
Noname manuscript No.
(will be inserted by the editor)

On the Equivalence of Inexact Proximal ALM and ADMM for a Class of Convex
Composite Programming

Liang Chen · Xudong Li · Defeng Sun · Kim-Chuan Toh

Received: date / Accepted: date

Abstract In this paper, we show that for a class of linearly constrained convex composite optimization
problems, an (inexact) symmetric Gauss-Seidel based majorized multi-block proximal alternating direction
method of multipliers (ADMM) is equivalent to an inexact proximal augmented Lagrangian method (ALM).
This equivalence not only provides new perspectives for understanding some ADMM-type algorithms but
also supplies meaningful guidelines on implementing them to achieve better computational efficiency. Even
for the two-block case, a by-product of this equivalence is the convergence of the whole sequence generated
by the classic ADMM with a step-length that exceeds the conventional upper bound of (1 +

√
5)/2, if one

part of the objective is linear. This is exactly the problem setting in which the very first convergence analysis
of ADMM was conducted by Gabay and Mercier in 1976, but, even under notably stronger assumptions,
only the convergence of the primal sequence was known. A collection of illustrative examples are provided
to demonstrate the breadth of applications for which our results can be used. Numerical experiments on
solving a large number of linear and convex quadratic semidefinite programming problems are conducted
to illustrate how the theoretical results established here can lead to improvements on the corresponding
practical implementations.

Keywords Alternating direction method of multipliers · Augmented Lagrangian method · Symmetric
Gauss-Seidel decomposition · Proximal term

Mathematics Subject Classification (2010) 90C25 · 65K05 · 90C06 · 49M27 · 90C20

The research of the first author was supported by the National Natural Science Foundation of China (11801158, 11871205) and
the Fundamental Research Funds for the Central Universities in China.
The research of the third author was supported in part by a start-up research grant from the Hong Kong Polytechnic University.
The research of the fourth author was supported in part by the Ministry of Education, Singapore, Academic Research Fund
(R-146-000-257-112).

Liang Chen
College of Mathematics and Econometrics, Hunan University, Changsha 410082, China, and
Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong E-mail:
chl@hnu.edu.cn

Xudong Li
School of Data Science, Fudan Univeristy, Shanghai 200433, China, and
Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China
E-mail: lixudong@fudan.edu.cn

Defeng Sun
Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
E-mail: defeng.sun@polyu.edu.hk

Kim-Chuan Toh
Department of Mathematics, and Institute of Operations Research and Analytics, National University of Singapore, 10 Lower
Kent Ridge Road, Singapore 119076, Singapore
E-mail: mattohkc@nus.edu.sg

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use
(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-
acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10107-019-01423-x

This is the Pre-Published Version.

2 Liang Chen et al.

1 Introduction

Let X, Y and Z be three finite-dimensional real Hilbert spaces each endowed with an inner product denoted
by ⟨·, ·⟩ and its induced norm denoted by ∥ · ∥, where Y := Y1 × · · · ×Ys is the Cartesian product of s finite-
dimensional real Hilbert spaces Yi, i = 1, . . . , s, each endowed with the inner product, as well as the induced
norm, inherited from Y. For any given y ∈ Y, we can write y = (y1; . . . ; ys) with yi ∈ Yi,∀ i = 1, . . . , s. Here,
and throughout this paper, we use the notation (y1; . . . ; ys) to mean that the vectors y1, . . . , ys are written
symbolically in a column format.

In this paper, we shall focus on the following multi-block convex composite optimization problem

min
y∈Y,z∈Z

{p(y1) + f (y) − ⟨b, z⟩ | F∗y + G∗z = c} , (1.1)

where p : Y1 → (−∞,+∞] is a (possibly nonsmooth) closed proper convex function, f : Y → (−∞,+∞) is
a continuously differentiable convex function whose gradient is Lipschitz continuous, b ∈ Z and c ∈ X are
the given data, and F∗ and G∗ are the adjoints of the given linear mappings F : X → Y and G : X → Z,
respectively. Despite the simple appearance of problem (1.1), we shall see in the next section that this
model actually encompasses various important classes of convex optimization problems in both classical core
convex programming as well as recently emerged models from a broad range of real-world applications. A
quintessential example of problem (1.1) is the dual of the following convex composite quadratic programming

min
x

{
ψ(x) +

1
2
⟨x,Qx⟩ − ⟨c, x⟩ | Gx = b

}
, (1.2)

where ψ : X → (−∞,+∞] is a closed proper convex function, Q : X → X is a self-adjoint positive semidefinite
linear operator, G : X → Z is a linear mapping, and c ∈ X, b ∈ Range(G) (i.e., the range space of the linear
operator G) are the given data. The dual of problem (1.2) in the minimization form can be written as follows:

min
y1,y2,z

{
ψ∗(y1) +

1
2
⟨y2,Qy2⟩ − ⟨b, z⟩ | y1 +Qy2 − G∗z = c

}
, (1.3)

where ψ∗ is the Fenchel conjugate of ψ, y1 ∈ X, y2 ∈ X and z ∈ Z, so that problem (1.3) constitutes an
instance of problem (1.1).

To solve problem (1.1), one of the most preferred approaches is the augmented Lagrangian method (ALM)
initiated by Hestenes [23] and Powell [42], and elegantly studied for general (without taking into account
of the multi-block structure) convex optimization problems in the seminal work of Rockafellar [45]. Given a
penalty parameter σ > 0, the augmented Lagrangian function corresponding to problem (1.1) is defined by

Lσ(y, z; x) := p(y1) + f (y) − ⟨b, z⟩ + ⟨x,F∗y + G∗z − c⟩ + σ
2
∥F∗y + G∗z − c∥2,

∀ (x, y, z) ∈ X×Y ×Z.

Starting from a given initial multiplier x0 ∈ X, the ALM performs the following steps at the k-th iteration:

(1) compute (yk+1, zk+1) to (approximately) minimize the function Lσ(y, z; xk), and
(2) update the multipliers xk+1 := xk + τσ(F∗yk+1 + G∗zk+1 − c), where τ ∈ (0, 2) is the step-length.

While one would really want to solve miny,z Lσ(y, z; xk) as it is without modifying the augmented Lagrangian
function, it can be expensive to minimize Lσ(y, z; xk) with respect to both y and z simultaneously, due
to the coupled quadratic term in y and z. Thus, in practice, unless the ALM is converging rapidly, one
would generally want to replace the augmented Lagrangian subproblem with an easier-to-solve surrogate by
modifying the augmented Lagrangian function to decouple the minimization with respect to y and z. Such a
modification is especially desirable during the initial phase of the ALM when its local superlinear convergence
has yet to kick in. The most obvious approach to decouple the subproblem for obtaining (yk+1, zk+1) is to add
to Lσ(y, z; xk) the proximal term σ

2 ∥(y; z) − (yk; zk)∥2
Λ
, where Λ = λ2I − (F ;G)(F ;G)∗ with λ being the largest

singular value of (F ;G). However, such a modification to the augmented Lagrangian function is generally
too drastic and has the undesirable effect of significantly slowing down the convergence of the ALM [6, Sect.
7]. This naturally leads us to the important question on what is an appropriate proximal term to add to

On the Equivalence of Inexact Proximal ALM and ADMM 3

Lσ(y, z; xk) such that the ALM subproblem is easier to solve while at the same time it is less drastic than the
obvious choice we have just mentioned in the previous sentences.

We shall show in this paper that by adding an appropriately designed proximal term to Lσ(y, z; xk), we can
reduce the computation of the modified ALM subproblem to sequentially updating y and z via computing

yk+1 ≈ min
y

{
Lσ(y, zk; xk)

}
and zk+1 ≈ min

z

{
Lσ(yk+1, z; xk)

}
.

The reader would have observed that the resulting proximal ALM updating scheme is the same as the classic
two-block ADMM (pioneered by Glowinski and Marroco [21] and Gabay and Mercier [18]) that is applied
to problem (1.1). However, there is a crucial difference in that our convergence result holds true for the
step-length τ in the range (0, 2), whereas the classic two-block ADMM only allows the step-length to be in
the interval (

0, (1+
√

5)/2
) if the convergence of the full sequence generated by the algorithm is required. It is

important to note that even with the sequential minimization of y and z in the modified ALM subproblem,
the minimization subproblem with respect to y can still be very difficult to solve due to the coupling of the
blocks y1, . . . , ys in (1.1). One of the main contributions we made in this paper is to show that by majorizing
the function f (y) at yk with a quadratic function and by adding an extra proximal term that is derived based
on the block symmetric Gauss-Seidel (sGS) decomposition theorem [32] for the quadratic term associated
with y, we are able to update the sub-blocks in y individually in a symmetric Gauss-Seidel fashion. A crucial
implication of this result is that the (inexact) block sGS decomposition based multi-block majorized ADMM
is equivalent to an inexact majorized proximal ALM. Consequently, we are able to prove the convergence of
the whole sequence generated by the former even when the step-length is in the range (0, 2).

In this paper, we shall not delve into the vast literature on both ALM and ADMM, as well as their
variants, and their relationships to the proximal point method and operator splitting methods. They are
simply too abundant for us to list even a few of them here. Thus we shall only refer to those that are most
relevant for our work in this paper. Here we should mention that many attempts have been made in recent
years on designing convergent multi-block ADMM-type algorithms that can outperform the directly extended
multi-block (proximal ADMM) numerically. While the latter is not guaranteed to converge even under the
strong assumption that f ≡ 0, paradoxically its practical numerical performance is often better than many
convergent variants that have been developed in the past; see for example [48]. Against this backdrop, we
should mention that the ADMM-type algorithms that have been progressively designed in [48,30,6] not
only come with convergence guarantee but they have also been demonstrated to have superior numerical
performance than the directly extended ADMM, at least for a large number of convex conic programming
problems. More recently, those algorithms have found applications in various areas [1,2,9,17,27,31,53,55,
56]. Among those algorithms, the most general and versatile one is the recently developed inexact majorized
multi-block proximal ADMM in Chen et al. [6], which we shall briefly describe in the next paragraph.

Under the assumption that the gradient of f is Lipschitz continuous, we know that one can specify a
fixed self-adjoint positive semidefinite linear operator Σ̂ f : Y → Y and define at each y′ ∈ Y the following
convex quadratic function

f̂ (y, y′) := f (y′) + ⟨∇ f (y′), y − y′⟩ + 1
2
∥y − y′∥2

Σ̂ f , ∀ y ∈ Y, (1.4)

such that
f (y) ≤ f (y, y′), ∀y, y′ ∈ Y and f (y′) = f (y′, y′), ∀y′ ∈ Y.

Thus, we say that at each y′ ∈ Y, the function f̂ (·, y′) constitutes a majorization of the function f . Let σ > 0
be the penalty parameter. Based on the notion of majorization described above, the majorized augmented
Lagrangian function of problem (1.1) is defined by

Lσ
(
y, z; (x, y′)

)
:= p(y1) + f̂ (y, y′) − ⟨b, z⟩ + ⟨F∗y + G∗z − c, x⟩

+
σ

2
∥F∗y + G∗z − c∥2, ∀ (y, z, x, y′) ∈ Y ×Z×X×Y.

(1.5)

Let (x0, y0, z0) ∈ X × Y × Z be a given initial point with y0
1 ∈ dom p, and Di : Yi → Yi, i = 1, . . . , s be the

given self-adjoint linear operators, for the purpose of facilitating the computations of the subproblems. For
convenience, we denote for any y = (y1; . . . ; ys) ∈ Y1 × · · · ×Ys,

y<i := (y1; . . . ; yi−1) and y>i := (yi+1; . . . ; ys), ∀ i = 1, . . . , s.

4 Liang Chen et al.

Then, the k-th step of the (inexact) block sGS decomposition based majorized multi-block proximal ADMM
in [6], when applied to problem (1.1), takes the following form

yk+ 1
2

i ≈ arg min
yi∈Yi

{
Lσ

((
yk
<i; yi; yk+ 1

2
>i

)
, zk; (xk, yk)

)
+ 1

2∥yi − yk
i ∥

2
Di

}
, i = s, . . . , 2 ;

yk+1
i ≈ arg min

yi∈Yi

{
Lσ

((
yk+1
<i ; yi; yk+ 1

2
>i

)
, zk; (xk, yk)

)
+ 1

2∥yi − yk
i ∥

2
Di

}
, i = 1, . . . , s ;

zk+1 ≈ arg min
z∈Z

Lσ

(
yk+1, z; (xk, yk)

)
;

xk+1 = xk + τσ
(F∗yk+1 + G∗zk+1 − c

)
,

(1.6)

where τ ∈
(
0, (1 +

√
5)/2

)
was allowed in [6]. As one can observe from (1.5) and (1.6), the quadratic ma-

jorization technique in Li et al. [29] was used to replace the original augmented Lagrangian function by
the majorized augmented Lagrangian function. This in turn enables us to employ the inexact block sGS
decomposition technique in Li et al. [32] to sequentially update the sub-blocks of y individually. More im-
portantly, the algorithm is highly flexible in that all the subproblems are allowed to be solved approximately
to overcome possible numerical obstacles such as for example, when iterative solvers must be employed to
solve large-scale linear systems to overcome extreme memory requirement and prohibitive computing cost.
It has already been demonstrated in [6] that the inexact block sGS decomposition based multi-block ADMM
is far superior than the directly extended ADMM in solving high-dimensional linear and convex quadratic
semidefinite programming with the step-length in (1.6) being restricted to be less than (1 +

√
5)/2.

Our focus in this paper is to investigate whether the framework in (1.6) can be proven to be convergent
for problem (1.1) when the step-length τ is in the range (0, 2). In particular, we will show that the inexact
block sGS decomposition based multi-block ADMM (1.6) is equivalent to an inexact majorized proximal
ALM in the sense that computations of yk+1, zk+1 and xk+1 in (1.6) can equivalently be written as

(
yk+1, zk+1

)
≈ arg min

(y, z)∈Y×Z

{
Lσ

(
y, z; (xk, yk)

)
+ 1

2∥
(
y; z

) − (
yk; zk)∥2

T

}
;

xk+1 = xk + τσ
(F∗yk+1 + G∗zk+1 − c

)
,

where T : Y × Z → Y × Z is a self-adjoint (not necessarily positive definite) linear operator whose precise
definition will be given later. This connection not only provides new theoretical perspectives for analysing
multi-block ADMM-type algorithms, but also has the potential of allowing them to achieve even better
computational efficiency since a larger step-length beyond (1 +

√
5)/2 can now be taken in (1.6), without

adding any extra conditions or any additional verification steps such as those extensively used in [48,30,6,
5].

The main contributions of this paper are as follows.
– We derive the equivalence of an (inexact) block sGS decomposition based multi-block majorized proximal

ADMM to an inexact majorized proximal ALM, and establish the global and local convergence properties
of the latter with the step-length τ ∈ (0, 2). As a result, the global and local convergence properties of
the former even with τ ∈ (0, 2) are also established.

– Even for the most conventional two-block case, we are able for the first time to rigorously characterize
the connection between ADMM and ALM. Note that given the form of the updating rules of the classic
ADMM and ALM, although it is natural to view ADMM as an approximate version of the ALM, this
is not completely true as can be seen from our analysis in this paper. Indeed, to alleviate the difficulty
of solving the subproblems in the ALM, the classic ADMM uses a single cycle of the Gauss-Seidel block
minimization to replace the full minimization of the augmented Lagrangian function in the ALM. This
viewpoint in fact motivated the study of the classic ADMM in the very first paper [21]. However, as was
mentioned in [13,14], there were no known results in quantifying this interpretation.

– As a by-product of the second contribution, this paper gives an affirmative answer to the open question
on whether the dual sequence generated by the classic ADMM with τ ∈ (0, 2) is convergent if one of
the two functions in the objective is linear1. This is the problem setting of the very first proof for the
ADMM in Gabay and Mercier [18, Theorem 3.1] in which the dual sequence is only guaranteed to be

1 This question was first resolved in [48] when the initial multiplier x0 satisfies Gx0 − b = 0 and all the subproblems are solved
exactly.

On the Equivalence of Inexact Proximal ALM and ADMM 5

bounded, even under very strong assumptions. The later proof of Glowinski [20, Chapter 5, Theorem
5.1] established stronger results than [18] but it requires τ ∈

(
0, (1 +

√
5)/2

)
. Thereafter only the latter

interval, and especially the unit step-length, has been considered. In fact, in a rigorous proof presented
recently in [5] for the classic two-block ADMM with τ ∈

(
0,

(
1 +

√
5
)
/2

)
, it was shown that the convergence

of the dual sequence can be guaranteed under pretty weak conditions but the convergence of the primal
sequence requires more. Hence, it is of much theoretical interest to clarify whether the dual sequence is
convergent if the objective contains a linear part while τ ≥ (

1 +
√

5
)
/2.

– We provide a fairly general criterion for choosing the possibly indefinite2 linear operators Di, i = 1, . . . , s,
in the proximal terms, which unifies those used in Chen et al. [6] and those used in Zhang et al. [57]
to guarantee the viability of the block sGS decomposition techniques and the convergence of the whole
sequence generated by the algorithm in (1.6). Recall that the proximal terms in [6] should be positive
semidefinite while in [57] the functions being majorized should be separable with respect to each block
of variables. Here, we do not require f to be separable and indefinite proximal terms are allowed.

– We use a unified criterion, which is weaker than those used in [6], for choosing the proximal terms in the
algorithmic framework (1.6) and analyzing its convergence. Note that in [6], compared with the condition
[6, (3.2)] imposed on choosing the proximal terms, a stronger condition ([6, (5.26) of Theorem 5.1]) was
used to guarantee the convergence of the algorithm. Here, we are able to get rid of such a gap while using
a weaker condition.

– We conduct extensive numerical experiments on solving the linear and convex quadratic semidefinite
programming (SDP) problems to demonstrate how the theoretical results obtained here can be exploited
to improve the numerical efficiency of the implementation ADMM. Based on the numerical results,
together with the theoretical analysis in this paper, we are able to give a plausible explanation as to
why ADMM often performs well when the dual step-length is chosen to be the golden ratio of 1.618.
Meanwhile, a guiding principle on choosing the step-length during the practical implementation of the
algorithmic framework in (1.6) is derived.
Here we emphasize again that for solving large-scale instances of the multi-block problem (1.1), a suc-

cessful multi-block ADMM-type algorithm must not only possess convergence guarantee but should also
numerically perform at least as fast as the directly extended ADMM. Based on our work in this paper, we
can conclude that the inexact block sGS decomposition based majorized proximal ADMM studied in [6]
indeed does possess those desirable properties. Moreover, this algorithm is a versatile framework and one
can apply it to problem (1.1) in different routines other than (1.6). The reason that we are more interested
in the iteration scheme (1.6) is not only for the theoretical improvement one can achieve, but also for the
practical merit it features for solving large scale problems, especially when the dominating computational
cost is in performing the evaluations associated with the linear mappings G and G∗. A particular case in
point is the following problem:

min
x∈X

{
ψ(x) +

1
2
⟨x,Qx⟩ − ⟨c, x⟩ | GE x = bE , GI x ≥ bI

}
, (1.7)

where Q, ψ, and c have the same meaning as in (1.3), GE : X → ZE and GI : X → ZI are the given linear
mappings, and b = (bE ;bI) ∈ Z := ZE × ZI is a given vector. By introducing a slack variable x′ ∈ ZI , the
above problem can be equivalently reformulated as

min
x∈X,x′∈ZI

{
ψ(x) +

1
2
⟨x,Qx⟩ − ⟨c, x⟩ |

(
GE 0
GI IZI

) (
x
x′

)
= b, x′ ≤ 0

}
,

where IZI is the identity operator in ZI . The corresponding dual problem in the minimization form is then
given by

min
y1,y′2,z

{
p(y1) +

1
2
⟨y2,Qy2⟩ − ⟨b, z⟩ |

(
y11
y12

)
+

(
Q
0

)
y2 −

(
G∗

E G∗
I

0 IZ2

)
z =

(
c
0

)}
,

where y1 := (y11; y12) ∈ X×ZI , p(y1) := ψ∗
1 (y11)+δ+(y12) with δ+ being the indicator function of the nonnegative

orthant in ZI , y2 ∈ X and z ∈ Z. It is clear that when problem (1.7) has a large number of inequality
constraints, the dimension of Z can be much larger than that of X. For such a scenario, the iteration scheme
(1.6) is more preferable since the more difficult subproblem involving z is solved only once in each iteration.

2 One may refer to [29] for the details that motivating the use of indefinite proximal terms in the 2-block majorized proximal
ADMM, especially [29, Section 6] on their computational merits, as well as [57] for the similar results in multi-block cases.

6 Liang Chen et al.

Organization

This paper is organized as follows. In Section 2, we present a few important classes of problems that can be
handled by (1.1) to illustrate the wide applicability of this model. In Section 3, we design an inexact majorized
proximal ALM framework and establish its global and local convergence properties. In Section 4, we show
the key result that the sequence generated by the inexact block sGS decomposition based majorized proximal
ADMM (1.6), together with a simple error tolerance criterion, is equivalent to the sequence generated by
the inexact ALM framework introduced in Section 3. Accordingly, the convergence of the two-block ADMM
with the step-length in the interval of (0, 2) is also established for problem (1.1) with s = 1. In Section 5, we
conduct extensive numerical experiments on the 2-block dual linear SDP problems and the multi-block dual
convex quadratic SDP problems to illustrate the numerical efficiency of the proposed algorithm, as well as
the impact of the step-length on its numerical performance. A few important practical observations from the
numerical results are also presented. Finally, we conclude this paper in the last section.

Notation

– Let H and H′ be two finite dimensional real Hilbert spaces each endowed with an inner product ⟨·, ·⟩ and
its induced norm ∥ · ∥. We also use ∥ · ∥ to denote the norm induced on the product space H×H′ by the
inner product ⟨(ν1, ν

′
1), (ν2, ν

′
2)⟩ := ⟨ν1, ν2⟩ + ⟨ν′1, ν

′
2⟩, ∀ν1, ν2 ∈ H,∀ν′1, ν

′
2 ∈ H′.

– For any linear map O : H → H′, we use O∗ to denote its adjoint, O−1 to denote its inverse (if invertible),
O† to denote its Moore–Penrose pseudoinverse, Range(O) to denote its range space, and ∥O∥ to denote
its spectral norm.

– If H′ = H and O is self-adjoint and positive semidefinite, there must be a unique self-adjoint positive
semidefinite operator, denoted by O1/2, such that O1/2O1/2 = O. In this case, for any ν, ν′ ∈ H we define
⟨ν, ν′⟩O := ⟨Oν, ν′⟩ and ∥ν∥O :=

√
⟨ν,Oν⟩ = ∥O1/2ν∥. If O is also invertible, O1/2 is invertible and we use

the notation that O−1/2 := (O1/2)−1 .
– Let O1, . . . ,Ok be k self-adjoint linear operators, we used Diag(O1, . . . ,Ok) to denote the block-diagonal

linear operator whose block-diagonal elements are in the order of O1, . . . ,Ok.
– For any convex set H ⊆ H, we denote the relative interior of H by ri(H). When the self-adjoint linear

operator O : H → H positive definite, we define, for any ν ∈ H,

distO(ν,H) := inf
ν′∈H

∥ν− ν′∥O and ΠO
H (ν) = arg min

ν′∈H
∥ν− ν′∥O.

If O is the identity operator we just omit it from the notation so that dist(·,H) and ΠH(·) are the standard
distance function and the metric projection operator, respectively.

– Let θ : H → (−∞,+∞] be an arbitrary closed proper convex function. We use dom θ to denote its effective
domain, ∂θ to denote its subdifferential mapping, and θ∗ to denote its conjugate function. Moreover, we
use ProxO

θ to denote the Moreau-Yosida proximal mapping of θ, which is defined by

ProxO
θ (ν) := arg min

ν′∈H

{
θ(ν′) + 1

2∥ν− ν′∥2
O

}
, ∀ν ∈ H.

Note that the mapping ProxOθ is globally Lipschitz continuous.

2 Illustrative Examples

In this section, we present a few important classes of concrete problems, including those in the classic core
convex programming as well as those which are popularly used in various real-world applications. As will
be shown, these problems and/or their dual problems have the form given by (1.1), so that the algorithm
designed in this paper can be utilized to solve them.

On the Equivalence of Inexact Proximal ALM and ADMM 7

2.1 Convex Composite Quadratic Programming

It is well known that many problems are subsumed under the convex composite quadratic programming model
(1.2) or the more concrete form (1.7). For example, it includes the important classes of convex quadratic
programming (QP), the convex quadratic semidefinite programming (QSDP) and the convex quadratic
programming and weighted centering [41] (QPWC). As an illustration, consider a convex QSDP problem in
the following form

min
X∈Sn

{
1
2
⟨X,QX⟩ − ⟨C, X⟩

∣∣∣∣ AE X = bE , AI X ≥ bI , X ∈ Sn
+

}
, (2.1)

where Sn is the space of n×n real symmetric matrices and Sn
+ is the closed convex cone of positive semidefinite

matrices in Sn, Q : Sn → Sn is a positive semidefinite linear operator, C ∈ Sn is a given matrix, and AE and
AI are the linear maps from Sn to the two finite dimensional Euclidean spaces RmE and RmI that containing
bE and bI , respectively. To solve this problem, one may consult the recently developed software QSDPNAL
in Li et al. [31] and reference therein. The algorithm implemented in QSDPNAL is a two-phase augmented
Lagrangian method in which the first phase is an inexact sGS decomposition based multi-block proximal
ADMM whose convergence was established in [6, Theorem 5.1]. The solution generated in the first phase
is used as the initial point to warm-start the second phase algorithm, which is an ALM with the inner
subproblem in each iteration being solved via an inexact semismooth Newton algorithm. In Section 5, we
will use the QSDP problem (2.1) to test the algorithm studied in this paper.

Besides the core optimization problems just mentioned above, there are many problems from real-word
applications that can be cast in the form of (1.2) and the following are only a few such examples.

Penalized and Constrained Regression Models

In various statistical applications, the penalized and constrained (PAC) regression [25] often arises in high-
dimensional generalized linear models with linear equality and inequality constraints. A concrete example of
the PAC regression is the following constrained lasso problem

min
x∈Rn

{
1
2
∥Φx − η∥2 + λ∥x∥1 | AE x = bE , AI x ≥ bI

}
, (2.2)

where Φ ∈ Rm×n, AE ∈ RmE×n, AI ∈ RmI×n, η ∈ Rm, bE ∈ RmE and bI ∈ RmI are the given data, and λ > 0
is a given regularization parameter. The statistical properties of problem (2.2) have been studied in [25].
For more details on the applications of the model (2.2), one may refer to [25,19] and the references therein.
In Gaines et al [19], the authors considered solving (2.2) by first reformulating it as a conventional QP via
letting x = x+− x− and adding the extra constraints x+ ≥ 0, x− ≥ 0, and then applying the primal ADMM to
solve the conventional QP, in which all the subproblems should be solved exactly (or to very high accuracy)
by iterative methods. Such a combination may perform well for low dimensional problems with moderate
sample sizes. But for the more challenging and interesting high-dimensional cases where n is extremely large
and m ≪ n, the approach in [19] is likely to face severe numerical difficulties because of the presence of
a huge number of constraints. Fortunately, the algorithm we designed in this paper can precisely handle
those difficult cases because the large linear systems associated with the huge number of constraints are not
required to solve to very high accuracy by an iterative solver.

Noisy Matrix Completion and Rank-Correction Step

In Miao et al. [36], the authors introduced a rank-correction step for matrix completion with fixed basis
coefficients to overcome the shortcomings of the nuclear norm penalization model for such problems. Let
X ∈ Vn1×n2 (where Vn1×n2 may represent the space of n1 × n2 real or complex matrices or the space of n × n
real symmetric or Hermitian matrices) be the unknown true low-rank matrix and X̃m is an initial estimator
of X from the nuclear norm penalized least squares model. The rank-correction step is to solve the following
convex optimization problem

min
X

1
2m∥y −Po(X)∥2 + ρm

(
∥X∥∗ − ⟨F(X̃m), X⟩

)
s.t. PA(X) = PA(X), ∥PB(X)∥∞ ≤ b,

(2.3)

8 Liang Chen et al.

where y = Po(X) + ϵ ∈ Rm is the observed data for the matrix X, Po is the linear map corresponding to the
observed entries, ϵ ∈ Rm is the unknown error, ρm > 0 is a given penalty parameter, and F : Vn1×n2 → Vn1×n2

is a spectral operator [10] whose precise definition can be found in [36, Section 5]. Here the constraints
PA(X) = PA(X) and ∥PB(X)∥∞ ≤ b represent the fixed elements and bounded elements of X, respectively.
If F and the equality constraints are vacuous, problem (2.3) is exactly the noise matrix completion model
considered in [37], and a similar matrix completion model can be found in [26]. One may view (2.3) as an
instance of problem (1.2), and whose corresponding linear operator Q admits a very simple form.

2.2 Two-Block Problems

Next we present a few important classes of two-block problems whose objective functions contain a linear
part.

Semidefinite Programming

One of the most prominent examples of problem (1.1) with 2 blocks of variables (i.e., s = 1) is the dual linear
semidefinite programming (SDP) problem given by

min
Y, z

{δSn
+
(Y) − ⟨b, z⟩ | Y +A∗z = C}, (2.4)

where A : Sn → Rm is a given linear map, and b ∈ Rm and C ∈ Sn are given data. The notation δSn
+

denotes
the indicator function of Sn

+. For problem (2.4), various ADMM algorithms have been employed to solve the
problem. As far as we are aware of, the classic two-block ADMM with unit step-length was first employed in
Povh et al. [43] under the name of boundary point method for solving the SDP problem (2.4). It was later
extended in Malick et al. [34] with a convergence proof. The ADMM approach was later used in the software
SDPNAL developed by Zhao et al. [58] to warm-start a semismooth Newton method based ALM for solving
problem (2.4).

In section 5, we will conduct extensive numerical experiments on solving a few classes of linear SDP
problems via the two-block ADMM algorithm but with the dual step-length being chosen in the interval
(0, 2), as it is guaranteed by this paper.

Equality Constrained Problems

Consider the equality constrained problem

min
x∈X

{θ(x) | Gx = b}, (2.5)

where G : X → Rm is a linear map, b ∈ Rm is a given vector, and θ : X → (−∞,+∞] is a simple closed
proper convex function such that its proximal mapping can be computed efficiently. The dual problem of
(2.5) can be written in the minimization form as

min
y,z

{θ∗(y) − ⟨b, z⟩ | y − G∗z = 0} . (2.6)

A concrete example of problem (2.5), with X := Rn and θ(x) := ∥x∥1, is the basis pursuit (BP) problem [7],
which has been wildly used in sparse signal recovery and image restoration. Another example of (2.5) is the
nuclear norm based matrix completion problem for which X := Rn1×n2 and θ(x) = ∥x∥∗. Moreover, the so
called tensor completion problem [33] also falls into this category.

We note that for the application problems just mentioned above, the dimension of X is generally much
larger than m, i.e., the dimension of the linear constraints. Therefore from the computational viewpoint, it
is generally more economical to apply the two-block ADMM to the dual problem (2.6) instead of the primal
problem (2.5) (by introducing an extra variable x′ and adding the condition x − x′ = 0) because the former
will solve smaller m×m linear systems in each iteration whereas the latter will correspondingly need to solve
much larger linear systems.

On the Equivalence of Inexact Proximal ALM and ADMM 9

Composite Problems

A composite problem can take the following form

min
z∈Z

f
(
c − G∗z

)
, (2.7)

where f : Z → (−∞,+∞] is a (possibly nonsmooth) closed proper convex function whose proximal mapping
can be computed efficiently, G : Z → X is a given linear operator and c ∈ X is given data. By introducing a
slack variable, problem (2.7) can be recast as

min
y,z

{
f (y) | y + G∗z = c

}
.

Problem (2.7) contains many real-world applications such as the well-known least absolute deviation (LAD)
problem (also known as least absolute error (LAE), least absolute value (LAV), least absolute residual
(LAR), sum of absolute deviations, or the ℓ1-norm condition). The model (2.7) also includes the Huber
fitting problem [24]. We shall not continue with more examples as there are too many applications to be
listed here to serve as a literature review.

Consensus Optimization

Consider the following problem

min
z∈Z

 n∑
i=1

fi
(G∗

i z
) , (2.8)

where each fi is a closed proper convex function and each Gi : Yi → Z is a linear operator. The model
(2.8) includes the global variable consensus optimization and general variable optimization, as well as their
regularized versions (see [4, Section 7]), which have been well applied in many areas such as machine learning,
signal processing and wireless communication [4,3,49,46,59]. In the consensus optimization setting, it is
usually preferable to solve subproblems each involving a subset of the component functions f1, . . . , fn instead
of all of them. Therefore, one can equivalently recast problem (2.8) as

min
y,z

 n∑
i=1

fi(yi) | yi − G∗
i z = 0, 1 ≤ i ≤ n

 . (2.9)

Obviously, when applying the two-block ADMM to solve (2.9), the subproblem with respect to y is separated
into n independent problems that can be solved in parallel. In [4], the variable z in (2.9) is called the
central collector. Besides, the network based decentralized and distributed computation of the consensus
optimization, such as the distributed lasso in [35], also falls in the problems setting in this paper.

3 An Inexact Majorized ALM with Indefinite Proximal Terms

In this section, we present an inexact majorized indefinite-proximal ALM. This algorithm, as well as its global
and local convergence properties, not only constitutes a generalization of the original (proximal) ALM, but
also paves the way for us to establish its equivalence relationship with the inexact block sGS decomposition
based indefinite-proximal multi-block ADMM in the next section.

Let X and W be two finite dimensional real Hilbert spaces each endowed with an inner product ⟨·, ·⟩
and its induced norm ∥ · ∥. We consider the following fairly general linearly constrained convex optimization
problem

min
w∈W

{
φ(w) + h(w) | A∗w = c

}
, (3.1)

where φ : W → (−∞,+∞] is a closed proper convex function, h : W → (−∞,+∞) is a continuously
differentiable convex function whose gradient is Lipschitz continuous, A : X → W is a linear mapping and
c ∈ X is the given data. The Karush-Kuhn-Tucker (KKT) system of problem (3.1) is given by

0 ∈ ∂φ(w) +∇h(w) +Ax, A∗w − c = 0. (3.2)

10 Liang Chen et al.

For any (w, x) ∈ W ×X that solve the KKT system (3.2), w is a solution to problem (3.1) while x is a dual
solution of (3.1).

The fact that the gradient of h is Lipschitz continuous implies that there exists a self-adjoint positive
semidefinite linear operator Σ̂h : W → W, such that for any w′ ∈ W, h(w) ≤ ĥ(w,w′), where

ĥ(w,w′) := h(w′) + ⟨∇h(w′),w − w′⟩ + 1
2
∥w − w′∥2

Σ̂h
, ∀w ∈ W. (3.3)

We call the function ĥ(·,w′) : W → (−∞,+∞) a majorization of h at w′. The following result, whose proof
can be found in [57, Lemma 3.2], will be used later.
Lemma 3.1 Suppose that (3.3) holds for any given w′ ∈ W. Then, it holds that⟨

∇h(w) −∇h(w′),w′′ − w′
⟩
≥ −1

4
∥w − w′′∥2

Σ̂h
, ∀w,w′,w′′ ∈ W.

Let σ > 0 be a given penalty parameter. The majorized augmented Lagrangian function associated with
problem (3.1) is defined by

Lσ(w; (x,w′)) := φ(w) + ĥ(w,w′) + ⟨A∗w − c, x⟩ + σ
2 ∥A

∗w − c∥2,

∀(w, x,w′) ∈ W ×X×W.
(3.4)

In the following, we propose an inexact majorized indefinite-proximal ALM in Algorithm iPALM for solving
problem (3.1). This algorithm is an extension of the proximal method of multipliers developed by Rockafel-
lar [45], with new ingredients added based on the recent progress on using proximal terms which are not
necessarily positive definite [16,29,57] and the implementable inexact minimization criteria studied in [6].
For the convenience of later convergence analysis, we make the following blanket assumption.
Assumption 3.1 The solution set to the KKT system (3.2) is nonempty and S : W → W is a given self-adjoint
(not necessarily positive semidefinite) linear operator such that

S ≽ −1
2
Σ̂h and 1

2
Σ̂h + σAA∗ + S ≻ 0. (3.5)

We are now ready to present Algorithm iPALM that will be studied in this section.

Algorithm iPALM An inexact majorized indefinite-proximal ALM
Let {εk} be a summable sequence of nonnegative numbers. Choose an initial point (x0,w0) ∈ X × W. For
k = 0, 1, . . ., perform the following steps in each iteration.

Step 1. Compute
wk+1 ≈ wk+1 := arg min

w∈W

{
Lσ

(
w; (xk,wk)

)
+

1
2
∥w − wk∥2

S

}
(3.6)

such that there exists a vector dk ∈ W satisfying ∥dk∥ ≤ εk and

dk ∈ ∂wLσ
(
wk+1; (xk,wk)

)
+ S(wk+1 − wk). (3.7)

Step 2. Compute xk+1 := xk + τσ(A∗wk+1 − c) with τ ∈ (0, 2) being the step-length.

We shall next proceed to analyze the global convergence, the rate of local convergence and the iteration
complexity of Algorithm iPALM. For notational convenience, we collect the total quadratic information in
the objective function of (3.6) as the following linear operator

M := Σ̂h + S + σAA∗, (3.8)

The following result presents two important inequalities for the subsequent analysis. The first one character-
izes the distance (with M being involved in the metric) from the computed solution to the true solution of
the subproblem in (3.6), while the second one presents a nonmonotone descent property about the sequence
generated by Algorithm iPALM.

On the Equivalence of Inexact Proximal ALM and ADMM 11

Proposition 3.1 Suppose that Assumption 3.1 holds. Then,

(a) the sequence {(xk,wk)} generated by Algorithm iPALM and the auxiliary sequence {wk} defined in (3.6)
are well-defined, and it holds that

∥wk+1 − wk+1∥2
M ≤ ⟨dk,wk+1 − wk+1⟩; (3.9)

(b) for any given (x∗,w∗) ∈ X×W that solves the KKT system (3.2) and k ≥ 1, it holds that(
1

2τσ
∥xk+1

e ∥2 +
1
2
∥wk+1

e ∥2
Σ̂h+S

)
−

(
1

2τσ
∥xk

e∥2 +
1
2
∥wk

e∥2
Σ̂h+S

)
≤ −

(
(2 − τ)σ

2
∥A∗wk+1

e ∥2 +
1
2
∥wk+1 − wk∥2

1
2 Σ̂h+S

− ⟨dk,wk+1
e ⟩

)
,

(3.10)

where xe := x − x∗, ∀x ∈ X and we := w − w∗, ∀w ∈ W.

Proof (a) From (3.5) and (3.8) we know that M ≻ 0. Hence, each of the subproblems in Algorithm iPALM
is strongly convex so that each wk+1 is uniquely determined by (xk,wk). Note that, for the given εk ≥ 0, one
can always find a certain wk+1 such that ∥dk∥ ≤ εk with dk being given in (3.7), see [12, Lemma 4.5]. Hence,
Algorithm iPALM is well-defined. According to (3.3) and (3.4), the objective function in (3.6) is given by

φ(w) + ⟨∇h(wk) +Axk,w⟩ + σ
2
∥A∗w − c∥2 +

1
2
∥w − wk∥2

Σ̂h+S
,

so that (3.7) implies that

dk ∈ ∂φ(wk+1) +∇h(wk) +Axk + σA(A∗wk+1 − c) + (̂Σh + S)(wk+1 − wk). (3.11)

Therefore, from the definitions of the Moreau-Yosida proximal mapping and M in (3.8), one has that

wk+1 = ProxM
φ

(
M−1[dk − (∇h(wk) +Axk − σAc − (̂Σh + S)wk)

])
.

Consequently, by the Lipschitz continuity of ProxMφ [28, Proposition 2.3] and the fact that dk can be set as
zero if wk+1 = wk+1, one can readily get (3.9).
(b) Let (x∗,w∗) ∈ X × W be an arbitrary solution to the KKT system (3.2). Obviously, one has that
−∇h(w∗) − Ax∗ ∈ ∂φ(w∗) and A∗w∗ = c. This, together with (3.11) and the maximal monotonicity of ∂φ,
implies that

⟨dk −∇h(wk) +∇h(w∗) −Axk
e − σA(A∗wk+1 − c) − (̂Σh + S)(wk+1 − wk),wk+1

e ⟩ ≥ 0.

Therefore, by using the fact that

A∗wk+1 − c = A∗wk+1
e =

1
τσ

(xk+1 − xk), (3.12)

one can obtain from the above inequality and Lemma 3.1 that⟨
dk,wk+1

e

⟩
− 1

τσ

⟨
xk

e, x
k+1 − xk

⟩
− σ∥A∗wk+1

e ∥2 −
⟨
(̂Σh + S)(wk+1 − wk),wk+1

e

⟩
≥

⟨
∇h(wk) −∇h(w∗),wk+1

e

⟩
≥ − 1

4∥wk+1 − wk∥2
Σ̂h
= − 1

2∥wk+1 − wk∥2
1
2 Σ̂h
,

(3.13)

Note that ⟨xk
e, x

k+1 − xk⟩ = 1
2∥xk

e∥2 − 1
2∥xk

e∥2 − 1
2∥xk+1 − xk∥2 and⟨

(̂Σh + S)(wk+1 − wk),wk+1
e

⟩
= 1

2∥wk+1 − wk∥2
Σ̂h+S
+ 1

2∥wk+1
e ∥2

Σ̂h+S
− 1

2∥wk
e∥2
Σ̂h+S

.

Then, (3.10) follows form (3.13) and this completes the proof of the proposition. ⊓⊔

12 Liang Chen et al.

3.1 Global Convergence

For the convenience of our analysis, we define the following two linear operators

Ξ := τσ
(

1
2
Σ̂h + S +

(2 − τ)σ
6

AA∗
)

and Θ := τσ
(
Σ̂h + S +

(2 − τ)σ
3

AA∗
)
, (3.14)

which will be used in defining metrics in W. Note that τ ∈ (0, 2). If (3.5) in Assumption 3.1 holds, one has
that

1
τσ
Ξ = 2−τ

6

(
1
2 Σ̂h + S + σAA∗

)
+ (1 − 2−τ

6)
(

1
2 Σ̂h + S

)
≽ 2−τ

6

(
1
2 Σ̂h + S + σAA∗

)
≻ 0,

1
τσ
Θ = 1

τσ
Ξ + 1

2 Σ̂h +
(2−τ)σ

6 AA∗ ≽ 1
τσ
Ξ ≻ 0.

(3.15)

Moreover, we define the block-diagonal linear operator Ω : U → U by

Ω(x; w) :=
(
x;Θ

1
2 w

)
, ∀(x,w) ∈ X×W, (3.16)

where Θ is given by (3.14). Now we establish the convergence theorem of Algorithm iPALM. The corre-
sponding proof mainly follows from the proof of [6, Theorem 5.1] for the convergence of an inexact majorized
semi-proximal ADMM and the following result on quasi-Fejér monotone sequence will be used.

Lemma 3.2 Let {ak}k≥0 be a sequence of nonnegative real numbers sequence satisfying ak+1 ≤ ak + εk for all
k ≥ 0, where {εk}k≥0 is a nonnegative and summable sequence of real numbers. Then the {ak} converges to
a unique limit point.

Theorem 3.1 Suppose that Assumption 3.1 holds and the sequence {(xk,wk)} is generated by Algorithm
iPALM. Then,
(a) for any solution (x∗,w∗) ∈ X×W of the KKT system (3.2) and k ≥ 1, we have that∥∥∥(xk+1

e ; wk+1
e)

∥∥∥2

Ω
−

∥∥∥(xk
e; wk

e)
∥∥∥2

Ω

≤ −
[
(2 − τ)

3τ
∥xk+1 − xk∥2 + ∥wk+1 − wk∥2

Ξ − 2τσ⟨dk,wk+1
e ⟩

]
,

(3.17)

where xe := x − x∗, ∀x ∈ X and we := w − w∗, ∀w ∈ W;
(b) the sequence {(xk,wk)} is bounded;
(c) any accumulation point of the sequence {(xk,wk)} solves the KKT system (3.2);
(d) the whole sequence {(xk,wk)} converges to a solution to the KKT system (3.2).

Proof (a) By using (3.14), together with the definitions of Ξ and Θ in (3.10), and the fact that A∗wk+1
e =

1
τσ

(xk+1 − xk), one can get∥∥∥(xk+1
e ; wk+1

e)
∥∥∥2

Ω
−

∥∥∥(xk
e; wk

e)
∥∥∥2

Ω
=

(
∥xk+1

e ∥2 + ∥wk+1
e ∥2

Θ

)
−

(
∥xk

e∥2 + ∥wk
e∥2
Θ

)
≤ −τσ

(
2(2−τ)σ

3 ∥A∗wk+1
e ∥2 +

(2−τ)σ
3 ∥A∗wk

e∥2 + ∥wk+1 − wk∥2
1
2 Σ̂h+S

− 2⟨dk,wk+1
e ⟩

)
≤ −

(
(2−τ)

3τ ∥xk+1 − xk∥2 + τσ (2−τ)
3

(
σ∥A∗wk+1

e ∥2 + σ∥A∗wk
e∥2)

+τσ∥wk+1 − wk∥2
1
2 Σ̂h+S

− 2τσ⟨dk,wk+1
e ⟩

)
≤ −

(
(2−τ)

3τ ∥xk+1 − xk∥2 + στ∥wk − wk+1∥2
(2−τ)σ

6 AA∗+ 1
2 Σ̂h+S

− 2τσ⟨dk,wk+1
e ⟩

)
,

which, together with the definition of the linear operator Ξ in (3.14), implies (3.17).
(b) Define xk+1 := xk + τσ(A∗wk+1 − c), ∀k ≥ 0. From (3.6), (3.7) and (3.17) one can get that for any k ≥ 0,∥∥∥∥(xk+1

e ; wk+1
e)

∥∥∥∥2

Ω
−

∥∥∥(xk
e; wk

e)
∥∥∥2

Ω
−

[
(2 − τ)

3τ
∥xk+1 − xk∥2 + ∥wk+1 − wk∥2

Ξ

]
,

On the Equivalence of Inexact Proximal ALM and ADMM 13

Meanwhile, one can get that ∥(xk+1
e ; wk+1

e)∥Ω ≤ ∥(xk
e; wk

e)∥Ω, ∀ k ≥ 0. Therefore, it holds that

∥(xk+1
e ; wk+1

e)∥Ω ≤ ∥(xk+1
e ; wk+1

e)∥Ω + ∥
(
xk+1 − xk+1; wk+1 − wk+1)∥Ω

≤ ∥(xk
e; wk

e)∥Ω + ∥
(
τσA∗(wk+1 − wk+1);Θ1/2(wk+1 − wk+1)

)∥
= ∥(xk

e; wk
e)∥Ω + ∥wk+1 − wk+1∥τ2σ2AA∗+Θ, ∀k ≥ 0.

(3.18)

From (3.9) we know that ∥wk+1 − wk+1∥2
M ≤ ⟨M−1/2dk,M1/2(wk+1 − wk+1)⟩, so that ∥M1/2(wk+1 − wk+1)∥ ≤

∥M−1/2dk∥ ≤ ∥M−1/2∥∥dk∥. Therefore, it holds that

∥wk+1 − wk+1∥ ≤ ∥M−1/2∥∥M1/2(wk+1 − wk+1)∥

≤ ∥M−1/2∥∥M−1/2∥∥dk∥ ≤ ∥M−1∥εk, ∀k ≥ 0.
(3.19)

Therefore, by combining (3.18) and (3.19) together we can get

∥(xk+1
e ; wk+1

e)∥Ω ≤ ∥(xk
e; wk

e)∥Ω +
√
∥τ2σ2AA∗ + Θ∥ ∥M−1∥εk, ∀k ≥ 0.

Hence, the sequence
{
∥(xk+1

e ; wk+1
e)∥Ω

}
is quasi-Fejér monotone, which converges to a unique limit point by

Lemma 3.2. Since Ω defined in (3.16) is positive definite, we further know that the sequence {(xk,wk)} is
bounded.
(c) From (3.17) we know that for any k ≥ 0

k∑
i=0

{∥∥∥(xi
e; wi

e)
∥∥∥2

Ω
−

∥∥∥(xi+1
e ; wi+1

e)
∥∥∥2

Ω
+ 2τσεi∥wi+1

e ∥
}

≥
k∑

i=0

{
(2 − τ)

3τ
∥xi+1 − xi∥2 + ∥wi+1 − wi∥2

Ξ

}
.

(3.20)

Since {(xk,wk)} is bounded and {εk} is summable, it holds that
∞∑
i=0

{∥∥∥(xi
e; wi

e)
∥∥∥2

Ω
−

∥∥∥(xi+1
e ; wi+1

e)
∥∥∥2

Ω
+ 2τσεi∥wi+1

e ∥
}
<∞,

which, together with (3.20) and the fact that Ξ ≻ 0, implies

lim
k→∞

(xk+1 − xk) = 0 and lim
k→∞

(wk+1 − wk) = 0. (3.21)

Suppose that the subsequence {(xk j ,wk j)} of {(xk,wk)} converges to some limit point (x∞,w∞). By taking
limits on both sides of (3.11) and (3.12) along with k j and using (3.21) and [44, Theorem 24.6], one can get

0 ∈ ∂φ(w∞) +∇h(w∞) +Ax∞ and A∗w∞ − c = 0,

which implies that (x∞,w∞) is a solution to the KKT system (3.2).
(d) Note that (3.17) holds for any (x∗,w∗) satisfying the KKT system (3.2). Therefore, we can choose x∗ = x∞

and w∗ = w∞ in (3.17):

∥(xk+1 − x∞; wk+1 − w∞)∥2
Ω
≤ ∥(xk − x∞; wk − w∞)∥2

Ω
+ 2τσ∥wk+1 − w∞∥εk.

Note that {wk} is bounded. Then, the above inequality, together with Lemma 3.2, implies that the quasi-
Fejér monotone sequence {∥(xk − x∞; wk − w∞)∥2

Ω
} converges. Since (x∞,w∞) is a limit point of {(xk,wk)},

one has that
lim
k→0

∥(xk − x∞; wk − w∞)∥2
Ω = 0,

which, together with the fact that Ω ≻ 0, implies that the whole sequence {(xk,wk)} converges to (x∞,w∞).
This completes the proof of the theorem. ⊓⊔

14 Liang Chen et al.

3.2 Local Convergence Rate

In this section, we present the local convergence rate analysis of Algorithm iPALM. For this purpose, we
denote U := X×W and consider the KKT residual mapping of problem (3.1) defined by

R(u) = R(x,w) :=

 c −A∗w

w − Proxφ(w −∇h(w) −Ax)

 , ∀u = (x,w) ∈ X×W. (3.22)

Note that R(u) = 0 if and only if u = (x,w) is a solution to the KKT system (3.2), whose solution set
can therefore be characterized by K := {u |R(u) = 0}. Moreover, the residual mapping R has the following
property.

Lemma 3.3 Suppose that Assumption 3.1 holds and the sequence {uk := (xk,wk)} is generated by Algorithm
iPALM. Then, for any k ≥ 0,

∥R(uk+1)∥2 ≤ 1
τ2σ2 ∥xk − xk+1∥2 +

2∥Σ̂h+S∥
τσ

∥wk+1 − wk∥2
Θ

+2∥(1 − τ−1)A(xk+1 − xk) + dk∥2.
(3.23)

Proof Note that (3.11) holds. Then, one can see that

wk+1 = Proxφ
(
wk+1 + dk −∇h(wk) −A

(
xk + xk+1−xk

τ

)
− (̂
Σh + S

)
(wk+1 − wk)

)
.

By taking the above equality and c−A∗wk+1 = 1
τσ

(xk − xk+1) into the definition of R(uk+1) in (3.22) and using
the Lipschitz continuity of Proxφ, one can get

∥R(uk+1)∥2 ≤ 1
τ2σ2 ∥xk − xk+1∥2 + 2∥(1 − τ−1)A(xk+1 − xk) + dk∥2

+2∥∇h(wk+1) −∇h(wk) − (̂
Σh + S

)
(wk+1 − wk)∥2.

(3.24)

By using Clarke’s mean value theorem [8, Proposition 2.6.5] we know that for any k ≥ 0 there exists a linear
operator Σk : W → W such that ∇h(wk+1) −∇h(wk) = Σk(wk+1 − wk) with 0 ≼ Σk ≼ Σ̂h, so that

∥∇h(wk+1) −∇h(wk) − (̂
Σh + S

)
(wk+1 − wk)∥2

= ∥(̂Σh + S − Σk
)
(wk+1 − wk)∥2

≤ ∥Σ̂h + S − Σk∥⟨wk+1 − wk,
(̂
Σh + S − Σk

)
(wk+1 − wk)⟩

≤ ∥Σ̂h + S∥⟨wk+1 − wk,
(̂
Σh + S

)
(wk+1 − wk)⟩

≤ ∥Σ̂h+S∥
τσ

⟨
wk+1 − wk, τσ

(̂
Σh + S + (2−τ)σ

3 AA∗
)
(wk+1 − wk)

⟩
, ∀k ≥ 0,

(3.25)

where the last inequality comes form the fact that 0 < τ < 2. Then, by using the definition of Θ in (3.14),
one can readily see from (3.24) and (3.25) that (3.23) holds. This completes the proof. ⊓⊔

To analyze the linear convergence rate of Algorithm iPALM, we shall introduce the following error bound
condition.

Definition 3.1 The KKT residual mapping R defined in (3.22) is said to be metric subregular3 [11, 3.8 [3H]]
(with the modulus κ > 0) at u ∈ K for 0 ∈ U if there exists a constant r > 0 such that

dist
(
u,K

) ≤ κ∥R(u)∥ , ∀u ∈ {u ∈ U | ∥u − u∥ ≤ r}. (3.26)
3 This is equivalent to say that R−1 is calm at 0 ∈ U for u ∈ K with the same modulus κ > 0, see [11, Theorem 3H.3].

On the Equivalence of Inexact Proximal ALM and ADMM 15

Suppose that Assumption 3.1 holds. We know from (3.14) and (3.15) that Ξ ≻ 0. Hence, one can let ζ > 0
be the smallest real number such that ζΞ ≽ Θ. For notational convenience, we define the following positive
constants:

ρ := max

6σ2(τ− 1)2∥A∗A∥ + 3
τσ2(2 − τ)

,
2ζ∥Σ̂h + S∥

τσ

 max
{
∥Θ∥, 1

}
, (3.27)

β := max
{√
ζ,

√
3τ/(2 − τ)

}
, (3.28)

µ :=

√
τσ∥Σ̂h + S +

2
3

(1 + τ)σAA∗∥ ∥M−1∥. (3.29)

To ensure the local linear rate convergence of Algorithm iPALM, we need extra conditions to control the
error variable dk in each iteration. Hence, we make the following assumption.

Assumption 3.2 There exists an integer k0 > 0 and a sequence of nonnegative real numbers {ηk} such that

sup
k≥k0

{ηk} < 1/µ and ∥dk∥ ≤ ηk∥uk − uk+1∥, ∀ k ≥ k0. (3.30)

Now we are ready to present the local convergence rate of Algorithm iPALM.

Theorem 3.2 Suppose that Assumptions 3.1 and 3.2 hold. Let {uk = (xk,wk)} be the sequence generated by
Algorithm iPALM that converges to u∗ := (x∗,w∗) ∈ K. Suppose that the KKT residual mapping R defined
in (3.22) is metric subregular at u∗ for 0 ∈ U with the modulus κ > 0, in the sense that there exists a constant
r > 0 such that (3.26) holds with u = u∗. Then, there exists a threshold k̄ > 0 such that for for all k ≥ k̄,

distΩ
(
uk+1,K

)
≤ ϑk distΩ

(
uk,K

)
with ϑk := 1

1−µηk

(√
κ2ρ

1+κ2ρ
+ µηk(1 + β)

)
. (3.31)

Moreover, if it holds that
sup
k≥k̄

{ηk} < 1
µ(2+β)

(
1 −

√
κ2ρ

1+κ2ρ

)
(3.32)

then one has supk≥k̄{ϑk} < 1, and the convergence rate of distΩ(uk,K) is Q-linear when k ≥ k.

Proof Denote ue := u− u∗ for all u ∈ U and define xk+1 := xk + τσ(A∗wk+1 − c) and uk+1 := (xk+1,wk+1), ∀k ≥ 0.
Since {uk} converges to u∗ and {dk} converges to 0 as k → ∞, one has from (3.9) that {uk} also converges to
u∗ as k → ∞. Therefore, there exists a threshold k̄ > 0 such that

∥uk+1
e ∥ ≤ r and ∥uk+1

e ∥ ≤ r , ∀k ≥ k̄. (3.33)

One can let uk+1 = uk+1 and dk = 0 in (3.23) and use the fact that ζΞ ≽ Θ to obtain that

∥R(uk+1)∥2

≤
(

2(τ−1)2∥A∗A∥
τ2 + 1

(τσ)2

)
∥xk+1 − xk∥2 +

2∥Σ̂h+S∥
τσ

∥wk+1 − wk∥2
Θ

≤ max
{

6σ2(τ−1)2∥A∗A∥+3
τσ2(2−τ) ,

2ζ∥Σ̂h+S∥
τσ

} (
(2−τ)

3τ ∥xk+1 − xk∥2 + ∥wk+1 − wk∥2
Ξ

)
.

(3.34)

Moreover, according to the definition of Ω in (3.16), one has that

dist2Ω
(
u,K

) ≤ max{∥Θ∥, 1}dist2
(
u,K

)
, ∀ u ∈ U.

Then, by using the above inequality, together with (3.26), (3.33) and (3.34), we can obtain with the constant
ρ > 0 being defined in (3.27) that

dist2Ω(uk+1,K) ≤ κ2 max{∥Θ∥, 1}∥R(uk+1)∥2

≤ κ2ρ
(

(2−τ)
3τ ∥xk+1 − xk∥2 + ∥wk+1 − wk∥2

Ξ

)
, ∀ k ≥ k̄.

(3.35)

16 Liang Chen et al.

It is easy to see from (3.17) that

dist2Ω(uk+1,K) ≤ dist2Ω(uk,K) −
[
(2 − τ)

3τ
∥xk+1 − xk∥2 + ∥wk+1 − wk∥2

Ξ

]
, ∀k ≥ 0 (3.36)

Therefore, by combining (3.35) and (3.36) together we can get that for any k ≥ k,

dist2Ω(uk+1,K) ≤ κ2ρ

1 + κ2ρ
dist2Ω(uk,K), ∀ k ≥ k̄. (3.37)

From (3.36) and the fact that ζΞ ≽ Θ we know that

dist2Ω(uk,K) ≥ min
{

(2 − τ)
3τ

,
1
ζ

}
∥uk − uk+1∥2

Ω, ∀ k ≥ 0.

Therefore, it holds that
∥uk − uk+1∥Ω ≤ β distΩ(uk,K), ∀ k ≥ 0, (3.38)

where the constant β > 0 is given in (3.28). By using the triangle inequality, we have that

∥uk − ΠΩK(uk+1)∥Ω ≤ distΩ(uk,K) + ∥ΠΩK(uk) − ΠΩK(uk+1)∥Ω, ∀k ≥ 0. (3.39)

Moreover, from [28, Proposition 2.3] we know that

∥ΠΩK(uk) − ΠΩK(uk+1)∥2
Ω ≤ ⟨ΠΩK(uk) − ΠΩK(uk+1),Ω(uk − uk+1)⟩, ∀ k ≥ 0.

Thus, ∥ΠΩK(uk) − ΠΩK(uk+1)∥Ω ≤ ∥uk − uk+1∥Ω, ∀k ≥ 0, which together with (3.38) and (3.39), implies that

∥uk − ΠΩK(uk+1)∥Ω ≤ (1 + β)distΩ(uk,K), ∀ k ≥ 0. (3.40)

From the definitions of Θ in (3.14) and Ω in (3.16) we know that

∥uk+1 − uk+1∥2
Ω = (τσ)2∥A∗(wk+1 − wk+1)∥2 + ∥wk+1 − wk+1∥2

Θ

=
⟨
wk+1 − wk+1, τσ(̂Σh + S + 2

3 (1 + τ)σAA∗)(wk+1 − wk+1)
⟩
.

Based on the above equality, one can see from (3.19) and (3.29) that

∥uk+1 − uk+1∥Ω ≤ µ∥dk∥, (3.41)

Since Assumption 3.2 holds, by using (3.30), (3.41) and the triangle inequality one can get that

∥uk+1 − ΠΩK(uk+1)∥Ω ≤ ∥uk+1 − uk+1∥Ω + distΩ
(
uk+1,K

)
≤ µ∥dk∥ + distΩ

(
uk+1,K

) ≤ µηk∥uk − uk+1∥ + distΩ(uk+1,K)

≤ µηk∥uk+1 − ΠΩK(uk+1)∥Ω + µηk∥uk − ΠΩK(uk+1)∥Ω + distΩ(uk+1,K), ∀k ≥ k̄.

Then, by using the fact that ∥uk+1 −ΠΩK(uk+1)∥Ω ≥ distΩ(uk+1,K) and (3.40), we can obtain that when k ≥ 0,

(1 − µηk)distΩ(uk+1,K) ≤ µηk(1 + β)distΩ(uk,K) + distΩ(uk+1,K),

which, together with (3.37), implies (3.31). Finally, it is easy to see that supk≥k̄{ϑk} < 1 from (3.30) and
(3.32). This completes the proof. ⊓⊔

Remark 3.1 Note that if {ηk} → 0 as k → ∞, condition (3.32) holds eventually for k̄ sufficiently large.

On the Equivalence of Inexact Proximal ALM and ADMM 17

3.3 Non-Ergodic Iteration Complexity

With the inequalities established in the previous subsections, one can easily get the following non-ergodic
iteration complexity results for Algorithm iPALM.

Theorem 3.3 Suppose that Assumption 3.1 holds. Let {uk = (xk,wk)} be the sequence generated by Algorithm
iPALM that converges to u∗ := (x∗,w∗) ∈ K. Then, the KKT residual mapping R defined in (3.22) satisfies

min
0≤ j≤k

∥R(u j)∥2 ≤ ϱ/k, and lim
k→∞

(
k · min

0≤ j≤k
∥R(u j)∥2) = 0, (3.42)

where the constant ϱ is defined by

ϱ := max

12σ2(τ− 1)2∥A∗A∥ + 3
τσ2(2 − τ)

,
2ζ∥Σ̂h + S∥

τσ

 e (3.43)

with e := ∥u0
e∥2
Ω
+ 2τσ∥Θ−1/2∥(

∑∞
j=0 ε j)

(∥u0
e∥Ω + µ

∑∞
j=0 ε j

)
+ 4

∑∞
j=1 ε

2
j .

Proof Form (3.17) in Theorem 3.1(a) we know that∥u j+1
e ∥Ω ≤ ∥u j

e∥Ω, ∀ j ≥ 0. Moreover, (3.41) still holds
with µ being given in (3.29), so that ∥u j+1 − u j+1∥Ω ≤ µ∥d j∥ ∀ j ≥ 0. Therefore,

∥w j+1
e ∥Θ ≤ ∥u j+1

e ∥Ω ≤ ∥u j
e∥Ω + µ∥dk∥ ≤ ∥u0

e∥Ω + µ
 ∞∑

j=0

ε j

 , ∀ j ≥ 0.

Consequently, for any k ≥ 0∑k
j=0⟨d j,w j+1

e ⟩ ≤ ∥Θ−1/2∥
(∑k

j=0 ∥d j∥
)
∥w j+1

e ∥Θ

≤ ∥Θ−1/2∥
(∑∞

j=0 ε j

) (
∥u0

e∥Ω + µ
(∑∞

j=0 ε j

))
.

(3.44)

Also, from (3.17) of Theorem 3.1(a) we know that for any k ≥ 0,

∥u0
e∥2
Ω
≥ ∥u0

e∥2
Ω
− ∥uk+1

e ∥2
Ω
=

∑k
j=0

(
∥u j

e∥2
Ω
− ∥u j+1

e ∥2
Ω

)
≥ ∑k

j=0

(
∥w j+1 − w j∥2

Ξ
+ 2−τ

3τ ∥x j+1 − x j∥2
)
− 2τσ

∑k
j=0⟨d j,w j+1

e ⟩.
(3.45)

Moreover, from (3.23) we know that

∥R(uk+1)∥2 ≤ 4σ2(τ−1)2∥A∗A∥+1
τ2σ2 ∥xk+1 − xk∥2 +

2ζ∥Σ̂h+S∥
τσ

∥wk+1 − wk∥2
Ξ
+ 4∥dk∥2.

Therefore, we can get from (3.44) and (3.45) that ∑∞
j=0 ∥R(u j+1)∥2 ≤ ϱ. From here, we can easily get required

results in (3.42). ⊓⊔

4 The Equivalence Property

In this section, we establish the equivalence of an inexact block sGS decomposition based multi-block
indefinite-proximal ADMM for solving problem (1.1) to the inexact indefinite-proximal ALM presented in
the previous section. The iteration scheme of the former has already been briefly sketched in (1.6) in the
introduction. Here we shall formally present it as Algorithm sGS-iPADMM.

Recall that the KKT system of problem (1.1) is defined by

0 ∈
(
∂p(y1)

0

)
+∇ f (y) + F x, Gx − b = 0, F∗y + G∗z = c. (4.2)

We make the following assumption on problem (1.1) throughout this section.

Assumption 4.1 The solution set to the KKT system (4.2) is nonempty.

18 Liang Chen et al.

Algorithm sGS-iPADMM An inexact block sGS decomposition based indefinite-Proximal ADMM
Let {ε̃k} be a summable sequence of nonnegative real numbers, τ ∈ (0, 2) be the (dual) step-length, and
(x0, y0, z0) ∈ X× dom p×Y2 ×· · ·×Ys ×Z be the given initial point. Choose the self-adjoint linear operators
Di : Yi → Yi, i = 1, . . . , s. For k = 0, 1, . . . , perform the following steps in each iteration.

Step 1. For i = s, . . . , 2, compute

yk+ 1
2

i ≈ arg min
yi∈Yi

{
Lσ

((
yk
<i; yi; yk+ 1

2
>i

)
, zk; (xk, yk)

)
+

1
2
∥yi − yk

i ∥
2
Di

}
,

such that there exists δ̃k
i satisfying ∥δ̃k

i ∥ ≤ ε̃k and

δ̃k
i ∈ ∂yiLσ

((
yk
<i; yk+ 1

2
i ; yk+ 1

2
>i

)
, zk; (xk, yk)

)
+Di

(
yk+ 1

2
i − yk

i

)
.

Step 2. For i = 1, . . . , s, compute

yk+1
i ≈ arg min

yi∈Yi

{
Lσ

((
yk+1
<i ; yi; yk+ 1

2
>i

)
, zk; (xk, yk)

)
+

1
2
∥yi − yk

i ∥
2
Di

}
,

such that there exists δk
i satisfying ∥δk

i ∥ ≤ ε̃k and

δk
i ∈ ∂yiLσ

((
yk+1
<i ; yk+1

i ; yk+ 1
2

>i

)
, zk; (xk, yk)

)
+Di

(
yk+1

i − yk
i

)
.

Step 3. Compute zk+1 ≈ arg min
z∈Z

{
Lσ

(
yk+1, z; (xk, yk)

)}
, such that ∥γk∥ ≤ ε̃k with

γk := ∇zLσ

(
yk+1, zk+1; (xk, yk)

)
= Gxk − b + σG(F∗yk+1 + G∗zk+1 − c). (4.1)

Step 4. Compute xk+1 := xk + τσ
(
F∗yk+1 + G∗zk+1 − c

)
.

Note that if the Slater’s constraint qualification (SCQ) holds for problem (1.1), i.e.,

{(y, z) | y1 ∈ ri(dom p), F∗y + G∗z = c} ̸= ∅,

then we know from [44, Corollaries 28.2.2 & 28.3.1] that a vector (y, z) ∈ Y × Z is a solution to problem
(1.1) if and only if there exists a Lagrangian multiplier x ∈ X such that (x, y, z) is a solution to the KKT
system (4.2). Therefore, Assumption 4.1 holds if the SCQ holds and (1.1) has at least one optimal solution.
Moreover, for any (x, y, z) ∈ X×Y × Z satisfying (4.2), we know from [44, Corollary 30.5.1] that (y, z) is an
optimal solution to problem (1.1) and x is an optimal solution to its dual problem.

Recall that the majorized augmented Lagrangian function of problem (1.1) was given in (1.5). Note that
one can always write F x = (F1x; . . . ;Fsx), ∀x ∈ X with each Fi : X → Yi being a given linear mapping. For
later discussions, we symbolically decompose the self-adjoint linear operator Σ̂ f in the following form

Σ̂ f =

Σ̂
f
11 Σ̂

f
12 · · · Σ̂ f

1s

Σ̂
f
21 Σ̂

f
22 · · · Σ̂ f

2s

...
...

Σ̂
f
s1 Σ̂

f
s2 · · · Σ̂ f

ss

with Σ̂

f
i j : Y j → Yi, ∀1 ≤ i, j ≤ s. (4.3)

Based on the above decomposition, we make the following assumption on choosing the proximal terms in
Algorithm sGS-iPADMM .
Assumption 4.2 The self-adjoint linear operators Di : Yi → Yi, i = 1, . . . , s in Algorithm sGS-iPADMM are
chosen such that

1
2
Σ̂

f
ii + σFiF∗

i +Di ≻ 0 and D := Diag(D1, . . . ,Ds) ≽ −1
2
Σ̂ f . (4.4)

On the Equivalence of Inexact Proximal ALM and ADMM 19

We are now ready to prove the equivalence of Algorithm 1 and Algorithm sGS-iPADMM for solving
problem (1.1). We begin by applying the inexact block sGS decomposition technique in [32, Theorem 1] to
express the procedure for computing yk+1 in Steps 1 and 2 of Algorithm sGS-iPADMM in a more compact
fashion. For this purpose we define the following linear operator

N := Σ̂ f + σFF∗ +D (4.5)

Note that the self-adjoint linear operator N is positive semidefinite, if Assumption 4.2 holds. Moreover, as
can be seen from (1.5), for any given (x, y′, z) ∈ X×Y×Z, the linear operator N contains all the quadratic
information of

Lσ

(
y, z; (x, y′)

)
+

1
2
∥y − y′∥2

D,

with respect to y. Based on (4.3), the linear operator N can be decomposed as N = Nd +Nu +N ∗
u with Nd

and Nu being the block-diagonal and the strict block-upper triangular parts of N , respectively, i.e.,

Nd := Diag(N11, . . . ,Nss) with Nii := Σ̂ f
ii + σFiF∗

i +Di, i = 1, . . . , s,

and

Nu :=

0 N12 · · · N1s

0 0
.

...
... . . . N(s−1)s

0 0 · · · 0

with Ni j = Σ̂

f
i j + σFiF∗

j , ∀ 1 ≤ i < j ≤ s. (4.6)

For convenience, we denote in Algorithm sGS-iPADMM for each k ≥ 0, δ̃k
1 := δk

1, δ̃k := (δ̃k
1, δ̃

2
k . . . , δ̃

k
s) and

δk := (δk
1, . . . , δ

k
s). Suppose that Assumption 4.2 holds. We can define the sequence {δk

sGS} ∈ Y by

δk
sGS := δk +NuN−1

d (δk − δ̃k). (4.7)

Moreover, we can define the linear operator

NsGS := NuN−1
d N ∗

u . (4.8)

Based on the above definitions, we have the following result, which is a direct consequence of [32, Theorem
1].

Lemma 4.1 Suppose that Assumption 4.2 holds. The iterate yk+1 in Step 2 of Algorithm sGS-iPADMM is
the unique solution to the perturbed proximal minimization problem given by

yk+1 = arg min
y∈Y

{
Lσ

(
y, zk;

(
xk, yk)) + 1

2
∥y − yk∥2

D+NsGS
− ⟨δk

sGS, y⟩
}
. (4.9)

Moreover, it holds that N +NsGS = (Nd +Nu)N−1
d (Nd +N ∗

u) ≻ 0.

Remark 4.1 From (4.9) one can get the interpretation of the linear operator NsGS defined in (4.8). That is,
by adding the proximal term 1

2∥y − yk∥2
D to the majorized augmented Lagrangian function and conduct one

cycle of the block sGS-type block coordinate minimization via Steps 1 and 2 in Algorithm sGS-iPADMM,
the resulted yk+1 is then an inexact solution to the following problem

min
y∈Y

{
Lσ

(
y, zk;

(
xk, yk)) + 1

2
∥y − yk∥2

D +
1
2
∥y − yk∥2

NsGS

}
,

where the proximal term 1
2∥y − yk∥2

NsGS
is generated due to the sGS-type iteration with the linear operator

NsGS being defined by (4.8) and (4.5), while δk
sGS defined in (4.7) represents the error accumulated from δ̃k

and δk after one cycle of the sGS-type update.

The following elementary result4 will be frequently used later.
4 This lemma can be directly verified via the singular value decomposition of the linear operator G and some basic calculations

from linear functional analysis.

20 Liang Chen et al.

Lemma 4.2 The self-adjoint linear operator GG∗ is nonsingular (positive definite) on the subspace Range(G)
of Z.

Now, we start to establish the equivalence between Algorithm sGS-iPADMM and Algorithm iPALM. The
first step is to show that the procedure of obtaining (yk+1, zk+1) in Algorithm sGS-iPADMM can be viewed
as the procedure of getting wk+1 in Algorithm iPALM. For this purpose, we define the block diagonal linear
operator T : Y ×Z → Y ×Z by

T (
y; z

)
:=

(
D +NsGS + σFG∗[GG∗]†GF∗

)
y

0

 , ∀ (
y, z

) ∈ Y ×Z. (4.10)

Moreover, we define the sequence
{
∆k

}
in Y by

∆k := δk
sGS −FG∗[GG∗]†

(
γk−1 − γk − G(xk−1 − xk)

)
, k ≥ 0 (4.11)

with the convention that x−1 := x0 − τσ(F∗y0 + G∗z0 − c),

γ−1 := −b + Gx−1 + σG(F∗y0 + G∗z0 − c).
(4.12)

Based on the above definitions and Lemma 4.1, we have the following result.

Proposition 4.1 Suppose that Assumption 4.2 holds. Then,

(a) Algorithm sGS-iPADMM is well-defined;
(b) the sequence {(xk, yk, zk)} generated by Algorithm sGS-iPADMM satisfies(

∆k; γk
)
∈ ∂(y,z)Lσ

((
yk+1, zk+1); (xk, yk)) + T (

yk+1 − yk; zk+1 − zk
)
, ∀ k ≥ 0 (4.13)

Proof (a) Since Assumption 4.2 holds, it is easy to see from Lemma 4.1 that Steps 1 and 2 in algorithm
sGS-iPADMM are well-defined for any k ≥ 0. Moreover, from (4.1) we know that Step 3 of Algorithm
sGS-iPADMM is well-defined if, for any k ≥ 0, the following linear system with respect to z

Gxk − b + σG(F∗yk+1 + G∗z − c) = 0 (4.14)

has a solution. Since b ∈ Range(G), we know that (b−Gxk)/σ−G(F∗yk+1 − c) ∈ Range(G). Therefore, Lemma
4.2 implies that the linear system

GG∗z = (b − Gxk)/σ− G(F∗yk+1 − c),

or equivalently the linear system (4.14), has a solution. Consequently, Algorithm sGS-iPADMM is well-
defined.
(b) From (4.1) and (4.12) we know that for any k ≥ 0,

γk−1 = −b + Gxk−1 + σG(F∗yk + G∗zk − c), (4.15)

so that γk−1 ∈ Range(G) and GG∗zk = (γk−1 + b − Gxk−1)/σ− GF∗yk + Gc. Hence,

GG∗(zk − zk+1) =
1
σ

(γk−1 − γk − Gxk−1 + Gxk) − GF∗(yk − yk+1), ∀ k ≥ 0.

Therefore, one can get5 that for any k ≥ 0,

σFG∗(zk − zk+1)

= FG∗[GG∗]†(γk−1 − γk − G(xk−1 − xk)) + σFG∗[GG∗]†GF∗(yk+1 − yk).
(4.16)

5 This can be routinely derived by using the singular value decomposition of G and the definition of the Moore–Penrose
pseudoinverse.

On the Equivalence of Inexact Proximal ALM and ADMM 21

From (4.9) in Lemma 4.1 we know that, for any k ≥ 0,

δk
sGS ∈ ∂yLσ

(
yk+1, zk; (xk, yk)

)
+

(D +NsGS
)
(yk+1 − yk)

= ∂yLσ

(
yk+1, zk+1;

(
xk, yk)) + (D +NsGS

)
(yk+1 − yk) + σFG∗(zk − zk+1). (4.17)

Then, by substituting (4.16) into (4.17) and using the definition of ∆k in (4.11), one has that

∆k ∈ ∂yLσ

(
yk+1, zk+1; (xk, yk)

)
+

(
D +NsGS + σFG∗[GG∗]†GF∗

)
(yk+1 − yk),

which, together with (4.1), implies that (4.13) holds. This completes the proof. ⊓⊔

The following important result will be used later.

Proposition 4.2 Suppose that Assumptions 4.1 and 4.2 hold. Let {(xk, yk, zk)} be the sequence generated by
Algorithm sGS-iPADMM. Define ξ0 := ∥b − Gx0∥ and

ξk := |1 − τ|kξ0 + τ
∑k

i=1 |1 − τ|k−iε̃i−1, ∀ k ≥ 1.

Then, it holds that for all k ≥ 0, ∥b − Gxk∥ ≤ ξk and

∞∑
k=0

∥b − Gxk∥ ≤
∞∑
k=0

ξk < +∞.

Proof We know from Step 4 of Algorithm sGS-iPADMM and (4.12) that

xk = xk−1 + τσ
(F∗yk + G∗zk − c

)
, ∀ k ≥ 0.

Hence, one has that
b − Gxk = b − Gxk−1 − τσG(F∗yk + G∗zk − c

)
, ∀ k ≥ 0.

Moreover, from (4.12) and (4.15) we know that

τ(γk−1 + b − Gxk−1) = τσG(F∗yk + G∗zk − c
)
, ∀k ≥ 0.

Thus, by combining the above two equalities together, one can get

b − Gxk = b − Gxk−1 − τ
(
γk−1 + b − Gxk−1) = (1 − τ)

(
b − Gxk−1) − τγk−1, ∀ k ≥ 0.

Consequently, it holds that

∥b − Gxk∥ ≤ |1 − τ| ∥b − Gxk−1∥ + τ∥γk−1∥, ∀ k ≥ 0,

and hence

∥b − Gxk∥ ≤ |1 − τ|k ∥b − Gx0∥ + τ
k∑

i=1

|1 − τ|k−i ∥γi−1∥ ≤ ξk, ∀k ≥ 0. (4.18)

Note that τ ∈ (0, 2). It is easy to see that

∞∑
k=0

∥b − Gxk∥ ≤
∞∑
k=0

ξk ≤
 ∞∑

k=0

|1 − τ|k
 ξ0 + τ

∞∑
k=1

k∑
i=1

|1 − τ|k−iε̃i−1

≤
 ∞∑

k=0

|1 − τ|k
 ξ0 + τ

 ∞∑
k=0

|1 − τ|k
 ∞∑

i=0

ε̃i

 < +∞,

which completes the proof. ⊓⊔

22 Liang Chen et al.

Now, we start to show that the sequence {(xk, yk, zk)} generated by Algorithm sGS-iPADMM can be
viewed as a sequence generated by Algorithm iPALM from the same initial point. For this purpose, we define
the space V := Y × Range(G), and we define the linear operators B : X → V and P : V → V by

Bx :=
(F x;Gx

)
, ∀ x ∈ X and P(y, z) :=

(
Σ̂ f y ; 0

)
, ∀ (y, z) ∈ V. (4.19)

Moreover, we define the closed proper convex function ϕ : V → (−∞,+∞] by

ϕ(v) = ϕ(y, z) := p(y1) + f (y) − ⟨b, z⟩, ∀ v = (y, z) ∈ V,

and define
Lσ

(
v; (x, v′)

)
:= Lσ

(
y, z; (x, y′)

)
, ∀ v = (y, z) ∈ V, v′ = (y′, z′) ∈ V. (4.20)

Based on the above definitions, problem (1.1) can be viewed as an instance of problem (3.1). In this case, the
following result is for the purpose of viewing Algorithm sGS-iPADMM as an instance of Algorithm iPALM.

Theorem 4.1 Suppose that Assumptions 4.1 and 4.2 hold. Let {(xk, yk, zk)} be the sequence generated by
Algorithm sGS-iPADMM. Define

vk :=
(
yk;ΠRange(G)(zk)

)
, ∀ k ≥ 0. (4.21)

Then, for any k ≥ 0, it holds that

(a) the linear operators T , B and P defined in (4.10) and (4.19) satisfy

T ≽ − 1
2P and

⟨
v,

(
1
2P + σBB

∗ + T
)

v
⟩
> 0, ∀ v ∈ V \ {0}; (4.22)

(b) there exists a sequence of nonnegative real numbers {̂εk}, such that

∥(∆k; γk)∥ ≤ ε̂k and
∞∑
k=0

ε̂k < +∞;

(c) it holds that

vk+1 ≈ arg min
v∈V

{
Lσ

(
v; (xk, vk)

)
+

1
2
∥v − vk∥2

T

}
,

in the sense that (
∆k; γk

)
∈ ∂vLσ

(
vk+1;

(
xk, vk)) + T (

vk+1 − vk
)

and
∥∥∥(∆k; γk)

∥∥∥ ≤ ε̂k.

Proof (a) According to (4.4) in Assumption 4.2 we know that D ≽ − 1
2 Σ̂

f . Moreover, from (4.8) we know
that NsGS ≽ 0. Thus, one can readily see from (4.10) and (4.19) that T ≽ − 1

2P. On the other hand, one can
symbolically do the decomposition that

1
2
P + σBB∗ + T =

1
2 Σ̂

f + σFF∗ +D +NsGS + σFG∗[GG∗]†GF∗ σFG∗

σGF∗ σGG∗

 .
From Lemma 4.2, we know that GG∗ is nonsingular on the Range(G). Therefore, by using the definition of
V and the Schur complement condition for ensuring the positive definiteness of a linear operator, we only
need to show that 1

2 Σ̂
f +σFF∗ +D+NsGS ≻ 0 on Y. Suppose on the contrary that it is not positive definite.

Then, there exists a nonzero vector y ∈ Y such that⟨
y,

(
1
2 Σ̂

f + σFF∗ +D +NsGS

)
y
⟩
=

⟨
y,

(
1
2 Σ̂

f +D + σFF∗
)

y
⟩
+ ⟨y,NsGSy⟩ = 0.

From (4.4) of Assumption 4.2 and (4.8) we know that 1
2 Σ̂

f +D + σFF∗ ≽ 0 and NsGS ≽ 0, so that⟨
y,

(
1
2 Σ̂

f +D + σFF∗
)

y
⟩
= 0 = ⟨y,NsGSy⟩ .

On the Equivalence of Inexact Proximal ALM and ADMM 23

Then, by using (4.8) we can get that N ∗
u y = 0. This, together with (4.6), implies that

0 =
⟨
y,

(
1
2 Σ̂

f +D + σFF∗
)

y
⟩

= 1
2

⟨
y,

(̂
Σ f + σFF∗

)
y
⟩
+

⟨
y,

(
1
2σFF∗ +D

)
y
⟩

= 1
2

⟨
y,

(̂
Σ f + σFF∗

)
d

y
⟩
+

⟨
y,

(
1
2σFF∗ +D

)
y
⟩

=
⟨
y,

(
1
2 (̂Σ f)d +D

)
y
⟩
+ σ

2 ⟨y, (FF∗)dy⟩ + σ
2 ⟨y,FF∗y⟩ ,

(4.23)

where
(̂Σ f + σFF∗)d := Diag

(̂
Σ

f
11 + σF1F∗

1 , . . . , Σ̂
f
ss + σFsF∗

s
)
,

(FF∗)d := Diag
(F1F∗

1 , . . . ,FsF∗
s
)
.

Since D ≽ − 1
2 Σ̂

f implies 1
2 (̂Σ f)d +D ≽ 0, we obtain from (4.23) that⟨

y,
(

1
2 (̂Σ f)d +D

)
y
⟩
= σ

2 ⟨y, (FF∗)d y⟩ = σ
2 ⟨y,FF∗y⟩ = 0,

which contradicts the requirement in Assumption 4.2 that 1
2 Σ̂

f
ii+σFiF∗

i +Di ≻ 0 for all i = 1, . . . , s. Therefore,
it holds that 1

2 Σ̂
f + σFF∗ +D +NsGS ≻ 0, and this completes the proof of (a).

(b) From the definition of {∆k} in (4.11) one can see that for all k ≥ 0,

∥∆k∥ ≤ ∥δk
sGS∥ + ∥FG∗[GG∗]†∥∥γk−1 − γk − G(xk−1 − xk)∥.

Then, by using the fact that max{∥δ̃k
i ∥, ∥δ

k
i ∥, ∥γ

k∥} ≤ ε̃k, we can get from Proposition 4.2 and the definition
of δk

sGS in (4.7) that for all k ≥ 1,

∥(∆k; γk)∥ ≤ ∥γk∥ + ∥∆k∥

≤ ε̂k := (s + 1)ε̃k + 2s∥NuN−1
d ∥ε̃k + ∥FG∗[GG∗]†∥(ε̃k−1 + ξk−1 + ε̃k + ξk

)
.

Moreover, we define ε̂0 := ∥(∆0; γ0)∥. Then, according to Proposition 4.2 and the fact that the sequence {ε̃k}
is summable, we know that ∑∞

k=0 ε̂k < +∞.
(c) According to (4.10), (4.13) and (4.20), we only need to show that

∂(y,z)Lσ

((
yk+1, zk+1); (xk, yk)) = ∂(y,z)Lσ

((
yk+1,ΠRange(G)(zk+1)

)
;
(
xk, yk)) , ∀ k ≥ 0,

From (1.4) and (1.5) we can get that

∂yLσ(y, z; (x, y′)) =
(
∂y1 p(y1)

0

)
+∇ f (y′) + Σ̂ f (y − y′) + F x + σF(F∗y + G∗z − c)

and
∇zLσ(y, z; (x, y′)) = −b + Gx + σG(F∗y + G∗z − c).

Therefore, by using the fact that G∗zk+1 = G∗ΠRange(G)(zk+1), ∀ k ≥ 0, we know that part (c) of the theorem
holds. This completes the proof. ⊓⊔

Remark 4.2 One can see that in Algorithm sGS-iPADMM, the sequence {(xk, yk, zk)} was generated, while
the sequence {ΠRange(G)(zk)} has never been explicitly calculated. Note that once zk is computed, only the
vector G∗zk is needed during the next iteration, instead of zk itself. Since G∗zk = G∗ΠRange(G)(zk), ∀ k ≥ 0, one
may view the sequence {ΠRange(G)(zk)} ∈ Range(G) as a shadow sequence of {zk}. It has never been explicitly
computed, but still plays an important role on establishing the convergence of the algorithm. In fact, similar
observations have been made and extensively used in [30,31].

By combining the results of Theorem 3.1 and Theorem 4.1, one can readily get the following convergence
theorem of Algorithm sGS-iPADMM.

Theorem 4.2 Suppose that Assumptions 4.1 and 4.2 hold. Let {(xk, yk, zk)} be the sequence generated by
Algorithm sGS-iPADMM. Then,

24 Liang Chen et al.

(a) the sequence
{(

yk,ΠRange(G)(zk)
)}

converges to a solution to problem (1.1) and the sequence {xk} converges
to a solution to the dual of (1.1);

(b) any accumulation point of the sequence {(yk, zk)} is a solution to problem (1.1);
(c) the sequence {p(yk

1) + f (yk) − ⟨b, zk⟩} of the objective values converges to the optimal value of problem
(1.1), and

lim
k→∞

(F∗yk + G∗zk − c) = 0.

(d) it holds with K being the solution set to the KKT system (4.2) that

lim
k→∞

{
dist

(
(xk, yk, zk),K

)}
= 0.

(e) if the linear operator G is surjective, the whole sequence {(xk, yk, zk)} converges to a solution to the KKT
system (4.2) of problem (1.1).

Proof (a) Note that the sequence
{
vk =

(
yk;ΠRange(G)(zk)

)}
defined in (4.21) lies in Y × Range(G). By using

Theorem 4.1(c), one can treat the sequence {(xk, vk)} generated by Algorithm sGS-iPADMM as the one
generated by Algorithm iPALM with the given initial point (x0, v0). In addition, (4.22) in Theorem 4.1
guarantees that condition (3.5) in Assumption 3.1 holds. Thus by Theorem 3.1, the sequence {(xk, vk)}
converges to a solution to the KKT system (4.2), i.e., the sequences

{(
yk,ΠRange(G)(zk)

)}
and {xk} converge to

a solution to problem (1.1) and its dual, respectively.
(b) From (a), we see that limk→∞(xk, yk,ΠRange(G)(zk)) = (x∗, y∗, z∗) which is a solution to the KKT system
(4.2). Since G∗zk = G∗ΠRange(G)(zk),∀ k ≥ 1, any accumulation point, say z∞ of {zk} satisfies G∗z∞ = G∗z∗.
Then, it is easy to verify that (x∗, y∗, z∞) also satisfy the KKT system (4.2). Therefore, (y∗, z∞) is a solution
to problem (1.1).
(c) From (a) and the fact that the objective function of problem (1.1) is continuous on its domain, we know
that {p(yk

1)+ f (yk)−⟨b,ΠRange(G)(zk)⟩} converges to the optimal value of problem (1.1). Since b ∈ Range(G), it
holds that for any k ≥ 1, ⟨b, zk⟩ = ⟨b, ΠRange(G)(zk)⟩. Thus,

p(yk
1) + f (yk) − ⟨b,ΠRange(G)(zk)⟩ = p(yk

1) + f (yk) − ⟨b, zk⟩, ∀k ≥ 1.

Therefore, the sequence {p(yk
1) + f (yk) − ⟨b, zk⟩} converges to the optimal value of problem (1.1). Meanwhile,

since G∗zk = G∗ΠRange(G)(zk), we further have that

lim
k→∞

(
F∗yk + G∗zk − c

)
= lim

k→∞

(
F∗yk + G∗ΠRange(G)(zk) − c

)
= 0.

(d) From (a), we have that (x∗, y∗, z∗), the limit point of {(xk, yk,ΠRange(G)(zk))}, is a solution to the KKT
system (4.2), i.e., (x∗, y∗, z∗) ∈ K. Since G∗(zk − ΠRange(G)(zk)

)
= 0 for any k ≥ 1, it is not difficult to see that(

x∗, y∗, z∗ +
(
zk − ΠRange(G)(zk)

)) ∈ K, ∀k ≥ 1.

Therefore, it holds for all k ≥ 1

dist
(
(xk, yk, zk),K

)
≤ ∥xk − x∗∥ + ∥yk − y∗∥ + ∥ΠRange(G)(zk) − z∗∥

and limk→∞ dist
(
(xk, yk, zk),K

)
= 0.

(e) In this case, it holds that Range(G) = Z and zk = ΠRange(G)(zk), ∀ k ≥ 0. The result follows from (a), which
completes the proof of the theorem. ⊓⊔

We make the following remark on Theorem 4.2.

Remark 4.3 Without any additional assumptions on G, one can observe that the solution set of problem
(1.1) is unbounded and the sequence {zk} generated by Algorithm sGS-iPADMM may also be unbounded.
Fortunately, we are still able to show in Theorem 4.2(a) and (c) that the sequence {(xk, yk,ΠRange(G)(zk)

)}
converges to a solution to the KKT system (4.2), and both the objective and the feasibility converge to the
optimal value and zero, respectively. Meanwhile, we would like to emphasize that the surjectivity assumption
on G in Theorem 4.2(e) is not restrictive at all. Indeed, this assumption simply means that there are no
redundant equations in the linear constraints Gx = b in the primal problem (1.2). If necessary, well established
numerical linear algebra techniques can be used to remove redundant equations from Gx = b.

On the Equivalence of Inexact Proximal ALM and ADMM 25

Table 1 Comparison between [18] and this paper. In the table ‘SOL’ denotes the solution set to problem (4.24), ‘X’ denotes
the set of multipliers (the solution set to the dual problem) to problem (4.24), and ‘K’ denotes the solution set to the KKT
system or problem (4.24), i.e., K = X× SOL. The symbol → means that the sequence on its left-hand-side is convergent, and
converges to a point in its right-hand-side.

Item \ Ref [18] This paper

Updating rules z ⇒ y ⇒ x & τ ∈ (0, 2) y ⇒ z ⇒ x & τ ∈ (0, 2)

Assumptions-y p strongly convex p strongly convex p strongly convex
and F the identity operator or F surjective or F surjective

Assumptions-z G surjective - G surjective

Sequences {(yk , zk)} → SOL dist
(
(xk , yk , zk),K

)
→ 0 {(yk , zk)} → SOL

{xk} bounded {xk} → X {xk} → X

4.1 The Two-Block Case

Consider the two-block case that Y = Y1 and f is vacuous, i.e., the following problem

min
y,z

{p(y) − ⟨b, z⟩ | F∗y + G∗z = c} . (4.24)

Assume that the KKT system of problem (4.24) admits a nonempty solution set K. For such a two-block
problem, Algorithm sGS-iPADMM without proximal terms and inexact computations reduces to the classic
ADMM. Then, by Theorem 4.2, the sequence

{(
xk, yk,ΠRange (G)(zk)

)} generated by the classic ADMM or its
inexact variants with τ ∈ (0, 2) (in the order that the y-subproblem is solved before the z-subproblem)
converges to a point in K if either F is surjective or p is strongly convex. Moreover, if G is also surjective,
we have that the sequence

{(
xk, yk, zk)} converges to a point in K. Note that the assumptions we made for

problem (4.24) are apparently weaker than those in [18], where F is assumed to be the identity operator, G
is surjective, and p is assumed to be strongly convex. Moreover, in [18, Theorem 3.1], only the convergence
of the primal sequence {(yk, zk)} and the boundedness of the dual sequence {xk} were obtained.

The detailed comparison between the results in this paper and those in [18] is presented in Table 1. As
can be observed from this table, the convergence result on the dual sequence {xk} is easier to be derived
than that of the primal sequence {(yk, zk)}, and this result is consistent with the results in [5] for the classic
ADMM and the ALM in [45]. Hence, the results derived in this paper properly resolves the questions we
have mentioned in the introduction.

At last, we should mention that, in Sun et al. [48, Theorem 3.3 (iv)], a similar result to ours has been
derived with the requirements that the initial multiplier x0 satisfies Gx0 − b = 0 and all the subproblems are
solved exactly. Here, we are able to relax these requirements to the most general case and extend our results
to the more interesting and challenging multi-block problems.

4.2 Linear Rate of Convergence and Iteration Complexity

Theorem 3.2 has provided a tool, which can be used together with Theorem 4.1 to analyze the linear
convergence rate of the sequence generated by Algorithm sGS-iPADMM, i.e., one only need to verify whether
(3.30) is valid for this sequence, provided that the metric subregular property (3.26) holds. However, such a
verification is not as straightforward as it conceptually seems.

Here, we establish a linear convergence result for the case that the linear system in step 3 of Algorithm
sGS-iPADMM is solve exactly, but leave the general cases as a topic for further study. For this purpose, we

26 Liang Chen et al.

view problem (1.1) as an instance of (3.1) with
φ(w) := p(y1),

h(w) := f (y) − ⟨b, z⟩,

A∗w := F∗y + G∗z,

∀w = (y, z) ∈ W := Y ×Z. (4.25)

Then, the corresponding KKT residual mapping of problem (1.1) can be given by (3.22). Moreover, the
self-adjoint linear operator Ω defined in (3.16) is given by Ω(x; (y; z)) = (x;Θ

1
2 (y; z)), where Θ = τσ(P + T +

(2−τ)σ
3 AA∗) with T and P being defined in (4.10) and (4.19), respectively. In fact, we further have that

Ω(x; (y; z)) = Ω
(
x;

(
y;ΠRange (G)(z)

))
, ∀(x, y, z) ∈ X×Y ×Z. (4.26)

Theorem 4.3 Suppose that Assumptions 4.1 and 4.2 hold. Let {uk = (xk,wk)} with wk := (yk; zk) be the
sequence generated by Algorithm sGS-iPADMM such that {vk :=

(
xk, yk,ΠRange (G)(zk)

)} converges to v∗ ∈ K.
It holds that

distΩ(uk,K) = distΩ(vk,K), ∀k ≥ 0. (4.27)
Suppose that b − Gx0 = 0 and γk = 0 for all k ≥ 0. Suppose that the KKT residual mapping R defined
in (3.22) (with the notation in (4.25)) is metric subregular at v∗ for 0 ∈ U with the modulus κ > 0,
in the sense that there exists a constant r > 0 such that (3.26) holds with u = v∗. Let {η̃k} be a given
sequence of nonnegative numbers that converges to 0 in the limit. Suppose that in addition to satisfying
max{∥δ̃k

i ∥, ∥δ
k
i ∥ | i = 1, . . . , s} ≤ ε̃k, there exists an integer k0 > 0 such that for any k ≥ k0, it holds that

max
1≤i≤s

{
∥δ̃k

i ∥, ∥δ
k
i ∥

}
≤ η̃k∥vk − vk+1∥. (4.28)

Then, for all k sufficiently large, it holds that distΩ(uk+1,K) ≤ ϑk distΩ(uk,K) with sup
k≥k0

{ϑk} < 1, i.e., the

convergence rate of distΩ(uk,K) is Q-linear when k is sufficiently large.

Proof By (4.26), we have that for all k ≥ 0,

dist2Ω(uk,K) = inf
u∈K

1
2
⟨uk − u, Ω(uk − u)⟩ = inf

u∈K

1
2
⟨uk − u, Ω(vk) −Ω(u)⟩

= inf
u∈K

1
2
⟨vk − u, Ω(vk − u)⟩ = dist2Ω(vk,K),

i.e., (4.27) holds. Since b − Gx0 = 0 and γk = 0 for all k ≥ 0, according to (4.18) one has that

∥b − Gxk∥ ≤ |1 − τ|k ∥b − Gx0∥ + τ
k∑

i=1

|1 − τ|k−i ∥γi−1∥ = 0, ∀k ≥ 0.

Therefore, by (4.7) and (4.11) one knows that

∆k := δk
sGS −FG∗(GG∗)−1G(xk − xk−1) = δk +NuN−1

d (δk − δ̃k).

Thus we can get that for all k ≥ 0,

∥dk∥ = ∥∆k∥ ≤ (1 + 2∥NuN−1
d ∥) max{∥δ̃∥, ∥δ̃∥}

≤
√

s
(
1 + 2∥NuN−1

d ∥
)
η̃k∥vk − vk+1∥,

where dk := (∆̂k; γk) ∈ W. Define ηk =
√

s(1 + 2∥NuN−1
d ∥)η̃k. Then, it holds that ηk → 0 and ∥dk∥ ≤

ηk∥vk − vk+1∥. Therefore, by Theorem 3.2, we know that for all k sufficiently large

distΩ(vk,K) ≤ ϑk distΩ(vk,K)

with sup
k≥k0

{ϑk} < 1, which, together with (4.27), implies

distΩ(uk,K) ≤ ϑk distΩ(uk,K) for all k sufficiently large.

This completes the proof. ⊓⊔

On the Equivalence of Inexact Proximal ALM and ADMM 27

Remark 4.4 Note that, different from the condition (3.30) in Assumption 3.2, the condition (4.28) here is
generally not directly verifiable during the numerical implementation. However, Theorem 4.3 does provide us
a very important theoretical guideline on implementing Algorithm sGS-iPADMM, i.e., in the k-th iteration,
it is likely to be beneficial to solve the subproblems to an accuracy higher than the dual feasibility ∥F∗yk +

G∗zk − c∥. In fact, this phenomenon has already been observed during our numerical experiments. We should
also mention that even for the 2-block case, the study on the linear convergence of inexact ADMMs with
shorter step-length τ ∈ (0, 1+

√
5

2) is still not as mature as the study for their exact counterparts, especially
when compared with the recently developed results, e.g., in [22,57]. Suitable criteria that generalize the
condition (3.30) for terminating the subproblems are still lacking. We note that the results presented in
Theorem 4.3 are still far from complete, and more effort should be spent on this part in the future.

Finally, different from the above discussions on the convergence rate, we can establish the following non-
ergodic iteration complexity for the sequence generated by Algorithm sGS-iPADMM by a direct application
of Theorem 4.1.

Theorem 4.4 Suppose that Assumptions 4.2 and 4.1 hold. Let {uk = (xk,wk)} with wk := (yk; zk) be the
sequence generated by Algorithm sGS-iPADMM such that {vk :=

(
xk, yk,ΠRange (G)(zk)

)} converges to v∗ ∈ K.
It holds that the KKT residual (3.22), with B and P given by (4.19), satisfies

min
0≤ j≤k

∥R(u j)∥2 ≤ ϱ/k, and lim
k→∞

{k · min
0≤ j≤k

∥R(u j)∥2} = 0,

where the constant ϱ is defined as in (3.43) but with

e := ∥u0
e∥2
Ω
+ 2τσ∥Θ−1/2∥

(∑∞
j=0 ε̃ j

) (
∥u0

e∥Ω + µ
∑∞

j=0 ε̃ j

)
+ 4

(∑∞
j=1 ε̃

2
j

)
and u0

e = u0 − v∗.

Proof From (4.26), we know that

∥u0 − v∗∥2
Ω = ⟨Ω(u0 − v∗), u0 − v∗⟩ = ⟨Ω(v0) −Ω(v∗), u0 − v∗⟩ = ∥v0 − v∗∥2

Ω. (4.29)

According to (3.22), (4.2) and (4.25), one has that

R(u) =

c −F∗y + G∗z

y − ProxP(y −∇ f (y) −F x)
Gx − b

 , ∀u = (x, y, z) ∈ X×Y ×Z.

Since for all k ≥ 0, G∗zk = GΠRange(G∗)(zk), one has that R(uk) = R(vk). Therefore, by using (4.22) in Theorem
4.1(a), Theorem 3.3 and (4.29), one has the results of this theorem holds. This completes the proof. ⊓⊔

5 Numerical Experiments

In this section, we conduct numerical experiments on solving dual linear SDP and dual convex quadratic
SDP problems via Algorithm sGS-iPADMM with the dual step-length τ taking values beyond the standard
restriction of (1 +

√
5)/2. For linear SDP problems, the algorithm reduces to the two-block ADMM, and the

aim is two-fold. On the one hand, as the ADMM is among the most important first-order algorithms for
solving SDP problems, it is of importance to know to what extent can the numerical efficiency be improved
if the observation on the dual step-length made in this paper is incorporated. On the other hand, as the
upper bound of the step-length has been enlarged, it is also important to see whether a step-length that is
very close to the upper bound will lead to better or worse numerical performance.

A standard linear SDP problem has the following form:

min
X
{⟨C, X⟩ | AX = b, X ∈ Sn

+}, (5.1)

28 Liang Chen et al.

and its corresponding dual is given as in (2.4). To avoid repetition, we refer the reader to (2.4) for the
notation used. The (majorized) augmented Lagrangian function associated with problem (2.4) is given by

Lσ(S , z; X) = δSn
+
(S) − ⟨b, z⟩ + ⟨X, S +A∗z− C⟩ + σ

2 ∥S +A∗z− C∥2,

∀(S , z, X) ∈ Sn ×Rm × Sn,

where σ > 0 is the given penalty parameter. When applied to solving problem problem (2.4), at the k-th
step of the two-block ADMM the following steps are performed:

S k+1 = ΠSn
+
(C −A∗zk − Xk/σ),

zk+1 = (AA∗)−1
(
A(C − S k+1) − (AXk − b)/σ

)
,

Xk+1 = Xk + τσ(S k+1 +A∗zk+1 − C),

where the step-length τ is allowed to be in the range (0, 2) based on Theorem 4.1 and the discussions in
Section 4.1. We emphasize again that this is in contrast to the usual interval of (0, (1 +

√
5)/2) allowed by

the convergence analysis of Glowinski in [20, Theorem 5.1].
On the other hand, as was briefly introduced in Section 2.1, the convex QSDP problem was formally

given in (2.1), whose dual problem, in minimization form, is a multi-block problem given by

min
S ,W,zE ,zI

δSn
+
(S) + δRmI

+
(zI) + 1

2 ⟨W,QW⟩ − ⟨bE , zE⟩ − ⟨bI , zI⟩

s.t. S −QW +A∗
EzE +A∗

I zI +C = 0.
(5.2)

Note that problem (2.1) was subsumed as an instance of the convex quadratic composition optimization
problem (1.7). Therefore, to fit the framework of Algorithm sGS-iPADMM, we write the dual of problem
(2.1) in the minimization form as

min
S ,W,s,zE ,zI

δSn
+
(S) + δRmI

+
(s) + 1

2 ⟨W,QW⟩ − ⟨bE , zE⟩ − ⟨bI , zI⟩

s.t.

 S −QW +A∗
EzE +A∗

I zI +C = 0

D(s− zI) = 0

(5.3)

where D ∈ ℜmI×mI is a given positive definite diagonal matrix which is incorporated here for for the purpose
of scaling the variables to ensure the numerical stability.

The convex QSDP problem (2.1) is solved via its dual (5.3), whose (majorized) augmented Lagrangian
function is defined by

Lσ(S ,W, zE , zI , s; X,x) :=
(
δSn
+
(S) + δRmI

+
(s)

)
+ 1

2 ⟨W, QW⟩ − ⟨bE , zE⟩ − ⟨bI , zI⟩

+⟨X, S −QW +A∗
EzE +A∗

I zI +C⟩ + ⟨D(s− zI),x⟩

+σ2 ∥S −QW +A∗
EzE +A∗

I zI +C∥2 + σ
2 ∥D(s− zI)∥2,

where σ > 0 is the given penalty parameter and and we have used X ∈ Sn and x ∈ RmI to denote the
Lagrange multipliers which are introduced for the two groups of equality constraints in (5.3). During the
k-th iteration of Algorithm sGS-iPADMM with given (S k,Wk, zk

E , z
k
I , s

k) and (Xk,xk), we update the variables
in the order of (

zk+1/2
E ⇒ Wk+1/2 ⇒ (︸ ︷︷ ︸

backward GS

S k+1, sk+1) ⇒ Wk+1 ⇒ zk+1
E︸ ︷︷ ︸

forward GS

)
⇒ zk+1

I ⇒
(
Xk+1,xk+1

)︸ ︷︷ ︸
τ∈(0,2)

.

Note that the term ⟨bI , zI⟩ is treated as the linear term in the framework of (1.1). We made this choice
because for the test instances that we will consider later, the linear system that must be solved to update zI

is much larger than that for updating zE , and in this way, the larger linear system will be solved only once
in each iteration.

The numerical results in the subsequent two subsections are obtained by using Matlab R2017b on a HP
Elitedesk (64-bit Windows 10 system) with one Intel Core i7-4770S Processor (4 Cores, 3.1 − 3.9 GHz) and
16 GB RAM (with the virtual memory turned off).

On the Equivalence of Inexact Proximal ALM and ADMM 29

5.1 Numerical Results on Linear SDP Problems

Based on the first-order optimality condition for problem (5.1), we terminate all the tested algorithms if

ηSDP := max{ηD, ηP, ηS } ≤ 10−6,

where
ηD =

∥A∗z + S − C∥
1 + ∥C∥

, ηP =
∥AX − b∥

1 + ∥b∥
,

ηS = max
{∥X − ΠSn

+
(X)∥

1 + ∥X∥
,

|⟨X, S ⟩|
1 + ∥X∥ + ∥S ∥

}
with the maximum number of iterations set at 100, 000. In addition, we also measure the duality gap:

ηgap :=
⟨C, X⟩ − ⟨b, z⟩

1 + |⟨C, X⟩| + |⟨b, z⟩|
.

During our preliminary tests, we found that using a step-length smaller than 1 is not as good as using the unit
step-length. Therefore, we shall only consider the cases that τ ≥ 1. Note that the known theoretical upper
bound of the step-length τ in the classic ADMM for solving general convex programming is 1+

√
5

2 ≈ 1.618034.
Although it has been observed empirically that the ADMM with the step-length τ = 1.618 works quite well,
this phenomenon still requires further understanding since the value 1.618 is quite close to the theoretical
upper bound and such an aggressive choice may result in unstable numerical performance. Fortunately, the
above concern is partially alleviated by the theoretical results obtained in this paper. Indeed, for a large
class convex optimization problems, one can use τ = 1.618 confidently since it has a “safe” distance to the
renewed theoretical upper bound of 2. For this class of problems, it is thus very interesting to see what would
happen if the step-length τ is very close to 2. Therefore, we tested five choices of the step-length, i.e., τ = 1,
1.618, 1.90, 1.99 and 1.999. For convenience, we use ADMM(τ) to denote the algorithm with the specific
step-length τ.

We tested 6 categories of linear SDP problems, including the random sparse SDP problems tested in [34],
the semidefinite relaxation of frequency assignment problems (FAP) [15], the relaxation of maximum stable
set problems [50,52,47], the SDP relaxation of binary integer quadratic (BIQ) problems from [54], the SDP
relaxation of rank-1 tensor approximations (R1TA) [38,39], and the SDP relaxations of clustering problems
[40]. One may refer to [58,56] for detailed descriptions and the data sources of these problems. All these
algorithms are tested by running the Matlab package SDPNAL+ (version 1.0, available at http://www.
math.nus.edu.sg/~mattohkc/SDPNALplus.html). The records of the computational results are provided in
the first table of the supplement material. Here, we should mention that even though all the problems we
tested have been successfully solved by at least one of the tested algorithms, there are a few categories of
SDP problems that are beyond the capability of the ADMM, see, e.g., [58].

Figure 1 presents the computational performance of the ADMM with all the five choices of step-lengths.
The original scalable Matlab-generated figure with more details is available in the supplementary materials.
The left panel shows the comparison between ADMM(1) and all the other algorithms, while the right panel
shows the comparison between ADMM(1.618) and all the others. As can be seen from Figure 1, ADMM(1.618)
has an impressive improvement over ADMM(1) and ADMM(1.9) works even better than ADMM(1.618) for
more than 80% of the tested instances. Furthermore, ADMM(1.99) can perform marginally better than
ADMM(1.9) for about 60% of the tested instances but for about 10% of them, its performance is apparently
worse. However, ADMM(1.999) has a significantly worse performance than ADMM(1.99) even though its
step-length is just slightly larger than 1.99. This can be partially explained by the fact that the step-length
of 1.999 is too close to the theoretical upper bound of 2.

From both the theoretical analysis and numerical experiments in this paper, one can see that in general
it is a good idea to use a step-length that is larger than 1, e.g., τ = 1.618, when solving linear SDP problems.
Meanwhile, we can even set the step-length to be larger than 1.618, say τ = 1.9, to get even better numerical
performance.

http://www.math.nus.edu.sg/~mattohkc/SDPNALplus.html
http://www.math.nus.edu.sg/~mattohkc/SDPNALplus.html

30 Liang Chen et al.

0 0.2 0.4 0.6 0.8 1
(100y)% of the problems

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ite
ra

tio
n

nu
m

be
r

ra
tio

 (
co

m
pa

re
d

to
 A

D
M

M
(1

))

Efficiency: ratio of iteration numbers

ADMM(1.618)
ADMM(1.90)
ADMM(1.99)
ADMM(1.999)

0 0.2 0.4 0.6 0.8 1
(100y)% of the problems

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ite
ra

tio
n

nu
m

be
r

ra
tio

 (
co

m
pa

re
d

to
 A

D
M

M
(1

.6
18

))

Efficiency: ratio of iteration numbers

ADMM(1)
ADMM(1.90)
ADMM(1.99)
ADMM(1.999)

Fig. 1 Comparison of the computational efficiency of the classic two-block ADMM with different step-lengths

5.2 Numerical Results on Convex QSDP Problems

The KKT system of problem (5.2) is given by
S −QW +A∗

EzE +A∗
I zI +C = 0, AE X − bE = 0,

QX −QW = 0, X ∈ Sn
+, S ∈ Sn

+, ⟨X, S ⟩ = 0,

AI X − bI ≥ 0, zI ≥ 0, ⟨AI X − b, zI⟩ = 0.

(5.4)

Based on the optimality conditions in (5.4), we measure the accuracy of an approximate solution (X,Z,W, S , yE , yI)
for the convex QSDP (2.1) and its dual (5.2) via

ηqsdp = max {ηD, ηP, ηW , ηS , ηI} , (5.5)

where

ηD =
∥S −QW +A∗

EzE +A∗
I zI +C∥

1 + ∥C∥
, ηP =

∥AE X − bE∥
1 + ∥bE∥

,

ηW =
∥QX −QW∥

1 + ∥Q∥
, ηS = max

{∥X − ΠSn
+
(X)∥

1 + ∥X∥
,

|⟨X, S ⟩|
1 + ∥X∥ + ∥S ∥

}
,

ηI = max
{
∥min(0, zI)∥

1 + ∥zI∥
,
∥min(0, AI X − bI)∥

1 + ∥bI∥
,

|⟨AI X − bI , zI⟩|
1 + ∥AI x − bI∥ + ∥zI∥

}
.

Additionally, we measure the objective values and the duality gap:

ηgap :=
Objprimal − Objdual

1 + |Objprimal| + |Objdual|
.

with Objprimal := 1
2 ⟨X,QX⟩−⟨C, X⟩, Objdual := − 1

2 ⟨W, QW⟩+ ⟨bE , zE⟩+ ⟨bI , zI⟩. In our numerical experiments,
similar to [6], we used QSDP test instances based on the SDP problems arising from the relaxation of
the binary integer quadratic (BIQ) programming with a large number of inequality constraints that was

On the Equivalence of Inexact Proximal ALM and ADMM 31

Table 2 7 types of Algorithms tested for the convex QSDP problems. In the table, ‘Dir’ denotes the corresponding subproblems
are solved via direct solvers, ‘Proj.’ means that the corresponding subproblems are the calculation of projections, ‘Prox.’
means that the corresponding subproblems are solved via adding appropriate proximal terms to ensure closed-form solutions,
‘Inex.’ means that the subproblems are solved approximately via an iterative scheme, ‘(rep.)’ means that the corresponding
subproblems in the forward sGS sweeps are also solved, ‘(check)’ means that the corresponding subproblems in the forward
sGS sweeps are not directly solved but the most recently updated variables are checked to see if they are admissible approximate
solution to the subproblems.

Algorithm \ Variable τ zE W S s zI

Directly Extended 1 Dir. Prox. Proj. Proj. Prox.

sGS-PADMM

1 Dir.(rep.) Prox.(rep.) Proj. Proj. Prox.

1.618 Dir.(rep.) Prox.(rep.) Proj. Proj. Prox.

1.9 Dir.(rep.) Prox.(rep.) Proj. Proj. Prox.

sGS-iPADMM

1 Dir.(check) Inex.(check) Proj. Proj. Inex.

1.618 Dir.(check) Inex.(check) Proj. Proj. Inex.

1.9 Dir.(check) Inex.(check) Proj. Proj. Inex.

introduced by Sun et al. [48] for getting tighter bounds. The problems that we actually solve have the
following form:

min 1
2 ⟨X, QX⟩ + 1

2 ⟨Q, X⟩ + ⟨c, x⟩

s.t.

diag(X) − x = 0, X =

(
X x
xT 1

)
∈ Sn

+,

xi − Xi j ≥ 0, x j − Xi j ≥ 0, Xi j − xi − x j ≥ −1, ∀ 1 ≤ i < j ≤ n − 1.

The data for Q and c are taken from the Biq Mac Library maintained by Wiegele [54].
We solve the QSDP (2.1) via its dual (5.3) with the matrix D = (

√
∥AI∥/2)IRmI . We use the directly

extended multi-block ADMM with step-length τ = 1 as the benchmark (which we named as ‘Directly
Extended’), and compare it with Algorithm sGS-iPADMM, which was implemented in 6 different ways, i.e.,
2 groups of algorithms with each using 3 types of different step-lengths, i.e., τ = 1, 1.618 and 1.9, which
are chosen according to the numerical results in Section 5.1. For convenience, we use the name ‘sGS-PADMM’
to mean that Algorithm sGS-iPADMM is implemented such that all the subproblems are solved exactly
via direct solvers or adding appropriate proximal terms, and use ‘sGS-iPADMM’ to mean that Algorithm
sGS-iPADMM is implemented such that the subproblems are allowed to be solved inexactly via iterative
solvers. The details of all the seven tested algorithms are presented in Table 2. For all the algorithms applied
to problem (5.3), the subproblems corresponding to the block variable (S , s) can be solved analytically by
computing the projections onto Sn

+×RmI
+ . For the subproblems corresponding to zE , linear systems of equations

must be solved with the same coefficient matrix AEA∗
E . As the linear systems are not too large, we solve

them via the Cholesky factorization (computed only once) of AEA∗
E . For the subproblems corresponding to

zI and W, we need to solve very large scale linear systems of equations, so that they are either solved via a
preconditioned conjugate gradient (PCG) method with preconditioners that are described in [6, Section 7.1]
(for sGS-iPADMM), or solved directly by adding an appropriate proximal term to the subproblems to get closed-
form solutions (for sGS-PADMM). Moreover, in the implementation of the sGS-PADMM, all the subproblems in
the forward Gauss-Seidel sweep are directly solved, while in the implementation of sGS-iPADMM we used
the strategy described in [6, Remark 4.1(b)] to decide whether the computation of the subproblems in the
forward GS sweep can be skipped (see [6, Section 7.2] for more details on using this technique). We used a
similar strategy as described in [27, Section 4.4] to adaptively adjust the penalty parameter σ and used the
same technique as in [6] to control the error tolerance for solving the subproblems, i.e., {ε̃k}k≥0 is chosen
such that αε̃k ≤ 1/k1.2, where α > 0 is a positive constant based on the problem data.

We have tested 147 instances of convex QSDP problems with n ranging from 51 to 501. The linear
operator Q was chosen as the symmetrized Kronecker operator Q(X) = 1

2 (AXB + BXA) with A and B being

32 Liang Chen et al.

1 1.5 2 2.5 3 3.5 4 4.5 5
at most x times of the best

0

0.2

0.4

0.6

0.8

1

(1
00

y)
%

 o
f t

he
 p

ro
bl

em
s

Performance profile: time

Directly Extended
sGS-PADMM-1
sGS-PADMM-1.618
sGS-PADMM-1.9
sGS-iPADMM-1
sGS-iPADMM-1.618
sGS-iPADMM-1.9

Fig. 2 Comparison of the computational efficiency of the 7 Algorihtms

two randomly generated symmetric positive semidefinite matrices such that rank(A) = 10 and rank(B) ≈ n/5,
respectively, as was used in [51,6]. The maximum iteration number is set at 500, 000. The detail computational
results are provided in the second table of the supplement material.

Figure 2 shows the numerical performance of the 7 tested algorithms described in Table 2 on solving the
convex QSDP problems to the accuracy of 10−6 in terms of ηqsdp in (5.5). The original scalable Matlab-
generated figure with more details is available in the supplementary materials. One can readily see from the
figure that sGS-iPADMM overwhelmingly outperforms sGS-PADMM, no matter which step-length τ was used.
This evidently shows the considerable advantage of catering for approximate solutions in the subproblems
of Algorithm sGS-iPADMM. Moreover, for both sGS-PADMM and sGS-iPADMM, the step-length τ = 1.618
is able to bring a noticeable improvement on the numerical efficiency, compared to using the unit step-
length. Meanwhile, the choice of τ = 1.9 can perform even better in general. Even this is more apparent
for sGS-PADMM, in which all the subproblems are solved exactly. We can see that sGS-iPADMM with τ = 1.9
performs the best among all the tested algorithms for almost 65% of all the tested problems. Hence, the
numerical results clearly demonstrate the merit of using a larger step-length and the flexibility of inexactly
solving the subproblems.

6 Conclusions

In this paper, we have shown that, for a class of convex composite programming problems, the sequence
generated by an inexact sGS decomposition based multi-block majorized (proximal) ADMM is equivalent
to the sequence generated by an inexact proximal ALM starting with the same initial point. The conver-
gence of the inexact majorized proximal ALM was first established, and the convergence of the multi-block
ADMM-type algorithm follows readily because of the newly discovered equivalence. As a consequence of this
equivalence, we are able to provide a very general answer to the open question on whether the whole sequence
generated by the classic ADMM with τ ∈ (0, 2) for a conventional two-block problem with one part of its

On the Equivalence of Inexact Proximal ALM and ADMM 33

objective function being linear, is convergent. Numerical experiments on solving a large number of linear
and convex quadratic SDP problems are conducted. The numerical results show that one can achieve even
better numerical performance of the ADMM if the step-length is chosen to be larger than the conventional
upper bound of (1 +

√
5)/2, and one can get a considerable improvement by allowing inexact subproblems

together with the large step-lengths on the multi-blcok ADMM for convex quadratic SDP problems. We hope
that our theoretical analysis and numerical results can inspire more insightful studies on the ADMM-type
algorithms.

Acknowledgments

We would like to thank the two anonymous referees for their careful reading of this paper, and their insightful
comments and suggestions which have helped to improve the quality of this paper.

References

1. Bai, M., Zhang, X., Ni, G. and Cui, C.: An adaptive correction approach for tensor completion. SIAM J. Imaging Sci., 9,
1298–1323 (2016)

2. Bai, S. and Qi H.-D.: Tackling the flip ambiguity in wireless sensor network localization and beyond. Digit. Signal Process.
55, 85–97 (2016)

3. Bertsekas, D.P. and Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Belmont,
Massachusetts (1997)

4. Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein. J.: Distributed optimization and statistical learning via the
alternating direction method of multipliers, Found. Trends Mach. Learn. 3, 1–122 (2011)

5. Chen, L., Sun, D.F. and Toh, K.-C.: A note on the convergence of ADMM for linearly constrained convex optimization
problems. Comput. Optim. Appl. 66, 327-343 (2017)

6. Chen, L., Sun, D.F. and Toh, K.-C.: An effcient inexact symmetric Gauss-Seidel based majorized ADMM for high-
dimensional convex composite conic programming. Math. Program. 161(1-2), 237–270 (2017)

7. Chen, S.S., Donoho, D.L. and Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43, 129–159 (2001)
8. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
9. Ding, C. and Qi H.-D.: Convex optimization learning of faithful Euclidean distance representations in nonlinear dimension-

ality reduction. Math. Program. 164(1-2), 341–381 (2017)
10. Ding, C., Sun, D.F., Sun, J. and Toh K.-C.: Spectral operators of matrices. Math. Program. 168, 509–531 (2018)
11. Dontchev, A.L. AND Rockafellar, R.T.: Implicit Functions and Solution Mappings, Second Edition. Springer, New York

(2014)
12. Du, M.Y.: A Two-Phase Augmented Lagrangian Method for Convex Composite Quadratic Programming, PhD thesis,

Department of Mathematics, National University of Singapore (2015)
13. Eckstein, J.: Augmented Lagrangian and alternating direction methods for convex optimization: A tutorial and some

illustrative computational results. RUTCOR Research Reports, (2012)
14. Eckstein, J. and Yao, W.: Understanding the convergence of the alternating direction method of multipliers: Theoretical

and computational perspectives. Pac. J. Optim. 11, 619–644, (2015)
15. Eisenblätter, A., Grötschel, M. and Koster, A.: Frequency planning and ramification of coloring, Discuss. Math. Graph

Theory 22, 51–88 (2002)
16. Fazel, M., Pong, T.K., Sun D.F. and Tseng, P.: Hankel matrix rank minimization with applications to system identification

and realization. SIAM J. Matrix Anal. 34(3), 946–977 (2013)
17. Ferreira, J., Khoo, Y. and Singer, A.: Semidefinite programming approach for the quadratic assignment problem with a

sparse graph. Comput. Optim. Appl. 69(3), 677–712 (2018).
18. Gabay, D. and Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approxi-

mation. Comput. Math. Appl. 2(1), 17–40 (1976)
19. Gaines, B.R., Kim, J. and Zhou, H.: Algorithms for fitting the constrained lasso, J. Comput. Graph. Stat. 27(4), 861–871

(2018)
20. Glowinski, R.: Lectures on Numerical Methods for Non-Linear Variational Problems. Published for the Tata Institute of

Fundamental Research, Bombay. Springer-Verlag (1980)
21. Glowinski, R. and Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité

d’une classe de problèmes de Dirichlet non linéaires. Revue française d’atomatique, Informatique Recherche Opérationelle.
Analyse Numérique 9(2), 41–76 (1975)

22. Han, D.R., Sun, D.R. and Zhang, , L.W.: Linear rate convergence of the alternating direction method of multipliers for
convex composite programming. Math. Oper. Res. 43(2): 622–637 (2018)

23. Hestenes, M.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969)
24. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964)
25. James, G.M., Paulson, C. and Rusmevichientong, P.: Penalized and constrained regression. Unpublished Manuscript, the

latest version is available at http://www-bcf.usc.edu/~gareth/research/Research.html (2013)
26. Klopp, O.: Noisy low-rank matrix completion with general sampling distribution. Bernoulli 20(1), 282–303 (2014)
27. Lam, X.Y., Marron, J.S., Sun, D.F. and Toh, K.-C.: Fast algorithms for large scale generalized distance weighted discrimi-

nation. J. Comput. Graph. Stat. 27(2), 368–379 (2018)

http://www-bcf.usc.edu/~gareth/research/Research.html

34 Liang Chen et al.

28. Lemaréchal, C. and Sagastizábal, C.: Practical aspects of the Moreau-Yosida regularization: theoretical preliminaries. SIAM
J. Optim. 7(2), 367–385 (1997)

29. Li, M., Sun, D.F. and Toh, K.-C.: A majorized ADMM with indefinite proximal terms for linearly constrained convex
composite optimization. SIAM J. Optim. 26(2), 922–950 (2016)

30. Li, X.D., Sun, D.F. and Toh, K.-C.: A Schur complement based semi-proximal ADMM for convex quadratic conic program-
ming and extensions. Math. Program. 155, 333–373 (2016)

31. Li, X.D., Sun, D.F. and Toh, K.-C.: QSDPNAL: A two-phase augmented Lagrangian method for convex quadratic semidef-
inite programming. Math. Program. Comput. 10(4), 703–743 (2018)

32. Li, X.D., Sun, D.F. and Toh, K.-C.: A block symmetric Gauss-Seidel decomposition theorem for convex composite quadratic
programming and its applications. Math. Program. DOI:10.1007/s10107-018-1247-7 (2018)

33. Liu, J., Musialski, P., Wonka P., and Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans.
Pattern Anal. Mach. Intell. 35, 208–220 (2013)

34. Malick, J., Povh, J., Rendl, F. and Wiegele, A.: Regularization methods for semidefinite programming, SIAM J. Optim. 20
336–356 (2009)

35. Mateos G., Bazerque, J.-A. and Giannakis G.B.: Distributed sparse linear regression. IEEE Trans. Signal Proces. 58 5262–
5276 (2010)

36. Miao, W.M., Pan, S.H. and Sun, D.F.: A rank-corrected procedure for matrix completion with fixed basis coefficients. Math.
Program. 159, 289–338 (2016)

37. Negahban, S. and Wainwright, M.J.: Restricted strong convexity and weighted matrix completion: optimal bounds with
noise. J. Mach. Learn. Res. 13, 1665–1697 (2012)

38. Nie, J. and Wang, L.: Regularization methods for SDP relaxations in large-scale polynomial optimization. SIAM J. Optim.
22, 408–428 (2012)

39. Nie, J. and Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35,
1155–1179 (2014)

40. Peng, J. and Wei, Y.: Approximating k-means-type clustering via semidefinite programming. SIAM J. Optim. 18, 186–205
(2007)

41. Potra F.A.: Weighted complementarity problems–a new paradigm for computing equilibria. SIAM J. Optim. 22, 1634–1654
(2012)

42. Powell, M.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298.
Academic, New York (1969)

43. Povh, J., Rendl, F. and Wiegele, A.: A boundary point method to solve semidefinite programs. Computing 78, 277–286
(2006)

44. Rockafellar, R.T.: Convex Analysis. Princeton University Press (1970)
45. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math.

Oper. Res. 1, 97–116 (1976)
46. Schizas, I.D., Ribeiro A. and Giannakis G.B.: Consensus in ad hoc WSNs with noisy links - Part I: distributed estimation

of deterministic signals. IEEE Trans. Signal Process. 56, 350–364 (2008)
47. Sloane, N.: Challenge Problems: Independent Sets in Graphs, http://www.research.att.com/~njas/doc/graphs.html
48. Sun, D.F., Toh, K.-C. and Yang, L.Q.: A convergent 3-block semi-proximal alternating direction method of multipliers for

conic programming with 4-type constraints SIAM J. Optim. 25(2), 882–915 (2015)
49. Teo, C.H., Vishwanathan, S.V.N., Smola A. and V.Le, Q.: Bundle methods for regularized risk minimization. J. Mach.

Learn. Res. 11, 313-365 (2010)
50. Toh, K.-C.: Solving large scale semidefinite programs via an iterative solver on the augmented systems. SIAM J. Optim.

14, 670-698 (2004)
51. Toh, K.-C.: An inexact primal-dual path-following algorithm for convex quadratic SDP. Math. Program. 112(1), 221–254

(2008)
52. Trick, M., Chvatal, V., Cook, W., Johnson, D., McGeoch, C. and Tarjan, R.: The Second DIMACS Implementation

Challenge: NP Hard Problems: Maximum Clique, Graph Coloring, and Satisfiability. Rutgers University, http://dimacs.
rutgers.edu/Challenges/ (1992)

53. Wang, B. and Zou, H.: Another look at distance-weighted discrimination. J. R. Stat. Soc. B 80, 177–198 (2018)
54. Wiegele, A.: Biq Mac library–a collection of Max-Cut and quadratic 0−1 programming instances of medium size. Technical

report, (2007) http://biqmac.uni-klu.ac.at/biqmaclib.pdf
55. Yan, Z., Gao, S.Y. and Teo C.P.: On the design of sparse but efficient structures in operations. Manage. Sci. 64, 2973–3468

(2018)
56. Yang, L.Q., Sun, D.F. and Toh, K.-C.: SDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method

for semidefinite programming with nonnegative constraints. Math. Program. Comput. 7, 331–366 (2015)
57. Zhang, N., Wu, J. and Zhang, L.W.: A linearly convergent majorized ADMM with indefinite proximal terms for convex

composite programming and its applications. arXiv: 1706.01698v2 (2018)
58. Zhao, X.Y., Sun, D.F. and Toh K.-C.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM

J. Optim. 20, 1737–1765 (2010)
59. Zhu, H., Cano, A. and Giannakis, G.B.: Distributed consensus-based demodulation: algorithms and error analysis. IEEE

Trans. Wirel. Commun. 9, 2044–2054 (2010)

http://www.research.att.com/~njas/doc/graphs.html
http://dimacs.rutgers.edu/Challenges/
http://dimacs.rutgers.edu/Challenges/
http://biqmac.uni-klu.ac.at/biqmaclib.pdf

	Introduction
	Illustrative Examples
	An Inexact Majorized ALM with Indefinite Proximal Terms
	The Equivalence Property
	Numerical Experiments
	Conclusions

