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Abstract. This paper is concerned with the global dynamics of a ratio–dependent predator–
prey system with prey-taxis. We establish the global existence and uniform-in-time bounded-
ness of solutions in any dimensional bounded domain with Neumann boundary conditions, and
furthermore prove the global stability of homogeneous steady states under certain conditions.
Finally we perform numerical simulations to show that the pattern formation may arise and
prey-taxis is a factor driving the evolution of spatial inhomogeneity into homogeneity.
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1. Introduction

Prey-taxis plays important roles in ecological system, such as regulating prey (pest) population
to avoid incipient outbreaks, forming large-scale aggregation for survival and so on [13, 25, 30].
The mathematical model of prey-taxis reads as (cf. [18]){

ut = ∆u−∇ · (χu∇v) + βuF (u, v)− θu,

vt = d∆v − uF (u, v) + vf(v),
(1.1)

where u = u(x, t) and v = v(x, t) denote the predator density and prey density at position
x and time t > 0, respectively; the term −∇ · (χu∇v) accounts for the prey–taxis with prey-
tactic coefficient χ. F (u, v) is the so–called functional response (intake rate of the predator as a
function of prey density), and β is the harvesting rate, θ > 0 denotes predator’s natural death
rate, d is the prey diffusion rate. The function f(v) denotes the per capita growth rate of prey
which is assumed to be negative for large v > 0 due to the limitation of resources. The most
typical forms of f(v) include the following two types:

(a) f(v) = r
(
1− v

K

)
(Logistic type),

(b) f(v) = r
(
1− v

K

)( v

A
− 1

)
(Bistable type),

(1.2)

where r > 0 is the intrinsic growth rate of prey and K > 0 is called the carrying capacity with
0 < A < K.

An important class of functional response function F (u, v) is F (v, v) := F (v), namely F (u, v)
depends on prey density only, where the widely used forms in the literature are:

F (v) = v (Holling type I), F (v) =
v

m+ v
(Holling type II),

F (v) =
vh

mh + vh
(Holling type III),

(1.3)
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where m > 0 and h > 1. Some other functional response functions can be found in books
[26, 37].

Without prey-taxis (i.e., χ = 0), model (1.1) becomes the diffusive predator-prey system
which has been widely studied in the literature and a large body of results have been available
(cf. see [38] and references therein). When prey-taxis comes in (χ > 0), the model structure
changes drastically and the results on the predator-prey system with prey-taxis (χ > 0) are much
less compared to the one without prey-taxis. First Lee et al. [22] investigated the traveling wave
solutions of system (1.1) in R, and later exploited the pattern formation of (1.1) in a bounded
interval with zero Neumann boundary condition [23]. It was further numerically explored in
[10] that initial conditions and the form of functional response function play important roles in
the pattern formation. When F (u, v) = F (v) is prey-dependent only, Wu et al. [44] recently
obtained the global existence of classical solutions of (1.1) in any dimensions for small χ > 0.
Subsequently Jin and Wang [16] established the global existence of classical solutions of (1.1) in
two dimensions for any χ > 0 and proved the global stability of the homogeneous steady states.
When the prey-taxis term −∇ · (χu∇v) is replaced by −∇ · (ρ(u)u∇v) with some truncation
conditions on ρ(u), the global existence of solutions of (1.1) was established in [1, 14, 34]. When
χ < 0, the existence of non–constant steady states of (1.1) was studied in [24, 41] by global/Hopf
bifurcation theorem and index degree theory. In [40], the authors studied nonconstant positive
steady states of (1.1) in one dimension for a Holling-Tanner type predator-prey population
dynamics. Recently the predator-prey system with density-dependent diffusion and prey-taxis
has been studied in [17].

Apart from the afore-mentioned prey-dependent functional response, it has been argued by
some biologists with evidences from field and laboratory experiments (cf. [2, 3, 7, 8, 11]) that in
some situations, especially when predators have to search for food (and therefore have to share
or compete for food), a ratio-dependent theory should be more suitable for the predator–prey
dynamics, namely the per capita predator growth rate should be a function of the ratio of prey
to predator abundance. Based on the Holliing type II function, Arditi and Ginzburg [7] proposed
the following ratio-dependent functional response function:

F (u, v) := F (v/u) =
v
u

m+ v
u

=
v

mu+ v
, (1.4)

where m > 0 is a constant. Then the ratio-dependent predator-prey model with prey-taxis reads
ut = ∆u−∇ · (χu∇v) +

βuv

mu+ v
− θu, x ∈ Ω, t > 0,

vt = d∆v − uv

mu+ v
+ vf(v), x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.5)

where we have assumed the population live in a bounded habitat Ω ⊂ RN (N ≥ 1) with smooth

boundary and ν denotes the outward normal vector of ∂Ω with ∂ν =
∂

∂ν⃗
. For the convenience

of presentation, we shall use the notation F (w) = w
m+w with w = v

u from time to time in the
sequel.

Without spatial structure (namely both diffusion and prey-taxis are not considered), the
system (1.5) becomes the ratio-dependent predator–prey ODE system whose dynamics have been
well understood (see [19, 15, 45] and references therein). If diffusion is included and prey-taxis is
ignored (χ = 0), the following results have been obtained for (1.5) when f(v) is of logistic type.
Pang and Wang [27] established the (local) stability of both constant and non-constant steady
states for system (1.5) and showed that the diffusion is a factor inducing pattern formations.
Later, Fan and Li [12] obtained the global stability of homogeneous steady states by the method
of upper-lower solutions combined with the monotone iteration and construction of suitable
Lyapunoval functions. The finite difference solution and its asymptotic behavior were studied in
[42]. Pattern formation and Hopf-Turing bifurcation were investigated in [39, 9, 33, 32]. When
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f(v) is of bistable type, the existence of non-constant positive steady states and spatial patterns
of (1.5) with χ = 0 were established in [29].

To the best of our knowledge, when prey-taxis is considered (i.e., χ > 0), no results have been
available to the system (1.5). The main objective of this paper is to establish global existence
and stability of solutions to (1.5), show that nonconstant steady states exist in some range
of parameters and identify the role that the prey-taxis plays. For the function f(v), we shall
consider the logistic type only in this paper. Hence in the sequel, we assume f(v) satisfies the
following conditions:

(H1) The function f : [0,∞) → R is continuously differentiable satisfying f ′(v) ≤ −δ for
some constant δ > 0 and for all v ≥ 0, and there exist two constants r, K > 0 such
that f(0) > 0, f(K) = 0 and f(v) < 0 for all v > K.

The rest of this paper is organized as follows: In Section 2, we prove the global existence of
classical solutions of (1.5). In Section 3, we show the global stability of the homogenous steady
states by using the method of Lyapunoval functional along with the LaSalle’s invariant principle.
In Section 4, we study the pattern formation of (1.5), numerically illustrate pattern formation
and exploit the role of prey-taxis in the predator-prey dynamics.

2. Global existence of solutions

In this section, we are concerned with the global existence of classical solutions to the sys-
tem (1.5). When the functional response function F (v/u) is prey-dependent only, namely with
F (v/u) = F (v), the global existence of classical solutions of (1.5) was established in two dimen-
sions for any χ > 0 in [16] and in any dimensions for small χ > 0 in [44]. In this paper, we shall
prove that if F (v/u) is ratio-dependent, the system (1.5) admits the global classical solutions in
any dimension (N ≥ 1) for all χ ≥ 0, as asserted in the following theorem.

Theorem 2.1 (Global existence of solutions). Let Ω be a bounded domain in RN (N ≥ 1) with
smooth boundary and hypothesis (H1) hold. Assume (u0, v0) ∈ [W 1,∞(Ω)]2 with u0, v0 ≥ 0( ̸≡ 0).
Then system (1.5) has a unique global classical solution (u, v) ∈ [C([0,∞)×Ω̄)∩C2,1((0,∞)×Ω̄)]2

satisfying u, v ≥ 0 for all t > 0 and

||u(·, t)||L∞(Ω) + ||v(·, t)||W 1,∞(Ω) ≤ C,

where C > 0 is a constant independent of t. In particular, 0 < v(x, t) ≤ K0 := max {||v0||L∞ ,K}.

The proof of Theorem 2.1 consists of local existence of solutions and the a priori estimates of
solutions. Treating (1.5) as a triangular system, the local existence of classical solutions can be
obtained directly from Amann’s theorem [5, 6]. Below we only state the local existence result
and omit the proof for brevity (we refer to [17] for details).

Lemma 2.1 (Local existence with extension criterion). Let the conditions in Theorem 2.1
hold. Then the system (1.5) has a unique local-in-time non-negative classical solution (u, v) ∈
C(Ω̄×Tmax)∩C2,1(Ω̄×Tmax) satisfying u, v ≥ 0 for all t > 0, where Tmax denotes the maximal
existence time. Moreover, if Tmax < ∞ then

lim
t→Tmax

||u(·, t)||L∞(Ω) = ∞.

Now to prove theorem 2.1, it remains to derive the a priori estimates for the local solutions
obtained in Lemma 2.1, which involves a few technical details. Below we shall derive some basic
results first. Hereafter we shall use Ci(i ≥ 1) or ci(i ≥ 1) to denote a generic positive constant
which may vary in the context.

Lemma 2.2. Let the hypotheses (H1) hold. Then the solution (u, v) of system (1.5) satisfies

0 < v(x, t) ≤ K0 := max {||v0||L∞ ,K} , lim sup
t→∞

v(x, t) ≤ K, (2.1)

||u(·, t)||L1(Ω) ≤ K1 := max
{
||u0||L1(Ω),

1

θm
βK0|Ω|

}
, (2.2)
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∥∇v(·, t)∥L∞ ≤ C0 (2.3)

where C0 is a constant independent of t.

Proof. Using the fact that u, v and F (v/u) are non–negative, we have vt − d∆v = −F (v/u)u+ vf(v) ≤ vf(v), x ∈ Ω, t > 0,
∂νv = 0, x ∈ ∂Ω, t > 0,
v(x, 0) = v0(x), x ∈ Ω.

(2.4)

Let v∗(t) be a solution of the following ODE problem
dv∗(t)

dt
= v∗(t)f(v∗(t)), t > 0,

v∗(0) = ||v0||L∞ .

(2.5)

Then the hypothesis (H1) gives v∗(t) ≤ K0 = max {||v0||L∞),K}, and furthermore v∗(t) is a
super–solution of the following PDE problem Vt − d∆V = V f(V ), x ∈ Ω, t > 0,

∂νV = 0, x ∈ ∂Ω, t > 0,
V (x, 0) = v0(x), x ∈ Ω.

(2.6)

Therefore we have

0 < V (x, t) ≤ v∗(t), for all (x, t) ∈ Ω̄× (0,∞). (2.7)

From (2.4)-(2.7), we have by the comparison principle that

0 < v(x, t) ≤ V (x, t) ≤ v∗(t) ≤ K0, for all (x, t) ∈ Ω̄× (0,∞). (2.8)

Since f(v) < 0 for all v > K by the hypothesis (H1), we have from (2.5) that lim sup
t→∞

v∗(x, t) ≤ K,

which along with (2.8) gives (2.1).

Next we show (2.2). Indeed with the fact that 0 < v ≤ K0 and F (v/u)
v/u ≤ 1

m , we integrate the

first equation of (1.5) and get

d

dt

∫
Ω
udx =

∫
Ω
(βuF (v/u)− θu) ≤ β

m

∫
Ω
v − θ

∫
Ω
u ≤ β

m
K0|Ω| − θ

∫
Ω
u

which yields (2.2) with the help of Gronwall’s inequality.
Finally we prove (2.3). To this end, we denote by (etd∆)t≥0 the Neumann heat semigroup

generated by −d∆ on Ω. Then by the variation of constant formula, the solution v of the second
equation of (1.5) can be written as

v(x, t) = edt∆v0(x) +

∫ t

0
ed(t−s)∆(vf(v)− uF (v/u)(x, s)ds

which gives

∥∇v(·, t)∥L∞(Ω) ≤ ∥∇edt∆v0∥L∞(Ω) +

∫ t

0
∥∇ed(t−s)∆(vf(v)− uF (v/u)(x, s)∥L∞(Ω)ds.

Note that

vf(v)− uF (v/u) = vf(v)− v
F (v/u)

v/u
≤ v

(
f(v) +

1

m

)
≤ K0

(
r +

1

m

)
:= c0.

Then by the Lp-Lq estimates of Neumann heat semigroup (cf. [43, Lemma 1.3]), we find some
constants c1, c2 > 0 such that

∥∇v(·, t)∥L∞(Ω) ≤ c1∥∇v0∥L∞(Ω) + c2

∫ t

0
c0(1 + (t− s)−1/2)e−λ1(t−s)ds

which hence gives (2.3) and completes the proof. �
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Next we will prove the following useful boundedness result by the Moser iteration method.
The result is not only useful in this paper but also useful for other purposes. Hence we shall
present a brief proof.

Lemma 2.3. Let u ≥ 0 solve the following reaction-diffusion-advection equation with Neumann
boundary condition in Ω× (0, T ) for some T > 0:

ut = ∆u− χ∇ · (uw⃗) + f(u), in Ω× (0, T )

∂νu = w⃗ · ν = 0, on ∂Ω

u(x, t) = u0(x)

(2.9)

where χ ∈ R is a constant, w⃗ is a vector uniformly bounded in Ω× (0, T ) and f(u) satisfies that
f(u) ≤ bu for all u ≥ 0 and some constant b > 0. If u0 ∈ L∞(Ω), then the solution of (2.9)
satisfies

∥u∥L∞(Ω) ≤ C

provided that u ∈ L1(Ω), where C > 0 is a constant independent of t.

Proof. Multiply the first equation of (2.9) by up−1 and integrate the resulting equation with
Neumann boundary conditions to get

1

p

d

dt

∫
Ω
up + (p− 1)

∫
Ω
up−2|∇u|2

= χ(p− 1)

∫
Ω
up−1∇uw⃗ + b

∫
Ω
up−1f(u)

≤ c1(p− 1)

∫
Ω
up−1∇u+ b

∫
Ω
up

≤ p− 1

2

∫
Ω
up−2|∇u|2 + c2(p− 1)

∫
Ω
up,

which gives

d

dt

∫
Ω
up + p(p− 1)

∫
Ω
up +

p(p− 1)

2

∫
Ω
up−2|∇u|2 ≤ (1 + c3)p(p− 1)

∫
Ω
up. (2.10)

Then we follow the exact Moser iteration procedure of (see [35, Proof of Theorem 2.1]) to
conclude that

∥u∥L∞(Ω) ≤ c

where c is a constant depending only the space dimension, ∥u0∥L∞(Ω) and ∥u0∥L1(Ω). �

Based on Lemma 2.3, we get the L∞ estimate for u-component of the solution of (1.5) directly.

Lemma 2.4. Let the conditions in Theorem 2.1 hold. Then there is a constant C > 0 indepen-
dent of time such that the solution of (1.5) satisfies

∥u∥L∞(Ω) < C. (2.11)

Proof. Notice that F (v/u) = v
mu+v is bounded for any u, v > 0. This yields a constant c0 such

that βuv
mu+v −θu < c0u. Then Lemma 2.4 is a direct consequence of the result of Lemma 2.3 with

(2.2)-(2.3). �

Proof of Theorem 2.1: With Lemma 2.1, Theorem 2.1 follows from the a priori estimates in
Lemma 2.4.
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3. Global stability of homogeneous steady states

The mostly concerned question in population system is whether the population can reach the
coexistence steady state or otherwise competition exclusion/extinction. This usually amounts
to exploit the global stability of homogeneous/nonhomogeneous steady states. We first look at
the homogeneous steady states (us, vs) of system (1.5) which satisfies

(us, vs) =

{
(0,K), if β ≤ θ,
(0,K) and (u∗, v∗), if β > θ and f(0) > 1

m

where the condition f(0) > 1
m warrants the positivity of steady state (u∗, v∗) which satisfies

θ = βF (v∗/u∗), f(v∗) =
u∗

mu∗ + v∗
. (3.1)

The steady state (0,K) is referred to as the prey–only steady state and (u∗, v∗) the coexistence
steady state. With the definition of F (v/u) given in (1.4), one can explicitly find (u∗, v∗) from
(3.1) as

u∗ =
v∗(β − θ)

mθ
, v∗ = f−1

(
β − θ

βm

)
. (3.2)

In particular, if f(v) = r(1− v/K), then it has that u∗ =
K(β−θ)

mθ

(
1− β−θ

rβm

)
, v∗ = K

(
1− β−θ

rβm

)
.

We remark that the extinction (trivial) steady state (0, 0) is not well-defined in our considered
system and hence will not be considered in this paper. Indeed by extending the definition of the
system at (0, 0), the system (1.5) without spatial variable (i.e., ODEs corresponding to (1.5))
possesses very rich dynamics near the trivial steady state (0, 0), see [19, 46].

It can be easily checked that (0,K) is linearly stable if θ > β and unstable if θ < β. By the
hypothesis (H1), the following result can be easily verified.

Lemma 3.1. If f(0) > 1
m , then there exists a constant ṽ > 0 such that f(ṽ) = 1

m and f(v) > 1
m

when 0 ≤ v < ṽ.

When f(v) = r(1 − v/K), one can calculate that ṽ = 1
K

(
1 − 1

rm

)
where rm > 1 since

r = f(0) > 1
m .

Then our global stability results are stated as follows.

Theorem 3.2 (Global stability). Assume f(0) > 1
m , hypothesis (H1) and assumptions of Theo-

rem 2.1 hold. Let (u, v) be the solution obtained in Theorem 2.1. Then the following convergence
results hold.

(1) If θ > β, then the prey-only steady state (0,K) is globally exponentially stable.
(2) If θ < β, then the co-existence steady state (u∗, v∗) is globally exponentially stable if

d

χ2
≥ K2

4mβ
(“ = ”holds if ∥v0∥L∞ ≤ K) and

β − θ

mβ
< δṽ.

Before giving the proof of Theorem 3.2, we present some preliminary results.

Lemma 3.3. Under the conditions in Theorem 2.1, if f(0) > 1
m and hypothesis (H1) hold, then

there exist positive constants ϱ > 0 and t0 > 0 such that the solution (u, v) of (1.5) satisfies

v(x, t) ≥ ϱ for all (x, t) ∈ Ω̄× (t0,∞), (3.3)

and

lim inf
t→∞

v(x, t) ≥ ṽ for all x ∈ Ω, (3.4)

where ṽ = f−1( 1
m).
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Proof. First notice that F (w)
w = 1

m+w ≤ 1
m for all w ≥ 0. By the maximum principle applied to

the second equation of (1.5), we can find a 0 < t0 < ∞ such that min
x∈Ω̄

v(x, t0) = v̄ > 0 for all

x ∈ Ω. Then we consider the following problem
vt − d∆v = v

(
f(v)− F (v/u)

v/u

)
≥ v

(
f(v)− 1

m

)
, x ∈ Ω, t > t0,

∂νv = 0, x ∈ ∂Ω, t > t0,
v(x, t0) = v̄, x ∈ Ω.

(3.5)

Let v∗(t) be the solution of the following ODE problem
dv∗(t)

dt
= v∗(t)

(
f(v∗(t))−

1

m

)
, t > t0,

v∗(t0) = v̄ > 0.

(3.6)

Then the hypothesis (H1) yields that v∗(t) ≥ min{v̄, ṽ} =: ϱ for all t ≥ t0. It is obvious that v∗(t)
is a lower solution of the following PDE problem

V 0
t − d∆V 0 = V 0

(
f(V 0)− 1

m

)
, x ∈ Ω, t > t0,

∂νV
0 = 0, x ∈ ∂Ω, t > t0,

V 0(x, t0) = v(x, t0), x ∈ Ω.

(3.7)

Then we have

v∗(t) ≤ V 0(x, t) for all (x, t) ∈ Ω̄× (t0,∞). (3.8)

Combining (3.5), (3.7) and (3.8), and using the comparison principle, one has

ϱ ≤ v∗(t) ≤ V 0(x, t) ≤ v(x, t) for all (x, t) ∈ Ω̄× (t0,∞), (3.9)

which gives (3.3). By Lemma 3.1, we note that v(f(v) − 1

m
) > 0 for all 0 < v < ṽ. Therefore

from (3.6), we have

lim inf
t→∞

v∗(t) ≥ ṽ,

which along with (3.9) gives (3.4). �

To prove Theorem 3.2, we present a basic result which is an application of [16, Lemma 4.1].

Lemma 3.4. For some constant ω > 0, we define

ζ(v) =

∫ v

ω

s− ω

s
ds,

which is a convex function such that ζ(v) ≥ 0. If v → ω as t → ∞, then there exists a constant
T0 > 0 such that

1

4ω
(v − ω)2 ≤ ζ(v) =

∫ v

ω

s− ω

s
ds ≤ 1

ω
(v − ω)2 for all t ≥ T0. (3.10)

Now we come to a position to prove Theorem 3.2.

Proof of Theorem 3.2. For initial data w0 = (u0, v0), we denote the unique global classical
solution of (1.5) by w(t;w0) = (u, v)(t) for all t ≥ 0, which defines a semi–flow (or trajectory)
on X = [W 1,∞(Ω̄)]2 (e.g. see [4]). We proceed with two separate cases. Since are only concerned
with the asymptotic behavior of solutions, we always assume t ≥ t0 below in order to use Lemma
3.3 unless otherwise stated, where t0 is given in Lemma 3.3.

Case 1: θ > β. We define the following energy functional:

E(w) = E(u(t), v(t)) =: E(t) = σ0

∫
Ω
u(x, t) +

∫
Ω

(∫ v

K

s−K

s
ds

)
, (3.11)
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where σ0 =
3K

2ϱ(θ − β)
> 0 with ϱ defined in (3.3). It is clear from Lemma 3.4 that E(w) = 0

iff w = (0,K) and E(w) > 0 for all w ̸= (0,K), which implies that E(w) is a positive definite
function. Moreover, by the definition of E(w) and Theorem 2.1, we have E(w) ≤ C, where
C > 0 is a constant independent of t > 0 for any solution w = (u, v) ∈ X.

Next, we prove
d

dt
E(w) =

d

dt
E(t) ≤ 0 for all w ∈ X, where “=” holds iff w = (0,K).

Differentiating the functional (3.11) with respect to t and using the equations in (1.5), one has

dE(t)

dt
=

∫
Ω

[
σ0ut +

(
v −K

v

)
vt

]
dx

=

∫
Ω
σ0u (βF (v/u)− θ) dx+

∫
Ω
(v −K)

(
f(v)− F (v/u)

v/u

)
dx− dK

∫
Ω

|∇v|2

v2
dx

=

∫
Ω
u

(
σ0βv

mu+ v
− σ0θ −

v −K

mu+ v

)
dx+

∫
Ω
f(v)(v −K)dx− dK

∫
Ω

|∇v|2

v2
dx

=

∫
Ω
u

(
σ0βv

mu+ v
− σ0θ −

v −K

mu+ v

)
dx+

∫
Ω
f ′(ξ)(v −K)2dx− dK

∫
Ω

|∇v|2

v2
dx

=: I1 + I2 + I3,
(3.12)

where ξ is between v and K. Clearly I2 ≤ 0 from the hypothesis (H1) and I3 ≤ 0. Moreover,

since σ0 =
3K

2ϱ(θ − β)
> 0 for θ > β, we may write I1 as

I1 =

∫
Ω

u

mu+ v

(
K(2ϱ− 3v)

2ϱ
− σ0mθu− v

)
dx.

Lemma 3.3 directly implies that I1 ≤ 0. Hence
dE(t)

dt
≤ 0 for all w ∈ X, where

dE(t)

dt
= 0 holds

if and only if w = (0,K). Then, by the LaSalle’s invariant principle (e.g. see [31, Teorem 5.24]
or [21, Theorem 3]), w(t;w0) = (u, v) → (0,K) as t → ∞ for any w0 ∈ X, which implies that
(0,K) is globally asymptotically stable.

We now derive the convergence rate of solutions. To this end, we define

W (t) :=

∫
Ω
udx+

∫
Ω
(v −K)2dx+

∫
Ω

|∇v|2

v2
dx.

Then, by (3.12), Lemma 2.2, Lemma 3.3 and Theorem 2.1, we can find a constant c1 and T1 > 0
such that

dE(t)

dt
≤ −c1W (t) for all t ≥ T1. (3.13)

Applying Lemma 3.4 with ω = K, we can find a constant T2 > 0 such that

1

4K
(v −K)2 ≤

∫ v

K

s−K

s
ds ≤ 1

K
(v −K)2 for all t ≥ T2. (3.14)

Using the definitions of E(t) and W (t) with (3.14), we can find a constant c2 > 0 such that
c2E(t) ≤ W (t) for all t ≥ T2. Then from (3.13) and the nonnegativity of E(t), it follows that

dE(t)

dt
≤ −c1W (t) ≤ −c1c2E(t) for all t ≥ T3 := max{T1, T2},

which leads to E(t) ≤ c3e
−c4t for all t ≥ T3 and some constants c3, c4 > 0. This, along with the

definition of E(t) and (3.14), yields

||u||L1 + ||v −K||L2 ≤ c5e
−c4t for all t ≥ T3. (3.15)

Next, we proceed to investigate the decay rate of L∞-norm. By Theorem 2.1, we have χu∇v

and
βuv

mu+ v
− θu are bounded in L∞(Ω× (0,∞)). Then, by the standard parabolic regularity
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theory (e.g. see [28, Theorem 1.3]) and [36, Lemma 3.2]) applied to the first equation of (1.5),
there exists a constant β ∈ (0, 1) such that

||u||
Cβ,

β
2 (Ω×[t,t+1])

≤ c6 for all t > 1. (3.16)

Furthermore, by the parabolic Schauder theory [20] applied to the second equation of (1.5), we
obtain

||v||
C2+β,1+

β
2 (Ω×[t,t+1])

≤ c7 for all t > 1. (3.17)

By conditions (3.16) and (3.17), we can find a constant c8 > 0 (e.g. see [36, Lemma 3.14]) such
that

||u||W 1,∞ ≤ c8 for all t > 1.

Then with (3.15) and the Gagliardo-Nirenberg inequality, we have

||u||L∞ ≤ c9(||∇u||
2
3
L∞ ||u||

1
3

L1 + ||u||L1) ≤ c10(||u||
1
3

L1 + ||u||L1) ≤ c11e
−c12t (3.18)

for all t ≥ T3. Moreover, by Theorem 2.1 and Gagliardo-Nirenberg inequality, we have from
(3.15) that

||v −K||L∞ ≤ c13(||∇(v −K)||
1
2
L∞ ||v −K||

1
2

L2 + ||v −K||L2) ≤ c14e
−c15t for all t ≥ Tc. (3.19)

Then, by (3.18) and (3.19), we get

||u||L∞ + ||v −K||L∞ ≤ c16e
−λ1t for all t ≥ T3, λ1 = min{c12, c15}.

Case 2: θ < β. Note that in this scenario, we have from (3.2) that w∗ =: v∗
u∗

= mθ
β−θ . Then

we define the Lyapunov functional

V (u(t), v(t)) =: V (t) = α

∫
Ω

∫ u

u∗

s− u∗
s

dsdx+

∫
Ω

∫ v

v∗

s− v∗
s

dsdx (3.20)

with

α =
v∗

mβu∗
=

w∗
mβ

=
θ

β(β − θ)
. (3.21)

It follows from Lemma 3.4 that V (t) = 0 if (u(t), v(t)) = (u∗, v∗) and V (t) > 0 for all
(u(t), v(t)) ̸= (u∗, v∗).

Next, differentiating the functional (3.20) with respect to t, we have

d

dt
V (t) = α

∫
Ω

(
1− u∗

u

)
utdx+

∫
Ω

(
1− v∗

v

)
vtdx

= −αu∗

∫
Ω

∣∣∣∇u

u

∣∣∣2dx− v∗d

∫
Ω

∣∣∣∇v

v

∣∣∣2dx+ χu∗α

∫
Ω

∇u∇v

u
dx︸ ︷︷ ︸

J1

+α

∫
Ω

(
1− u∗

u

)
(βuF (v/u)− θu) dx+

∫
Ω

(
1− v∗

v

)
(−F (v/u)u+ vf(v)) dx︸ ︷︷ ︸

J2

.

(3.22)
Now we rewrite J1 as

J1 = −
∫
Ω
ΘTAΘ, Θ =

(
∇u
∇v

)
, A =


αu∗
u2

−αχu∗
2u

−αχu∗
2u

dv∗
v2

 ,

where ΘT denotes the transpose of Θ. Then J1 ≤ 0 if and only if the matrix A is non-negative

definite. From (3.21), we have w∗ = αβm. Since
αu∗
u2

> 0 due to u > 0 for all t > 0, then by

the Sylvester’s criterion, it can be easily checked that A is non-negative definite if and only if

d

χ2
≥ v2

4βm
. (3.23)
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Now we claim that (3.23) holds true for large t > 0 if

d

χ2
≥ K2

4βm
, where “ = ”holds if ||v0||L∞ ≤ K. (3.24)

Indeed if ||v0||L∞ ≤ K, then 0 < v(x, t) ≤ K from Lemma 2.2 and as a consequence the condition

(3.24) gives rise to (3.23). If ||v0||L∞ > K, we therefore consider
d

χ2
>

K2

4βm
, which means that

there exists a constant 0 < ϵ0 ≪ 1 such that

d

χ2
≥ K2

4βm
+ ϵ0. (3.25)

By (2.1), we derive

lim sup
t→∞

v2

4βm
=

1

4βm
lim sup
t→∞

v2 ≤ K2

4βm
. (3.26)

Hence, for the ϵ0 > 0 given above, there exists T ∗
1 > 0 such that

v2

4βm
≤ K2

4βm
+ ϵ0 for (x, t) ∈ Ω̄× [T ∗

1 ,∞). (3.27)

The combination of (3.25) and (3.27) yields

v2

4βm
≤ d

χ2
for (x, t) ∈ Ω̄× [T ∗

1 ,∞).

In summary, if t ≥ T ∗
1 , (3.24) holds and hence J1 ≤ 0.

Next, we examine J2. Using the facts θ = βF (w∗) and f(v∗) =
F (w∗)

w∗
, J2 can be reformulated

as

J2 =α

∫
Ω
(u− u∗) (βF (w)− θ) dx+

∫
Ω
(v − v∗) (f(v)− F (w)/w) dx

=αβ

∫
Ω
(u− u∗) (F (w)− F (w∗)) dx+

∫
Ω
(v − v∗) [f(v)− f(v∗) + F (w∗)/w∗ − F (w)/w]dx

=αβm

∫
Ω
(u− u∗)

u∗ (v − v∗) + v∗(u∗ − u)

(mu+ v)(mu∗ + v∗)
dx+

∫
Ω
f ′(ξ)(v − v∗)

2dx

+

∫
Ω
(v − v∗)

u∗ (v − v∗) + vc(u∗ − u)

(mu+ v)(mu∗ + v∗)
dx

=− αβmv∗
mu∗ + v∗

∫
Ω

(u− u∗)
2

mu+ v
dx+

u∗
mu∗ + v∗

∫
Ω

(v − v∗)
2

mu+ v
dx

+

(
αβmu∗
mu∗ + v∗

− v∗
mu∗ + v∗

)∫
Ω

(u− u∗)(v − v∗)

mu+ v
dx+

∫
Ω
f ′(ξ)(v − v∗)

2dx,

where ξ is between v and v∗. Noticing α =
w∗
mβ

, we have

J2 = − αβmv∗
mu∗ + v∗

∫
Ω

(u− u∗)
2

mu+ v
dx+

∫
Ω

(
f ′(ξ) +

u∗
(mu+ v)(mu∗ + v∗)

)
(v − v∗)

2dx =: M1 +M2.

Clearly M1 ≤ 0 (“ = ” holds iff u = u∗). By the fact u > 0 for any t > 0, f ′(ξ) ≤ −δ from (H1)
and Lemma 3.3, we see that M2 ≤ 0 (“ = ” holds iff v = v∗) provided that

−δ +
u∗

v(mu∗ + v∗)
≤ 0

(
i.e., 1 ≤ vδ(m+ w∗)

)
(3.28)
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We proceed to show that (3.28) holds true for large t > 0 if

1 < ṽδ(m+ w∗) =
mβδṽ

β − θ
. (3.29)

In fact, if 1 <
mβδṽ

β − θ
, then there exists a small 0 < ϵ0 ≪ 1 such that

1 ≤ mβδṽ

β − θ
− ϵ0. (3.30)

By (3.4), we derive

lim inf
t→∞

mβδv

β − θ
=

mβδ

β − θ
lim inf
t→∞

v ≥ mβδṽ

β − θ
. (3.31)

Hence, for the ϵ0 > 0 given above, there exists a T ∗
2 > 0 such that

mβδv

β − θ
≥ mβδṽ

β − θ
− ϵ0 for (x, t) ∈ Ω̄× [T ∗

2 ,∞). (3.32)

The combination of (3.30) and (3.32) yields

vδ(m+ w∗) =
mβδv

β − θ
≥ 1 for (x, t) ∈ Ω̄× [T ∗

2 ,∞)

which gives rise to (3.28) for t ≥ T ∗
2 . Therefore we conclude that I2 ≤ 0 for all t ≥ T ∗

2

under the condition (3.29). Hence with (3.29), we have
d

dt
V (t) ≤ 0 for all t ≥ max{T ∗

1 , T
∗
2 }

and
d

dt
V (t) = 0 iff (u, v) = (u∗, v∗). By the LaSalle’s invariant principle, we conclude (u∗, v∗) is

globally asymptotically stable in W 1,∞(Ω).
Finally we derive the exponential rate of convergence. In the above proof, we have shown

that if (3.29) and (3.24) hold, there exists a constant c1 > 0 and t1 > 0 such that

d

dt
V (t) ≤ −c1

∫
Ω
[(u− u∗)

2 + (v − v∗)
2] for all t > t1. (3.33)

Since (u, v) → (u∗, v∗) as t → ∞, by Lemma 3.4, we can find constants c2, c3 > 0 and t2 such
that for all t > t2

c2(||u− u∗||2L2 + ||v − v∗||2L2) ≤ V (t) ≤ c3(||u− u∗||2L2 + ||v − v∗||2L2).

Then, by (3.33), there exists a constant c4 > 0 such that

d

dt
V (t) ≤ −c4V (t) for all t > t0 = max{t1, t2},

which, by Gronwall’s inequality, gives rise to the following exponential decay

||u− u∗||2L2 + ||v − v∗||2L2 ≤ c5e
−c6t

for some constants c5, c6 > 0. Then by the same arguments as deriving (3.18) and (3.19), we
readily get the exponential convergence rate and hence completes the proof of Theorem 3.2.

4. Spatial patterns and role of prey-taxis

In previous sections, we have established the global existence of classical solutions (see The-
orem 2.1) and global stability of homogenous steady states (see Theorem 3.2) for the ratio-
dependent predator-prey system (1.5). In this section, we shall investigate whether the system
(1.5) admits pattern formation (non-homogenous steady states). Compared to the existing works
on the ratio-dependent predator-prey system without prey-taxis, the difficulty of analyzing the
current system (1.5) lies in the prey-taxis term which makes conventional methods, such as the
maximum principle or monotone method, inapplicable. In this section, we shall find conditions
for the pattern formation and numerically illustrate the spatio-temporal patterns to find the role
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that the prey-taxis plays in the dynamics. To this end, we investigate the stability/instablity of

constant equilibria (0,K) and (u∗, v∗) of (1.5) where (u∗, v∗) is positive if 0 <
β − θ

mβ
< r.

4.1. Linear stability analysis. We start with the ODE system corresponding to the system
(1.5):

ut = G(u) (4.1)

where for convenience we denote u = (u, v) and

G(u) =

 βuv

mu+ v
− θu

vf(v)− uv

mu+ v

 .

The linearized operator of G(u) at equilibrium (us, vs) is given by

Gu(us, vs) =

(
A B
C D

)
, (4.2)

where

A =
βv2s

(mus + vs)2
−θ, B =

mβu2s
(mus + vs)2

, C =
−v2s

(mus + vs)2
, D = f(vs)+vsf

′(vs)−
mu2s

(mus + vs)2
.

Hence we obtain

Gu(0,K) =

(
A(0,K) B(0,K)
C(0,K) D(0,K)

)
=

(
β − θ 0
−1 Kf ′(K)

)
(4.3)

and

Gu(u∗, v∗) =

(
A(u∗, v∗) B(u∗, v∗)
C(u∗, v∗) D(u∗, v∗)

)
=


θ(θ − β)

β

(β − θ)2

mβ
−θ2

β2

θ(β − θ)

mβ2
+ v∗f

′(v∗)

 . (4.4)

Clearly, we have

trace(Gu(0,K)) = β − θ +Kf ′(K), det(Gu(0,K)) = Kf ′(K)(β − θ)

and

trace(Gu(u∗, v∗)) =
−θ(β − θ)

β
v∗f

′(v∗), det(Gu(u∗, v∗)) =
θ(β − θ)(1−mβ)

β
+ v∗f

′(v∗).

Then by the direct calculations, we have the following results concerning the asymptotic
stability of equilibria (0,K) and (u∗, v∗) for (4.1).

Lemma 4.1. For the ODE system (4.1), the following results hold.

(1) The equilibrium (0,K) is linearly unstable (resp. stable) if β > θ (resp. β < θ).

(2) For 0 <
β − θ

mβ
< r, we have the following results for the equilibrium (u∗, v∗):

(a) If mβ < 1 and 0 < −v∗f
′(v∗) <

θ(β − θ)(1−mβ)

mβ2
, then (u∗, v∗) is unstable;

(b) If mβ ≥ 1 or mβ < 1 and −v∗f
′(v∗) >

θ(β − θ)(1−mβ)

mβ2
, then (u∗, v∗) is asymp-

totically stable.

Next we consider under what conditions, the stable equilibrium of the ODE system will
become unstable in the presence of spatial variables. For this, we introduce some notations as
follows. Let 0 = λ0 < λ1 < λ2 < ... < λj < ... be the eigenvalues of the operator −∆ in Ω

subject to no-flux boundary conditions and mj be the algebraic multiplicity of λj . Let {ϕjk}
mj

k=1
be an orthonormal basis of the subspace generated by the eigenfunctions corresponding to λj

in L2(Ω).



RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH PREY-TAXIS 13

The linearized operator, denoted by L, of the system (1.5) at the equilibria (u∗, v∗) and (0,K)
are respectively given by

L1 := L|(0,K) =

(
∆+ β − θ 0

−1 d∆+Kf ′(K)

)
.

and

L2 := L|(u∗,v∗) =

 ∆+
θ(θ − β)

β
−χu∗∆+

(β − θ)2

mβ
−θ2

β2
d∆+

θ(β − θ)

mβ2
+ v∗f

′(v∗)

 .

Suppose that (Φi(x),Ψi(x)) is an eigenfunction of Li corresponding to eigenvalue µi (i = 1, 2).
Then we derive

(Li − µiI)

(
Φi

Ψi

)
= 0, i = 1, 2.

By the Fourier expansion, there exist {ajk}, {bjk}, {cjk} and {djk} such that

Φ1 =
∑

0≤j≤∞,1≤k≤mj

ajkϕjk and Ψ1 =
∑

0≤j≤∞,1≤k≤mj

bjkϕjk,

Φ2 =
∑

0≤j≤∞,1≤k≤mj

cjkϕjk and Ψ2 =
∑

0≤j≤∞,1≤k≤mj

djkϕjk.

Therefore we obtain∑
0≤j≤∞,1≤k≤mj

(
−λj + β − θ − µ2 0

−1 −dλj +Kf ′(K)− µ2

)
︸ ︷︷ ︸

M2

(
ajk
bjk

)
ϕjk = 0

and

∑
0≤j≤∞,1≤k≤mj

 −λj +
θ(θ − β)

β
− µ1 χu∗λj +

(β − θ)2

mβ
−θ2

β2
−dλj +

θ(β − θ)

mβ2
+ v∗f

′(v∗)− µ1


︸ ︷︷ ︸

M1

(
cjk
djk

)
ϕjk = 0.

It is easy to check that µi is an eigenvalue of Li (i = 1, 2) if and only if the determinant of the
corresponding coefficient matrix Mi is equal to zero for some j ≥ 0.

By the result of Lemma 4.1, for the equilibrium (0,K), we are concerned with whether
det(M1) = 0 has a positive eigenvalue µ1 in the case of β < θ. Indeed, we can directly find
that µ1 < 0 if β < θ and hence no bifurcation (i.e., no pattern formation) will arise from the

equilibrium (0,K). Next we turn to examine the instability of (u∗, v∗) in the case of 0 < β−θ
mβ < r

under the condition (b) in Lemma 4.1(2). Clearly det(M2) = 0 gives

µ2
2 + a(λj)µ2 + b(λj) = 0, (4.5)

where

a(λj) = (1 + d)λj −
(
θ(θ − β)

β
+

θ(β − θ)

mβ2
+ v∗f

′(v∗)

)
,

b(λj) = dλ2
j − λj

(
dθ(θ − β)

β
+

θ(β − θ)

mβ2
+ v∗f

′(v∗)− χu∗
θ2

β2

)
+

θv∗f
′(v∗)(θ − β)

β
.

To see whether there is a non-trivial solution bifurcating from (u∗, v∗), it suffices to determine
whether there is a µ2 > 0 for some j ≥ 1. By some tedious computations (omitted here for
brevity), we arrive at the following results.

Lemma 4.2. Assume 0 <
β − θ

mβ
< r. Let mβ ≥ 1 or mβ < 1 and −v∗f

′(v∗) >
θ(β − θ)(1−mβ)

mβ2
.

Then the following results hold.
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(1) (u∗, v∗) is linearly stable and hence the system (1.5) has no pattern formation if d ≥ 1
or d < 1 and one of the following conditions hold
(a1): dβm ≥ 1;

(a2): dβm < 1, −v∗f
′(v∗) ≥

θ(β − θ)(1−mβd)

mβ2
;

(a3): dβm < 1, −v∗f
′(v∗) <

θ(β − θ)(1−mβd)

mβ2
and χ > χc, where

χc =
v∗f

′(v∗) +
F 2(w∗)

w∗
(1− dβm)− 2

√
−dβw∗v∗f ′(v∗)F ′(w∗)

u∗F 2(w∗)
. (4.6)

(2) For d < 1, dmβ < 1 and −v∗f
′(v∗) <

θ(β − θ)(1−mβd)

mβ2
, if 0 < χ < χc holds,

then (u∗, v∗) is lineary unstable and pattern formation can be expected if there is a j
such that

0 <

η −
√

η2 + 4d
θ(β − θ)

β
v∗f ′(v∗)

2d
< λj <

η +

√
η2 + 4d

θ(β − θ)

β
v∗f ′(v∗)

2d
, (4.7)

where η = v∗f
′(v∗) +

θ(β − θ)

β

(
1

mβ
− d

)
− χu∗

θ2

β2
> 0.

Remark 4.3. Theorem 3.2(2) gives the sufficient conditions for the global stability of (u∗, v∗),
while Lemma 4.2(2) gives sufficient conditions for the instability of (u∗, v∗). It can be seen that
if 0 < d ≪ 1, then the conditions in Lemma 4.2(2) are satisfied while the conditions in Theorem
3.2(2) are violated. In other words, the conditions in Lemma 4.2(2) violate the conditions in
Theorem 3.2(2) if d > 0 is small.

4.2. Numerical patterns and role of prey-taxis. In this section, we shall perform numerical
simulations in an interval Ω = [0, l] to illustrate the pattern formation of the system (1.5) arising
from the homogeneous steady state (u∗, v∗), where for definiteness we choose

f(v) = r
(
1− v

K

)
.

That is we consider the following ratio–dependent predator–prey model with prey-taxis

ut = ∆u−∇ · (χu∇v) +
βuv

mu+ v
− θu, x ∈ Ω, t > 0,

vt = d∆v − uv

mu+ v
+ rv

(
1− v

K

)
, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(4.8)

The above system is solved by the MATLAB pde solver based on the finite difference scheme.
We choose the initial value (u0, v0) as a small perturbation of the homogeneous steady state
(equilibrium) (u∗, v∗). Without loss of generality, we set

u0 = u∗ + 0.01 cos(πx/2), v0 = v∗ + 0.01 cos(πx/2).

We set l = 20 and system parameters are chosen as follows

r = 0.84,K = 1,m = 1, θ = 0.1, β = 0.3, d = 0.001 (4.9)

to satisfy the conditions in Lemma 4.2(2).
Then it can be easily verified that the system (4.8) has a unique positive equilibrium (u∗, v∗) =

(0.412698, 0.20635). According to (4.6), we can find that

χc = 0.9164362070.
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0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

Spatial distribution (u,v) at t=800

u

v

(b) χ = 0.4

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

Spatial distribution (u,v) at t=800

u

v

(c) χ = 0.8
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Figure 1. Spatio-temporal patterns generates by the system (1.1) in the interval
[0, 20]. Top: Spatio-temporal pattern of the predator; Middle: Spatio-temporal
pattern of the prey; Bottom: Spatial profile of the predator and the prey. System
parameters are the same as those in (4.9) and u0 = 0.412698+0.01 cos(πx/2), v0 =
0.20635 + 0.01 cos(πx/2).

Therefore by Lemma 4.2(2), spatial patterns may arise when the value of χ is less than χc.
This is indeed verified by our numerical simulations shown in Fig.1 where we choose several
different values of χ > 0. From the simulations, we find that when χ < χc, the system (4.8)
produces spatially inhomogeneous patterns (see Fig. 1(a)-(c)) as expected from Lemma 4.2(2).
As χ increases to be larger than the critical value χc, the spatially inhomogeneous patterns
will gradually evolve to the spatially homogeneous patterns. These simulation results are well
consistent with the results of Lemma 4.2.

From the numerical simulations shown in Fig.1, we find that the prey-taxis is a stabilizing
factor driving the population to reach the spatially homogeneous co-existence steady state.
This is very different from the usual chemotaxis models where chemotaxis is a destabilizing
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Table 1. A summary for the (total) population of the predator and the prey.

Value of χ um vm um + vm

χ = 0 8.1157 4.9753 13.0910

χ = 0.4 8.0301 4.6479 12.6780

χ = 0.8 7.9726 4.4185 12.3911

χ = 1 8.2457 4.1229 12.3686

factor inducing the pattern formation. However it is hard to determine whether the prey-taxis
plays a positive or negative role in the predator-prey dynamics based on this distinctive feature
since which of homogeneity or inhomogeneity is more favorable to the ecological system is a
controversial topic. Below we shall discuss this briefly by calculating how the total population
of predators and/or prey supported changes with respect to the preytactic coefficient χ. To
this end, we plot the profiles of u (predator) and v (prey) at the third panel (bottom) of Fig.
1 at the final time step. Then we calculate the total population (mass) of u and v over the
interval [0, 20], denoted by um and vm, respectively. The values of (um, vm) are recorded in the
Table 1 for different values of χ shown in Fig.1. We find that within the instability regime (i.e.
0 ≤ χ < χc), the total population of the predator will decrease with respect to the prey-taxis
coefficient χ, and so does for the prey. However, as long as the value of χ jumps over the critical
value χc, the inhomogeneous co-existence steady states will evolve into stable homogeneous
co-existence steady states, and we find the total population of the predator will immediately
increases to a fixed number (since u∗ is unique) which is larger than the one in the instability
regime, while the total population of the prey decreases to a fixed number (since v∗ is unique)
when χ crosses the critical value χc. These numerical findings imply that in the predator-prey
evolution, the attainment of co-existence steady states does not depend on the value of χ ≥ 0,
but its homogeneity and inhomogeneity is divided at the critical value χc. Within the weak
prey-taxis regime (i.e. 0 ≤ χ < χc), prey-taxis is disadvantageous to both predators and prey in
terms of the number of their total population supported. However once the prey-taxis coefficient
exceeds its critical value (i.e. χ > χc), it appears that prey-taxis is beneficial for the predator
while harmful to the prey (see Table 1) but the asymptotic dynamics will be irrespective of the
strength of prey-taxis anymore since the total population of both predators and prey will remain
the same asymptotically due to the convergence to the constant steady state (u∗, v∗).
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