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Abstract

When the wealth is larger than some threshold in multi-period mean-variance asset-
liability management, the pre-committed policy is no longer mean-variance efficient policy
for the remaining investment horizon. To revise the pre-committed policy, by relaxing
self-financing constraint and allowing to withdraw some wealth, we derive a new domi-
nating policy, which is better than the corresponding pre-committed policy. The revised
policy can achieve the same mean-variance pair attained by the pre-committed policy, and
yields a nonnegative free cash flow stream over the investment horizon.

Key words: mean-variance model; free cash flow stream; wealth threshold; asset-liability
management.

1. Introduction

Markowitz (1952) introduced mean-variance (MV) model around 70 years ago. It is
a mathematical framework to find a portfolio of assets such that the expected return
is maximized for a given level of risk. In mean-variance framework, one formulates the
portfolio model into a bi-objective optimization problem according to the expected return
and the variance, which represent the gain and risk, respectively. In order to trace out the
efficient frontier for this bi-objective optimization problem, one typically puts weights on
the two criteria, turning it into a single-objective optimization problem.

After Markowitz’s seminal work for single-period, the dynamic version of MV model
did not make any progress for decades, because there is an inherent nonseparable structure
of the variance term in the sense of dynamic programming. In 1989, Richardson (1989)
studied the optimal MV policy in a continuous-time setting, followed by Bajeuxbesnainou
and Portrait (1998). Li and Ng (2000) and Zhou and Li (2000) adopted an embedding
technique to derive the optimal MV policy in multi-period setting and continuous-time
setting, respectively. Since then, the past twenty years have witnessed tremendous interests
and research efforts in dealing with dynamic MV portfolio selection problems as well as
their applications, such as Li et al. (2002); Zhou and Yin (2003); Hu and Zhou (2005);
Bielecki et al. (2005); Chiu and Li (2006) in continuous-time settings, Leippold et al.
(2004); Zhu et al. (2004); Liang et al. (2008); Cui et al. (2014); Ni et al. (2019) in multi-
period settings, Černỳ and Kallsen (2007, 2009) in semi-martingale framework.
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Meanwhile, in investment practices, financial institutions usually use liabilities to en-
hance their expected wealth. Therefore, the liability plays an important role in determin-
ing the investment portfolio. Sharpe and Tint (1990) first introduced the mean-variance
asset-liability management problem in single-period setting. Leippold et al. (2004) ex-
tended it to multi-period setting and derived the closed-form optimal policies under the
exogenous and endogenous liabilities. Li et al. (2017) employed the parameterized method
to tackle the multi-period mean-variance asset-liability management problem, and derived
the analytical optimal policies and the corresponding efficient frontier.

However, the global optimal MV policy, which is determined in the beginning of the in-
vestment and termed as pre-committed policy, is not always mean-variance efficient during
the investment. In multi-period mean-variance framework, Zhu et al. (2004) and Cui et al.
(2012) showed that if the wealth is larger than a threshold, the pre-committed policy is no
longer mean-variance efficient policy for the remaining investment horizon. To avoid such
irrational behavior, Cui et al. (2012) proposed a revised dominating policy by relaxing
the self-financing constraint and allowing to withdraw some wealth. They proved that the
dominating policy can achieve the same mean-variance pair attained by the pre-committed
policy and obtain some positive free cash flows over the investment time horizon.

In this paper, we mainly further develop the result in Cui et al. (2012), which originally
deals with for a multi-period mean-variance portfolio selection problem without liability,
and derive the dominating policy for the multi-period asset-liability management problem.
The organization of the rest of the paper is as follows. In Section 2, we present the pre-
committed mean-variance policy for the multi-period asset-liability management problem.
In Section 3, we provide the revised dominating policy and prove its properties. In Section
4, we consider a simple numerical example to illustrate our theoretical results. We conclude
our paper in Section 5.

2. Pre-committed mean-variance policy for multi-period asset-liability man-
agement problem

Consider a capital market consists of one risk-free asset, n risky assets and one liability.
The investment horizon is T (> 0). The variable rt (> 1) is the given deterministic return
of risk-free asset, the vector et = (e1t , · · · , ent )′ is the random total returns of the n risky
assets and qt is the random changing rate of the liability at the time period t, where
M ′ denotes the transpose of a vector or a matrix M . All the variables are defined on the
probability space (Ω,F , P ). In addition, (et, qt) is supposed to be statistically independent
at different time periods. An investor with an initial wealth x0 and initial liability l0 enters
the capital market at time 0. He/she can also adjust the portfolio at the beginning of each
following T − 1 consecutive periods. The global optimal pre-committed policy is denoted
as π∗

t = ((π1
t )

∗, (π2
t )

∗, · · · , (πn
t )

∗)′, t = 0, 1, · · · , T−1, which is the solution of the following
dynamic stochastic optimization problem,
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min Var(xT − lT ) ≡ E[(xT − lT − d)2],

s.t. E[xT − lT ] = d,

xt+1 = rt

(
xt −

n∑
i=1

πi
t

)
+

n∑
i=1

eitπ
i
t

= rtxt +P′
tπt,

lt+1 = qtlt, t = 0, 1, · · · , T − 1,

(1)

where Pt = (e1t − rt, · · · , ent − rt)
′ denotes the excess returns of the n risky assets.

According to Li et al. (2017), the pre-committed policy is given by

π∗
t = −E−1[PtP

′
t]E[Pt]rt

(
xt − γ∗

T−1∏
k=t

r−1
k

)
+

( T−1∏
k=t+1

E[qk]− B̂k

(1−Bk)rk

)
E−1[PtP

′
t]E[qtPt]lt,

(2)

where the parameters are defined as follows,

Bt
∆
= E[P′

t]E−1[PtP
′
t]E[Pt],

B̂t
∆
= E[qtP′

t]E−1[PtP
′
t]E[Pt],

B̃t
∆
= E[qtP′

t]E−1[PtP
′
t]E[qtPt],

γ∗
∆
=

x0

T−1∏
k=0

(1−Bk)rk − d− l0

T−1∏
k=0

(
E[qk]− B̂k

)
T−1∏
k=0

(1−Bk)− 1

.

Furthermore, the mean-variance efficient frontier is given by

Var(xT − lT ) =

T−1∏
k=0

(1−Bk)

1−
T−1∏
k=0

(1−Bk)

(
d− x0

T−1∏
k=0

rk + l0

T−1∏
k=0

E[qk]− B̂k

1−Bk

)2

+ l20C0, (3)

where

C0 = −
T−1∏
k=0

(
E[qk]− B̂k

)2
1−Bk

−
T−1∑
j=0

( T−1∏
k=j+1

(
E[qk]− B̂k

)2
1−Bk

)
B̃j

( j−1∏
m=0

E[q2m]

)
+

T−1∏
k=0

E[q2k] ≥ 0.

Setting the expected terminal surplus d = x0
T−1∏
k=0

rk − l0
T−1∏
k=0

E[qk]−B̂k

1−Bk
, we can obtain the

global minimum variance as

Varmin(xT − lT ) := C0l0
2.
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3. A dominating policy for multi-period asset-liability management problem

Under multi-period asset-liability management framework, we also show that if the
wealth is larger than some threshold, the pre-committed policy is no longer mean-variance
efficient policy for the remaining investment horizon. Then, we follow Cui et al. (2012),
and propose a revised dominating policy by relaxing the self-financing constraint and
allowing to withdraw some wealth.1

We first construct the dominating policy for simple two-period case in Section 3.1 and
obtain the dominating policy for general T -period case in Section 3.2.

3.1. Two-period case
We first consider the two-period case. According to expression (2), the pre-committed

policy at time 1 is given as follows,

π∗
1(x1) = −E−1[P1P

′
1]E[P1](r1x1 − γ∗) + E−1[P1P

′
1]E[q1P1]l1,

which is a linear function of the current wealth x1. Before constructing the dominating
policy, we need to know whether or not the pre-committed policy at time 1 is a good
policy for the remaining one period.

Let us consider the one period mean-variance asset-liability management problem at
time 1, 

min Var1(x2 − l2),

s.t. E1[x2 − l2] = d̄,

x2 = r1x1 +P′
1π1,

l2 = q1l1.

According to expression (2) and expression (3), the one-period efficient policy and one-
period efficient frontier are given by

π̄1(x1) = −E−1[P1P
′
1]E[P1](r1x1 − γ̄) + E−1[P1P

′
1]E[q1P1]l1,

Var1(x2 − l2) =
1−B1

B1

(
d̄− x1r1 + l1

E[q1]− B̂1

1−B1

)2

+ l21C1,

where C1 does not depend on x1, l1 and γ̄,

γ̄ =
x1(1−B1)r1 − d̄− l1(E[q1]− B̂1)

B1
.

By matching π∗
1(x1) = π̄1(x1), we have

d̄ = x1(1−B1)r1 + γ∗B1 − l1(E[q1]− B̂1).

1Such investment environment is called semi-self-financing environment. Dang and Forsyth (2016)
considered the portfolio selection problem in semi-self-financing environment.
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Thus, when d̄ < x1r1 − l1
E[q1]−B̂1

1−B1
, i.e.,

x1 >
γ∗

r1
+ l1

E[q1]− B̂1

r1(1−B1)
, (4)

the pre-committed policy π∗
1(x1) is no longer a one-period mean-variance efficient policy.

We propose the following revised portfolio policy, π̂∗
0(x̂0), π̂∗

1(x̂1),

• At time 0, π̂∗
0(x̂0) = π∗

0(x0);

• At time 1,

π̂∗
1(x̂1) = −E−1[P1P

′
1]E[P1](r1x̂1 − γ̂1) + E−1[P1P

′
1]E[q1P1]l1,

where

x̂1 =

{
x̄1, if x̄1 ≤ x̄∗1,

x̄1 − 2(x̄1 − x̄∗1)B1, if x̄1 > x̄∗1,
(5)

x̄1 = r0x̂0 +P′
0π̂

∗
0,

γ̂1 =

{
γ̂0, if x̄1 ≤ x̄∗1,

γ̂0 + 2r1(x̄1 − x̄∗1)(1−B1), if x̄1 > x̄∗1,
(6)

with γ̂0 = γ∗, x̂0 = x0 and

x̄∗1 =
γ∗

r1
+ l1

E[q1]− B̂1

r1(1−B1)
. (7)

Obviously, our new policy has the opportunity to receive a free cash flow stream
(FCFS) at time 1. Furthermore, in the following theorem, we prove that the proposed
revised policy can achieve the same mean-variance pair as one determined by the original
pre-committed policy.

Theorem 1. The proposed revised policy can achieve the same mean-variance pair as
one determined by the original pre-committed policy, i.e.,

E[x2 − l2|x0, l0]|π̂∗ = E[x2 − l2|x0, l0]|π∗ ,

Var(x2 − l2|x0, l0)|π̂∗ = Var(x2 − l2|x0, l0)|π∗ .

Proof. The pre-committed policy at time 1 is given by

π∗
1(x1) = −E−1[P1P

′
1]E[P1](r1x1 − γ∗) + E−1[P1P

′
1]E[q1P1]l1,

which yields the following conditional mean-variance pair,

E[x2 − l2|x1, l1]|π∗ = r1x1 −B1(r1x1 − γ∗) + (B̂1 − E[q1])l1,

Var(x2 − l2|x1, l1)|π∗ = (B1 −B2
1)(r1x1 − γ∗)2 + 2B1l1(B̂1 − E[q1])(r1x1 − γ∗) + C1l

2
1,
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where C1 does not depend on x1, l1 and γ∗.
Let us consider another policy at time 1,

π̂∗
1(x̂1) = −E−1[P1P

′
1]E[P1](r1x̂1 − γ̂1) + E−1[P1P

′
1]E[q1P1]l1,

which implies the following conditional mean-variance pair,

E[x2 − l2|x̂1, l1]|π̂∗ = r1x̂1 −B1(r1x̂1 − γ̂1) + (B̂1 − E[q1])l1,

Var(x2 − l2|x̂1, l1)|π̂∗ = (B1 −B2
1)(r1x̂1 − γ̂1)

2 + 2B1l1(B̂1 − E[q1])(r1x̂1 − γ̂1) + C1l
2
1,

where C1 does not depend on x̂1, l1 and γ̂1.
We can choose suitable x̂1 and γ̂1 such that{

E[x2 − l2|x1, l1]|π∗ = E[x2 − l2|x̂1, l1]|π̂∗ ,

Var(x2 − l2|x1, l1)|π∗ = Var(x2 − l2|x̂1, l1)|π̂∗ ,

which leads to the desired expressions in (5) and (6).
We further demonstrate that E[x2− l2|x0, l0] and Var(x2− l2|x0, l0) are the same under

both policies. First of all, we have

E[x2 − l2|x0, l0]|π∗ = E
[
E[x2 − l2|x1, l1]|π∗

1

∣∣x0, l0]∣∣π∗
0

= E
[
E[x2 − l2|x̂, l1]|π̂∗

1

∣∣x0, l0]∣∣π̂∗
0

= E[x2 − l2|x0, l0]|π̂∗ ,

and then we get

Var(x2 − l2|x0, l0)|π∗

= E[Var(x2 − l2|x1, l1)|π∗
1
|x0, l0]|π∗

0
+Var(E[x2 − l2|x1, l1]|π∗

1
|x0, l0)|π∗

0

= E[Var(x2 − l2|x1, l1)|π̂∗
1
|x0, l0]|π̂∗

0
+Var(E[x2 − l2|x1, l1]|π̂∗

1
|x0, l0)|π̂∗

0

= Var(x2 − l2|x0, l0)|π̂∗ .

□

3.2. General T -period case
We propose the following revised policy for general T -period case,

• At period 0, π̂∗
0(x̂0) = π∗

0(x0);

• At period t,

π̂∗
t (x̂t) = −E−1[PtP

′
t]E[Pt]rt

(
x̂t − γ̂t

T−1∏
j=t

r−1
j

)
+

( T−1∏
j=t+1

E[qj ]− B̂j

(1−Bj)rj

)
E−1[PtP

′
t]E[qtPt]lt,
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where

x̂t =

{
x̄t, if x̄t ≤ x̄∗t ,

x̄t − 2(x̄t − x̄∗t )Dt, if x̄t > x̄∗t ,
(8)

x̄t+1 = rtx̂t +P′
tπ̂

∗
t ,

γ̂t =


γ̂t−1, if x̄t ≤ x̄∗t ,

γ̂t−1 + 2
T−1∏
j=t

rj(x̄t − x̄∗t )(1−Dt), if x̄t > x̄∗t ,
(9)

with x̂0 = x0, γ̂0 = γ∗ and

Dt = 1−
T−1∏
j=t

(1−Bj),

x̄∗t =
γ̂t−1∏T−1
j=t rj

+ lt

T−1∏
j=t

E[qj ]− B̂j

rj(1−Bj)
. (10)

One major feature of the revised policy is that, when the wealth level x̄t > x̄∗t , we
withdraw free cash flow, 2(x̄t − x̄∗t )Dt, out of the market and apply the efficient mean-
variance policy for the remaining amount in the market, x̂t = x̄t − 2(x̄t − x̄∗t )Dt. Similar
to Cui et al. (2012), both risk attitude parameter γ̂t and the wealth threshold x̄∗t (t =
1, 2, · · · , T − 1) are path dependent. However, the wealth threshold for the mean-variance
asset-liability management problem does not only depend on the investment opportunity
part γ̂t but also depend on the liability part lt.

In the next theorem, we extend the result in Theorem 1 and prove that the proposed
revised policy can achieve the same mean-variance pair as one determined by the original
pre-committed policy for general T -period case.
Theorem 2. The proposed revised policy can achieve the same mean-variance pair as
one determined by the original pre-committed policy, i.e.,

E[xT − lT |x0, l0]|π̂∗ = E[xT − lT |x0, l0]|π∗ ,

Var(xT − lT |x0, l0)|π̂∗ = Var(xT − lT |x0, l0)|π∗ .

Proof. The case with T = 2 is proved in Theorem 1. We assume that the conclusion
is true for T = t and prove the conclusion is also true for T = t+ 1.

When x̄1 = x1 ≤ x̄∗1, the truncated pre-committed optimal policy π∗
j (xj) (j =

1, 2, · · · , t) specified in (2) is t-period mean-variance efficient policy, which implies the
conditional mean-variance pair as follows,(

E[xt+1 − lt+1|x1, l1]|π∗ ,Var(xt+1 − lt+1|x1, l1)|π∗
)
.

Meanwhile, we consider the t-period revised policy π̂∗
j (x̂j)(j = 1, 2, · · · , t) with x̂1 = x̄1 =

x1 and γ̂1 = γ̂0 = γ∗. According to the assumption of the mathematical induction, we
have {

E[xt+1 − lt+1|x1, l1]|π∗ = E[xt+1 − lt+1|x̂1, l1]|π̂∗ ,

Var(xt+1 − lt+1|x1, l1)|π∗ = Var(xt+1 − lt+1|x̂1, l1)|π̂∗ .
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When x̄1 = x1 > x̄∗1, the truncated pre-committed optimal policy π∗
j (xj) (j =

1, 2, · · · , t) is no longer t-period mean-variance efficient policy, which generates the condi-
tional mean-variance pair as follows,

E[xt+1 − lt+1|x1, l1]|π∗ =

t∏
j=1

rjx1 −
(
1−

t∏
j=1

(1−Bj)

)( t∏
j=1

rjx1 − γ∗
)
− l1

t∏
j=1

(
E[qj ]− B̂j

)
,

Var(xt+1 − lt+1|x1, l1)|π∗

=

t∏
j=1

(1−Bj)

1−
t∏

j=1
(1−Bj)

(
E[xt+1 − lt+1|x1, l1]|π∗ −

t∏
j=1

rjx1 + l1

t∏
j=1

E[qj ]− B̂j

1−Bj

)2

+ l21C1,

where C1 does not depend on x1, l1 and γ∗.
Let us consider t-period mean-variance efficient policy πt−e

j (xj) (j = 1, 2, · · · , t) with
initial wealth x̂1 and risk attitude parameter γ̂1, which leads to the t-period efficient
mean-variance pair as follows,

E[xt+1 − lt+1|x̂1, l1]|πt−e =
t∏

j=1

rj x̂1 +

(
1−

t∏
j=1

(1−Bj)

)( t∏
j=1

rj x̂1 − γ̂1

)
− l1

t∏
j=1

(
E(qj)− B̂j

)
,

Var(xt+1 − lt+1|x̂1, l1)|πt−e

=

t∏
j=1

(1−Bj)

1−
t∏

j=1
(1−Bj)

(
E[xt+1 − lt+1|x̂1, l1]|πt−e −

t∏
j=1

rj x̂1 + l1

t∏
j=1

E[qj ]− B̂j

1−Bj

)2

+ l21C1.

We can choose suitable x̂1 and γ̂1 such that{
E[xt+1 − lt+1|x1, l1]|π∗ = E[xt+1 − lt+1|x̂1, l1]|πt−e ,

Var(xt+1 − lt+1|x1, l1)|π∗ = Var(xt+1 − lt+1|x̂1, l1)|πt−e ,

which results in the solutions in (8) and (9).
Next, we consider the t-period revised policy π̂∗

j (x̂j)(j = 1, 2, · · · , t) with x̂1 and γ̂1.
According to the assumption of the mathematical induction, we have{

E[xt+1 − lt+1|x̂1, l1]|πt−e = E[xt+1 − lt+1|x̂1, l1]|π̂∗ ,

Var(xt+1 − lt+1|x̂1, l1)|πt−e = Var(xt+1 − lt+1|x̂1, l1)|π̂∗ .

which implies that{
E[xt+1 − lt+1|x1, l1]|π∗ = E[xt+1 − lt+1|x̂1, l1]|π̂∗ ,

Var(xt+1 − lt+1|x1, l1)|π∗ = Var(xt+1 − lt+1|x̂1, l1)|π̂∗ .
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Finally, using the similar analysis in Theorem 1, we can further obtain

E[xt+1 − lt+1|x0, l0]|π∗ = E[xt+1 − lt+1|x0, l0]|π̂∗

and
Var(xt+1 − lt+1|x0, l0)|π∗ = Var(xt+1 − lt+1|x0, l0)|π̂∗ .

□

4. Numerical example

In this section, we consider a numerical example to illustrate the performance of our
revised dominating policy. There are one risky asset, one risk-free asset and one liability in
the mean-variance asset-liability management problem. The investment horizon is T = 5.
The risk-free rate is rt = 1.05. The excess return of the risky asset and the changing rate of
the liability, (Pt, qt), follow 2-dimensional normal distribution with mean (0.12, 1.1)′ and
covariance matrix (0.0576, 0.012; 0.012, 0.04)′. The initial wealth x0 = 3 and the initial
liability l0 = 1.

We choose the terminal targets d from 2 to 5, and the step size is equal to 0.01. For
each target, we simulate 10000 paths for (Pt, qt) and compute the probability of getting
a positive free cash flow stream and the expected value of the free cash flow stream.The
results are reported in Figures 1 and 2. We can see that the dominating policy can receive
a sizeable FCFS.

2.0 3.0 4.0 5.0

0
.2

0
.4

0
.6

0
.8

1
.0

Terminal Target

P
ro

Figure 1: The probability of getting a posi-
tive free cash flow stream

2.0 3.0 4.0 5.0

0
.2

0
.3

0
.4

0
.5

Terminal Target

F
C

F
S

Figure 2: The expected value of the free cash
flow stream

5. Conclusion

If the investor adopts the pre-committed policy, he/she may choose the inefficient policy
during the multi-period mean-variance asset-liability management. We propose a revised
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dominating policy by relaxing the self-financing constraint and allowing to withdraw some
wealth, and prove that the revised policy can achieve the same mean-variance pair as one
determined by the pre-committed optimal mean-variance policy and receive a nonnegative
free cash flow stream over the investment time horizon.
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