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Abstract
Belhaj (2010) established that a barrier strategy is optimal for the dividend

payment problem under the jump-diffusion model. However, if the optimal divi-
dend barrier level is set too low, then the bankruptcy probability (after a dividend
payment) in the near future may be too high to be acceptable. This paper aims
to address this issue by taking the solvency constrain into consideration. Pre-
cisely, we consider a dividend payment problem with solvency constraint under a
jump-diffusion surplus process model. Using involved stochastic control and par-
tial integro-differential equation theories, we derive the optimal dividend payment
strategy and the value function of the problem. The optimal dividend barrier level
must be put higher if one can not bear the high bankruptcy probability after a
dividend payment in the near future.

Keywords: Dividend payment, jump-diffusion, solvency constraints, barrier strat-
egy, partial integro-differential equation.

1 Introduction

Dividend optimization is a classical theme in the research fields of finance and insurance.
One aim of this type of problem is to seek the optimal dividend payment strategy (DPS for
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short), which maximizes the expected discounted dividends received by the shareholders
until the time of the company’s bankruptcy. In the real world, the policymakers have
the desire to allocate the dividend as much as possible to shareholders, and they also
have the need to maintain liquidity in order to reduce the company’s default risk (see
Cadenillas et al. (2007) for an analysis). Therefore, in order to determine the optimal
dividend payment strategy (ODPS for short), the policymakers have to make a trade-off
between these two factors.

Albrecher and Thonhauser (2009) and Avanzi (2009) survey the stochastic control
method for dividend optimization problem. Under the assumption that the surplus of an
insurance company is described by a Brownian motion with drift, Asmussen and Taksar
(1997) study an optimal dividend problem for an insurance company by applying the

singular stochastic control theory. For other related works we refer to Asmussen et al.
(2000), Taksar (2000), Paulsen (2007, 2008), Schmidli (2008), Wei et al. (2010), Bai
et al. (2012), Zhang (2012), Jiang and Yang (2013), and references therein. For the
case of surplus process being spectrally negative Lévy process and the case of involving
transaction costs, we refer to Loeffen (2008, 2009) and Hunting and Paulsen (2013) and
references therein.

Belhaj (2010) studies a problem of optimal dividend payment for a company whose
surplus follows a jump-diffusion process. The company chooses its DPS to maximize
the expected value of discounted future dividend payments to its shareholders. The
result shows that barrier strategy is optimal, that is, the company pays out all the
reserve above a critical threshold (namely, the barrier) to shareholders as dividends, and
distributes nothing whenever the surplus reserve is less than the threshold. However, if
the optimal barrier level is very low, the company is more likely to go bankrupt in the
near future; in another words, the bankruptcy probability in the near future is extremely
high. In practice, on the other hand, policyholders pay their premiums to the insurance
company in advance; they certainly expect to have their claims covered when claims
occur. In order to protect the policyholders’ benefit, the ODPS should not be allowed
to carry out by the company. Whereas it is reasonable that the company have to find
the optimal “admissive” DPS and proper provisions have been made with regard to the
policyholders in the admissive DPS. So it would be realistic that the company itself
imposes a solvency requirement. In fact, a provision can be set by a proper governmental
insurance regulatory agency or by the company itself. Therefore, it is very necessary to
consider solvency constraint in the optimal dividend payment problem.

In recent years, much attention has been paid to the stochastic control and the opti-
mization problems with constraints, see, for example, Lions (1985), Zhu et al. (2004),
Hu and Zhou (2005), Ji and Zhou (2006), Tiesler et al. (2012), van den Broek et al.
(2011), Li and Xu (2016), Xu and Yi (2016). Particularly, the optimization problems
involving probability constraint have been widely applied in engineering, economics and
finance. Such problems are difficult to handle since they are generally non-convex. The
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optimal dividend payment problems with constraints have also been considered in the
literature. For instance, Choulli et al. (2001, 2003, 2004) study the optimal dividend
policies with risk exposure constraints. Paulsen (2003) considers an insurance company’s
optimal dividend problem with solvency constraints and shows that the optimal strategy
is a barrier type. He et al. (2008) and He and Liang (2008) investigate the dividend
optimization problems involving proportion reinsurance and solvency constraints under a
simple diffusion model. Liang and Huang (2011) and Liang and Sun (2011) further study
the proportional reinsurance, investment and dividend problems for insurance company
under solvency constraints.

In the aforementioned works, the dividend optimization problems with constraints are
all considered in the framework of diffusion model. In this paper, we assume that the
insurance company’s surplus process follows a jump-diffusion process, so that the insur-
ance company faces two types of risks: unstable income (reflected by a Brownian motion)
and potential losses (reflected by a Poisson process). In order to make this problem to
be tractable, we further assume that the size of jump is an exponential random variable.
Using the stochastic control and the partial differential-integral equation theories, we first
derive the properties of the bankruptcy probability and the value function, and then the
optimal dividend payment policy and the corresponding value function of the problem
with solvency constraints.

This paper considers the dividend payment problem, following Dufresne and Gerber
(1991), under a particular constraint, that is the probability of bankruptcy occurring

within a period T after any dividend payment must be small. As de Finetti (1957)
pointed out in his seminal paper that it makes no sense if T = +∞, we consider, in this
paper, the bankruptcy probability occurring within a finite time case, which is defined
on the modified surplus after distribution of dividends. The finite time component is
mandatory, otherwise the probability would be 100%, irrespective of the payment (and
thus uninformative). And the fact of using the modified surplus addresses de Finetti’s
criticism. The main contribution of this paper is twofold. On one hand, this paper extends
the investigation on the dividend optimization problems with bankruptcy probability
constraint to the classical insurance surplus model with a diffusion perturbation, and it
also investigates the effect of bankruptcy probability constraint on the DPS. On the other
hand, this paper analyzes in detail the various properties of the finite-time bankruptcy
probability and the value function under the jump-diffusion risk model.

The remainder of this paper is organized as follows. We formulate the model in Section
2. In Section 3 we give a feasibility analysis of the problem as it may fail to provide a
feasible solution due to the constraint involved. Properties of the bankruptcy probability
and the value function, and the main result are given in Section 4. Section 5 concludes
this paper.
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2 Model formulation

We first give a mathematical formulation of our problem. Given a probability space
(Ω,F ,P), which is equipped with a filtration F = (Ft)t>0 satisfying the usual conditions,
i.e., (Ft)t>0 is right-continuous and P-complete. We suppose that all stochastic processes
and random variables below are defined on this filtered probability space (Ω,F ,F,P).
We note that Ft represents the information available up to time t, based on which any
decision is made at time t.

Following Dufresne and Gerber (1991), we consider an insurance company whose
surplus, without dividend control, evolves according to

Rt = x+ µt+ σWt −
N(t)∑
k=1

Yk, (2.1)

where x > 0 is the initial (capital) reserve level, µ is the expected premium rate, σ is the
volatility of the surplus, Wt is a standard Brownian motion adapted to the filtration F,
N(t) is the number of claims occurred up to time t, and Yk is the amount of the k-th
claim.

In this paper, we assume that N(t), adapted to the filtration F, follows a homoge-
neous Poisson process with intensity λ > 0, i.e., N(t) ∼ Poi(λt). Moreover, the Poisson
process N(t) is independent of the Brownian motion Wt, and {Yk}k∈N is a sequence of
positive independent and identically distributed (i.i.d.) random variables with a common
exponential distribution density

p(y) = δe−δy, y > 0. (2.2)

So St = ∑N(t)
k=1 Yk, the total claim amount up to time t, composes a compound Poisson

process S = (St)t>0. Furthermore, we assume that N(t) is independent of {Yk}k∈N . In
particular, when σ = 0, our risk model (2.1) reduces to the classical Cramér-Lundberg
model. The insurance company cannot obtain external financing so that it has to declare
bankruptcy once its reserve falls below zero. In fact, either after a run of negative
realizations of the Brownian motion (so that Rt = 0) or suddenly when the size of a
jump (claim) is larger than the surplus reserve (so that Rt 6 0), the company will
declare bankruptcy. In addition, suppose that the net profit condition is valid, that is,
µ > E(S1) = λ

δ
, where 1

δ
= E(Y1). It means that the expected premium per unit of time

is larger than the expected loss.
Let Lt be the cumulative amount of dividend payment up to time t. Then a process

L = {Lt}t>0 is called a DPS if it is nonnegative, nondecreasing, càdlàg and F-adapted.
Under a dividend payment strategy (DPS) L, the corresponding reserve (the controlled
surplus process) evolves according to

RL
t = x+ µt+ σWt −

N(t)∑
k=1

Yk − Lt, for t > 0, (2.3)
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and RL
0− = x > 0. A DPS L is said to be admissible if: (i) L0− = 0, (ii) 0 6 ∆Lt =

Lt − Lt− 6 RL
t− for all t > 0, a.s., where RL

t is the controlled surplus process under L.
The condition (ii) means that the insurance company cannot pay an amount of dividends
larger than surplus reserves. We denote by Π the set of all admissible DPSs. The objective
of the insurance company is to choose an admissible DPS to maximize the expected value
of discounted future dividend payments until the time of bankruptcy

V (L;x) = E
(∫

[0,τL]
e−ρt dLt

)
,

where
τL = inf

{
t > 0

∣∣∣∣RL
t 6 0

}
is the bankruptcy time under the DPS L, that is, the first passage time of RL

t below zero,
and ρ is a constant discounting factor. The associated optimization problem then is to
find the value function

v(x) = sup
L∈Π

V (L;x), (2.4)

and an admissible DPS L∗ ∈ Π, which is called the optimal dividend payment strategy
(ODPS), such that v(x) = V (L∗;x).

Belhaj (2010) proved that there exists an optimal barrier DPS Lb (with dividend
barrier b > 0) for the problem (2.4). This strategy pays out immediately everything
in excess of this level b as dividend at any time, and distributes nothing whenever the
surplus reserves level is equal to or less than b. Mathematically, it is defined by

Lbt = sup
s6t

(Rs − b)+, for t > 0, (2.5)

and Lb0− = 0, where Rs is the surplus process (2.1). The corresponding controlled surplus
process (2.3) (with L ≡ Lb) is therefore reflected at b at any time. In this paper we focus
on such barrier dividend strategies only. However, as mentioned earlier, if the dividend
barrier level is too low, the bankruptcy probability in the near future after a payment will
be unacceptably high. In order to avoid the company goes bankrupt soon, the company’s
decision-makers will consider the solvency requirement when they pay the dividend to
its shareholders. One natural requirement is that, after the last dividend payment, the
probability of bankruptcy occurring within a fixed time T is not allowed to exceed a
certain ruin tolerance level ε > 0, namely,

ψ(b, T ) 6 ε, (2.6)

where

ψ(b, T ) = P
(
τb 6 T

∣∣∣∣ there exists at least one dividend payment before or at the time τLb
)

= P
(
τb 6 T

∣∣∣∣ there exists 0 6 t 6 τL
b such that Lbt > 0

)
= P

(
τb 6 T

∣∣∣∣ there exists 0 6 t 6 τL
b such that Rt > b

)
= P

(
τb 6 T

∣∣∣∣ ηb > 0
)
,
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and τb is the time from the last payment time to the bankruptcy time, namely

τb = τL
b − ηb,

and ηb is the last dividend payment time,

ηb = sup
{

0 6 t 6 τL
b
∣∣∣∣∆Lbt > 0

}
,

with sup ∅ = −∞ by convention. In our model, the last dividend payment and bankruptcy
may happen at the same time.

In this paper, we consider those admissible DPSs which pay dividends only when the
reserve is above certain threshold. Mathematically, we denote, for any b > 0,

Πb =
{
La
∣∣∣ a > b

}
.

Obviously, Π0 is the set of all barrier dividend strategies, and Πb1 ⊂ Πb2 if b1 > b2.
Define the set of barriers that satisfy the constraint (2.6)

B :=
{
b
∣∣∣ The constraint (2.6) is satisfied

}
=
{
b
∣∣∣ ψ(b, T ) 6 ε

}
,

and define the corresponding value function Vc(x) under this constraint

Vc(x) := sup
b∈B

V (x, b), (2.7)

where
V (x, b) := sup

L∈Πb
V (L;x) = sup

L∈Πb
E
(∫

[0,τL]
e−ρs dLs

)
(2.8)

is the optimal value for the level b.
Our main purpose is to find the value function Vc(x), the optimal barrier b∗ ∈ B

solving the problem (2.7), and the ODPS L∗ ∈ Πb∗ solving the problem (2.8).
To solve the problem (2.7), because V (x, b) is decreasing in b, we will seek the mini-

mum barrier b which ensures that the constraint (2.6) is satisfied.

3 Feasibility analysis

Since the problem (2.7) involves probability constraint, the first issue is its feasibility
(that is, whether the constraint set B is empty or not), which is the subject of this
section.

Firstly, we know that compound Poisson process St = ∑N(t)
k=1 Yk can be represented in

the following form:

St =
N(t)∑
k=1

Yk =
∫

[0,t]×R+
xJ(ds× dx),
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where J is a Poisson random measure with intensity measure λp(dx) dt (p is given by
(2.2)). For every measurable set A ⊂ R+, J([t1, t2]×A) counts the number of jump times
of S in the period [t1, t2] such that their jump sizes are in A (see Cont and Tankov (2004)
for details).

In terms of Poisson random measure, the controlled surplus process (under the barrier
DPS Lb) can be written equivalently as

dRLb

t = µ dt+ σ dWt −
∫
R+
xJ(ds× dx)− dLbt , RLb

0− = x.

Define the first dividend payment time

θb = inf
{

0 6 t 6 τL
b
∣∣∣∣∆Lbt > 0

}
,

with inf ∅ = +∞ by convention. We notice that 0 6 θb 6 ηb whenever at least one
payment paid (so that ηb > 0). Moreover θb is a stopping time (by contrast, ηb is not).

We define the new controlled surplus process starting from the first dividend payment
time

R̃Lb

t = RLb

t+θb , for t > 0,

then

dR̃Lb

t = µ dt+ σ dWt −
∫
R+
xJ(ds× dx)− dLbt .

We notice that R̃L
0− = RLb

θb− = b. To study the probability of bankruptcy ψ(b, T ), we
allow the initial value of RL

0− to change and define

ξL
b

x = inf
{
t > 0

∣∣∣∣ R̃Lb

t 6 0, R̃Lb

0− = x
}
, for x 6 b,

and let

ϕb(x, T ) = P
(
ξL

b

x 6 T
)
.

Obviously,

ϕb (b, T ) = ψ(b, T ).

Proposition 3.1. We have

lim
b→+∞

ψ(b, T ) = lim
b→+∞

ϕb(b, T ) = 0.

Proof. It is easily seen that

ξL
b

b = inf
{
t > 0

∣∣∣∣ R̃Lb

t 6 0, R̃Lb

0− = b
}
6 inf

{
t > 0

∣∣∣∣ b+ µt+ σWt 6 0
}
.

7



It follows that
{
ξL

b

b 6 T
}
⊆
{

inf
06t6T

(b+ µt+ σWt) 6 0
}
.

So, we have

ϕb(b, T ) = P
(
ξL

b

b 6 T
)

6 P
(

inf
06t6T

(b+ µt+ σWt) 6 0
)

6 P
(

inf
06t6T

Wt 6 − b
σ

)
→ 0, as b→ +∞.

The desired result is thus proved.

From the above proposition, we know that the risk constrained set B is non-empty for
any ε > 0. This guarantees the problem (2.7) is well defined for any ruin tolerance level.

4 Main result

In order to derive our main result, we firstly give several lemmas.
For x > 0 we define

vb(x) =


f(x)
f ′(b) , 0 6 x 6 b,

f(b)
f ′(b) + x− b, x > b,

where

f(x) = (1
2σ

2θ2
1 + µθ1)(eθ3x − eθ2x) + (1

2σ
2θ2

2 + µθ2)(eθ1x − eθ3x) + (1
2σ

2θ2
3 + µθ3)(eθ2x − eθ1x),

and θ1, θ2, θ3 are the roots of the equation

1
2σ

2θ3 + (µ+ 1
2δσ

2)θ2 + (µδ − (ρ+ λ))θ − δρ = 0,

which satisfy θ1 < −δ < θ2 < 0 < θ3.
From Proposition 3.1 of Belhaj (2010), we know that f ′′(x) is strictly increasing

mapping from (0,∞) onto (−∞,+∞), so that it has a unique positive root. We denote
the root by β > 0 in the rest part of this paper.

Lemma 4.1 (Belhaj (2010)). The value function of the dividend payment problem
(2.4), which is without the bankruptcy probability constraint, is given by v(x) = vβ(x).
Moreover, the ODPS is the barrier DPS Lβ.

Proof. See Section 3 in Belhaj (2010).
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Lemma 4.2. We have ∂
∂b
vb(x) 6 0 for b > β.

Proof. From Belhaj (2010), we know that

(1
2σ

2θ2
2 + µθ2 − 1

2σ
2θ2

3 − µθ3) = −1
2σ

2(θ1 + δ)(θ3 − θ2) < 0,
(1

2σ
2θ2

3 + µθ3 − 1
2σ

2θ2
1 − µθ1) = −1

2σ
2(θ2 + δ)(θ1 − θ3) < 0,

(1
2σ

2θ2
1 + µθ1 − 1

2σ
2θ2

2 − µθ2) = −1
2σ

2(θ3 + δ)(θ2 − θ1) > 0.

Using these inequalities together with θ1 < θ2 < 0 < θ3 we obtain

f(x) = (1
2σ

2θ2
1 + µθ1)(eθ3x − eθ2x) + (1

2σ
2θ2

2 + µθ2)(eθ1x − eθ3x)
+ (1

2σ
2θ2

3 + µθ3)(eθ2x − eθ1x)
= (1

2σ
2θ2

2 + µθ2 − 1
2σ

2θ2
3 − µθ3)eθ1x + (1

2σ
2θ2

3 + µθ3 − 1
2σ

2θ2
1 − µθ1)eθ2x

+ (1
2σ

2θ2
1 + µθ1 − 1

2σ
2θ2

2 − µθ2)eθ3x

> (1
2σ

2θ2
2 + µθ2 − 1

2σ
2θ2

3 − µθ3) + (1
2σ

2θ2
3 + µθ3 − 1

2σ
2θ2

1 − µθ1)
+ (1

2σ
2θ2

1 + µθ1 − 1
2σ

2θ2
2 − µθ2)

= 0.

From Proposition 3.1 of Belhaj (2010), we also have f ′′(x) is a monotone increasing
function, so f ′′(b) > f ′′(β) = 0 for b > β. Therefore, if x < b, then

∂

∂b
vb(x) = −f(x)f ′′(b)

[f ′(b)]2 6 0,

and if x > b, then
∂

∂b
vb(x) = [f ′(b)]2 − f(b)f ′′(b)

[f ′(b)]2 − 1 = −f(b)f ′′(b)
[f ′(b)]2 6 0.

The proof is complete as we notice that ∂
∂b
vb(x) is continuous at x = b.

Lemma 4.3. The bankruptcy probability ψ(b, T ) is a decreasing function with respect to
b for any fixed T .

Proof. By the comparison theorem of stochastic differential equation, one can show that
ϕb(x, T ) is decreasing in x and b respectively. Therefore, ψ(b, T ) = ϕb(b, T ) is a decreasing
function of b.

The following result is crucial for deriving our main result below.

Theorem 4.4. For any fixed b > 0, the following partial integro-differential equation

∂φ
∂t

(t, x) = 1
2σ

2 ∂2φ
∂x2 (t, x) + µ∂φ

∂x
(t, x) + λδ

( ∫∞
0 [φ(t, x− y)− φ(t, x)]e−δy dy

)
,

for t > 0, 0 < x < b,

φ(0, x) = 1, for 0 < x 6 b,

φ(0, x) = 0, for x 6 0,

φ(t, x) = 0, φx(t, b) = 0, for t > 0, x 6 0,

(4.1)
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admits a solution φ(t, x) ∈ C1,2{([0,+∞)×[0, b])\(0, 0)}∩C{([0,+∞)×(−∞, b])\(0, 0)}.
Moreover, φ(T, x) is the probability to survive on [0, T ], i.e., φ(T, x) = 1 − ϕb(x, T ) for
x ∈ [0, b].

Proof. We note that∫ ∞
0

φ(t, x− y)e−δy dy =
∫ −∞
x

φ(t, z)e−δ(x−z)(− dz)

= e−δx
∫ x

−∞
φ(t, z)eδz dz

= e−δx
∫ x

0
φ(t, z)eδz dz,

so (4.1) is equivalent to

∂φ
∂t

(t, x) = 1
2σ

2 ∂2φ
∂x2 (t, x) + µ∂φ

∂x
(t, x)− λφ(t, x) + λδe−δx

∫ x
0 φ(t, z)eδz dz,

for t > 0, 0 < x < b,

φ(0, x) = 1, for 0 < x 6 b,

φ(0, x) = 0, for x 6 0,

φ(t, x) = 0, φx(t, b) = 0, for t > 0, x 6 0.

(4.2)

Applying standard fixed point technique, we can easily prove that the above problem has
a unique solution φ(t, x) ∈ C1,2{([0,+∞)× [0, b])\(0, 0)}∩C{([0,+∞)×(−∞, b])\(0, 0)}
with 0 6 φ(t, x) 6 1. We leave the details of proof to the interested readers.

For x ∈ [0, b], let T0 = T ∧ ξLbx .1 Applying the generalized Itô formula to φ(T − t, R̃Lb

t )
from t = 0− to t = T0, and noticing R̃Lb

0− = x, we obtain

φ
(
T − T0, R̃

Lb

T0

)
= φ(T, x) +

∫
[0,T0]

(
−φt(T − s, R̃Lb

s ) + 1
2σ

2φxx(T − s, R̃Lb

s ) + µφx(T − s, R̃Lb

s )
)

ds

+
∫

[0,T0]
λδ
(∫ ∞

0

[
φ(T − s, R̃Lb

s − y)− φ(T − s, R̃Lb

s )
]
e−δy dy

)
ds

+
∫

[0,T0]
σφx(T − s, R̃Lb

s ) dWs −
∫

[0,T0]
σφx(T − s, R̃Lb

s ) dLs

= φ(T, x) +
∫ T0

0
σφx(T − s, R̃Lb

s ) dWs −
∫

[0,T0]
σφx(T − s, R̃Lb

s ) dLs.

Notice that φx(T −s, R̃Lb

s ) = 0 when R̃Lb

s = b, and dLs = 0 when R̃Lb

s < b, so we conclude
the last integral in the above equation is 0 and hence

φ
(
T − T0, R̃

Lb

T0

)
= φ(T, x) +

∫ T0

0
σφx(T − s, R̃Lb

s ) dWs.

1As convention, we write x ∧ y = min{x, y} and x ∨ y = max{x, y} for real numbers x and y.
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Taking mathematical expectation on both sides of the above equality, we have

φ(T, x) = E
[
φ
(
T − (T ∧ ξLbx ), R̃Lb

T∧ξLbx

)]
= E

[
φ
(
0, R̃Lb

T

)
1
T<ξLbx

]
+ E

[
φ
(
T − ξLbx , R̃Lb

ξLbx

)
1
T>ξLbx

]
= E

[
1
T<ξLbx

]
= 1− ϕb(x, T ),

where we used the fact that 0 < R̃Lb

T 6 b if T < ξL
b

x and R̃Lb

ξLbx
6 0 if T > ξL

b

x . This
completes the proof.

Lemma 4.5. Let φb(t, x) be the solution of (4.1), then b 7→ φb(T, x) is continuous on
[β ∨ x,+∞).

Proof. Fix any (t, b1) ∈ [0, T ]× [β,+∞). We will show

lim
b→b1

φb(t, x) = φb1(t, x), ∀ (t, x) ∈ [0, T ]× [0, b1].

First we see from Theorem 4.4 that φb(t, x) is increasing in b and

0 6 φb(t, x) 6 1, ∀ (t, x) ∈ [0, T ]× [0, b1].

Hence there is a function φ(t, x) ∈ C{([0, T ]× [0, b1]) \ (0, 0)} such that

lim
b→b1

φb(t, x) = φ(t, x), ∀ (t, x) ∈ [0, T ]× [0, b1].

Now we prove φ(t, x) is just φb1(t, x). Let

x = bz, θb(t, z) = φb(t, x), θ(t, z) = φ(t, x).

It is clear that

0 6 θb(t, z) 6 1, lim
b→b1

θb(t, z) = θ(t, z).

We only need to prove that

θ(t, z) = θb1(t, z), ∀ (t, z) ∈ [0, T ]× [0, 1].

We see from (4.2) that θb(t, z) satisfies

∂θb

∂t
(t, z) = σ2

2b2
∂2θb

∂x2 (t, z) + µ
b
∂θb

∂x
(t, z)− λθb(t, z) + λδbe−δbz

∫ z
0 θ

b(t, y)eδby dy,
for t > 0, 0 < z < 1,

θb(0, z) = 1, for 0 < z 6 1,

θb(0, z) = 0, for z 6 0,

θb(t, z) = 0, θbz(t, 1) = 0, for t > 0, z 6 0.

(4.3)
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Multiplying the first equation in (4.3) by any test function g(t, z) ∈ C1,2([0, T ]× [0, 1])
with g(0, z) = g(T, z) = 0 and g(t, 0) = gz(t, 1) = 0, and then integrating on [0, T ]× [0, 1],
after integration by parts, we have that∫ T

0

∫ 1

0

(
−gt(t, z)−

σ2

2b2 gzz(t, z) + µ

b
gz(t, z) + λg(t, z)

)
θb(t, z) dt dz

=
∫ T

0

∫ 1

0

(
λδbe−δbz

∫ z

0
θb(t, y)eδby dy

)
g(t, z) dt dz.

Letting b→ b1 and applying the dominated convergence theorem, we get∫ T

0

∫ 1

0

(
−gt(t, z)−

σ2

2b2
1
gzz(t, z) + µ

b1
gz(t, z) + λg(t, z)

)
θ(t, z) dt dz

=
∫ T

0

∫ 1

0

(
λδb1e

−δb1z
∫ z

0
θ(t, y)eδb1y dy

)
g(t, z) dt dz.

It means that θ(t, z) is a weak solution of (4.3) with b = b1. Thus θ(t, z) ≡ θb1(t, z) by
the uniqueness of solution for the problem (4.2).

We define the following infinitesimal generator of the jump-diffusion process (for de-
tails see Cont and Tankov (2004) or Øksendal and Sulem (2009)), which is applied to a
function g ∈ C2[0,∞),

Lg(x) := 1
2σ

2g′′(x) + µg′(x) + λδ
(∫ ∞

0
[g(x− y)− g(x)]e−δy dy

)
.

Lemma 4.6. We have

• If b 6 β, then V (x, b) = V (x, β) = Vc(x) = vβ(x);

• If b > β, then V (x, b) = vb(x).

Proof. The first conclusion is obvious because Lβ, the ODPS for the case without the
bankruptcy probability constraint, is a feasible strategy.

Now soppose b > β. Let L ∈ Πb be an arbitrary DPS. Applying the generalized Itô
formula to e−ρtvb(R̃L

t ), we have

e−ρ(t∧ξLx )vb(R̃L
t∧ξLx ) = vb(x) +

∫ t∧ξLx

0
e−ρs(L − ρ)vb(R̃L

s ) ds

+
∫ t∧ξLx

0
σe−ρsv′b(R̃L

s ) dWs −
∫

[0,t∧ξLx ]
e−ρsv′b(R̃L

s ) dLs. (4.4)

From Belhaj (2010), we know that vb is a concave function, so 1 = v′b(+∞) 6 v′b(x) 6
v′b(0). Taking expectations on both sides of (4.4), and noting that (L − ρ)vb 6 0, we
obtain

E
[
e−ρ(t∧ξLx )vb(R̃L

t∧ξLx )
]
6 vb(x)− E

[ ∫
[0,t∧ξLx ]

e−ρsv′b(R̃L
s ) dLs

]
6 vb(x)− E

[ ∫
[0,t∧ξLx ]

e−ρs dLs
]
,

12



i.e.,

E
[
e−ρ(t∧ξLx )vb(R̃L

t∧ξLx )
]

+ E
[ ∫

[0,t∧ξLx ]
e−ρs dLs

]
6 vb(x).

Since R̃L
ξLx

6 0 and vb(0) = 0, by letting t → +∞ in above and applying the dominated
convergence theorem, we deduce

lim
t→∞

E
[
e−ρ(t∧ξLx )vb(R̃L

t∧ξLx )
]

= 0,

which gives

V (L;x) = E
[ ∫

[0,ξLx ]
e−ρs dLs

]
6 vb(x).

Therefore, by (2.8),

V (x, b) 6 vb(x).

On the other hand, if we choose the DPS Lb, all of the above inequalities turn out to
be equalities. In fact, for 0 6 x 6 b, it is easy to see that

(L − ρ)vb(x) = (L − ρ) f(x)
f ′(b) = 0,

so we obtain (L − ρ)vb(R̃Lb

s ) = 0 as R̃Lb

s 6 b. Thus, after taking expectations on both
sides of (4.4) with L ≡ Lb,

E
[
e−ρ(t∧ξLbx )vb(R̃Lb

t∧ξLbx
)
]

= vb(x)− E
[ ∫

[0,t∧ξLbx ]
e−ρsv′b(R̃Lb

s ) dLbs
]
.

Since if ∆Ls > 0 then R̃Lb

s = b, using v′b(b) = 1, we see that

E
[
e−ρ(t∧ξLbx )vb(R̃Lb

t∧ξLbx
)
]

= vb(x)− E
[ ∫

[0,t∧ξLbx ]
e−ρs dLbs

]
,

Letting t→∞, we obtain

V (Lb;x) = E
[ ∫

[0,ξLbx ]
e−ρs dLbs

]
= vb(x).

Therefore,

V (x, b) > V (Lb;x) = vb(x).

The proof is complete.

Now, we present the main result of this paper.

Theorem 4.7. Let ε ∈ (0, 1) be a tolerance level of the bankruptcy probability. Then, for
the dividend optimization problem (2.7),
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• If P
(
ξL

β

β 6 T
)
6 ε, then the ODPS is the barrier DPS Lβ, and the optimal value

function is

Vc(x) = vβ(x).

• If P
(
ξL

β

β 6 T
)
> ε, then the ODPS is the barrier DPS Lb

∗ and the optimal value
function is

Vc(x) = vb∗(x), (4.5)

where the optimal barrier b∗ > β is uniquely determined by

b∗ = min{b : P(ξLbb 6 T ) = ε}.

Proof. The first claim is obvious since the optimal strategy Lβ is feasible under the
bankruptcy probability constraint.

Now suppose P
(
ξL

b

b 6 T
)
> ε. From Proposition 3.1 and Lemmas 4.3−4.5, we see

that there exists a unique b∗ > β such that

b∗ = min
{
b : P(ξLbb 6 T ) = ε

}
= min{b : b ∈ B} ∈ B.

According to Lemma 4.2, V (x, b) = vb(x) is a decreasing function with respect to b, and
from Lemma 4.6, b∗ satisfies (4.5), i.e.,

Vc(x) = vb∗(x) = sup
b∈B

V (x, b) = V (Lb∗ ;x).

The proof is completed.

5 Conclusion remarks

This paper has considered an insurance company’s optimal dividend payment problem
with the solvency constraint, assuming the surplus of the insurance company follows a
jump-diffusion model. Investigating such problems with constraint is a significant and
challenging subject both in theoretical study and in practical applications.

The important feasibility issue of the model has been fully studied and a closed-form
optimal solution has been given. Both involved stochastic control theory and partial
differential-integral equation theory have been employed so as to derive the solution for
the problem.

In this paper, we have only considered barrier dividend payment strategies; more gen-
eral strategies will be studied in future works. This is an interesting and very important
problem and new methodologies are called for to solve it.

Acknowledgement: We thank Professor Yi Fahuai for his kind suggestions and
comments on the proof of Theorem 4.4.
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