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Abstract. In this paper, we study a class of optimal investment problems with a nonsmooth and nonconcave
utility function, where the value function is the expected utility determined by the state process and
time. We adopt partial differential equation methods to prove that the value function belongs to
C2,1 under some proper conditions of the utility function. Moreover, we analyze the continuity of
the optimal strategy and obtain some of its properties around the boundary and the terminal time.
Also, an example sheds light on the theoretical results established.

Key words. optimal investment, parabolic quasi-linear equation, nonsmooth, nonconcave, dual transformation

AMS subject classifications. 35K10, 93E20, 91B70, 91G80

DOI. 10.1137/19M1273086

1. Introduction. Continuous-time stochastic optimal control problems have been widely
studied and developed in finance. Two of the main methods to solve these problems are
partial differential equation (PDE) and martingale theory. The PDE approach requires that
the underlying state process should be Markovian so that the corresponding Hamilton--Jacobi--
Bellman (HJB) equation can be derived using the principle of dynamic programming. For
example, Zariphopoulou [34] studied a general investment and consumption problem with
borrowing constraints for an agent. Vila and Zariphopoulou [29] extended the research to
an infinite horizon problem. Xu and Yi [31] considered a continuous-time model with a
constraint on the consumption rate. Guan et al. [13] investigated a compensation problem with
nonsmooth and nonconcave utility over a finite time horizon. Usually, in addition to proving
the existence and uniqueness of the solution to the PDE, a prior estimation and smoothness
of the solution should be discussed to guarantee that the solution is the value function using
a verification theorem. To employ the martingale method, one adopts the basic idea that the
state process and feasible trading strategies are generated by measurable random payoffs by
means of a linear representation under an expectation formula weighted by a variable. Hence,
the dynamic optimization problem can be reduced to a static optimization one. For example,
Karatzas, Lehoczky, and Shreve [16] derived the explicit solution of a general consumption and
investment decision problem. Cox and Huang [6] applied the martingale technique to achieve
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412 CHONGHU GUAN, XUN LI, AND WENXIN ZHOU

the explicit construction of optimal portfolios. Carpenter [5] introduced the utility problem
of a risk-averse manager with compensation schemes and derived its optimal portfolios.

The convex duality approach is an effective method to further deal with such problems.
From the perspective of PDE, we can apply the dual (Fenchel--Legendre) transformation to
reduce a fully nonlinear and degenerate problem into a linear nondegenerate problem, which
can be studied by classical PDE theory, and then the solution of the original problem can be
constructed by inverse duality transformation. For example, Jian, Li, and Yi [15] investigated
optimal stopping investment problems over a finite time horizon. Xu and Yi [31] considered
a continuous-time model with an upper bound constraint on the consumption rate. Guan et
al. [13] initially discussed a free boundary problem with a nonsmooth and nonconcave utility
function. Ma, Yi, and Guan [23] analyzed the consumption problem whose rate involves
lower and upper constraints. To employ the martingale method, we can transfer a dynamic
optimization problem into a static optimization one, and apply convex analysis to show the
existence of the optimal solutions to the original problem and establish their dual relationship,
and then adopt the martingale representation theorem or more general optional decomposition
theorems to super-replicate the optimal terminal wealth/consumption. Details can be found
in books written by Fleming and Soner [10], Karatzas and Shreve [18], and Pham [25] and
the paper by Kramkov and Schachermayer [20].

In the classical case where the utility function is concave and smooth, the model and its
solution are well known. Kramkov and Schachermayer [20] considered the problem of ex-
pected utility maximization in an incomplete market, where asset prices are semimartingales.
Karatzas and Zitkovic [19] established a general existence and uniqueness result using tech-
niques of convex duality. Hugonnier and Kramkov [14] studied the problem where an agent
receives random endowments at maturity. Biagini and Frittelli [1] discussed the case in incom-
plete markets where price processes are described by unbounded semimartingales. Bian and
Zheng [3] analyzed the turnpike property in financial economics. The nonstandard case, where
the utility function is nonconcave or nonsmooth, has also been widely investigated. Bouchard,
Touzi, and Zeghal [4] studied the dual formulation of the utility maximization problem where
the utility function is nonsmooth. The problem is solved through approximating the utility
function by a sequence of functions with a bounded negative domain. Westray and Zheng [30]
considered a nonsmooth utility maximization problem on the positive real line. Bian, Miao,
and Zheng [2] constructed a smooth and strictly convex solution to the dual HJB equation. Its
conjugate function is proved to be a smooth and strictly concave solution to the primal HJB
equation satisfying the terminal and boundary conditions. From the perspective of PDE, the
smoothness of the value function is a fundamental property, which plays an important role
in proving a verification theorem. For general nonsmooth and/or nonstrictly concave utility
functions, Bian, Miao, and Zheng [2] showed that there exists a smooth classical solution to
the HJB equation for a large class of constrained problems.

In this paper, we consider an optimal investment problem with nonsmooth and nonconcave
utility, which is significantly different from Bian, Miao, and Zheng [2], and the corresponding
explicit solution cannot be derived. Under some restrictions on the utility functions, we prove
that the value function is a classical solution, which belongs to C2,1 and is strictly increasing
yet strictly concave in the wealth variable. We also prove that the optimal portfolios on
risky assets are continuous. While the time variable approaches the terminal date and the
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OPTIMAL NONSMOOTH AND NONCONCAVE UTILITY PROBLEM 413

corresponding wealth process belongs to the nonconcave region, the investor will seek enough
risks to make the expectation of return reach the concave envelope. While the wealth process
approaches zero, the corresponding optimal portfolio on the risky assets will approach zero,
but the value function will increase rapidly.

The main contributions and difficulties of this paper are listed below. First, we prove that
the value function is a classical solution and strictly increasing yet strictly concave for a large
class of constrained utility problems. Second, we adopt the PDE technique with a convex
duality method to study the optimal expected utility problem involving general nonsmooth
and nonconcave utility. Third, the fundamental difficulty is that the proof requires a large
number of a priori estimates of dual problem when we prove that the inverse transformation
of the solution to the dual problem is the solution to the original problem. Fourth, in addition
to properties of the value function, we also derive the behavior of the optimal investment
strategy, such as its continuity in the domain, and its convergence around the terminal date
and left boundary.

The remainder of the paper is organized as follows. In section 2, the mathematical for-
mulation of the model is presented, and the terminal condition of the value function with
a nonconcave utility function is discussed. In section 3, we derive the HJB equation and
formulate the fully nonlinear problem. In section 4, we show the main results of this paper,
including the existence and some properties of the solution to the fully nonlinear problem,
and study the behavior of the optimal strategy around the boundary and terminal time. In
section 5, we introduce an example of this model when there is an uncertain exit time forcing
the investor to leave the market. In section 6, we conclude the main results of this paper. In
Appendix A, we present the proofs of Theorems 2.1, 4.3, and 4.7 and Lemma 4.8, respectively.
In Appendix B, we discuss the growth condition for using the maximum principle on proving
vy \leq 0 and vyy \geq 0 in the proof of Theorem 2.1.

2. Model formulation. Consider a complete, arbitrage-free, and continuous-time financial
market consisting of one riskless asset and n risky assets. The riskless asset price S0,t is
governed by the ordinary differential equation

dS0,t

S0,t
= rdt,

and the risky asset prices Si,t are governed by the stochastic differential equations

dSi,t

Si,t
= (r + \mu i)dt+

n\sum 
j=1

\sigma i,jdW
j
t for i = 1, 2, . . . , n,(2.1)

where the interest rate r of riskless assets, the excess appreciation rates \mu i, and the volatility
\sigma i,j of risky assets are constants, andWt (t \geq 0) is a standard n-dimensional Brownian motion.
In addition, the covariance matrix \sigma \sigma \prime is strongly nondegenerate.

Over a finite time horizon [0, T ], a trading strategy for the manager, for given time t \in 
[0, T ], is an n-dimensional process \pi s (s \in [t, T ]), whose ith component \pi i,s is the amount
invested in the ith risky asset in the portfolio at time s. An admissible trading strategy \pi s
must be progressively measurable with respect to the \sigma -fields \{ \scrF s\} generated by the Brownian
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414 CHONGHU GUAN, XUN LI, AND WENXIN ZHOU

motion and guarantee that Xs \geq 0. Note that Xs = \pi 0,s+
\sum n

i=1 \pi i,s, where \pi 0,s is the amount
invested in the riskless asset. Hence, the wealth process, Xs(s \in [t, T ]), follows:

(2.2)

\Biggl\{ 
dXs = (rXs + \mu \prime \pi s)ds+ \pi \prime 

s\sigma dWs, t \leq s \leq T,

Xt = x.

Within the general framework, the dynamic problem is to choose an admissible trading
strategy \pi s (s \in [t, T ]) to maximize

(2.3) V (x, t) = sup
\pi 

\BbbE 
\biggl[ \int T

t
f(Xs, s)ds+ g(XT )

\biggr] 
,

where f(x, t) and g(x), which represent the investor's degree of ``happiness"" or ``satiation"" for
a given wealth level, are nonnegative continuous functions defined in \Omega T = \{ (x, t)| x > 0, 0 <
t < T\} . Also, suppose that f(x, t) and g(x) are increasing in x; then the convexity means
that the investor is risk-seeking, and concavity means risk-averseness.

If Xt = 0, in order to keep Xs \geq 0, we get that \pi s = 0 and Xs \equiv 0, t \leq s \leq T . Thus, we
obtain a left boundary condition

(2.4) V (0, t) =

\int T

t
f(0, s)ds+ g(0).

In order to make (2.3) well defined, some constraints should be imposed on f(x, t) and g(x).
We suppose the following.

Condition I. There exist a \gamma \in (0, 1) and an M > 0 such that for all x, y \geq 0, we have\Biggl\{ 
| g(x) - g(y)| \leq M

\gamma | x - y| \gamma ,
| f(x, t) - f(y, t)| \leq M

\gamma | x - y| \gamma ,(2.5)

which also implies the growth condition\Biggl\{ 
g(x) \leq g(0) + M

\gamma x\gamma ,

f(x, t) \leq f(0, t) + M
\gamma x\gamma .

(2.6)

Condition II. Suppose

lim
x\rightarrow +\infty 

g(x) = +\infty .(2.7)

2.1. The case that \bfitg (\bfitx ) is nonconcave. If g(x) is nonconcave, we denote \varphi (x) as its
concave envelope; i.e., \varphi (x) is the minimal concave function not being less than g(x) (see
Figure 2.1).

Since g(x) is increasing and continuous and \varphi (x) is increasing and continuous in x,\bigl\{ 
x > 0

\bigm| \bigm| \varphi (x) > g(x)
\bigr\} 
is an open set which can be expressed as

\Bigl\{ 
x > 0

\bigm| \bigm| \bigm| \varphi (x) > g(x)
\Bigr\} 
=

\infty \bigcup 
m=1

(xm, xm),(2.8)
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Figure 2.1. \varphi (x).

where
\bigl\{ 
(xm, xm)

\bigr\} \infty 
m=1

are countable disjoint open intervals. In the interior of these intervals,
\varphi (x) is a linear function.

Note that the portfolio \pi t is unconstrained: we point out that the terminal condition of V
should be \varphi (x) but not g(x). In fact, within a short time, the behavior of the wealth process is
like a martingale. While time t approaches the terminal date and the current wealth process
x is located in (xm, xm)(m \in \BbbZ ), the investor could adopt a strategy such that he/she will
hold sufficiently risky assets, and then Xs will rapidly touch xm or xm (with the probability
approximately equal to

x - xm
xm - xm

and xm - x
xm - xm

, respectively) so that \BbbE [g(XT )] in the right-hand

side of (2.3) approximates to

x - xm
xm  - xm

g(xm) +
xm  - x

xm  - xm
g(xm) = \varphi (x).

Therefore, the value function is not less than \varphi (x) around the terminal date. Adopting this
idea, we could prove the following theorem.

Theorem 2.1. The value function satisfies

lim
t\rightarrow T - 

V (x, t) = \varphi (x).(2.9)

Proof. We prove it in Appendix A.1.

3. The HJB equation. First, according to (2.3), we obtain the following HJB equation:

(3.1)  - Vt  - sup
\pi 

\biggl[ 
1

2
(\pi \prime \sigma \sigma \prime \pi )Vxx + \mu \prime \pi Vx

\biggr] 
 - rxVx = f(x, t) in \Omega T ,

where

\Omega T := (0,+\infty )\times (0, T ).

Then we prove that the solution of (3.1) under boundary condition (2.4) and terminal condi-
tion (2.9) belongs to C2,1(\Omega T )

\bigcap 
C(\Omega T ).

Since f(x, t) may not be smooth, concave, or convex, we suppose the following.

D
ow

nl
oa

de
d 

07
/1

9/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

416 CHONGHU GUAN, XUN LI, AND WENXIN ZHOU

Condition III. f(x, t) is differentiable in x almost everywhere, and there exists the following
decomposition in \Omega T :

fx(x, t) = P (x, t) - Q(x, t) a.e.,(3.2)

where P (x, t) and Q(x, t) are locally bounded and increasing in x; namely, fx(\cdot , t) is a bounded
variation function for all t \in (0, T ) (see [28]). In other words, f(\cdot , t) can be decomposed into
a convex function and a concave function.

From the definition in (2.3), we easily observe that V is increasing in x. From (3.1), we
know that its solution must be concave. Otherwise, the maximum in the equation will be
infinite. These analyses lead us to seek the solution of (2.4) satisfying

Vx > 0, Vxx < 0, x > 0, 0 < t < T.(3.3)

Note that the gradient of \pi \prime \sigma \sigma \prime \pi with respect to \pi is

\bigtriangledown \pi (\pi 
\prime \sigma \sigma \prime \pi ) = 2\sigma \sigma \prime \pi .

Hence,

\pi \ast =  - (\sigma \sigma \prime ) - 1\mu 
Vx

Vxx
.

Define a2 = \mu \prime (\sigma \sigma \prime ) - 1\mu ; then we obtain the following terminal-boundary problem:\left\{               

 - Vt +
a2

2

V 2
x

Vxx
 - rxVx = f(x, t) in \Omega T ,

V (0, t) =

\int T

t
f(0, s)ds+ g(0), 0 < t < T,

V (x, T ) = \varphi (x), x > 0.

(3.4)

We will show that this problem has a (unique) solution \widehat V \in C2,1(\Omega T )
\bigcap 
C(\Omega T ) which satisfies

(3.3) under Conditions I--III (see Theorem 4.6).

Remark 3.1. The concavity of the value function is attributed to the fact that there is no
restriction on borrowing. If the agent chooses the proportion on risky assets without limit, then
the terminal condition does not follow the utility function but satisfies its concave envelope,
and the concavity will be transferred to the interior of the region through the equation.
However, if there exists a borrowing constraint and the utility function is not concave, such
as given in [8], the value function may not be concave.

4. Main results. In this section, we prove the solvability of problem (3.4), and study the
behavior of the optimal strategy around the boundary and terminal time.

4.1. The solvability of (3.4). Note that (3.4) is a fully nonlinear and singular equation.
Since its dual equation is a standard quasi-linear equation, we start with the dual problem.
For the convenience of readers, we will first introduce some knowledge of dual transformation
and then derive the dual equation. The process is heuristic because the derivation depends
on some a priori assumptions on the primal problem. However, we are able to construct the
solution of problem (3.4) by inverse transformation and prove those a priori properties using
the conclusions of the dual problem.
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4.1.1. The dual transformation of \bfitvarphi (\bfitx ). First, we introduce the concept of dual trans-
formation.

Definition 4.1. If u : (0,+\infty ) \rightarrow \BbbR is increasing and concave on (0,+\infty ), then the dual
transformation is the function \widetilde u : (0,+\infty ) \rightarrow \BbbR \cup \{ +\infty \} such that

\widetilde u(y) = sup
x>0

(u(x) - xy), y > 0.

The next proposition collects some useful results utilized in this section.

Proposition 4.2. If \widetilde u is a decreasing function and is convex on (0,+\infty ), then the conjugate
relation is

u(x) = inf
y>0

(\widetilde u(y) + xy), x > 0.

Denote dom(\widetilde u) =
\bigl\{ 
y > 0

\bigm| \bigm| \widetilde u(y) < +\infty 
\bigr\} 
. Suppose that one of the two following equivalent

conditions is satisfied:
(i) u is differentiable on (0,+\infty );
(ii) \widetilde u is strictly convex on int(dom(\widetilde u)).

Then the derivative u\prime is a mapping from (0,+\infty ) into int(dom(\widetilde u)) \not = \emptyset and

u\prime (x) = argmin
y\geq 0

(\widetilde u(y) + xy) \forall x > 0.

Moreover, define \widetilde u\prime (y\pm ) = limz\rightarrow y\pm 
\widetilde u(z) - \widetilde u(y)

z - y ; then

\widetilde u\prime (y - ) \leq \widetilde u\prime (y+) \leq 0 \forall y \in dom(\widetilde u)
and

(4.1) argmax
x\geq 0

(u(x) - xy) =
\bigl\{ 
x \geq 0

\bigm| \bigm| u\prime (x) = y
\bigr\} 
=
\bigl[ 
 - \widetilde u\prime (y+), - \widetilde u\prime (y - )

\bigr] 
\forall y \in dom(\widetilde u).

If u is strictly concave, then \widetilde u is differentiable with \widetilde u\prime (y) =  - (u\prime ) - 1(y).
Finally, under the additional conditions

u\prime (0) = +\infty , u\prime (+\infty ) = 0,

we have int(dom(\widetilde u)) = dom(\widetilde u) = (0,+\infty ).

Proof. See Appendix B of [25].

Now define the dual transformation of \varphi (x) as

\widetilde \varphi (y) = sup
x>0

(\varphi (x) - xy), y > 0

(see Figure 4.1).
Then, by Proposition 4.2, \widetilde \varphi (y) is a decreasing and convex function and

\varphi (x) = inf
y>0

(\widetilde \varphi (y) + xy).
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Figure 4.1. \widetilde \varphi (y).
Due to the fact that \varphi (x) is not strictly concave, we know that \widetilde \varphi (y) is not continuously

differentiable. In addition, since \widetilde \varphi (y) is convex, we can define

\widetilde \varphi \prime (y\pm ) = lim
z\rightarrow y\pm 

\widetilde \varphi (z) - \widetilde \varphi (y)
z  - y

.

Corresponding to the description of \varphi (x) in (2.8), we define

ym = \varphi \prime (x), x \in (xm, xm), m = 1, 2, . . . ,

and we have \widetilde \varphi \prime (ym+) =  - xm, \widetilde \varphi \prime (ym - ) =  - xm, m = 1, 2, . . .

(see Figure 4.2).

Figure 4.2. \widetilde \varphi \prime (y\pm ).

On the other hand,

(4.2) \widetilde \varphi (y) = sup
x>0

(\varphi (x) - xy) \geq \varphi (0) = g(0),

and by (2.6),

(4.3) \widetilde \varphi (y) = sup
x>0

(\varphi (x) - xy) \leq sup
x>0

\biggl( 
g(0) +M

1

\gamma 
x\gamma  - xy

\biggr) 
= g(0) +M

1
1 - \gamma 

1 - \gamma 

\gamma 
y

\gamma 
\gamma  - 1 .
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Due to (2.7), we obtain

(4.4) \widetilde \varphi (y) = sup
x>0

(\varphi (x) - xy) \geq \varphi 

\biggl( 
1

y

\biggr) 
 - 1 \rightarrow +\infty , y \rightarrow 0 + .

We will use these results later.

4.1.2. The dual problem of (3.4). Now we define a dual transformation of V (x, t). For
any t \in (0, T ), define

v(y, t) = sup
x>0

(V (x, t) - xy), y > 0.(4.5)

Based on the assumption V \in C2,1(\Omega T ) and (3.3), we further take the a priori assumption
that

Vx(0+, t) = +\infty , Vx(+\infty , t) = 0.(4.6)

Then the optimal x, corresponding to a fixed y (> 0), satisfies

\partial x(V (x, t) - xy) = Vx(x, t) - y = 0,

i.e.,

x = I(y, t) := (Vx(\cdot , t)) - 1(y),(4.7)

and thus

v(y, t) = V (I(y, t), t) - I(y, t)y.(4.8)

It follows from (4.8) that

vy(y, t) = Vx(I(y, t), t)Iy(y, t) - yIy(y, t) - I(y, t) =  - I(y, t),(4.9)

vyy(y, t) =  - Iy(y, t) =
 - 1

Vxx(I(y, t), t)
,(4.10)

vt(y, t) = Vt(I(y, t), t) + Vx(I(y, t), t)It(y, t) - yIt(y, t) = Vt(I(y, t), t).

Hence, from (3.4) we derive\left\{     
 - vt  - 

a2

2
y2vyy + ryvy = f( - vy, t) in \Omega T ,

v(y, T ) = \widetilde \varphi (y), y > 0.

(4.11)
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420 CHONGHU GUAN, XUN LI, AND WENXIN ZHOU

4.1.3. The solvability of problem (4.11).

Theorem 4.3. If Conditions I--III hold, then problem (4.11) has a solution

v \in C2,1(\Omega T )
\bigcap 

C
\Bigl( 
\Omega T

\bigcup 
\{ t = T\} 

\Bigr) 
satisfying \int T

t
f(0, s)ds+ \widetilde \varphi (y) \leq v(y, t) \leq 

\int T

t
f(0, s)ds+ g(0) +M

1
1 - \gamma eA(T - t) 1 - \gamma 

\gamma 
y

\gamma 
\gamma  - 1 ,(4.12)

vy(y, t) < 0,(4.13)

vyy(y, t) > 0(4.14)

in \Omega T , where A = a2

2
\gamma 

(1 - \gamma )2
+ \gamma r+1

1 - \gamma is a constant.

Proof. We prove it in Appendix A.2.

Lemma 4.4. vy satisfies

lim
y\rightarrow 0+

vy(y, t) =  - \infty , 0 < t < T,(4.15)

lim
y\rightarrow +\infty 

vy(y, t) = 0, 0 < t < T,(4.16)

lim
y\rightarrow +\infty 

yvy(y, t) = 0, 0 < t < T.(4.17)

Proof. For any t \in (0, T ), the first inequality in (4.12) and (4.4) implies limy\rightarrow 0+ v(y, t) \geq 
limy\rightarrow 0+ \widetilde \varphi (y) + \int T

t f(0, s)ds = +\infty . Since vyy > 0, for a fixed y0 > 0, we derive

vy(y, t) \leq 
v(y0, t) - v(y, t)

y0  - y
\rightarrow  - \infty , y \rightarrow 0 + .

Hence, we prove (4.15).
Owing to vyy > 0, for any y > 0, we have

vy(y, t) \geq 
v(y, t) - v(y2 , t)

y
2

.

Using (4.12), we get

vy(y, t) \geq 
\widetilde \varphi (y) - g(0) - M

1
1 - \gamma eA(T - t) 1 - \gamma 

\gamma 

\Bigl( 
y
2

\Bigr) \gamma 
\gamma  - 1

y
2

\geq  - Cy
1

\gamma  - 1 \rightarrow 0, y \rightarrow +\infty ,

where the last inequality above is derived due to (4.2). Furthermore,

yvy(y, t) \geq  - Cy
\gamma 

\gamma  - 1 \rightarrow 0, y \rightarrow +\infty .

Combining the result with vy < 0, we obtain (4.16) and (4.17).
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4.1.4. The solution of problem (3.4). Now, set

\widehat V (x, t) = inf
y>0

(v(y, t) + xy) \forall x > 0, 0 < t < T.(4.18)

We now prove that \widehat V (x, t) defined in (4.18) is the solution to problem (3.4).
According to (4.14), (4.15), and (4.16), the minimum solution to (4.18) is

(4.19) y\ast = argmin
y>0

(v(y, t) + xy) = J(x, t) := (vy(\cdot , t)) - 1( - x) \forall x > 0, 0 < t < T,

and thus

(4.20) \widehat V (x, t) = v(J(x, t), t) + xJ(x, t),

where J(x, t) \in C((0,+\infty )\times (0, T )) is decreasing in x.

Lemma 4.5. The function J defined in (4.19) satisfies

lim
x\rightarrow 0+

J(x, t) = +\infty , 0 < t < T,(4.21)

lim
x\rightarrow 0+

xJ(x, t) = 0, 0 < t < T,(4.22)

lim
x\rightarrow +\infty 

J(x, t) = 0, 0 < t < T.(4.23)

Proof. The above results (4.21), (4.22), and (4.23) can be directly derived from (4.16),
(4.17), and (4.15), respectively.

Theorem 4.6. The function \widehat V defined in (4.18) belongs to C2,1(\Omega T )
\bigcap 
C(\Omega T ) and is the

solution to problem (3.4). Moreover, it satisfies

\widehat Vx > 0, \widehat Vxx < 0 \forall x > 0, 0 < t < T(4.24)

and

lim
x\rightarrow 0+

\widehat Vx(x, t) = +\infty , lim
x\rightarrow +\infty 

\widehat Vx(x, t) = 0, 0 < t < T.(4.25)

Proof. It follows from (4.20) that

\widehat Vx(x, t) = vy(J(x, t), t)Jx(x, t) + xJx(x, t) + J(x, t) = J(x, t) > 0,(4.26) \widehat Vxx(x, t) = Jx(x, t) = \partial x[(vy(\cdot , t)) - 1(x)] =
 - 1

vyy(J(x, t), t)
< 0,(4.27)

\widehat Vt(x, t) = vy(J(x, t), t)Jt(x, t) + vt(J(x, t), t) + xJt(x, t) = vt(J(x, t), t).(4.28)

Then we derive \widehat V (x, t) \in C2,1(\Omega T ) and\Biggl( 
 - \widehat Vt +

a2

2

\widehat V 2
x\widehat Vxx

 - rx\widehat Vx + \beta \widehat V\Biggr) (x, t) = \Biggl(  - vt  - 
a2

2
y2vyy  - (\beta  - r)yvy + \beta v

\Biggr) 
(J(x, t), t) = 0.
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Next, we verify the boundary and terminal conditions. According to (4.21), (4.22), and
(4.12), we have

lim
x\rightarrow 0+

\widehat V (x, t) = lim
x\rightarrow 0+

[v(J(x, t), t) + xJ(x, t)] = lim
y\rightarrow +\infty 

v(y, t) =

\int T

t
f(0, t) + g(0), t \in (0, T ).

Then \widehat V satisfies the boundary condition in (3.4).
According to (4.12), we have v(y, t) \geq \widetilde \varphi (y). Also, we have

\widehat V (x, t) = inf
y>0

(v(y, t) + xy) \geq inf
y>0

(\widetilde \varphi (y) + xy) = \varphi (x).

On the other hand, we obtain

\widehat V (x, t) = inf
y>0

(v(y, t) + xy) \leq v(\varphi \prime (x), t) + x\varphi \prime (x).

Let t \rightarrow T - . Then we have

(4.29) lim sup
t\rightarrow T - 

\widehat V (x, t) \leq lim
t\rightarrow T - 

v(\varphi \prime (x), t) + x\varphi \prime (x) = \widetilde \varphi (\varphi \prime (x)) + x\varphi \prime (x) = \varphi (x).

Hence, \widehat V satisfies the terminal condition in (3.4).
Actually, since \varphi \prime (x) is continuous and limt\rightarrow T - v(y) = \widetilde \varphi (y) is locally uniform to y, the

limit in (4.29) will be locally uniform to x.

4.1.5. Verification theorem. Now we present the following verification theorem.

Theorem 4.7. The solution \widehat V to problem (3.4) constructed in section 4.1.4 is the value
function V defined in (2.3). Moreover, the optimal portfolio in risky assets \pi \ast 

t is a continuous
vector function of the wealth x and the current time t, which can be expressed as

\widehat \pi (x, t) =  - (\sigma \sigma \prime ) - 1\mu 
\widehat Vx(x, t)\widehat Vxx(x, t)

.

Thus, \pi \ast 
s = \widehat \pi (Xs, s), t \leq s \leq T .

Proof. We prove it in Appendix A.3.

4.2. Behavior of strategy around boundary and terminal line. In this part, we further
study the behavior of \pi \ast around x = 0 and t = T .

4.2.1. Behavior of strategy around \bfitx = 0.

Lemma 4.8. The solution to problem (4.11) has the following limits:

lim
y\rightarrow +\infty 

y2vyy(y, t) = 0, 0 < t < T,(4.30)

lim
y\rightarrow +\infty 

vt(y, t) =  - f(0, t), 0 < t < T.(4.31)

Proof. We prove it in Appendix A.4.
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Following Lemma 4.8, we have the following.

Theorem 4.9. \widehat \pi satisfies

lim
x\rightarrow 0+

\widehat \pi (x, t) = lim
x\rightarrow 0+

\Biggl[ 
 - (\sigma \sigma \prime ) - 1\mu 

\widehat Vx(x, t)\widehat Vxx(x, t)

\Biggr] 
= 0, 0 < t < T.(4.32)

Proof. By (4.26), (4.27), and (4.30), we derive

lim
x\rightarrow 0+

\widehat Vx(x, t)\widehat Vxx(x, t)
= lim

y\rightarrow +\infty 
( - yvyy(y, t)) = lim

y\rightarrow +\infty 

1

y
lim

y\rightarrow +\infty 
( - y2vyy(y, t)) = 0.

Generally speaking, in order to prevent bankruptcy, when wealth is scarce, we should
avoid investing in risky securities to reduce risk.

4.2.2. Behavior of strategy around \bfitt = \bfitT .

Lemma 4.10. vy satisfies

\widetilde \varphi \prime (y - ) \leq lim inf
t\rightarrow T - 

vy(y, t) \leq lim sup
t\rightarrow T - 

vy(y, t) \leq \widetilde \varphi \prime (y+), y > 0.(4.33)

Proof. For fixed y > 0, if (4.33) is not true, there exists a sequence \{ tn\} n\in \BbbZ + such that
limn\rightarrow \infty tn = T , and

\theta := lim
n\rightarrow \infty 

vy(y, tn) > \widetilde \varphi \prime (y+) (or < \widetilde \varphi \prime (y - )).

Note that

v(y, tn) = \widehat V ( - vy(y, tn), tn) + vy(y, tn)y.

Letting n \rightarrow \infty , we have

lim
n\rightarrow \infty 

v(y, tn) = \varphi ( - \theta ) + \theta y < max
x\geq 0

(\varphi (x) - xy) = \widetilde \varphi (y),
where the inequality above is due to (4.1). This contradicts limy\rightarrow T - v(y, t) = \widetilde \varphi (y). Thus, we
prove (4.33).

Lemma 4.11. Vx satisfies

(4.34) lim
t\rightarrow T - 

Vx(x, t) = \varphi \prime (x) = ym =
\varphi (xm) - \varphi (xm)

xm  - xm
, x \in (xm, xm), m = 1, 2, . . . .

Proof. For x \in (xm, xm), according to Lemma 4.10, for any small \varepsilon > 0, we have

lim inf
t\rightarrow T - 

vy(ym + \varepsilon , t) \geq \widetilde \varphi \prime ((ym + \varepsilon ) - ) \geq \widetilde \varphi \prime (ym+)

=  - xm >  - x >  - xm

= \widetilde \varphi \prime (ym - ) \geq \widetilde \varphi \prime ((ym  - \varepsilon )+) \geq lim sup
t\rightarrow T - 

vy(ym  - \varepsilon , t).
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If t is sufficiently close to T , then

vy(ym + \varepsilon , t) >  - x > vy(ym  - \varepsilon , t).

Due to the fact that vyy > 0, we get

ym + \varepsilon > (vy(\cdot , t)) - 1( - x) > ym  - \varepsilon ,

i.e.,
ym + \varepsilon > Vx(x, t) > ym  - \varepsilon .

Thus, we get
ym + \varepsilon \geq lim sup

t\rightarrow T - 
Vx(x, t) \geq lim inf

t\rightarrow T - 
Vx(x, t) \geq ym  - \varepsilon .

Since \varepsilon is arbitrary, we obtain the desired result of (4.34).

Theorem 4.12. When t \rightarrow T - , we have 1\widehat \pi (x,t) \rightarrow 0 in L1([b, c]) for any fixed [b, c] \subset 
(xm, xm), i.e., \int c

b

1\widehat \pi (x, t)dx \rightarrow 0, t \rightarrow T  - .

Proof. Using Lemma 4.11, we get\int c

b

1\widehat \pi (x, t)dx =
 - 1

(\sigma \sigma \prime ) - 1\mu 

\int c

b

\widehat Vxx(x, t)\widehat Vx(x, t)
dx

=
 - 1

(\sigma \sigma \prime ) - 1\mu 

\Bigl[ 
ln(\widehat Vx(c, t)) - ln(\widehat Vx(b, t))

\Bigr] 
\rightarrow  - 1

(\sigma \sigma \prime ) - 1\mu 

\Bigl[ 
ln(ym) - ln(ym)

\Bigr] 
= 0, t \rightarrow T  - .

This conclusion is consistent with Theorem 2.1. In the sense of finance, if your utility of
the wealth level is locally convex, when moving towards the end of the trading activities, one
makes a wild bet. This will improve one's happiness in the long run.

5. An example: Carpenter's model with uncontrollable exit time. In this section, we
give a specific application example on our general model.

The compensation of the manager is the sum of the payoff of a call option on the remaining
assets and a constant compensation K > 0 when he/she leaves the market. Suppose that the
strike price b > 0 is postulated as a constant; then the compensation is denoted as

Y\tau = (X\tau  - b)+ +K,

where \tau is the exit time.
The manager chooses an investment policy to maximize his/her expected utility of wealth

at any possible future exit time. The utility function U , which shows the behavior of the
risk-averse manager, is strictly increasing and strictly concave. It can be expressed as

U(y) =
1

\gamma 
y\gamma 
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with 0 < \gamma < 1.
We suppose that there is an exit time and the investor may leave the financial market for

some uncontrollable reasons (see, e.g., [26, 27, 33, 32]). At time t, the exit time denoted by \tau 
is usually considered to be a random variable under exponential distribution with mean value
1
\lambda , and it is assumed to be independent of \{ \scrF t\} . Therefore,

\BbbP (\tau \leq s| \tau > t) = 1 - e - \lambda (s - t).

Hence, we can adopt the value function as the expectation of discounted utility on compen-
sation

Vd(x, t) = sup
\pi 

\BbbE 
\Bigl[ 
e - \beta (T - t)g(X\tau \wedge T )

\bigm| \bigm| \bigm| \tau > t
\Bigr] 

= sup
\pi 

\BbbE 
\biggl[ \int T

t
\lambda e - (\beta +\lambda )(s - t)g(Xs)ds+ e - (\beta +\lambda )(T - t)g(XT )

\biggr] 
,

where the constant \beta > 0 is the discounted rate and

g(x) := U [(x - b)+ +K] =
1

\gamma 
((x - b)+ +K)\gamma .

Denote \varphi (x) as its concave envelope; see Figure 5.1.

Figure 5.1. \varphi (x).

Let V (x, t) = e(\beta +\lambda )(T - t)Vd(x, t); then

V (x, t) = sup
\pi 

\BbbE 
\biggl[ \int T

t
\lambda e - (\beta +\lambda )(s - T )g(Xs)ds+ g(XT )

\biggr] 
.

Note that

g(x) =

\biggl[ 
1

\gamma 
((x - b)+ +K)\gamma  - K\gamma  - 1(x - b)+

\biggr] 
 - 
\Bigl[ 
 - K\gamma  - 1(x - b)+

\Bigr] 
,

where 1
\gamma ((x  - b)+ + K)\gamma  - K\gamma  - 1(x  - b)+ and  - K\gamma  - 1(x  - b)+ are concave functions in x.

Therefore, g(x) and f(x, t) = e - (\beta +\lambda )(T - t)g(x) satisfy Conditions I--III. Thus, we can use the
conclusions of the general case to obtain V \in C2,1(\Omega T )

\bigcap 
C(\Omega T ) and the behavior of optimal

strategy \pi \ast 
t when x \rightarrow 0 and t \rightarrow T .
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6. Conclusion. In Theorem 4.3, we prove that the value function V (x, t) defined in (2.3)
is a C2,1 smooth function and is strictly increasing and strictly concave in x under Conditions
I--III. Moreover, it follows from (4.25) that the value function increases rapidly when x is
small. In Theorem 4.7, we demonstrate that the optimal strategy \pi \ast is a continuous function
of the current wealth and current time. In Theorem 4.9, we prove that when x approaches
zero, \pi \ast also approaches zero. This means that we recommend not to take much more risk
when the wealth approaches the bankruptcy. In Theorem 4.12, we prove that if x belongs
to the set

\bigl\{ 
x > 0

\bigm| \bigm| \varphi (x) > g(x)
\bigr\} 
, which is the nonconcave region of g(x), then \pi \ast approaches

infinity when t approaches to T . This means that it is worth it to seek risk in this situation.

Appendix A.

A.1. Proof of Theorem 2.1.

Proof. The proof of Theorem 2.1 can be accomplished by proving lim supt\rightarrow T - V (x, t) \leq 
\varphi (x) and lim inft\rightarrow T - V (x, t) \geq \varphi (x). We begin with proving the two inequalities, respectively.

Proof of the first inequality. Define

\zeta s = e - (r+ 1
2
\mu \prime (\sigma \prime \sigma ) - 1\mu )s - \mu \prime \sigma  - 1Ws ;

then we get

d\zeta s = \zeta s
\bigl( 
 - rds - \mu \prime \sigma  - 1dWs

\bigr) 
,

and

d(\zeta sXs) = \zeta sdXs +Xsd\zeta s + d\zeta sdXs

= \zeta s[(rXs + \mu \prime \pi s)ds+ \pi \prime 
s\sigma dWs  - rXsds - \mu \prime \sigma  - 1XsdWs  - (\mu \prime \sigma  - 1)(\pi \prime 

s\sigma )
\prime ds]

= \zeta s[\pi 
\prime 
s\sigma  - \mu \prime \sigma  - 1Xs]dWs.(A.1)

Thus, \zeta sXs is a positive local martingale and thus a supermartingale. For any admissible \pi ,
by Jensen's inequality, we have

\BbbE 
\biggl[ 
\varphi 

\biggl( 
\zeta T
\zeta t

XT

\biggr) \biggr] 
\leq \varphi 

\biggl( 
\BbbE 
\biggl[ 
\zeta T
\zeta t

XT

\biggr] \biggr) 
\leq \varphi (x).

Then

lim sup
t\rightarrow T - 

sup
\pi 

\BbbE 
\biggl[ 
\varphi 

\biggl( 
\zeta T
\zeta t

XT

\biggr) \biggr] 
\leq \varphi (x).(A.2)

We now prove

lim
t\rightarrow T - 

sup
\pi 

\BbbE 
\biggl[ \bigm| \bigm| \bigm| \bigm| \varphi (XT ) - \varphi 

\biggl( 
\zeta T
\zeta t

X\tau 

\biggr) \bigm| \bigm| \bigm| \bigm| \biggr] = 0.(A.3)

It is not hard to check from (2.5) that for all 0 < y < x,

| \varphi (x) - \varphi (y)| \leq C| x - y| \gamma .
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Indeed, by (2.5), we derive

g(x) \leq g(y) + C| x - y| \gamma \leq \varphi (y) + C| x - y| \gamma .

Since \varphi (y) + C| x - y| \gamma is concave on x for any fixed y, we obtain

\varphi (x) \leq \varphi (y) + C| x - y| \gamma .

Thus, for any admissible \pi , we get

\BbbE 
\biggl[ \bigm| \bigm| \bigm| \bigm| \varphi (XT ) - \varphi 

\biggl( 
\zeta T
\zeta t

XT

\biggr) \bigm| \bigm| \bigm| \bigm| \biggr] \leq C\BbbE 
\biggl[ \biggl( 

\zeta T
\zeta t

XT

\biggr) \gamma \bigm| \bigm| \bigm| \bigm| \zeta t\zeta T  - 1

\bigm| \bigm| \bigm| \bigm| \gamma \biggr] .
Using the H\"older inequality, we obtain

\BbbE 
\biggl[ \bigm| \bigm| \bigm| \bigm| \varphi (XT ) - \varphi 

\biggl( 
\zeta T
\zeta t

XT

\biggr) \bigm| \bigm| \bigm| \bigm| \biggr] \leq C

\biggl[ 
\BbbE 
\biggl( 
\zeta T
\zeta t

XT

\biggr) \biggr] \gamma \biggl( 
\BbbE 
\biggl[ \bigm| \bigm| \bigm| \bigm| \zeta t\zeta T  - 1

\bigm| \bigm| \bigm| \bigm| \gamma 
1 - \gamma 
\biggr] \biggr) 1 - \gamma 

\leq Cx\gamma 
\biggl( 
\BbbE 
\biggl[ \bigm| \bigm| \bigm| \bigm| \zeta t\zeta T  - 1

\bigm| \bigm| \bigm| \bigm| \gamma 
1 - \gamma 
\biggr] \biggr) 1 - \gamma 

.

Hence,

lim
t\rightarrow T - 

sup
\pi 

\BbbE 
\biggl[ \bigm| \bigm| \bigm| \bigm| \varphi (XT ) - \varphi 

\biggl( 
\zeta T
\zeta t

XT

\biggr) \bigm| \bigm| \bigm| \bigm| \biggr] \leq Cx\gamma lim
t\rightarrow T - 

\biggl( 
\BbbE 
\biggl[ \bigm| \bigm| \bigm| \bigm| \zeta t\zeta T  - 1

\bigm| \bigm| \bigm| \bigm| \gamma 
1 - \gamma 
\biggr] \biggr) 1 - \gamma 

= 0.

Meanwhile, we turn to proving

lim
t\rightarrow T - 

sup
\pi 

\BbbE 
\biggl[ \int T

t
f(Xs, s)ds

\biggr] 
= 0.(A.4)

Using (2.6), we have

\BbbE 
\biggl[ \int T

t
f(Xs, s)ds

\biggr] 
\leq \BbbE 

\biggl[ \int T

t
CX\gamma 

s ds

\biggr] 
+ \BbbE 

\biggl[ \int T

t
f(0, s)ds

\biggr] 
\leq C

\int T

t

\biggl( 
\BbbE 
\biggl[ \bigm| \bigm| \bigm| \bigm| \zeta s\zeta tXs

\bigm| \bigm| \bigm| \bigm| \biggr] \biggr) \gamma \biggl( 
\BbbE 
\biggl[ \bigm| \bigm| \bigm| \bigm| \zeta t\zeta s

\bigm| \bigm| \bigm| \bigm| \gamma 
1 - \gamma 
\biggr] \biggr) 1 - \gamma 

ds+ \BbbE 
\biggl[ \int T

t
f(0, s)ds

\biggr] 
= C

\int T

t
x\gamma 
\biggl( 
\BbbE 
\biggl[ \bigm| \bigm| \bigm| \bigm| \zeta t\zeta s

\bigm| \bigm| \bigm| \bigm| \gamma 
1 - \gamma 
\biggr] \biggr) 1 - \gamma 

ds+

\int T

t
f(0, s)ds.

Note that the right-hand side of the last equality above is independent of \pi . Let t \rightarrow T - , and
we have (A.4).

Therefore, by (A.2), (A.3), and (A.4), we get

lim sup
t\rightarrow T - 

V (x, t) = lim sup
t\rightarrow T - 

sup
\pi 

\BbbE 
\biggl[ \int T

t
f(Xs, s)ds+ g(XT )

\biggr] 
= lim sup

t\rightarrow T - 
sup
\pi 

\BbbE 
\bigl[ 
g(XT )

\bigr] 
\leq lim sup

t\rightarrow T - 
sup
\pi 

\BbbE 
\bigl[ 
\varphi (X\tau )

\bigr] 
\leq lim sup

t\rightarrow T - 
sup
\pi 

\BbbE 
\biggl[ 
\varphi 

\biggl( 
\zeta \tau 
\zeta t
X\tau 

\biggr) \biggr] 
+ lim

t\rightarrow T - 
sup
\pi 

\BbbE 
\biggl[ \bigm| \bigm| \bigm| \bigm| \varphi (X\tau ) - \varphi 

\biggl( 
\zeta \tau 
\zeta t
X\tau 

\biggr) \bigm| \bigm| \bigm| \bigm| \biggr] 
\leq \varphi (x).
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Thus, we prove that lim supt\rightarrow T - V (x, t) \leq \varphi (x).
Proof of the second inequality. For fixed t < T , if x \in 

\bigl\{ 
x
\bigm| \bigm| \varphi (x) = g(x)

\bigr\} 
, set \pi = 0 and we

can get
V (x, t) \geq g(x) = \varphi (x).

So lim inft\rightarrow T - V (x, t) \geq \varphi (x).
Otherwise, if x \in (xm, xm) for an m \in \BbbZ , we choose strategy \pi s = \pi N

s for each N \in \BbbZ + to
make the coefficient of (A.1) with corresponding wealth process Xs = XN

s satisfying

\zeta s
\zeta t

\bigl[ 
(\pi N

s )\prime \sigma  - \mu \prime \sigma  - 1XN
s

\bigr] 
= (aNs )\prime := N\chi \bigl\{ 

xm< \zeta s
\zeta t

XN
s <xm

\bigr\} I \prime n \forall N > 0,

where In is an n-dimensional unit column vector. Let Y N
s = \zeta s

\zeta t
XN

s . Then using (A.1) we
have

dY N
s = (aNs )\prime dWs, t \leq s \leq T.

It is not hard to obtain that

xm \leq Y N
s \leq xm, t \leq s \leq T.

Since

\{ xm < Y N
T < xm\} = \{ xm < Y N

s = x+NI \prime n(Ws  - Wt) < xm, t \leq s \leq T\} 
\subset \{ xm < x+NI \prime n(WT  - Wt) < xm\} ,

we have

\BbbP (xm < Y N
T < xm) \leq \BbbP (xm < x+NI \prime n(WT  - Wt) < xm) \rightarrow 0, N \rightarrow \infty .

Then we get

xm\BbbP (Y N
T = xm) + xm\BbbP (Y N

T = xm) \rightarrow \BbbE Y N
T = x, N \rightarrow \infty .

Therefore,

lim
N\rightarrow \infty 

\BbbP (Y N
T = xm) =

xm  - x

xm  - xm
, lim

N\rightarrow \infty 
\BbbP (Y N

T = xm) =
x - xm
xm  - xm

.

Hence,

lim
N\rightarrow \infty 

\BbbE [g(Y N
T )] =

xm  - x

xm  - xm
g(xm) +

x - xm
xm  - xm

g(xm) = \varphi (x).

Thus, since Y N is bounded,

sup
\pi 

\BbbE 
\biggl[ \biggl( 

\zeta T
\zeta t

XT

\biggr) \biggr] 
\geq lim

N\rightarrow \infty 
\BbbE [g(Y N

T )] = \varphi (x).

Further, similar to (A.3), we have

lim
t\rightarrow T - 

sup
\pi 

\BbbE 
\biggl[ \bigm| \bigm| \bigm| \bigm| g(XT ) - g

\biggl( 
\zeta T
\zeta t

XT

\biggr) \bigm| \bigm| \bigm| \bigm| \biggr] = 0.
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Hence,

lim inf
t\rightarrow T - 

V (x, t) \geq lim inf
t\rightarrow T - 

sup
\pi 

\BbbE 
\Bigl[ 
g(XT )

\Bigr] 
\geq lim inf

t\rightarrow T - 
sup
\pi 

\BbbE 
\biggl[ 
g

\biggl( 
\zeta T
\zeta t

XT

\biggr) \biggr] 
 - lim

t\rightarrow T - 
sup
\pi 

\BbbE 
\biggl[ \bigm| \bigm| \bigm| \bigm| g(XT ) - g

\biggl( 
\zeta T
\zeta t

XT

\biggr) \bigm| \bigm| \bigm| \bigm| \biggr] 
\geq \varphi (x).

We prove the desired result.

A.2. Proof of Theorem 4.3.

Proof. Denote the lower bound and upper bound in (4.12) by w(y, t) and W (y, t), respec-
tively, i.e.,

w(y, t) =

\int T

t
f(0, s)ds+ \widetilde \varphi (y),

W (y, t) =

\int T

t
f(0, s)ds+ g(0) +M

1
1 - \gamma eA(T - t) 1 - \gamma 

\gamma 
y

\gamma 
\gamma  - 1 .

From (4.3) we see that W (y, t) \geq w(y, t).
Consider the approximation problem on bounded domain \Omega N

T := (1/N,N) \times (0, T ) as
follows: \left\{               

 - vNt  - a2

2 y
2vNyy + ryvNy = f(| vNy | , t) in \Omega N

T ,

vN (1/N, t) = w(1/N, t), 0 < t < T,

vN (N, t) = w(N, t), 0 < t < T,

vN (y, T ) = \widetilde \varphi (y), 1/N < y < N.

(A.5)

By the theorem of a quasi-linear equation, since f(x, t) is H\"older continuous, we obtain a

solution vN \in C2,1(\Omega N
T )
\bigcap 
C(\Omega N

T ) to (A.5) (see [22, 24]).
In the following, we prove

w \leq vN \leq W in \Omega N
T .(A.6)

Note that

wt(y, t) =  - f(0, t), wy(y, t) \leq 0, wyy(y, t) \geq 0.

Thus,

 - wt  - 
a2

2
y2wyy + rywy  - f(| wy| , t) \leq f(0, t) - f( - wy, t) \leq 0.

Together with w = vN on \partial p\Omega 
N
T , using the comparison principle (see [12]), we know that w is

a subsolution of (A.5).
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430 CHONGHU GUAN, XUN LI, AND WENXIN ZHOU

On the other hand, note that

 - Wt  - 
a2

2
y2Wyy + ryWy  - f(| Wy| , t)

= f(0, t) +M
1

1 - \gamma eA(T - t)y
\gamma 

\gamma  - 1

\biggl( 
1 - \gamma 

\gamma 
A - a2

2

1

1 - \gamma 
 - r

\biggr) 
 - f

\Bigl( 
M

1
1 - \gamma eA(T - t)y

1
\gamma  - 1 , t

\Bigr) 
\geq f(0, t) +M

1
1 - \gamma eA(T - t)y

\gamma 
\gamma  - 1

\biggl( 
1 - \gamma 

\gamma 
A - a2

2

1

1 - \gamma 
 - r

\biggr) 
 - f(0, t) - M

1
1 - \gamma 

1

\gamma 
eA\gamma (T - t)y

\gamma 
\gamma  - 1

\geq M
1

1 - \gamma eA(T - t)y
\gamma 

\gamma  - 1

\biggl( 
1 - \gamma 

\gamma 
A - a2

2

1

1 - \gamma 
 - r  - 1

\gamma 

\biggr) 
\geq 0,

where the first inequality is derived due to (2.5). Together with W \geq w = vN on \partial p\Omega 
N
T , using

the comparison principle, we obtain that W is a supersolution of (A.5).
Using uniform Schauder interior estimation (see [21]), letting N \rightarrow +\infty we obtain a

solution v \in C2,1(\Omega T )
\bigcap 
C(\Omega T

\bigcup 
\{ t = T\} ) to problem\Biggl\{ 

 - vt  - a2

2 y
2vyy + ryvy = f(| vy| , t) in \Omega T ,

v(y, T ) = \widetilde \varphi (y), y > 0,
(A.7)

satisfying (4.12).
In the following, we prove

vy \leq 0, vyy \geq 0 in \Omega T .

Since v satisfies the power growth condition for y \rightarrow 0 and y \rightarrow +\infty , we can prove vy and vyy,
or at least their approximations, which satisfy the power growth condition, so that we can use
the maximum principle in the unbounded domain \Omega T . On the other hand, we may assume
that f \in C(\Omega T ) and \varphi \in C2((0,+\infty )) in proving vy \leq 0 and vyy \geq 0 since we can adopt the
approximation approach. The discussion is tedious, so we put it in Appendix B.

Differentiating the equation in (A.7) w.r.t. y, we have

(A.8)  - \partial tvy  - 
a2

2
y2\partial yyvy + (r  - a2)y\partial yvy + rvy  - fx(| vy| , t) sgn(vy)vyy = 0.

Differentiate w.r.t. y again, we get

(A.9)  - \partial tvyy  - \partial y

\Bigl[ a2
2
y2\partial yvyy

\Bigr] 
+ (r  - a2)y\partial yvyy + (2r  - a2)vyy + \partial y

\Bigl[ 
fx( - vy, t)vyy

\Bigr] 
= 0.

Owing to v(y, T ) = \widetilde \varphi (y) being decreasing and convex, we obtain vy \leq 0 and vyy \geq 0 by using
the maximum principle.

Now we further prove
vy < 0, vyy > 0 in \Omega T .

Using (A.8) and the strong maximum principle, we have vy < 0 in \Omega T .
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Applying (3.2), (A.9) can be rewritten as

 - \partial tvyy  - \partial y

\Bigl[ a2
2
y2\partial yvyy +Q( - vy, t)vyy

\Bigr] 
+ (r  - a2)y\partial yvyy + (2r  - a2)vyy

=  - \partial y

\Bigl[ 
P ( - vy, t)vyy

\Bigr] 
.

It can be further changed into

 - \partial tvyy  - \partial y

\Bigl[ a2
2
y2\partial yvyy +Q( - vy, t)vyy

\Bigr] 
+ [(r  - a2)y + P ( - vy, t)]\partial yvyy + (2r  - a2)vyy

=  - \partial yP ( - vy, t)vyy.

We regard it as a linear PDE in vyy with divergence form. Define a parabolic operator \scrL as

\scrL u :=  - \partial tu - \partial y

\Bigl[ a2
2
y2\partial yu+Q( - vy, t)u

\Bigr] 
+ [(r  - a2)y + P ( - vy, t)]\partial yu+ (2r  - a2)u;

then we have

\scrL vyy =  - \partial yP ( - vy, t)vyy.

Noting that P (x, t) and Q(x, t) are increasing in x and  - vy(y, t) is decreasing in y, we have
that P ( - vy(y, t), t) and Q( - vy(y, t), t) are decreasing in y. So

 - \partial yP ( - vy, t) \geq 0,  - \partial yQ( - vy, t) \geq 0

in the weak sense. Therefore,

\scrL vyy \geq 0.

Using the strong maximum principle, we have vyy > 0.

A.3. Proof of Theorem 4.7.

Proof. Here we present the proof of the verification theorem. Before that, we introduce
the dynamic programming principle (see [25]) to (2.3). For any stopping time \theta ,

V (x, t) = sup
\pi 

\BbbE 
\biggl[ \int T\wedge \theta 

t
f(x, s)ds+ V (XT\wedge \theta , T \wedge \theta )

\biggr] 
.

Set \theta = T  - \varepsilon ; then we have

V (x, t) = sup
\pi 

\BbbE 
\biggl[ \int T - \varepsilon 

t
f(x, s)ds+ V (XT - \varepsilon , T  - \varepsilon )

\biggr] 
.

Taking \varepsilon \rightarrow 0 in the above, using (2.9), we get

V (x, t) = sup
\pi 

\BbbE 
\biggl[ \int T

t
f(Xs, s)ds+ \varphi (XT )

\biggr] 
, t < T.(A.10)
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This means that definition (2.3) is equivalent to (A.10), where g(x) is replaced by \varphi (x).

We will prove that \widehat V (x, t) constructed by (4.18) satisfies (A.10). Fix x > 0 and t < T ,

for any admissible \pi s, if Xs satisfies (2.2); since \widehat V (x, t) \in C2,1(\Omega T )
\bigcap 
C(\Omega T ), we can use It\^o's

formula and get

\BbbE [\widehat V (XT - \varepsilon , T  - \varepsilon ) - \widehat V (x, t)] = \BbbE 
\biggl[ \int T - \varepsilon 

t

\biggl[ \widehat Vt +
1

2
(\pi \prime \sigma \sigma \prime \pi )\widehat Vxx + \mu \prime \widehat \pi \widehat Vx  - rx\widehat Vx

\biggr] 
(Xs, s)ds

\biggr] 
\leq  - \BbbE 

\biggl[ \int T - \varepsilon 

t

\biggl[ 
 - \widehat Vt  - max

\pi 

\biggl[ 
1

2
(\pi \prime \sigma \sigma \prime \pi )\widehat Vxx + \mu \prime \widehat \pi \widehat Vx

\biggr] 
 - rx\widehat Vx

\biggr] 
(Xs, s)ds

\biggr] 
=  - \BbbE 

\biggl[ \int T - \varepsilon 

t

f(Xs, s)ds

\biggr] 
.

Letting \varepsilon \rightarrow 0, we have

\widehat V (x, t) \geq \BbbE 
\biggl[ \int T

t
f(Xs, s)ds+ \varphi (XT )

\biggr] 
.

Therefore,

\widehat V (x, t) \geq sup
\pi 

\BbbE 
\biggl[ \int T

t
f(Xs, s)ds+ \varphi (XT )

\biggr] 
.

On the other hand, define

\widehat \pi (x, t) =  - (\sigma \sigma \prime ) - 1\mu 
\widehat Vx(x, t)\widehat Vxx(x, t)

.

Let \widehat Xs be the solution of the following SDE:\Biggl\{ 
dXs =(rXs + \mu \prime \widehat \pi (Xs, s))ds+ \widehat \pi \prime (Xs, s)\sigma dWs, s \geq t,

Xt =x.

By It\^o's formula, we get

\BbbE [\widehat V (x, T  - \varepsilon ) - \widehat V (x, t)] = \BbbE 
\biggl[ \int 

t

\biggl[ \widehat Vt +
1

2
(\widehat \pi \prime \sigma \sigma \prime \widehat \pi )\widehat Vxx + \mu \prime \widehat \pi \widehat Vx  - rx\widehat Vx

\biggr] 
( \widehat Xs, s)ds

\biggr] 
= \BbbE 

\biggl[ \int T - \varepsilon 

t

\biggl[ \widehat Vt  - 
a2

2

\widehat Vx\widehat Vxx

+ rx\widehat Vx

\biggr] 
( \widehat Xs, s)ds

\biggr] 
=  - \BbbE 

\biggl[ \int T - \varepsilon 

t
f( \widehat Xs, s)ds

\biggr] 
.

Letting \varepsilon \rightarrow 0, we have

\widehat V (x, t) = \BbbE 
\biggl[ \int T

t
f( \widehat Xs, s)ds+ \varphi ( \widehat XT )

\biggr] 
.

Thus,

\widehat V (x, t) \leq sup
\pi 

\BbbE 
\biggl[ \int T

t
f(Xs, s)ds+ \varphi (XT )

\biggr] 
.
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A.4. Proof of Lemma 4.8.

Proof. Let z = ln y, u(z, t) = v(y, t) - \varphi (0) - 
\int T
t f(0, s)ds. Thus,

vt = ut  - f(0, t), yvy = uz, y2vyy = uzz  - uz.

Then, by (4.11), we get

\left\{     
 - ut  - 

a2

2
uzz +

\Bigl( 
r +

a2

2

\Bigr) 
uz = f( - e - zuz, t) - f(0, t),  - \infty < z < +\infty , 0 < t < T,

u(z, T - ) = \widetilde \varphi (ez) - \varphi (0),  - \infty < z < +\infty .

(A.11)

According to (4.12) and (4.17), we know that

lim
z\rightarrow +\infty 

u(z, t) = 0, 0 < t < T,(A.12)

lim
z\rightarrow +\infty 

uz(z, t) = 0, 0 < t < T.(A.13)

In order to prove (4.30) and (4.31), we only need to prove

lim
z\rightarrow +\infty 

uzz(z, t) = 0, 0 < t < T,(A.14)

lim
z\rightarrow +\infty 

ut(z, t) = 0, 0 < t < T.(A.15)

Set Qb,c
\delta = \{ (z, t)| b < z < c, \delta < t < T  - \delta \} . For any c > b > 0, we apply the W 2,1

p interior
estimate (see [22]). For p > 3, we obtain

| u| 
W 2,1

p (Qn - 1,n+2
\delta /2

)
\leq C

\Bigl( 
| u| 

Lp(Q
n - 2,n+3
\delta /3

)
+ | f( - e - zuz, t) - f(0, t)| 

Lp(Q
n - 2,n+3
\delta /3

)

\Bigr) 
,

where C is independent of n. Using (A.12), (A.13), and the H\"older continuity of f(x, t), we
have

lim
n\rightarrow +\infty 

| u| 
W 2,1

p (Qn - 1,n+2
\delta /2

)
= 0.

By the Sobolev embedding theorem, we get limn\rightarrow +\infty | uz| \alpha , Qn - 1,n+2
\delta /2

= 0 (0 < \alpha < 1  - 3
p).

Applying the Schauder interior estimate, we obtain

| u| 
2+\alpha , Qn,n+1

\delta 
\leq C

\Bigl( 
| u| 

0, Qn - 1,n+2
\delta /2

+ | f( - e - zuz, t) - f(0, t)| 
\alpha , Qn - 1,n+2

\delta /2

\Bigr) 
.

Thus, we have limn\rightarrow +\infty | u| 
2+\alpha , Qn,n+1

\delta 
= 0, which implies (A.14) and (A.15) (see [22]).

Appendix B. A note on the proof of \bfitv \bfity \leq 0 and \bfitv \bfity \bfity \geq 0. In this section, we discuss
the growth condition on proving vy \leq 0 and vyy \geq 0 in the proof of Theorem 2.1, using the
maximum principle.
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Let us suppose that f \varepsilon \in C(\Omega T ) and \varphi \varepsilon \in C2((0,+\infty )), which are the approximates of f
and \varphi , keep all the properties given in Conditions I--III, and \widetilde \varphi \varepsilon is the dual transformation of
\varphi \varepsilon , satisfying

sup
y>0

| \widetilde \varphi \prime 
\varepsilon (y)| + sup

y>0
| \widetilde \varphi \prime \prime 

\varepsilon (y)| + sup
(x,t)\in \Omega T

| f \varepsilon (x, t)| < 1

\varepsilon 
, y > 0, 0 < t < T,(B.1)

\widetilde \varphi \varepsilon \rightarrow \widetilde \varphi in C([b, c]) \forall [b, c] \subset ( - \infty ,+\infty ),

f \varepsilon \rightarrow f in C(Q) \forall Q \subset \subset \Omega T .

Denote v\varepsilon as the solution of the corresponding problem\Biggl\{ 
 - v\varepsilon t  - a2

2 y
2v\varepsilon yy + ryv\varepsilon y = f \varepsilon (| v\varepsilon y| , t) in \Omega T ,

v\varepsilon (y, T ) = \widetilde \varphi \varepsilon (y), 0 < y < +\infty .
(B.2)

Now we prove that v\varepsilon y and v\varepsilon yy satisfy the power growth condition for y \rightarrow 0 and y \rightarrow +\infty , so
that we can use the maximum principle in unbounded domain \Omega T .

Let z = ln y, u\varepsilon (z, t) = v\varepsilon (y, t) - \varphi \varepsilon (0) - 
\int T
t f \varepsilon (0, s)ds. Thus,

\left\{     
 - u\varepsilon t  - 

a2

2
u\varepsilon zz +

\Bigl( 
r +

a2

2

\Bigr) 
u\varepsilon z = f \varepsilon (| e - zu\varepsilon z| , t) - f \varepsilon (0, t),  - \infty < z < +\infty , 0 < t < T,

u\varepsilon (z, T - ) = \widetilde \varphi \varepsilon (ez) - \varphi \varepsilon (0),  - \infty < z < +\infty .

(B.3)

It only needs to prove that u\varepsilon z and u\varepsilon zz satisfy the exponential growth condition for z \rightarrow  - \infty 
and z \rightarrow +\infty .

Set Qb,c = \{ (z, t)| b < z < c, 0 < t < T\} . Applying the W 2,1
p interior estimate to (B.3), we

get

| u\varepsilon | W 2,1
p (Qn - 1,n+2) \leq C

\Bigl( 
| u\varepsilon | Lp(Qn - 2,n+3) + | \widetilde \varphi \varepsilon | W 2

p ((n - 2,n+3)) + | f\varepsilon (e - z| u\varepsilon 
z| , t) - f\varepsilon (0, t)| Lp(Qn - 2,n+3)

\Bigr) 
,

where C is independent of n. Using (B.1) and the Sobolev embedding theorem, we have

| u\varepsilon z| \alpha ,Qn - 1,n+2 \leq | u\varepsilon | 
W 2,1

p (Qn - 1,n+2)
\leq C

\Bigl( 
| u\varepsilon | 0,Qn - 2,n+3 +

1

\varepsilon 

\Bigr) 
.

Since u\varepsilon satisfies exponential growth condition (due to v\varepsilon satisfying the power growth condi-
tion), we derive that u\varepsilon z also satisfies the exponential growth condition.

Furthermore, applying the Schauder interior estimate to problem (B.3), we obtain

| u\varepsilon | 2+\alpha , Qn,n+1 \leq C
\Bigl( 
| u\varepsilon | 0, Qn - 1,n+2 + | \widetilde \varphi \varepsilon | 2+\alpha , Qn - 1,n+2 + | f \varepsilon (e - z| u\varepsilon z| , t) - f \varepsilon (0, t)| \alpha , Qn - 1,n+2

\Bigr) 
\leq C

\Bigl( 
| u\varepsilon | 0, Qn - 1,n+2 + | \widetilde \varphi \varepsilon | 2+\alpha , Qn - 1,n+2 + | f \varepsilon | \alpha , Qn - 1,n+2 | e - zu\varepsilon z| \alpha , Qn - 1,n+2

\Bigr) 
.

Since | \widetilde \varphi \varepsilon | 2+\alpha , Qn - 1,n+2, | f \varepsilon | \alpha , Qn - 1,n+2 are bounded, and u\varepsilon z satisfies the exponential growth
condition, we derive that u\varepsilon zz satisfies the exponential growth condition. Therefore, we obtain
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that v\varepsilon y and v\varepsilon yy satisfy the power growth condition. Thus, we can use the maximum principle
as in Appendix A.2 to prove that v\varepsilon y \leq 0 and v\varepsilon yy \geq 0 in unbounded domain \Omega T .

In the following, we prove that v, the solution of (4.11), is the limit of v\varepsilon . Rewrite the
equation in (B.2) as

 - v\varepsilon t  - 
a2

2
y2v\varepsilon yy + ryv\varepsilon y  - F \varepsilon v\varepsilon y = f \varepsilon (0, t) +G\varepsilon ,

where

F \varepsilon (y, t) =

\Biggl\{ 
f\varepsilon (| v\varepsilon y | ,t) - f\varepsilon (0,t)

v\varepsilon y
if | v\varepsilon y| > 1,

0 if | v\varepsilon y| \leq 1,

G\varepsilon (y, t) =

\biggl\{ 
0 if | v\varepsilon y| > 1,

f \varepsilon (| v\varepsilon y| , t) - f \varepsilon (0, t) if | v\varepsilon y| \leq 1.

Since f \varepsilon satisfies (2.5), we have

| F \varepsilon (y, t)| \leq M

\gamma 
\forall (y, t) \in \Omega T .

Also, since f \varepsilon (x, t) is increasing in x,

| G\varepsilon (y, t)| \leq f \varepsilon (1, t).

Now, for any fixed Q \subset \subset \Omega T , Q
\prime \subset \subset \Omega T \cup \{ t = T\} , we can use the W 2,1

p interior estimate
and the C\alpha interior estimate (see [22]) to get

| v\varepsilon | 
W 2,1

p (Q)
\leq CQ, | v\varepsilon | \alpha ,Q\prime \leq CQ\prime ,

where CQ and CQ\prime are independent of \varepsilon . Then there exists a subsequence of v\varepsilon converging to\widetilde v weakly in W 2,1
p, \mathrm{l}\mathrm{o}\mathrm{c}(\Omega T ) and uniformly in C\mathrm{l}\mathrm{o}\mathrm{c}(\Omega T \cup \{ t = T\} ). This means that \widetilde v satisfies the

equation, the terminal condition (4.11), and the growth condition (4.12), so \widetilde v = v.
Hence, vy \leq 0 and vyy \geq 0 can be deduced from v\varepsilon y \leq 0 and v\varepsilon yy \geq 0.
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