of Problem (M-SLQ)

implies the open-loop solvability of Problem (M-SLQ). In the following, we consider the inverse

case.

Take an arbitrary initial pair (t, x, i) ∈ [0, T ) × Rn × S and let {uε(s); t 6 s 6 T}ε>0 be the

family defined by (3.14). Since Problem (M-SLQ) is open-loop solvable at (t, x, i), by Theorem 3.2,

{uε(s); t 6 s 6 T}ε>0 converges strongly to an open-loop optimal control {u∗(s); t 6 s 6 T}ε>0 of

Problem (M-SLQ) (for the initial pair (t, x, i)). Let {X∗(s); t 6 s 6 T}ε>0 be the corresponding

optimal state process; i.e., X∗(·) is the adapted solution of the following equation:
dX∗(s) =

[
A(s, α(s))X∗(s) +B(s, α(s))u∗(s) + b(s)

]
ds

+
[
C(s, α(s))X∗(s) +D(s, α(s))u∗(s) + σ(s)

]
dW (s), s ∈ [t, T ],

X∗(t) = x, α(t) = i.

If we can show that

u∗(s) = Θ∗(s, α(s))X∗(s) + v∗(s), t 6 s < T, (4.9)

then (Θ∗(·, ·), v∗(·)) is clearly a weak closed-loop optimal strategy of Problem (M-SLQ) on [t, T ).

To justify the argument, we note first that by Lemma 2.1, we obtain

E
[

sup
t6s6T

|Xε(s)−X∗(s)|2
]
6 KE

∫ T

t
|uε(s)− u∗(s)|2ds→ 0 as ε→ 0,

where {Xε(s); t 6 s 6 T}ε>0 is the solution of equation (3.10). Second, by Propositions 4.2 and

4.3, one has 
lim
ε→0

E
∫ T ′

0
|Θε(s, α(s))−Θ∗(s, α(s))|2ds = 0, ∀0 < T ′ < T,

lim
ε→0

E
∫ T ′

0
|vε(s)− v∗(s)|2ds = 0, ∀0 < T ′ < T.

It follows that for any 0 < T ′ < T ,

E
∫ T ′

0

∣∣∣[Θε(s, α(s))Xε(s) + vε(s)
]
−
[
Θ∗(s, α(s))X∗(s) + v∗(s)

]∣∣∣2ds
6 2E

∫ T ′

0
|Θε(s, α(s))Xε(s)−Θ∗(s, α(s))X∗(s)|2ds+ 2E

∫ T ′

0
|vε(s)− v∗(s)|2ds

6 4E
∫ T ′

0
|Θε(s, α(s))|2ds · E

[
sup

06s6T ′
|Xε(s)−X∗(s)|2

]
+ 2E

∫ T ′

0
|vε(s)− v∗(s)|2ds

+4E
∫ T ′

0
|Θε(s, α(s))−Θ∗(s, α(s))|2ds · E

[
sup

06s6T ′
|X∗(s)|2

]
−→ 0 as ε→ 0.
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Recall that uε(s) = Θε(s, α(s))Xε(s) + vε(s) converges strongly to u∗ε(s), t 6 s 6 T , in L2
F(t, T ;Rm)

as ε→ 0. Thus, (4.9) must hold. The above argument shows that the open-loop solvability implies

the weak closed-loop solvability. Consequently, the open-loop and weak closed-loop solvability of

Problem (M-SLQ) are equivalent. This completes the proof.

5 Examples

There are some (M-SLQ) problems that are open-loop solvable, but not closed-loop solvable; for such

problems, one could not expect to get a regular solution (which does not exist) to the associated GRE

(3.3), so that the state feedback representation of the open-loop optimal control might be impossible.

In fact, Example 1.1 has illustrated this conclusion. However, Theorem 4.4 shows that the open-

loop and weak closed-loop solvability of Problem (M-SLQ) are equivalent. In the following, we

present another example to illustrate the procedure for finding weak closed-loop optimal strategies

for some (M-SLQ) problems that are open-loop solvable (and hence weakly closed-loop solvable)

but not closed-loop solvable.

Example 5.1. In order to present the procedure more clearly, we simplify the problem. Let T = 1

and D = 2, that is, the state space of α(·) is S = {1, 2}. For the generator λ(s) , [λij(s)]i,j=1,2,

note that
∑2

j=1 λij(s) = 0 for i ∈ S, then

λ(s) =

(
λ11(s) λ12(s)

λ21(s) λ22(s)

)
=

(
λ11(s) −λ11(s)

−λ22(s) λ22(s)

)
, s ∈ [0, 1].

Consider the following Problem (M-SLQ) with one-dimensional state equation

 dX(s) =
[
− α(s)X(s) + u(s) + b(s)

]
ds+

√
2α(s)X(s)dW (s), s ∈ [t, 1],

X(t) = x, α(t) = i,

(5.1)

and the cost functional

J(t, x, i;u(·)) = E|X(1)|2,

where the nonhomogeneous term b(·, ·) is given by

b(s) =


1√

1− s
· exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0
α(r)dr

}
, if s ∈ [0, 1);

0, if s = 1.
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It is easy to see that b(·, i) ∈ L2
F(Ω;L1(0, 1;R)) for each i ∈ S. In fact,

E
(∫ 1

0
|b(s)|ds

)2

= E
(∫ 1

0

1√
1− s

· exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0
α(r)dr

}
ds

)2

6 E
(∫ 1

0

1√
1− s

· exp

{∫ s

0

√
2α(r)dW (r)−

∫ s

0
α(r)dr

}
ds

)2

6 E
(∫ 1

0

1√
1− s

ds · sup
06s61

exp

{∫ s

0

√
2α(r)dW (r)−

∫ s

0
α(r)dr

})2

=

(∫ 1

0

1√
1− s

ds

)2

· E
(

sup
06s61

exp

{∫ s

0

√
2α(r)dW (r)−

∫ s

0
α(r)dr

})2

= 4 E
(

sup
06s61

exp

{∫ s

0

√
2α(r)dW (r)−

∫ s

0
α(r)dr

})2

.

Since the term exp
{∫ s

0

√
2α(r)dW (r)−

∫ s
0 α(r)dr

}
is a square-integrable martingale, note that α(·)

belongs to S = {1, 2}, it follows from Doob’s maximal inequality that

E
(

sup
06s61

exp

{∫ s

0

√
2α(r)dW (r)−

∫ s

0
α(r)dr

})2

6 4E exp

{
2

∫ 1

0

√
2α(r)dW (r)− 2

∫ 1

0
α(r)dr

}
6 4e4.

Thus,

E
(∫ 1

0
|b(s)|ds

)2

6 16e4,

which implies that b(·, i) ∈ L2
F(Ω;L1(0, 1;R)) for each i ∈ S.

We first claim that this (M-SLQ) problem is not closed-loop solvable on any [t, 1]. Indeed, the

generalized Riccati equation associate with this problem reads{
Ṗ (s, 1) + λ11(s)P (s, 1)− λ11(s)P (s, 2) = 0, a.e. s ∈ [t, 1],

P (1, 1) = 1,
for i = 1,

and {
Ṗ (s, 2)− λ22(s)P (s, 1) + λ22(s)P (s, 2) = 0, a.e. s ∈ [t, 1],

P (1, 2) = 1,
for i = 2,

whose solutions are P (s, 1) = P (s, 2) = 1, or P (s, i) ≡ 1, for (s, i) ∈ [0, 1]×S. Then for any s ∈ [t, 1]

and i ∈ S, we have

R
(
Ŝ(s, i)

)
= R(1) = R,

R
(
R̂(s, i)

)
= R(0) = {0},

=⇒ R
(
Ŝ(s, i)

)
* R

(
R̂(s, i)

)
.

where
Ŝ(s, i) , B(s, i)>P (s, i) +D(s, i)>P (s, i)C(s, i) + S(s, i),

R̂(s, i) , R(s, i) +D(s, i)>P (s, i)D(s, i).
(5.2)
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Therefore, the range inclusion condition is not satisfied. This implies that our claim holds.

In the following, we use Theorem 3.2 to conclude that the above (M-SLQ) problem is open-loop

solvable (and hence, by Theorem 4.4, weakly closed-loop solvable). Without loss of generality, we

consider only the open-loop solvability at t = 0. To this end, let ε > 0 be arbitrary and consider

Riccati equations (3.3), which, in our example, read: Ṗε(s, 1)− 1

ε
Pε(s, 1)2 + λ11(s)Pε(s, 1)− λ11(s)Pε(s, 2) = 0, a.e. s ∈ [t, 1],

Pε(1, 1) = 1,
for i = 1,

and Ṗε(s, 2)− 1

ε
Pε(s, 2)2 − λ22(s)Pε(s, 1) + λ22(s)Pε(s, 2) = 0, a.e. s ∈ [t, 1],

Pε(1, 2) = 1,
for i = 2.

Solving the above equations yields

Pε(s, 1) = Pε(s, 2) =
ε

ε+ 1− s
, s ∈ [0, 1].

Or

Pε(s, i) =
ε

ε+ 1− s
, (s, i) ∈ [0, 1]× S.

Noting that the state space of α(s) is S = {1, 2}, we let

Θε(s, α(s)) , −[R̂ε(s, α(s)) + εIm]−1Ŝε(s, α(s))

= −Pε(s, α(s))

ε
= − 1

ε+ 1− s
, s ∈ [0, 1].

(5.3)

Then, the corresponding BSDE (3.9) reads

dηε(s) = −
{[

Θε(s, α(s))− α(s)
]
ηε(s) +

√
2α(s)ζε(s) + Pε(s, α(s))b(s)

}
ds

+ζε(s)dW (s) +
2∑

k,l=1

ξεkl(s)dÑkl(s), s ∈ [0, 1],

ηε(1) = 0.

Let f(s) = 1√
1−s . Using the variation of constants formula for BSDEs, and noting that W (·) and

Ñk(·) are (F,P)-martingales, we obtain

ηε(s) =
ε

ε+ 1− s
· exp

{
2

∫ s

0
α(r)dr −

∫ s

0

√
2α(r)dW (r)

}
·E
[∫ 1

s
b(r) · exp

{∫ r

0

√
2α(r̄)dW (r̄)− 2

∫ r

0
α(r̄)dr̄

}
dr

∣∣∣∣Fs]
=

ε

ε+ 1− s
· exp

{
2

∫ s

0
α(r)dr −

∫ s

0

√
2α(r)dW (r)

}
·
∫ 1

s
f(r) · E

[
exp

{
2

∫ r

0

√
2α(r̄)dW (r̄)− 4

∫ r

0
α(r̄)dr̄

} ∣∣∣∣Fs] dr
=

ε

ε+ 1− s
· exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0
α(r)dr

}
·
∫ 1

s
f(r)dr, s ∈ [0, 1].
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It should be point out that, in the above equality, we use the Fibini’s Theorem and the martingale

property, i.e.,

E
[
exp

{
2

∫ r

0

√
2α(r̄)dW (r̄)− 4

∫ r

0
α(r̄)dr̄

} ∣∣∣∣Fs]
= exp

{
2

∫ s

0

√
2α(r̄)dW (r̄)− 4

∫ s

0
α(r̄)dr̄

}
, 0 6 s 6 r 6 1.

Now, let

vε(s) , −[R̂ε(s, α(s)) + εIm]−1ρ̂ε(s, α(s)) = −ηε(s)
ε

= − 1

ε+ 1− s
· exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0
α(r)dr

}
·
∫ 1

s
f(r)dr, s ∈ [0, 1].

(5.4)

Then, the corresponding closed-loop system (3.10) can be written asdXε(s) =
{[

Θε(s, α(s))− α(s)
]
Xε(s) + vε(s) + b(s)

}
ds+

√
2α(s)Xε(s)dW (s), s ∈ [0, 1],

Xε(0) = x,

By the variation of constants formula for SDEs, we get

Xε(s) = (ε+ 1− s) · exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0
α(r)dr

}
·
∫ s

0

[
1

ε+ 1− r
· exp

{
−
∫ r

0

√
2α(r̄)dW (r̄) + 2

∫ r

0
α(r̄)dr̄

}
·
(
vε(r) + b(r, α(r))

)]
dr

+ x · ε+ 1− s
ε+ 1

· exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0
α(r)dr

}
, s ∈ [0, 1].

In light of Theorem 3.2, in order to prove the open-loop solvability at (0, x, i), it suffices to show

the family {uε(·)}ε>0 defined by

uε(s) , Θε(s, α(s))Xε(s) + vε(s)

= − exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0
α(r)dr

}
·
∫ s

0

[
1

ε+ 1− r
· exp

{
−
∫ r

0

√
2α(r̄)dW (r̄) + 2

∫ r

0
α(r̄)dr̄

}
·
(
vε(r) + b(r, α(r))

)]
dr

− x

ε+ 1
· exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0
α(r)dr

}
+ vε(s), s ∈ [0, 1],

(5.5)

is bounded in L2
F(0, 1;R). For this, let us first simplify (5.5). On the one hand, by Fubini’s theorem,∫ s

0

[
1

ε+ 1− r
· exp

{
−
∫ r

0

√
2α(r̄)dW (r̄) + 2

∫ r

0
α(r̄)dr̄

}
· vε(r)

]
dr

= −
∫ s

0

1

(ε+ 1− r)2

∫ 1

r
f(r̄)dr̄dr

= −
∫ s

0
f(r̄)

∫ r̄

0

1

(ε+ 1− r)2
drdr̄ −

∫ 1

s
f(r̄)

∫ s

0

1

(ε+ 1− r)2
drdr̄

= −
∫ s

0

1

ε+ 1− r
· f(r̄)dr̄ +

1

ε+ 1

∫ 1

0
f(r̄)dr̄ − 1

ε+ 1− r

∫ 1

s
f(r̄)dr̄.
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Similarly, on the other hand,∫ s

0

[
1

ε+ 1− r
· exp

{
−
∫ r

0

√
2α(r̄)dW (r̄) + 2

∫ r

0
α(r̄)dr̄

}
· bε(r, α(r))

]
dr =

∫ s

0

1

ε+ 1− r
f(r)dr.

Consequently, we get

uε(s) = −
(

x

ε+ 1
+

1

ε+ 1

∫ 1

0
f(r)dr

)
· exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0
α(r)dr

}
= −x+ 2

ε+ 1
· exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0
α(r)dr

}
.

(5.6)

A short calculation gives

E
∫ 1

0
|uε(s)|2ds =

(
x+ 2

ε+ 1

)2

6 (x+ 2)2, ∀ε > 0.

Therefore, {uε(·)}ε>0 is bounded in L2
F(0, 1;R). Now, let ε → 0 in (5.6), we get an open-loop

optimal control:

u∗(s) = −(x+ 2) · exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0
α(r)dr

}
, s ∈ [0, 1].

From the above discussion, similar to the state process X(·) of (5.1), the open-loop optimal control

u∗(·) also depends on the regime switching term α(·). That is to say, as the value of the switching

α(·) varies, the open-loop optimal control u∗(·) will be changed too.

Finally, we let ε→ 0 in (5.3) and (5.4) to get a weak closed-loop optimal strategy (Θ∗(·, ·), v∗(·)):

Θ∗(s, α(s)) = lim
ε→0

Θε(s, α(s)) = − 1

1− s
, s ∈ [0, 1),

v∗(s) = lim
ε→0

vε(s) = − 1

1− s
· exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0
α(r)dr

}
·
∫ 1

s
f(r)dr

= − 2√
1− s

· exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0
α(r)dr

}
, s ∈ [0, 1).

We put out that neither Θ∗(·, ·) and v∗(·) is square-integrable on [0, 1). Indeed, one has

E
∫ 1

0
|Θ∗(s, α(s))|2ds =

∫ 1

0

1

(1− s)2
ds =∞,

E
∫ 1

0
|v∗(s)|2ds = E

∫ 1

0

4

1− s
· exp

{
2

∫ s

0

√
2α(r)dW (r)− 4

∫ s

0
α(r)dr

}
ds

= E
∫ 1

0

4

1− s
ds =∞.

6 Conclusions

In this paper, we mainly study the open-loop and weak closed-loop solvabilities for a class of

stochastic LQ optimal control problems of Markovian regime switching system. The main result is
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that these two solvabilities are equivalent. First, using the perturbation approach, we provide an

alternative characterization of the open-loop solvability. Then we investigate the weak closed-loop

solvability of the LQ problem of Markovian regime switching system, and establish the equivalent

relationship between open-loop and weak closed-loop solvabilities. Finally, we present an example

to illustrate the procedure for finding weak closed-loop optimal strategies in the circumstance of

Markovian regime switching system.
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