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Abstract

In this paper, we study the mean-variance portfolio selection problem under partial

information with drift uncertainty. First we show that the market model is complete

even in this case while the information is not complete and the drift is uncertain. Then,

the optimal strategy based on partial information is derived, which reduces to solving

a related backward stochastic differential equation (BSDE). Finally, we propose an

efficient numerical scheme to approximate the optimal portfolio that is the solution of

the BSDE mentioned above. Malliavin calculus and the particle representation play

important roles in this scheme.
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1 Introduction

The mean-variance portfolio selection model pioneered by Markowitz [26] has paved the

foundation for modern portfolio theory and has been widely applied in financial economics.

Markowitz proposed and solved the problem in a single period setting. For half of a century,

however, the optimal dynamic mean-variance portfolio selection problem was not solved due

to the non-separable structure of the variance minimization problem in the sense of dynamic

programming. This difficulty was finally overcame by Li and Ng [19] and Zhou and Li [38]

via an embedding scheme, for multi-period and continuous-time cases, respectively. Since

then, many scholars have devoted their attentions to the study of the dynamic extensions of

the Markowitz model, see, for example, Li et al. [20], Lim and Zhou [22], Zhou and Yin [39],

Bielecki et al. [7], Li and Zhou [21], Chiu and Li [9] in continuous-time settings.

In the research mentioned above, the initial and terminal times are fixed as 0 and T ,

respectively. The optimal strategy ut for t ∈ [0, T ] is determined at time 0. However, the

optimal strategy ut found at time 0 for t ∈ [0, T ] might not be optimal at time t if you look

at it at time t. This is the so called time inconsistency problem. It is well recognized that the

optimal strategy for mean variance problem is usually time inconsistent. How to resolve this

problem is a very active research field and we refer the reader to the following reference for

works in this subject [5, 16, 27, 38]. The time consistency problem for our partial information

model will not be studied in this article, although we hope to deal with it in a future research.

On the other hand, all the works mentioned above assume that the Brownian motions that

are driving the stock prices are completely observable to the investors. In reality, however,

the driving Brownian motions are often not observable to the investors, and the stock prices

are the only observable information based on which the investors make the decisions. This

fact motivates the study of the so-called partial information portfolio selection problem.

In 2007, Xiong and Zhou [32] established the separation principle to separate the filtering

and optimization problems for the mean-variance portfolio selection problem with partial

information. They also developed analytical and numerical approaches in obtaining the filter

as well as solving the related backward stochastic differential equation. In this paper, we will

propose another more efficient numerical scheme based on Malliavin calculus.

Here we mention a few works where separation principle is also derived: Detemple [10],

Dothan and Feldman [12] and Gennotte [14]. We also indicate that Malliavin calculus is also

used to study optimal portfolio problems under partial information (see [1, 11, 31]).

The optimal redeeming problem of stock loans under drift uncertainty has been studied

by Xu and Yi [33]. In their model, the inherent uncertainty of the trend of the stock is

modeled by a two-state random variable representing bull and bear trends, respectively; the
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current trend of the stock is not known to the investor so that she/he has to make decisions

based on partial information. They derive the optimal redeeming strategies based on the

prediction of the stock trend.

In this paper, we study a mean-variance problem under partial information with drift

uncertainty. Our contributions to the literature are summarized below: First, we show that

the market model is complete even in this case while the information is not complete and

the drift is uncertain. Second, the optimal strategy based on partial information is derived,

which involves the optimal filter of the drift. Third, an efficient numerical approximation

is suggested to solve the BSDE which arises from the mean-variance problem under drift

uncertainty. This scheme is investigated in the context of the Malliavin calculus approach

for the approximation of conditional expectations. We also prove the convergence of our

numerical scheme, and study the L2 error induced by the Euler approximation and by the

strong law of large number (SLLN).

The rest of the paper is organized as follows. Some preliminary results on filtering and

Malliavin calculus are given in Section 2. In Section 3, we derive the innovation process

associated with the posteriori probability process of the drift uncertainty model and study

its optimization problem under partial information. We also prove the completeness of the

market under G filtration (partial information). A new numerical scheme is proposed and the

asymptotic behavior is studied in Section 4, a couple of numerical results are also presented.

2 Preliminaries

In this section, we state some elementary facts about stochastic filtering and Malliavin cal-

culus for the convenience of the reader. We refer the reader to Sections 8.1-8.3 of Kallianpur

[17] for more details about the general filtering problem and the stochastic equation of the

optimal filter, and the book of Nualart and Nualart [28] about the Malliavin calculus.

Let T be a fixed positive constant representing the investment horizon. Let (Ω,F , P ) be

a complete probability space and let Ft, t ∈ [0, T ], be an increasing family of sub σ-fields of

F . Throughout this article, we always augment the σ-filtration with all P -null sets. The

signal ht(ω) and the observation Zt(ω), t ∈ [0, T ], are assumed to be two N -dimensional

processes defined on (Ω,F , P ) and further related as follows:

Zt(ω) =

∫ t

0

hu(ω)du+Wt(ω), (2.1)

where {Wt, t ∈ [0, T ]} is an N -dimensional Wiener process, and ht(ω) is a RN -valued, (t, ω)-
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measurable function satisfying ∫ T

0

E(|ht|2)dt <∞, (2.2)

where | · | denotes the Euclidean norm of N -dimensional vector. Further, for each s ∈ [0, T ],

the σ-fields F h,W
s := σ{hu,Wu, 0 ≤ u ≤ s} and FW

s := σ{Wu′ − Wu, s ≤ u ≤ u′ ≤ T}
are independent. Let {FZ

t }0≤t≤T be the filtration generated by Z. This filtration is called

the observation σ-field. Let vt := (v1t , · · · , vNt )′, be an N -dimensional {FZ
t }t∈[0,T ]-adapted

innovation process, which is also an N -dimensional {FZ
t }t∈[0,T ]-adapted Brownian motion.

We list three theorems for ready references. The following one appears in Section 8.3 of

[17] (page 208).

Theorem 2.1. Under conditions (2.1) and (2.2), every separable, square-integrable FZ
t -

martingale Yt is sample path continuous a.s. and has the representation

Yt − E(Y0) =
N∑
i=1

∫ t

0

Φi
sdv

i
s, t ∈ [0, T ], (2.3)

where ∫ T

0

E(|Φs|2)ds <∞ (2.4)

and Φs := (Φ1
s, · · · ,ΦN

s )′ is jointly measurable and adapted to FZ
t .

The next theorem is called the Clark-Ocone formula (see Theorem 6.1.1 of [28]). It

expresses a square integrable random variable in terms of the conditional expectation of

its Malliavin derivative. Let B = (Bt)t≥0 be a multi-dimensional Brownian motion on a

filtered probability space (Ω,F , (Ft)t≥0, P ), where (Ft)t≥0 is the natural filtration of B and

F = ∨t≥0Ft. Denote by D the Malliavin derivative operator. We define the Sobolev space

D1,2 of random variables as follows:

D1,2 =

{
F ∈ L0(Ω,F , P ) : ‖F‖21,2 = E(|F |2) + E

[ ∫ ∞
0

|DtF |2dt
]
<∞

}
,

where L0(Ω,F , P ) denotes the set of F -measurable random variables.

Theorem 2.2 (Clark-Ocone formula). Let F ∈ D1,2 ∩ L0(Ω,FT , P ). Then, F admits the

following representation

F = E(F ) +

∫ T

0

E(DtF |Ft)dBt.
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Let M(d, q,R) be a vector space of matrices with d rows and q columns of R-valued

entries, ‖ · ‖ be the canonical Euclidean norm.

Denote by Lp(0, T ;Rd) the set of all Rd-valued {Ft}t∈[0,T ]-adapted processes f in the

probability space (Ω,F ,P) whose Lp norm are finite, namely

‖f‖Lp(0,T ;Rd) :=

(
E
∫ T

0

|f(t)|pdt
) 1

p

<∞.

Let Lp(F ,Rd) be the set of all Rd-valued random variables ξ with finite Lp norm

‖ξ‖p := (E|ξ|p)
1
p <∞.

The next theorem which appears in Section 7 of [29] (Theorem 7.2), states the error

approximation of the Euler scheme for the solution (Xt)t∈[0,T ] to a d-dimensional stochastic

differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, (2.5)

where b : [0, T ] × Rd → Rd, σ : [0, T ] × Rd → M(d, q,R) are continuous functions, W =

(Wt)t∈[0,T ] denotes a q-dimensional standard Brownian motion defined on a probability space

(Ω,F ,P) and X0 : (Ω,F ,P)→ Rd is a random vector, independent of W .

The discrete time Euler scheme with step T
n

is defined by

X̄tnk+1
= X̄tnk

+
T

n
b
(
tnk , X̄tnk

)
+ σ

(
tnk , X̄tnk

)√T

n
Zn
k+1, X̄0 = X0,

k = 0, · · · , n− 1,

where tnk = kT
n
, k = 0, · · · , n and (Zn

k )1≤k≤n denotes a sequence of independent and identically

distributed random vectors given by

Zn
k :=

√
n

T

(
Wtnk
−Wtnk−1

)
, k = 0, · · · , n.

Theorem 2.3 (Strong rate for the Euler scheme). Suppose the coefficients b and σ of the

SDE (2.5) satisfy the following regularity condition: there exist a real constant Cb,σ,T > 0

and an exponent β ∈ (0, 1] such that for all s, t ∈ [0, T ], x, y ∈ Rd,

|b(t, x)− b(s, x)|+ ‖σ(t, x)− σ(s, x)‖ ≤ Cb,σ,T (1 + |x|)|t− s|β, (2.6)

|b(t, x)− b(t, y)|+ ‖σ(t, x)− σ(t, y)‖ ≤ Cb,σ,T |y − x|. (2.7)
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Then for all p > 0, there exists a universal constant κp > 0, depending on p only, such that

for every n ≥ T,∥∥ sup
0≤k≤n

|Xtnk
− X̄n

tnk
|
∥∥
p
≤ K(p, b, σ, T ) (1 + ‖X0‖p)

(
T

n

)β∧ 1
2

, (2.8)

where

K(p, b, σ, T ) = κpC
′
b,σ,T e

κp(1+C′b,σ,T )
2T

and

C ′b,σ,T = Cb,σ,T + max
t∈[0,T ]

|b(t, 0)|+ max
t∈[0,T ]

‖σ(t, 0)‖ < +∞. (2.9)

3 Problem formulation

3.1 Model setup

Assume that (Ω,F , {Ft}t≥0, P ) is a complete filtered probability space, which represents

the financial market. The filtration {Ft}t≥0 satisfies the usual conditions, and P denotes

the probability measure. In this probability space, there exists a standard one-dimensional

Brownian motion W . The price process of the underlying stock is denoted by St, t ∈ [0, T ],

which satisfies the stochastic differential equation (SDE):

dSt = µStdt+ StdWt, (3.1)

where µ is random and independent of the Brownian motion W , and it may only takes two

possible values a and b that satisfy

γ := a− b > 0.

The stock is said to be in its bull trend when µ = a, and in its bear trend when µ = b. Note

that the volatility for the model (3.1) is normalized to be one.

The observed information up to time t is given by

Gt := σ (Ss : s ≤ t) , t ∈ [0, T ].

The posteriori probability process π = (πt)t∈[0,T ] is defined as

πt := P (µ = a|Gt). (3.2)

It is used to estimate the chance that the stock is in its bull trend given the observed

information up to and including time t. Assume that 0 < π0 < 1. This means it is not clear

whether the stock is in its bull trend or bear trend at time 0.

Let ut, called a portfolio, be the amount invested in the stock at time t.
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Definition 3.1. A portfolio (or trading strategy) is called self-financing if all the changes

of the values of the portfolio are due to gains or losses realized on investment, that is, no

funds are borrowed or withdrawn from the portfolio at any time. A portfolio process {ut}t∈[0,T ]
is called admissible if it is {Gt}t∈[0,T ]-adapted, self-financing and∫ T

0

E(u2t )dt <∞.

Denote by Yt the wealth process of an agent, and ut an admissible trading strategy.

Starting with an initial wealth y0 > 0, Yt satisfies the following wealth equation:dYt = (µut + (Yt − ut)r) dt+ utdWt, t ∈ [0, T ],

Y0 = y0.
(3.3)

where r denotes the interest rate, which is a constant.

Our goal is to solve the following optimization

Problem (MV): To find the best admissible portfolio ut to minimize Var(YT ) subject to

the constraint E(YT ) = z, where Yt is given by (3.3), and z is a given positive number.

Taken as observation, the log-price process L = (logSt)t∈[0,T ], by Itô’s lemma, satisfies

the following SDE

dLt =

(
µ− 1

2

)
dt+ dWt. (3.4)

Then, the innovation process

νt = Lt −
∫ t

0

(
b− 1

2
+ γπs

)
ds (3.5)

is a Brownian motion with respect to the observation filtration Gt. It is easy (see [17], Chapter

8.1) to verify that πt satisfies the following SDE:

dπt = γπt(1− πt)dνt, π0 = P (µ = a). (3.6)

By (3.3) and (3.5), we get the νt-driven representation for Y :dYt =
(

(b+ γπt − r)ut + rYt
)
dt+ utdνt, t ∈ [0, T ],

Y0 = y0.
(3.7)
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3.2 Optimization under partial information

The optimization problem (MV) turns to minimize Var(YT ) with state equations (3.7) and

the constraint E(YT ) = z.

Let

ρt := exp

(
−
∫ t

0

(b− r + γπs)dνs −
∫ t

0

(r +
1

2
(b− r + γπs)

2)ds

)
. (3.8)

Applying Itô’s formula to ρt, we get

dρt = −rρtdt− (b− r + γπt) ρtdνt. (3.9)

Further, applying Itô’s formula to Ytρt, we have

d(Ytρt) = (Yt (rρt − µρt) + utρt) dνt.

It is also easy to prove that Ytρt is square integrable. Therefore, Ytρt is a {Gt}t∈[0,t]-martingale

and hence,

E(Ytρt) = y0.

Denote YT by v. To find the optimal portfolio, we seek the best GT -measurable terminal

wealth v to minimize the variance

E(v − z)2 (3.10)

subject to constraints

Ev = z and E(ρTv) = y0. (3.11)

Let H := L2(Ω,GT , P ). For X ∈ H, let

‖X‖H :=
(
E(X2)

) 1
2 .

Then, H is a Hilbert space endowed with the norm ‖ · ‖H. Note that

E(v − z)2 = ‖v − 0‖2H − z2.

Therefore, the optimal v is the projection of 0 onto the hyperplane

{v ∈ H : Ev = z, E(vρT ) = y0} .
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3.3 Completeness of the market

Denote by L2
G(0, T ;R) the set of all R-valued, {Gt}t∈[0,T ]-adapted processes f(t) such that

E
∫ T

0

|f(t)|2dt <∞.

Then L2
G(0, T ;R) becomes a Hilbert space endowed with the norm

‖f‖L2
G(0,T ;R) :=

(
E
∫ T

0

|f(t)|2dt
) 1

2

.

Definition 3.2. A contingent claim v ∈ H is called attainable if there is Φs ∈ L2
G(0, T ;R)

such that

vρT = E(vρT ) +

∫ T

0

Φsdνs. (3.12)

Denote the collection of all attainable contingent claims by AC(G). Then AC(G) is a

subspace of H. Denote by H0 the closure of AC(G) in H under the norm ‖ · ‖H.

Definition 3.3. The market is complete if H0 = H.

The following statement is quite surprise to us. Namely, the market is complete although

the information is not complete and the drift is uncertain. It is worth mentioning that

completeness was left open in [32] for their model. Because of this lacking of completeness

result, the authors of [32] turn to search the optimal solution v in the space H0.

Theorem 3.1. The market is complete.

Proof. Since H0 ⊆ H, it suffices to show H ⊆ H0. For any V ∈ H, let Vn = V min{|V |− 1
n , 1}.

Then

(Vn − V )2 = V 21|V |>1(|V |−
1
n − 1)2 ≤ V 21|V |>1 ≤ V 2.

Since V ∈ H, we have E|V |2 <∞. By the dominated convergent theorem,

lim
n→∞

‖Vn − V ‖2H = lim
n→∞

E[(Vn − V )2] = E
[

lim
n→∞

V 21|V |>1(|V |−
1
n − 1)2

]
= 0.

Therefore, if we can show Vn ∈ AC(G), then V is in the closure of AC(G) under the norm

‖ · ‖H, namely V ∈ H0, and the claim follows.

We now show Vn ∈ AC(G) for any n ≥ 1. Notice

E|Vn|2+
1
n = E

[
|V |(1−

1
n
)(2+ 1

n
)1|V |>1 + |V |2+

1
n1|V |≤1

]
≤ E(|V |21|V |>1 + 1) <∞,
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so Vn ∈ L2+ 1
n . By Hölder’s inequality, we have

E|VnρT |2 ≤
(
E|Vn|2

2n+1
2n

) 2n
2n+1

(
Eρ2(2n+1)

T

) 1
2n+1

<∞,

as EρpT <∞, for all p > 1. Hence E(VnρT |Gt) is a square integrable martingale. By Theorem

2.1, we have

E(VnρT |Gt)− E(VnρT ) =

∫ t

0

Φsdνs, t ∈ [0, T ], (3.13)

for some Φs ∈ L2
G(0, T ;R). When t = T , since VnρT is GT measurable, the above equation

reduces to

VnρT − E(VnρT ) =

∫ T

0

Φsdνs, (3.14)

which implies Vn ∈ AC(G).

It was shown in [32] that the optimal terminal v to the optimization problem for the

model in [32] is given by

v =
(z〈β, β〉H − y0〈α, β〉H)α + (−z〈α, β〉H + y0〈α, α〉H)β

〈α, α〉H〈β, β〉H − 〈α, β〉2H
, (3.15)

where α, β are the orthogonal projections on H0 of 1 and ρT , respectively.

A numerical scheme was given in [32] under the completeness assumption. Although that

numerical scheme can be extended to the current model, we will propose a more efficient

numerical scheme for our model, which is one of the main contributions of the current article.

3.4 Find the optimal strategy

Similar to [32], the terminal problem can be solved as follows.

Lemma 3.1. The optimal terminal wealth for the problem (3.10) is

v =
zE(ρ2T )− y0EρT + (y0 − zEρT )ρT

Var(ρT )
, (3.16)

where ρT is given by (3.8).

After finding the optimal terminal wealth, we then seek a portfolio to realize it. Namely,

for v given by (3.16), we need to find a solution of the following BSDE:dYt =
(

(b+ γπt − r)ut + rYt
)
dt+ utdνt, t ∈ [0, T ],

YT = v.
(3.17)
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Theorem 3.2. The optimal portfolio is given by

ut = (b− r + γπt)Yt + ρ−1t ηt, (3.18)

where ηt ∈ L2
G(0, T ;Rd) is uniquely determined by the martingale representation theorem

E(θ|Gt) = E(θ) +

∫ t

0

ηsdνs, ∀t ∈ [0, T ], (3.19)

with θ = ρTYT , and the explicit representation of the integrand ηs is given in Theorem 4.1

below, which is identified by Malliavin derivative using the Clark-Ocone formula.

Proof. As seen from the arguments above, we need to seek a solution to the following forward-

backward SDE: 
dYt =

(
(b+ γπt − r)ut + rYt

)
dt+ utdνt, Y0 = y0,

dπt = γπt(1− πt)dνt,

dρt = −rρtdt− (b− r + γπt)ρtdνt,

ρ0 = 1, π0 = c0, YT = c1 + c2ρT ,

(3.20)

where c0 = P (µ = a), c1 =
zEρ2T−y0EρT

Var(ρT )
and c2 = y0−zEρT

Var(ρT )
are known constants.

To prove the invertibility of ρt, we define Φt to be the solution to the following SDE:dΦt = (r + (b− r + γπt)
2)Φtdt+ (b− r + γπt)Φtdνt,

Φ0 = 1.
(3.21)

Apply Itô’s formula to ρtΦt, we have

d(ρtΦt) = 0,

and hence, ρtΦt ≡ ρ0Φ0 = 1. Consequently, Φt is the inverse of ρt. Since ρtYt is a martingale,

then

Yt = ρ−1t E(ρTYT |Gt) = ρ−1t E(θ|Gt) = ΦtE(θ|Gt). (3.22)

Applying Itô’s formula to (3.22) and comparing the result with (3.20), we obtain the expres-

sion (3.18) for the optimal portfolio.

Finding the numerical solution (ut, Yt, πt, ρt) of the FBSDE (3.20) is the object of the

next section.
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4 Numerical schemes based on Malliavin calculus

Pardoux and Peng [30] obtained the unique solvability results for the nonlinear BSDEs in

1990. Since then a growing literature investigates the numerical methods for BSDEs ([2,

3, 4, 13, 15, 23, 24, 25, 36, 37]). In [6], the Malliavin calculus approach and Monte Carlo

approximation are employed to study the conditional expectation, in the Ph.D. thesis [35]

of Zhang, some fine properties of the BSDEs by using Malliavin derivatives under weaker

conditions were also studied. However, those works mentioned above are based on the setting

that the drift coefficients of the BSDEs are deterministic. We can not apply these numerical

schemes to our model directly.

In Xiong and Zhou’s [32] model, the coefficients of ut and Yt which appear in the drift term

are random in general. They proposed a numerical approximation (unt , Y
n
t ) to the solution

(ut, Yt) to that kind of BSDE with random coefficients. However, due to technical difficulty,

only the convergence of Y n
t to the wealth process Yt is proved, and leave the convergence

problem of the portfolio unsolved. The rate of convergence of Y n
t to Yt is not established in

that paper.

In this section, we propose an efficient numerical scheme for the BSDE (3.17) whose

terminal value v takes the form c1 + c2ρT , where c1, c2 are constants and ρt is a diffusion

process which is Malliavin differentiable (see Theorem 4.1 for detailed calculation). With

the help of Malliavin calculus, we prove that our scheme for the portfolio and the wealth

processes converge in the strong L2 sense and derive the rate of convergence.

Denote N(t) := E(θ|Gt). We note that the main complexity in Xiong and Zhou’s [32]

numerical scheme for BSDEs results from the approximation of the integrand ηt in (3.19),

which is difficult to calculate directly. They use the following procedure to approximate ηt:

First they divide [0, t] into n1 subintervals and approximate the quadratic covariation process

At := 〈N, ν〉t =

∫ t

0

ηsds

by the discrete version over the partition points. They further divide each subinterval men-

tioned above into n2 smaller ones and obtain an approximation of ηs, s ≤ t. This procedure

is not computationally efficient because the double-partition increases error dramatically.

This will be seen from the numerical examples in the subsequent section.

In order to overcome the aforementioned drawback of the above numerical scheme, we

turn to use the Clark-Ocone formula from Malliavin calculus to get an explicit expression of

ηt. In fact, it will be the conditional expectation of a Malliavin derivative. Our numerical

scheme will be based on this representation.
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Theorem 4.1. We can represent ηt as E (Dtθ|Gt) where Dt is the Malliavin derivative op-

erator evaluated at time t. Further,

Dtθ = (c1 + 2c2ρT )DtρT (4.1)

and DtρT is given by

DtρT = ρT

[
−
∫ T

t

γ(b− r + γπs)Dtπsds− (b− r + γπt) +

∫ T

t

γDtπsdνs

]
, (4.2)

with

Dtπs = γπt(1− πt) exp

(∫ s

t

γ(1− πr)dνr −
1

2

∫ s

t

γ2(1− 2πr)
2dr

)
. (4.3)

Proof. Note that

θ = ρTYT = c1ρT + c2ρ
2
T ,

and hence, (4.1) follows by applying the Malliavin derivative on both sides.

As

ρT = exp

(
−
∫ T

0

[r +
1

2
(b− r + γπs)

2]ds−
∫ T

0

(b− r + γπs)dνs

)
,

a direct calculation yields (4.2).

Applying Malliavin derivative to both sides of the integral form of the identity (3.6), we

get

Dtπs = γπt(1− πt) +

∫ s

t

γ(1− 2πr)Dtπrdνr. (4.4)

Then, (4.3) follows by solving the linear SDE (4.4). Finally, the representation of ηt as

E(Dtθ|Gt) follows from the Clark-Ocone formula given in Section 2.

Remark 4.1. Our method is based on the Malliavin differentiability of ρT so that the solution

of (3.17) can be represented explicitly. In this paper, our setting is a drift uncertainty model

with µ only takes two values, nevertheless, the whole analysis can be generalized to a model

with several risky assets, where the drift vector takes finite states, under which assumption

we can still deduce the Malliavin differentiability of ρT .

4.1 A numerical scheme and its analysis

Based on Theorem 4.1, it is easy to show that

ηt = E (Dtθ|Gt) = N1(t) + γN2(t) + γN3(t),
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with Nj(t) = E (Ij|Gt), j = 1, 2, 3, where

I1 = −(c1ρT + 2c2ρ
2
T )(b− r + γπt), (4.5)

I2 = (c1ρT + 2c2ρ
2
T )

∫ T

t

Dtπsdνs, (4.6)

I3 = −(c1ρT + 2c2ρ
2
T )

∫ T

t

(b− r + γπs)Dtπsds, (4.7)

and Dtπs is given by (4.3).

As in the proof of Theorem 3.2, the key to solve the optimal portfolio is the martingale

representation of the Gt-martingale E(θ|Gt). We will establish particle representation for this

martingale.

The solution of (3.9) is given by

ρt = exp

(
−
∫ t

0

(b− r + γπs)dνs −
∫ t

0

(r +
1

2
(b− r + γπs)

2)ds

)
, (4.8)

Denote ρ̃t := log ρt, then

dρ̃t = −(b− r + γπt)dνt − (r +
1

2
(b− r + γπt)

2)dt. (4.9)

To approximate E(πt|Gt′), we use the conditional SLLN such that πit is given by (3.6)

with νs be replaced by νis for s ≥ t′, where νi, i = 1, 2, · · · are independent copies of ν.

More precisely, we define the following processes πi(t, t′) with two time-indices as follows:

For t ≤ t′, πi(t, t′) = πt, and for t ≥ t′,

dπi(t, t′) = γπi(t, t′)(1− πi(t, t′))dνit , πi(t′, t′) = πt′ . (4.10)

To approximate E(ρt|Gt′), we use E(exp(ρ̃t)|Gt′) instead. For t ≤ t′, ρ̃i(t, t′) = ρ̃t, and for

t ≥ t′,

dρ̃i(t, t′) = −(b− r + γπi(t, t′))dνit − (r +
1

2
(b− r + γπi(t, t′))2)dt, ρ̃i(t′, t′) = ρ̃t′ .

(4.11)

The following proposition follows from the same argument (which we term it as conditional

SLLN) in the proof of Theorem 2.3 of Kurtz and Xiong [18] (more specifically, two equations

on lines 9 and 14 on page 115 there).
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Proposition 4.1. Denote ρi(T, t) = exp(ρ̃i(T, t)). Then, we have a.s.,

N1(t) = −(b− r + γπt) lim
m→∞

1

m

m∑
i=1

(c1ρ
i(T, t) + 2c2(ρ

i(T, t))2),

N2(t) = lim
m→∞

1

m

m∑
i=1

(c1ρ
i(T, t) + 2c2(ρ

i(T, t))2)

∫ T

t

Dtπ
i(s, t)dνis,

N3(t) = lim
m→∞

1

m

m∑
i=1

−(c1ρ
i(T, t) + 2c2(ρ

i(T, t))2)

∫ T

t

(b− r + γπi(s, t))Dtπ
i(s, t)ds.

In order to approximate Nk(t), (k = 1, 2, 3), we use the discrete Euler scheme to approx-

imate πt. We divide the time interval [0, T ] into n small intervals and let δ = T
n

.

Note that the diffusion coefficient in the SDE (3.6) is σ(x) = γx(1 − x), which does

not satisfy the global Lipschitz condition (2.7). To overcome this hurdle, we define σ̄(x) as

following

σ̄(x) =

γx(1− x), x ∈ [0, 1],

0, x /∈ [0, 1].

Using the fact that πt ∈ [0, 1] for all t ∈ [0, T ], it is easy to see that πt is a solution of the

following SDE

dπt = σ̄(πt)dνt. (4.12)

This SDE satisfies the global Lipschitz condition (2.7), so πt is the unique solution. Therefore,

we approximate πt by applying the Euler scheme to (4.12) instead of the SDE (3.6).

πδkδ := πδ(k−1)δ + σ̄
(
πδ(k−1)δ

) (
νkδ − ν(k−1)δ

)
with πδ0 = π0, (k = 0, · · · , n). Similarly, we use ρδkδ and Φδ

kδ to approximate ρkδ and Φkδ,

which are defined as following:

ρ̃δkδ := ρ̃δ(k−1)δ − δ(r +
1

2
(b− r + γ

(
πδ(k−1)δ

)2
)− (b− r + γπδ(k−1)δ

(
νkδ − ν(k−1)δ

)
,

with ρ̃δ0 = 0. Then we have ρδnδ = exp
(
ρ̃δnδ
)
.

Φ̃δ
kδ := Φ̃δ

(k−1)δ + δ

(
r +

1

2

(
b− r + γπδ((k − 1)δ, kδ)

)2)
+
(
b− r + γπδ ((k − 1)δ, kδ)

) (
νkδ − ν(k−1)δ

)
,

with Φ̃δ
0 = 0. Then Φδ

kδ = exp(Φ̃δ
kδ).
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Note that we aim to approximate the Nk(t), (k = 1, 2, 3) by using particle representation

as well as the discrete Euler scheme, thus we define πi,δ(lδ, kδ), l, l′ ≥ 1, in two steps.

For l ≤ k, let

πi,δ(lδ, kδ) := πi,δ ((l − 1)δ, kδ) + σ̄(πi,δ ((l − 1)δ, kδ))
(
νlδ − ν(l−1)δ

)
with πi,δ(0, kδ) = π0; for l > k, let

πi,δ(lδ, kδ) := πi,δ ((l − 1)δ, kδ) + σ̄(πi,δ ((l − 1)δ, kδ))
(
νilδ − νi(l−1)δ

)
.

For l ≤ k, let

ρ̃i,δ(lδ, kδ) := ρ̃i,δ((l − 1)δ, kδ)− δ(r +
1

2
(b− r + γπi,δ((l − 1)δ, kδ))2)

− (b− r + γπi,δ((l − 1)δ, kδ))
(
νlδ − ν(l−1)δ

)
; (4.13)

with ρ̃i,δ0 = 0; for l > k, let

ρ̃i,δ(lδ, kδ) := ρ̃i,δ((l − 1)δ, kδ)− δ(r +
1

2
(b− r + γπi,δ((l − 1)δ, kδ))2)

− (b− r + γπi,δ((l − 1)δ, kδ))
(
νilδ − νi(l−1)δ

)
. (4.14)

Then ρi,δ(lδ, kδ) = exp
(
ρ̃i,δ(lδ, kδ)

)
.

Next we approximate Ni(t) by Nm,δ
i (kδ), (i = 1, 2, 3; m is related to the SLLN, which will

be chosen later). For all s ∈ [t, T ], t ∈ [0, T ], let k = [nt], j = [ns]. Then t ∈ [kδ, (k + 1)δ)

and s ∈ [jδ, (j + 1)δ). We define Nm,δ
i (kδ), (i = 1, 2, 3) as follows:

Nm,δ
1 (kδ) = −

(
b− r + γπδ(kδ)

) 1

m

m∑
i=1

(
c1ρ

i,δ(T, kδ) + 2c2(ρ
i,δ(T, kδ))2

)
,

Nm,δ
2 (kδ) =

1

m

m∑
i=1

(
c1ρ

i,δ(T, kδ) + 2c2(ρ
i,δ(T, kδ))2

)
Si,δ2 (T, kδ),

Nm,δ
3 (kδ) =

1

m

m∑
i=1

−
(
c1ρ

i,δ(T, kδ) + 2c2(ρ
i,δ(T, kδ))2

)
Si,δ3 (T, kδ),

where

Si,δ2 (T, kδ) =
n−k∑
l=1

Dkδπ
i,δ((l + k − 1)δ, kδ)

(
νilδ − νi(l−1)δ

)
,

Si,δ3 (T, kδ) =
n−k∑
l=1

δ(b− r + γπi,δ((l + k − 1)δ, kδ))Dkδπ
i,δ((l + k − 1)δ, kδ).
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In the above, Dkδπ
i,δ(jδ, kδ), (j = k, · · · , n− 1) are still stochastic integrals. By (4.4), we

define Dkδπ
i,δ(jδ, kδ) only in one step. Namely, for j ≥ k, we define

Dkδπ
i,δ(jδ, kδ) := Dkδπ

i,δ((j − 1)δ, kδ)

+ γ
(
1− 2πi,δ((j − 1)δ, kδ)

)
Dkδπ

i,δ((j − 1)δ, kδ)
(
νijδ − νi(j−1)δ

)
with Dkδπ

i,δ(kδ, kδ) = γπkδ(1− πkδ).

Finally, we obtain

ηδ,mkδ = Nm,δ
1 (kδ) + γNm,δ

2 (kδ) + γNm,δ
3 (kδ). (4.15)

To summarize, we can approximate Yt and ut, kδ ≤ t < (k+ 1)δ, by Y δ,m
kδ and uδ,mkδ , where

Y δ,m
kδ = Φδ

kδ

1

m

m∑
i=1

(
c1ρ

i,δ(T, kδ) + c2
(
ρi,δ(T, kδ)

)2)
(4.16)

and

uδ,mkδ = (b− r + γπδkδ)Y
δ,m
kδ + Φδ

kδη
δ,m
kδ . (4.17)

In the proof of the following main theorem, we will need the following simple lemma which

we cannot find a reference so we present it here for the convenience of the reader.

Lemma 4.1. Let G be the sub-σ-field. Suppose that given G, ξ, ξ1, ξ2, · · · , ξm are i.i.d.

random variables with E(ξ4) <∞. Then,

E

∣∣∣∣∣ 1

m

m∑
i=1

ξi − E(ξ|G)

∣∣∣∣∣
4
 ≤ 16

m2
E(ξ4).

Proof. Without loss of generality, we assume that E(ξ|G) = 0. Then,

E

∣∣∣∣∣ 1

m

m∑
n=1

ξi

∣∣∣∣∣
4
 = E

1

m4

m∑
i,j=1, i6=j

E(ξ2i ξ
2
j |G) + E

1

m4

m∑
i=1

E(ξ4i |G)

=
m2 −m
m4

E
(
E(ξ21 |G)E(ξ22 |G)

)
+

m

m4
Eξ41

≤ 1

m2
E(ξ4). (4.18)

For the general case E(ξ|G) 6= 0, since given G, ξ, ξ1, ξ2, · · · , ξm are i.i.d. random variables,

then E[(ξi − E(ξ|G))|G] = 0 holds for i = 1, · · · , n, thus by Jensen’s inequality and applying

(4.18), we have

E

∣∣∣∣∣ 1

m

m∑
n=1

ξi − E(ξ|G)

∣∣∣∣∣
4
 ≤ 1

m2
E((ξ − E(ξ|G))4) ≤ 16

m2
E(ξ4).
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Theorem 4.2. There exists a constant C such that for any kδ ≤ T , we have

‖ukδ − uδ,mkδ ‖2 ≤ C

(√
δ +

1√
m

)
and

‖Ykδ − Y δ,m
kδ ‖2 ≤ C

(√
δ +

1√
m

)
.

Proof. In the following, C > 0 will denote a generic constant, which may change from line

to line.

Since we apply the Euler scheme for the new equation (4.12) which satisfies all the con-

ditions in Theorem 2.3. Thus,

‖πkδ − πδkδ‖4 ≤ C
√
δ.

We claim that

‖Φkδ − Φδ
kδ‖4 ≤ C

√
δ, ‖DkδρT −Dkδρ

δ
T‖4 ≤ C

√
δ.

In the following, we will verify the first inequality since the second one can be deduced

similarly.

For easy computation, we rewrite the SDE (3.21) for ΦtdΦt = c(πt)Φtdt+ h(πt)Φtdνt,

Φ0 = 1,

where c(x), h(x) are bounded functions (x ∈ [0, 1]) and Lipschitz continuous in x. By Jensen’s

inequality, the Burkholder-Davis-Gundy inequality and Grönwall’s inequality, we get

‖Φt‖8 ≤ CeCT , for all t ∈ [0, T ]. (4.19)

Note that

Φδ
kδ = 1 +

k∑
i=1

(
c(πδ(i−1)δ)Φ

δ
(i−1)δ

)
δ +

k∑
i=1

h
(
πδ(i−1)δ

)
Φδ

(i−1)δ
(
νiδ − ν(i−1)δ

)
,

then

E|Φkδ − Φδ
kδ|4

≤CE
∣∣∣∣ ∫ kδ

0

c(πs)Φsds−
k∑
i=1

δc(πδ(i−1)δ)Φ
δ
(i−1)δ

∣∣∣∣4
+ CE

∣∣∣∣ ∫ kδ

0

h(πs)Φsdνs −
k∑
i=1

h
(
πδ(i−1)δ

)
Φδ

(i−1)δ
(
νiδ − ν(i−1)δ

) ∣∣∣∣4
=I1 + I2, (4.20)
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by Jensen’s and Hölder’s inequality, we get

I1 =CE
∣∣∣∣ ∫ kδ

0

c(πs)Φsds−
∫ kδ

0

c(πδs)Φ
δ
sds

∣∣∣∣4
=CE

∣∣∣∣ ∫ kδ

0

(
c(πs)Φs − c(πδs)Φδ

s

)
ds

∣∣∣∣4
≤CE

∣∣∣∣ ∫ kδ

0

(
c(πs)− c(πδs)

)
Φsds

∣∣∣∣4 + CE
∣∣∣∣ ∫ kδ

0

c
(
πδs
) (

Φs − Φδ
s

)
ds

∣∣∣∣4
≤CE

∫ kδ

0

(
c(πs)− c(πδs)

)4
Φ4
sds+ CE

∫ kδ

0

(
c
(
πδs
))4 (

Φs − Φδ
s

)4
ds

≤C
∫ kδ

0

(
E
(
c(πs)− c(πδs)

)8) 1
2 ‖Φs‖48ds

+ CE
∫ kδ

0

(
c
(
πδs
))4 (

Φs − Φδ
s

)4
ds.

Using the fact that c is bounded, Lipschitz continuous, and (4.19), we have

I1 ≤C
∫ kδ

0

‖πs − πδs‖48ds+ C

∫ kδ

0

E
∣∣Φs − Φδ

s

∣∣4ds
≤Ckδ‖πs − πδs‖48 + C

∫ kδ

0

E
∣∣Φs − Φδ

s

∣∣4ds
≤Cδ2 + C

∫ kδ

0

E
∣∣Φs − Φδ

s

∣∣4ds, (4.21)

the last inequality follows by using the Theorem 2.3. Similarly, I2 can be estimated by the

Burkholder-Davis-Gundy inequality and Hölder’s inequality, thus we obtain

I2 ≤ Cδ2 + C

∫ kδ

0

E
∣∣Φs − Φδ

s

∣∣4ds, (4.22)

plugging inequalities (4.21) and (4.22) into (4.20), we have

E|Φkδ − Φδ
kδ|4 ≤ Cδ2 + C

∫ kδ

0

E
∣∣Φs − Φδ

s

∣∣4ds,
an application of Grönwall’s inequality, we finally obtain the following estimation:

E|Φkδ − Φδ
kδ|4 ≤ Cδ2eCT ,

which implies

‖Φkδ − Φδ
kδ‖4 ≤ C

√
δ.

From the representation (3.18) and the approximation (4.17), we first estimate the error

between ukδ and uδ,mkδ ,



20

∥∥∥ukδ − uδ,mkδ ∥∥∥
2

≤
∥∥∥∥(b− r + γπkδ)ΦkδE

(
c1ρT + c2ρ

2
T |Gkδ

)
− (b− r + γπδkδ)Φ

δ
kδ

1

m

m∑
i=1

(
c1ρ

i,δ(T, kδ) + c2(ρ
i,δ(T, kδ))2

) ∥∥∥∥
2

+

∥∥∥∥ΦkδE(c1DkδρT + 2c2ρTDkδρT |Gkδ)

− Φδ
kδ

1

m

m∑
i=1

(
c1Dkδρ

i,δ(T, kδ) + 2c2ρ
i,δ(T, kδ)Dkδρ

i,δ(T, kδ)
) ∥∥∥∥

2

:=J1 + J2. (4.23)

We firstly estimate

J1 =

∥∥∥∥(b− r + γπkδ)ΦkδE
(
c1ρT + c2ρ

2
T |Gkδ

)
− (b− r + γπδkδ)Φ

δ
kδ

1

m

m∑
i=1

(
c1ρ

i,δ(T, kδ) + c2(ρ
i,δ(T, kδ))2

) ∥∥∥∥
2

≤
∥∥∥(b− r + γπkδ)ΦkδE

(
c1ρT + c2ρ

2
T |Gkδ

)
− (b− r + γπδkδ)Φ

δ
kδE

(
c1ρT + c2ρ

2
T |Gkδ

) ∥∥∥
2

+
∥∥∥(b− r + γπδkδ)Φ

δ
kδE

(
c1ρT + c2ρ

2
T |Gkδ

)
− (b− r + γπδkδ)Φ

δ
kδ

1

m

m∑
i=1

(
c1ρ

i,δ(T, kδ) + c2(ρ
i,δ(T, kδ))2

) ∥∥∥
2

≤
∥∥∥(b− r + γπkδ)Φkδ − (b− r + γπδkδ)Φ

δ
kδ

∥∥∥
4
×
∥∥∥E (c1ρT + c2ρ

2
T |Gkδ

) ∥∥∥
4

+
∥∥∥(b− r + γπδkδ)Φ

δ
kδ

∥∥∥
4
×
∥∥∥E (c1ρT + c2ρ

2
T |Gkδ

)
− E

(
c1ρ

δ
T + c2(ρ

δ
T )2|Gkδ

) ∥∥∥
4

+
∥∥∥(b− r + γπδkδ)Φ

δ
kδ

∥∥∥
4
×
∥∥∥E (c1ρδT + c2(ρ

δ
T )2|Gkδ

)
− 1

m

m∑
i=1

(
c1ρ

i,δ(T, kδ) + c2(ρ
i,δ(T, kδ))2

) ∥∥∥
4

≤C
(√

δ +
1√
m

)
, (4.24)
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where in the last inequalities of (4.24) we apply Lemma 4.1. Additionally,

J2 ≤
∥∥∥Φkδ − Φδ

kδ

∥∥∥
4
×
∥∥∥E(c1DkδρT + 2c2ρTDkδρT |Gkδ)

∥∥∥
4

+
∥∥∥Φδ

kδ

∥∥∥
4
×
∥∥∥E(c1DkδρT + 2c2ρTDkδρT |Gkδ)− E(c1Dkδρ

δ
T + 2c2ρ

δ
TDkδρ

δ
T |Gkδ)

∥∥∥
4

+
∥∥∥Φδ

kδ

∥∥∥
4
×
∥∥∥E(c1Dkδρ

δ
T + 2c2ρ

δ
TDkδρ

δ
T |Gkδ)

− 1

m

m∑
i=1

(
c1Dkδρ

i,δ(T, kδ) + 2c2ρ
i,δ(T, kδ)Dkδρ

i,δ(T, kδ)
) ∥∥∥

4

≤ C

(√
δ +

1√
m

)
. (4.25)

Then by (4.23), (4.24) and (4.25), we have∥∥∥ukδ − uδ,mkδ ∥∥∥
2
≤ C

(√
δ +

1√
m

)
.

Similarly, we can prove ∥∥∥Ykδ − Y δ,m
kδ

∥∥∥
2
≤ C

(√
δ +

1√
m

)
. (4.26)

Remark 4.2. The optimal convergence rate under our scheme is 1√
m

which is obtained by

taking m = n. The error term
√
δ in last theorem comes from Euler scheme which can be

improved by employing more efficient schemes. The term
√
m comes from conditional SLLN

which seems cannot be improved.

Remark 4.3. In Xiong and Zhou’s [32] model, only the convergence of Y n
t to Yt is proved,

however, due to technical difficulty, the rate of convergence of Y n
t to Yt is not established in

that paper. The above theorem not only proves the convergence of Y n
t to Yt, but also gives

the rate of convergence. Note that the errors in our numerical scheme consist of the error

from the Euler approximation and that from the SLLN only. From this point of view, under

the drift uncertainty model, the numerical scheme we proposed is more efficient than that of

[32].

4.2 Numerical results

In last subsection, we proposed an efficient numerical scheme with respect to BSDEs of the

form (3.17) with random coefficients and control variable. Now we use Matlab to compare

our method with that of [32]. However, there is no explicit solution for (3.17), thus we are not
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able to compare these two different numerical schemes for the mean variance problem directly.

To overcome this difficulty, we consider a BSDE whose drift term is random, and the solution

(X(t), Z(t)) can be computed explicitly. Then we obtain the numerical approximations for

(X(t), Z(t)) by applying two different schemes to this BSDE. Next, we compare these two

approximations with the actual solution. Finally, we apply the new algorithm to simulate

the drift uncertainty model.

For convenience, we denote the numerical method proposed by Xiong and Zhou [32] as

the “old algorithm”, the one proposed by us as the “new algorithm” and the explicit solution

as the “true value”.

For the appearance of presentation, we now write Wt as W (t) (especially when t has a

complicated expression). Let

H(t) =

∫ t

0

(1 +W (s))dW (s)−
∫ t

0

(W (s)2 + 2W (s))ds.

We consider a BSDE with random coefficients as followingdX(t) =
(
− 1

2

(
1− 2W (t)−W (t)2

)
X(t)− (1 +W (t))Z(t)

)
dt+ Z(t)dW (t),

X(T ) = exp
(
H(T )− 2T

)
, t ∈ [0, T ].

(4.27)

Following the steps (see Theorem 2.2, Chapter 7 of [34]), we can solve the above linear BSDE

(4.27) explicitly as

X(t) = eH(t)−2t, Z(t) = (1 +W (t))X(t). (4.28)

Note that the drift term of the above example (4.27) has random coefficient, which is a

feature shared by the BSDE (3.17). Since we do not have explicit solution to (3.17), as a

compromise, we compare the “new algorithm” with the “old algorithm” by using the example

(4.27) which has explicit solution (4.28).

For simplicity, let T = 1. We discrete [0, 1] into n1n2 small intervals. Denote δ1 = 1
n1

and

δ2 = 1
n1n2

.

Let θ = exp
(

2
∫ T
0

(1 + W (s))dW (s)− 2
∫ T
0

(1 + W (s))2ds
)

and Φ(t) = e−H(t). Using the

old algorithm, the approximation for (X(t), Z(t)) is given byXm,δ1(t) = Φδ1(t)Nm,δ1(t),

Zm,δ1(t) = −Xm,δ1(t) + Φδ1(t)ηm,δ11 (t),

where

N(t) = E(θ|FWt ),



23

(FWt is the σ-field generated by the values of the Brownian motion W up to and including

time t) and Φδ1(t) is the approximation of Φ(t) generated by the Euler scheme, Nm,δ1(t) is the

approximation of N(t) generated by the particle representation as well as the Euler scheme,

and

ηm,δ11

(
k

n1

)
:= n1

n2∑
j=1

(
Nm,δ2

(
k − 1

n1

+
j

n1n2

)
−Nm,δ2

(
k − 1

n1

+
j − 1

n1n2

))
×
(
W δ2

(
k − 1

n1

+
j

n1n2

)
−W δ2

(
k − 1

n1

+
j − 1

n1n2

))
, (4.29)

k = 1, 2, · · · , n1 − 1, n1, n2 = 1, 2, · · · .

On the other hand, since θ is Malliavin differentiable, we get

η2(t) := E
(
Dtθ|FWt

)
= E

(
e2

∫ T
t (1+W (s))dW (s)−2

∫ T
t (1+W (s))2ds

[
2W (T )− 4

∫ T

t

(1 +W (s))ds+ 2
]∣∣∣FWt ) .

(4.30)

By the new algorithm, the approximation for (X(t), Z(t)) is given byXm,δ2(t) = Φδ2(t)Nm,δ2(t),

Zm,δ2(t) = −Xm,δ2(t) + Φδ2(t)ηm,δ22 (t),

where ηm,δ22 (t) is the approximation of η2(t) generated by the particle representation as well

as the Euler scheme.

Using the aforementioned algorithms, we generate the following figures.
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Figure 1: X(t) with 100 discrete intervals
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Figure 2: Z(t) with 100 discrete intervals
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Figure 3: X(t) with 103 discrete intervals
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Figure 4: Z(t) with 103 discrete intervals

It can be seen from Figures 1, 2, 3, 4 that our new numerical scheme well approximated

the true processes X(t) and Z(t). The curves of X(t) and Z(t) generated by the new scheme

are almost the same as the true processes. In contrast, the paths generated by the old

scheme are relatively far off due to the double-partition which is the main drawback in that

scheme. More precisely, the inefficiency of the old algorithm results from the double-partition

when generating ηm,δ1 , as we can see from (4.29), to obtain ηm,δ1 , the interval is partitioned

into n1 × n2 subintervals, this procedure increases the error dramatically. While the new

algorithm overcomes this drawback by using the Malliavin calculus, the term η2 can be

represented explicitly by (4.30). Since Z(t) contains the term η, therefore, the improvement

of the approximation to the second component Z(t) of the solution of the BSDE by the

new algorithm over the old algorithm appears to be more pronounced than the respective

improvement of the approximation to the first component X(t).

Finally, we apply our efficient numerical scheme to simulate the wealth process Yt and

the optimal control ut for the drift uncertainty model.

We choose the parameters as following: n = 1000, δ = 1
1000

, m = 1000, r = 0.03, a = 0.04,

b = 0.032, y0 = 100, z = y0 · (1 + r + 0.03), and π0 = 0.1.

Figure 5 below is the numerical results for the innovation process νt, the wealth process

Yt and the optimal control ut.
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Figure 5: drift uncertainty model with 103 discrete intervals.
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