A discrete-time mean-field stochastic linear-quadratic optimal control problem with financial application

Xun Li ${ }^{\mathrm{a}}$, Allen H. Tai ${ }^{\mathrm{a}}$ and Fei Tian ${ }^{\mathrm{a}}$
${ }^{\text {a }}$ Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.

ARTICLE HISTORY
Compiled June 8, 2022

Abstract

This paper is concerned with a discrete-time mean-field stochastic linear-quadratic optimal control problem arising from financial application. Through matrix dynamical optimization method, a group of linear feedback controls is investigated. The problem is then reformulated as an operator stochastic linear-quadratic optimal control problem by a sequence of bounded linear operators over Hilbert space, the optimal control with six algebraic Riccati difference equations is obtained by backward induction. The two above approaches are proved to be coincided by the classical method of completing the square. Finally, after discussing the solution of the problem under multidimensional noises, a financial application example is given.

KEYWORDS

mean-field theory; Riccati difference equation; stochastic linear-quadratic optimal control problem

1. Introduction

In this paper, we consider a discrete-time mean-field stochastic linear-quadratic optimal control problem. Here the terms 'mean-field' and 'linear-quadratic' refer to a dynamic model exhibiting macroscopic behaviour of an attractive mean-field interaction and linear stochastic systems with quadratic performance criterion, respectively. In the combination of these two issues, the investigation of classical mean-field stochastic differential equation (SDE) problems can be traced back to 1960s, when McKean (1966) first discussed a similar connection between a series of Markov processes and certain non-linear parabolic equations. Then, many scientific results are emerging. Dawson (1983) investigated the dynamics and fluctuations of mean-field systems in the critical condition by adopting approach based on the theory in (Papanicolaou, Stroock \& Varadhan, 1977) for Markov processes. Dawsont \& Gärtner (1987) examined the conversion from the large deviations from the McKean-Vlasov limit to a
generalization of the theory of Freidlin \& Wentzell (1984). Gärtner (1988) systematically gave research results for a system of diffusions in a domain range of \mathbb{R}^{d} with long-range weak interaction. Similar issues can refer to (Bossy \& Talay, 1997; Chan, 1994; Dai Pra \& den Hollander, 1996). Buckdahn et al. (2009) considered a special approximation on the solution of some decoupled forward-backward equations and gave the convergence speed. The problem was then investigated under a more general framework in (Buckdahn, Li \& Peng, 2009),

In theoretical research, the field of stochastic optimal control has made great progress. Rockafellar \& Wets (1990) considered some generalized stochastic linearquadratic optimal control problems in discrete time. In a discrete-time system, Riccati difference equation plays an important role in the synthesis of the optimal control. Beghi \& D'alessandro (1998) derived the optimal control for a discrete-time linearquadratic problem with control-dependent noise. Moore, Zhou \& Lim (1999) considered some partially observed stochastic models where the stochastic disturbances depend on both the states and the controls. Ait Rami, Chen \& Zhou (2002) extended Beghi and D'alessandro's result through allowing indefinite weighting matrices in the cost functional. Huang, Zhang \& Zhang (2008) discussed the problem with an infinite horizon, in which the concepts of stochastic stabilizability and exact observability are introduced.

Attention is also focused on the solution of optimal control problems with meanfield terms. By introducing the mean terms into the cost functional, the variations of the state process and the control process can be minimized so that they are not too sensitive to random events (Yong, 2013). Andersson, \& Djehiche (2011) studied this problem under the assumption of convex action space. Such assumption is consensus in further research. Du, Li \& Wei (2011) showed the existence of solution and obtained a theorem of comparison for one dimensional mean-field backward stochastic differential equations. Yong (2013) considered a linear-quadratic optimal control problem, which consists of continuous-time mean-field stochastic differential equations with deterministic coefficients. Elliott, $\mathrm{Li} \& \mathrm{Ni}$ (2013) considered a discrete-time optimal control problem and discussed different methods for solving the problem. Necessary and sufficient conditions for the solvability of the problem were presented.

For recent research, this problem is extended in two aspects: with indefinite weight matrices in the cost functional and with an infinite horizon, see (Ni, Li \& Zhang, 2014; Ni, Elliott \& Li, 2015; Ni, Zhang \& Li, 2015; Ni, Li \& Zhang, 2016). Sun \& Yong (2016) showed that the non-emptiness of the admissible control set for all initial state is equivalent to the \mathcal{L}^{2}-stabilizability of the control system by concerning continuoustime model in an infinite horizon with constant coefficients. Li et al. summarized their recent research results for a linear mean-field stochastic differential equation with a quadratic cost functional in (Li, Sun \& Yong, 2016). Readers may refer to literature such as (Andersson, \& Djehiche, 2011; Bensoussan, Frehse \& Yam, 2013; Buckdahn, Djehiche \& Li, 2011; Meyer-Brandis, Oksendal \& Zhou, 2012) for some other meanfield type control problems

On the other hand, mean-field game is also a hot research topic in mean-field the-
ory. Huang, Malhamé \& Caines (2006) decomposed a class of stochastic games into optimal controls problems and designated the Nash certainty equivalence principle as a property of solvability. Bensoussan et al. (2016) studied the unique existence of an equilibrium strategies of linear-quadratic mean field games (MFGs) by adjoint equation method. For relevant literatures, readers can refer to (Bauso, Tembine \& Başar, 2012; Bensoussan, Frehse \& Yam, 2013; Carmona \& Delarue, 2013; Carmona \& Lacker, 2015; Guéant, Lasry \& Lions, 2011).

Stochastic optimal control theory has been widely applied in varies practical problems since Wonham's work in 1968 (Wonham, 1968). The development of mathematical mean-field stochastic linear-quadratic optimal control theory has greatly promoted the research of related applications in recent works. Zhou \& Yin (2003) studied a continuous-time regime-switching model for portfolio selection, where a Markov chain modulated diffusion formulation was used to model the problem. Xie, Li \& Wang (2008) investigated mean-variance portfolio selection problems using general stochastic control technique. An incomplete market was studied with correlative multiple risky assets and a liability according to a Brownian motion with drift. By adopting the techniques in (Zhou \& Yin, 2003), Chen, Yang \& Yin (2008) investigated the feasibility and obtained the optimal strategy. The corresponding efficient frontier was also delineated, and hence the associated mutual fund theorem over a continuoustime Markov regime-switching model was established. Cui, Li \& Li (2014) proposed a new mean-field framework that provides a more efficient modelling tool and accurate solution to solve sustainability problems. Dang, Forsyth \& Li (2016) considered Markowitz's problem through method of transforming the problem into an equivalent one with bankruptcy prohibition but without portfolio constraints and then treated by martingale theory. Literatures can be referred to (Cui, Li \& Li, 2015; Hou \& Xu, 2016; Zhang \& Chen, 2016; Ziemba, 2003).

The problem studied in this paper arises from a practical problem in finance. When making investment decisions, investors not only consider the current assets but also the liabilities of the investors. Most of the existing research works in financial applications only consider the investment entity's equity assets without considering debt. In order to adapt practical application, we consider a system consists of n assets and n liabilities in this study. The system state is adjusted to two linear stochastic difference equations with several cost-functional affected variables. Under a series of necessary and sufficient conditions for the solvability of the problem, Ricatti equations of the adjusted model are obtained and a more general framework from mean-field linear-quadratic controls theory to financial applications is provided. The remainder of the paper is organized as follows. In Section 2, we give the formulation for the problem. Preliminaries for the analyses are presented in Section 3. In Section 4, the closed-loop optimal control is obtained and then it is represented via Riccati equations. Some financial applications of the problem are presented in Section 5. The paper is then concluded in Section 6.

2. Problem Formulation

Let N be a positive integer. The system equation is the following set of linear stochastic difference equations with $k \in\{0,1,2, \cdots, N-1\} \equiv \mathbb{N}$,

$$
\left\{\begin{align*}
& x_{k+1}=\left(A_{k} x_{k}+\bar{A}_{k} \mathbb{E} x_{k}+B_{k} u_{k}+\bar{B}_{k} \mathbb{E} u_{k}\right) \tag{1}\\
&+\left(C_{k} x_{k}+\bar{C}_{k} \mathbb{E} x_{k}+D_{k} u_{k}+\bar{D}_{k} \mathbb{E} u_{k}\right) w_{k} \\
& y_{k+1}=\left(F_{k} y_{k}+\bar{F}_{k} \mathbb{E} y_{k}\right)+\left(G_{k} y_{k}+\bar{G}_{k} \mathbb{E} y_{k}\right) v_{k} \\
& x_{0}=\zeta^{x}, y_{0}=\zeta^{y}
\end{align*}\right.
$$

where $x_{k}, y_{k} \in \mathbb{R}^{n}$. $A_{k}, \bar{A}_{k}, C_{k}, \bar{C}_{k}, F_{k}, \bar{F}_{k}, G_{k}, \bar{G}_{k} \in \mathbb{R}^{n \times n}$, and $B_{k}, \bar{B}_{k}, D_{k}, \bar{D}_{k} \in \mathbb{R}^{n \times m}$ are given deterministic matrices. \mathbb{E} is the expectation operator. Denote the set $\{0,1,2, \cdots, N\}$ by $\overline{\mathbb{N}}$. In (1), $\left\{x_{k}, k \in \overline{\mathbb{N}}\right\}$ and $\left\{y_{k}, k \in \overline{\mathbb{N}}\right\}$ are the state processes and $\left\{u_{k} \in \mathbb{R}^{m}, k \in \mathbb{N}\right\}$ is a control process. $\left\{w_{k}, v_{k}, k \in \mathbb{N}\right\}$ are defined on probability space (Ω, \mathcal{F}, P), represent the stochastic distribution for the two state processes, and are assumed to be martingale difference sequences

$$
\begin{align*}
& \mathbb{E}\left[w_{k+1} \mid \mathcal{F}_{k}\right]=0, \mathbb{E}\left[\left(w_{k+1}\right)^{2} \mid \mathcal{F}_{k}\right]=1, \mathbb{E}\left[v_{k+1} \mid \mathcal{F}_{k}\right]=0, \tag{2}\\
& \mathbb{E}\left[\left(v_{k+1}\right)^{2} \mid \mathcal{F}_{k}\right]=1, \mathbb{E}\left[w_{k+1} v_{k+1} \mid \mathcal{F}_{k}\right]=\rho,
\end{align*}
$$

where \mathcal{F}_{k} is the σ-algebra generated by $\left\{\zeta^{x}, w_{l}, l=0,1, \cdots, k\right\}$ and $\left\{\zeta^{y}, v_{l}, l=\right.$ $0,1, \cdots, k\}$. The cost functional associated with (1) is

$$
\begin{align*}
J\left(\zeta^{x}, \zeta^{y}, u\right)= & \sum_{k=0}^{N-1} \mathbb{E}\left(\left(x_{k}-y_{k}\right)^{T} Q_{k}\left(x_{k}-y_{k}\right)+u_{k}^{T} R_{k} u_{k}\right. \tag{3}\\
& \left.+\mathbb{E}\left(x_{k}-y_{k}\right)^{T} \bar{Q}_{k} \mathbb{E}\left(x_{k}-y_{k}\right)+\left(\mathbb{E} u_{k}\right)^{T} \bar{R}_{k} \mathbb{E} u_{k}\right) \\
& +\mathbb{E}\left(\left(x_{N}-y_{N}\right)^{T} Q_{N}\left(x_{N}-y_{N}\right)\right)+\mathbb{E}\left(x_{N}-y_{N}\right)^{T} \bar{Q}_{N} \mathbb{E}\left(x_{N}-y_{N}\right)
\end{align*}
$$

where $Q_{k}, \bar{Q}_{k}, k \in \overline{\mathbb{N}}$ and $R_{k}, \bar{R}_{k}, k \in \mathbb{N}$ are deterministic symmetric matrices with appropriate dimensions. We introduce the following admissible control set of $u=$ $\left(u_{0}, u_{1}, \cdots, u_{N-1}\right)$

$$
\mathcal{U}_{a d} \equiv\left\{u \mid u_{k} \in \mathbb{R}^{m}, \text { is } \mathcal{F}_{k} \text {-measurable, } \mathbb{E}\left|u_{k}\right|^{2}<\infty\right\}
$$

The optimal control problem considered in this paper is then stated as follows:

Problem (MF-LQ). For any given square-integrable initial values ζ^{x} and ζ^{y}, find $u^{o} \in \mathcal{U}_{\text {ad }}$ such that

$$
\begin{equation*}
J\left(\zeta^{x}, \zeta^{y}, u^{o}\right)=\inf _{u \in \mathcal{U}_{a d}} J\left(\zeta^{x}, \zeta^{y}, u\right) \tag{4}
\end{equation*}
$$

We then call u^{o} an optimal control for Problem (MF-LQ).

3. Preliminaries

In this section, we convert Problem (MF-LQ) to a quadratic optimization problem in Hilbert space. After a series of statements of standard notation and definition, we give necessary and sufficient conditions for the solvability of the Problem (MF-LQ). Firstly, some spaces are introduced as follows: for $k \in \overline{\mathbb{N}}$,

$$
\begin{aligned}
& \mathcal{Z}_{k}=L_{\mathcal{F}_{k}}^{2}\left(\mathbb{R}^{n}\right)=\left\{\xi: \Omega \mapsto \mathbb{R}^{n} \mid \xi \text { is } \mathcal{F}_{k} \text {-measurable, } \mathbb{E}|\xi|^{2}<\infty\right\} \\
& \mathcal{Z}[0, k]=\left\{\left(z_{0}, \ldots, z_{k}\right) \mid z_{k} \in \mathcal{Z}_{k}, \text { is } \mathcal{F}_{k} \text {-measurable, } \sum_{l=0}^{k} \mathbb{E}\left|z_{l}\right|^{2}<\infty\right\},
\end{aligned}
$$

and for $l \in \mathbb{N}$,

$$
\mathcal{U}_{l}=L_{\mathcal{F}_{l}}^{2}\left(\mathbb{R}^{m}\right)=\left\{\eta: \Omega \mapsto \mathbb{R}^{m} \mid \eta \text { is } \mathcal{F}_{l} \text {-measurable, } \mathbb{E}|\eta|^{2}<\infty\right\} .
$$

Here, $\mathcal{Z}_{k}, \mathcal{U}_{l}$ and $\mathcal{Z}[0, k]$ are Hilbert spaces. There are two cases of the domain and range of expectation operator: \mathbb{E} maps \mathcal{Z}_{k} to \mathbb{R}^{n} or \mathcal{U}_{l} to \mathbb{R}^{m} (Elliott, Li \& Ni, 2013). Therefore, the notation \mathbb{E} and adjoint operator \mathbb{E}^{*} may differ from place to place. Let $\mathcal{H}=\mathcal{Z}_{k}, \mathcal{U}_{l}$. For illustration, we now use $\mathbb{E}_{\mathcal{H}}$ and $\mathbb{E}_{\mathcal{H}}^{*}$ to emphasize \mathcal{H}. \mathbb{E} and \mathbb{E}^{*} may appear in the form of $M \mathbb{E}_{\mathcal{H}}$ and $\mathbb{E}_{\mathcal{H}}^{*} N \mathbb{E}_{\mathcal{H}^{\prime}}$ where M, N are matrices with appropriate dimensions and $\mathcal{H}, \mathcal{H}^{\prime}$ can be different. To simplify the expressions in this paper, $\bar{A} \mathbb{E} z$, $\bar{B} \mathbb{E} u, \mathbb{E}^{*} \bar{Q} \mathbb{E} z, \mathbb{E}^{*} \bar{L} \mathbb{E} u, \mathbb{E}^{*} \bar{R} \mathbb{E} u$ are used to denote $\bar{A} \mathbb{E}_{\mathcal{Z}_{k}}(z), \bar{B} \mathbb{E}_{\mathcal{U}_{k}}(u), \mathbb{E}_{\mathcal{Z}_{k}}^{*} \bar{Q} \mathbb{E}_{\mathcal{Z}_{k}}(z)$, $\mathbb{E}_{\mathcal{Z}_{k}}^{*} \bar{L} \mathbb{E}_{\mathcal{U}_{k}}(u), \mathbb{E}_{\mathcal{U}_{k}}^{*} \bar{R} \mathbb{E}_{\mathcal{U}_{k}}(u)$, respectively. Here, $z \in \mathcal{Z}_{k}, u \in \mathcal{U}_{k}, \bar{A}, \bar{Q} \in \mathbb{R}^{n \times n}, \bar{B}, \bar{L} \in$ $\mathbb{R}^{n \times m}, \bar{R} \in \mathbb{R}^{m \times m}$ 。

Definition 3.1. (i). Problem (MF-LQ) is said to be finite for ζ^{x} and ζ^{y} if

$$
\inf _{u \in \mathcal{U}_{a d}} J\left(\zeta^{x}, \zeta^{y}, u\right)>-\infty
$$

Problem (MF-LQ) is said to be finite if it is finite for any ζ^{x} and ζ^{y}. (ii). Problem (MF-LQ) is said to be uniquely solvable for ζ^{x} and ζ^{y} if there exists a unique $u^{o} \in \mathcal{U}_{a d}$ such that (4) holds for ζ^{x} and ζ^{y}. Problem (MF-LQ) is said to be uniquely solvable if it is uniquely solvable for any ζ^{x} and ζ^{y}.

We express the system states explicitly in terms of k. Let

$$
\begin{cases}\bar{\Phi}(k, l)=\prod_{i=l}^{k}\left(A_{i}+\bar{A}_{i}\right), & \Phi(k, l)=\prod_{i=l}^{k}\left(A_{i}+w_{i} C_{i}\right), \\ \Xi(k, l)=\prod_{i=l}^{k}\left(F_{i}+\bar{F}_{i}\right), & \Xi(k, l)=\prod_{i=l}^{k}\left(F_{i}+v_{i} G_{i}\right)\end{cases}
$$

for $k \geq l$ and $\bar{\Phi}(k, l)=\Phi(k, l)=\bar{\Xi}(k, l)=\Xi(k, l)=I$ for $k<l$. Define the following
operators on $\zeta^{x}, \zeta^{y} \in \mathcal{Z}_{0}, u \in \mathcal{U}_{a d}$ for $k \in \overline{\mathbb{N}}$:

$$
\left\{\begin{aligned}
\Gamma_{k}\left(\zeta^{x}\right)= & \Phi(k-1,0) \zeta^{x}, \\
\bar{\Gamma}_{k}\left(\zeta^{x}\right)= & \sum_{l=1}^{k-1}\left(\Phi(k-1, l)\left(\bar{A}_{l-1}+w_{l-1} \bar{C}_{l-1}\right) \bar{\Phi}(l-2,0) \mathbb{E} \zeta^{x}\right), \\
\Psi_{k}\left(\zeta^{y}\right)= & \Xi(k-1,0) \zeta^{y}, \\
\bar{\Psi}_{k}\left(\zeta^{y}\right)= & \sum_{l=1}^{k-1}\left(\Xi(k-1, l)\left(\bar{F}_{l-1}+v_{l-1} \bar{G}_{l-1}\right) \bar{\Xi}(l-2,0) \mathbb{E} \zeta^{y}\right), \\
L_{k}(u)= & \sum_{l=1}^{k-1} \Phi(k-1, l)\left(B_{l-1}+w_{l-1} D_{l-1}\right) u_{l-1}+\left(B_{k-1}+w_{k-1} D_{k-1} u_{k-1}\right), \\
\bar{L}_{k}(u)= & \sum_{l=1}^{k-1} \Phi(k-1, l+1)\left(\bar{A}_{l-1}+w_{l-1} \bar{C}_{l-1}\right) \sum_{i=1}^{l-1} \Phi(l-2, i)\left(B_{i-1}+\bar{B}_{i-1}\right) \mathbb{E} u_{i-1} \\
& +\sum_{l=1}^{k-1} \Phi(k-1, l)\left(\bar{B}_{l-1}+w_{l-1} \bar{D}_{l-1}\right) \mathbb{E} u_{l-1}+\left(\bar{B}_{k-1}+w_{k-1} \bar{D}_{k-1}\right) \mathbb{E} u_{k-1},
\end{aligned}\right.
$$

where $\Gamma_{k}, \bar{\Gamma}_{k}, \Psi_{k}, \bar{\Psi}_{k}: \mathcal{Z}_{0} \mapsto \mathcal{Z}[0, k], k \in \overline{\mathbb{N}}, L_{k}, \bar{L}_{k}: \mathcal{U}_{a d} \mapsto \mathcal{Z}[0, k], k \in \overline{\mathbb{N}}$, are linear and bounded. Then the system states can be expressed as

$$
\left\{\begin{array}{l}
x_{k}=\Gamma_{k}\left(\zeta^{x}\right)+\bar{\Gamma}_{k}\left(\zeta^{x}\right)+L_{k}(u)+\bar{L}_{k}(u) \\
y_{k}=\Psi_{k}\left(\zeta^{y}\right)+\bar{\Psi}_{k}\left(\zeta^{y}\right) .
\end{array}\right.
$$

The cost functional $J\left(\zeta^{x}, \zeta^{y}, u\right)$ has the following form of usual inner products

$$
\begin{aligned}
J= & \sum_{k=0}^{N-1}\left(\left\langle Q_{k} x_{k}, x_{k}\right\rangle-2\left\langle Q_{k} x_{k}, y_{k}\right\rangle+\left\langle Q_{k} y_{k}, y_{k}\right\rangle+\left\langle\bar{Q} \mathbb{E} x_{k}, \mathbb{E} x_{k}\right\rangle\right. \\
& \left.-2\left\langle\bar{Q}_{k} \mathbb{E} x_{k}, \mathbb{E} y_{k}\right\rangle+\left\langle\bar{Q}_{k} \mathbb{E} y_{k}, \mathbb{E} y_{k}\right\rangle+\left\langle R_{k} u_{k}, u_{k}\right\rangle+\left\langle\bar{R}_{k} \mathbb{E} u_{k}, \mathbb{E} u_{k}\right\rangle\right) \\
& +\left\langle Q_{N} x_{N}, x_{N}\right\rangle-2\left\langle Q_{N} x_{N}, y_{N}\right\rangle+\left\langle Q_{N} y_{N}, y_{N}\right\rangle+\left\langle\bar{Q} \mathbb{E} x_{N}, \mathbb{E} x_{N}\right\rangle \\
& -2\left\langle\bar{Q}_{N} \mathbb{E} x_{N}, \mathbb{E} y_{N}\right\rangle+\left\langle\bar{Q}_{N} \mathbb{E} y_{N}, \mathbb{E} y_{N}\right\rangle .
\end{aligned}
$$

Recall that $\left\langle Q_{k} x_{k}, y_{k}\right\rangle$ denotes $\mathbb{E}\left(y_{k}^{T} Q_{k} x_{k}\right)$ with similar meanings for related notation.

Here, if we let

$$
\begin{aligned}
\Theta_{1}= & \sum_{k=0}^{N}\left(\left(\Gamma_{k}+\bar{\Gamma}_{k}\right)^{*} Q_{k}\left(L_{k}+\bar{L}_{k}\right)+\left(\Gamma_{k}+\bar{\Gamma}_{k}\right)^{*} \mathbb{E}^{*} \bar{Q}_{k} \mathbb{E}\left(L_{k}+\bar{L}_{k}\right)\right), \\
\Theta_{2}= & \sum_{k=0}^{N-1}\left(R_{k}+\mathbb{E}^{*} \bar{R}_{k} \mathbb{E}+\left(L_{k}+\bar{L}_{k}\right)^{*} Q_{k}\left(L_{k}+\bar{L}_{k}\right)+\left(L_{k}+\bar{L}_{k}\right)^{*} \mathbb{E}^{*} \bar{Q}_{k} \mathbb{E}\left(L_{k}+\bar{L}_{k}\right)\right) \\
& +\left(L_{N}+\bar{L}_{N}\right)^{*} Q_{N}\left(L_{N}+\bar{L}_{N}\right)+\left(L_{N}+\bar{L}_{N}\right)^{*} \mathbb{E}^{*} \bar{Q}_{N} \mathbb{E}\left(L_{N}+\bar{L}_{N}\right), \\
\Theta_{3}= & \sum_{k=0}^{N}\left(\left(\Psi_{k}+\bar{\Psi}_{k}\right)^{*} Q_{k}\left(L_{k}+\bar{L}_{k}\right)+\left(\Psi_{k}+\bar{\Psi}_{k}\right)^{*} \mathbb{E}^{*} \bar{Q}_{k} \mathbb{E}\left(L_{k}+\bar{L}_{k}\right)\right), \\
\Lambda_{1}= & \sum_{k=0}^{N}\left(\left(\Gamma_{k}+\bar{\Gamma}_{k}\right)^{*} Q_{k}\left(\Gamma_{k}+\bar{\Gamma}_{k}\right)+\left(\Gamma_{k}+\bar{\Gamma}_{k}\right)^{*} \mathbb{E}^{*} \bar{Q}_{k} \mathbb{E}\left(\Gamma_{k}+\bar{\Gamma}_{k}\right)\right), \\
\Lambda_{2}= & -\sum_{k=0}^{N}\left(\left(\Psi_{k}+\bar{\Psi}_{k}\right)^{*} Q_{k}\left(\Gamma_{k}+\bar{\Gamma}_{k}\right)+\left(\Psi_{k}+\bar{\Psi}_{k}\right)^{*} \mathbb{E}^{*} \bar{Q}_{k} \mathbb{E}\left(\Gamma_{k}+\bar{\Gamma}_{k}\right)\right), \\
\Lambda_{3}= & \sum_{k=0}^{N}\left(\left(\Psi_{k}+\bar{\Psi}_{k}\right)^{*} Q_{k}\left(\Psi_{k}+\bar{\Psi}_{k}\right)+\left(\Psi_{k}+\bar{\Psi}_{k}\right)^{*} \mathbb{E}^{*} \bar{Q}_{k} \mathbb{E}\left(\Psi_{k}+\bar{\Psi}_{k}\right)\right),
\end{aligned}
$$

then it can be shown that

$$
\begin{align*}
J\left(\zeta^{x}, \zeta^{y}, u\right)= & 2\left\langle\Theta_{1} u, \zeta^{x}\right\rangle+\left\langle\Theta_{2} u, u\right\rangle+2\left\langle\Theta_{3} u, \zeta^{y}\right\rangle \\
& +\left\langle\Lambda_{1} \zeta^{x}, \zeta^{x}\right\rangle+2\left\langle\Lambda_{2} \zeta^{x}, \zeta^{y}\right\rangle+\left\langle\Lambda_{3} \zeta^{y}, \zeta^{y}\right\rangle \tag{5}
\end{align*}
$$

In this paper we use numerator layout for matrices calculus, i.e., for any matrix Y, $\frac{\partial}{\partial Y} \operatorname{Tr}(A Y B)=B A$ if $A Y B$ is meaningful. We then have the following result.

Proposition 3.2. (i). If $J\left(\zeta^{x}, \zeta^{y}, u\right)$ has a minimum, then $\Theta_{2} \geq 0$.
(ii). Problem (MF-LQ) is (uniquely) solvable if and only if $\Theta_{2} \geq 0$ and there exists a (unique) u such that

$$
u^{T} \Theta_{2}+x^{T} \Theta_{1}+y^{T} \Theta_{3}=0
$$

(iii). If $\Theta_{2}>0$, then for any ζ^{x} and $\zeta^{y}, J\left(\zeta^{x}, \zeta^{y}, u\right)$ admits a pathwise unique minimizer u^{o} given by

$$
\begin{equation*}
u_{k}^{o}=-\left(\Theta_{2}^{-1}\left(\Theta_{1}^{*} \zeta^{x}+\Theta_{3}^{*} \zeta^{y}\right)\right)(k), \quad k \in \mathbb{N} . \tag{6}
\end{equation*}
$$

In addition, if

$$
\begin{equation*}
Q_{k}, Q_{k}+\bar{Q}_{k} \geq 0, k \in \overline{\mathbb{N}}, \quad R_{k}, R_{k}+\bar{R}_{k}>0, k \in \mathbb{N} \tag{7}
\end{equation*}
$$

then $\Theta_{2}>0$.
Proof. The proofs of (i), (ii) and the first part of (iii) are well known and therefore omitted here (Moore, Zhou \& Lim, 1999; Yong, 2013). We now prove the second part
of (iii). From (7), for $k \in \overline{\mathbb{N}}$, we have

$$
\begin{aligned}
\left(L_{k}+\bar{L}_{k}\right)^{*} Q_{k}\left(L_{k}+\bar{L}_{k}\right)+ & \left(L_{k}+\bar{L}_{k}\right)^{*} \mathbb{E}^{*} \bar{Q}_{k} \mathbb{E}\left(L_{k}+\bar{L}_{k}\right) \geq 0, \\
\left\langle R_{k} u_{k}, u_{k}\right\rangle+\left\langle\bar{R}_{k} \mathbb{E} u_{k}, \mathbb{E} u_{k}\right\rangle= & \mathbb{E}\left[u_{k}^{T} R_{k} u_{k}+\left(\mathbb{E} u_{k}\right)^{T} \bar{R}_{k} \mathbb{E} u_{k}\right] \\
= & \mathbb{E}\left[\left(u_{k}-\mathbb{E} u_{k}\right)^{T} R_{k}\left(u_{k}-\mathbb{E} u_{k}\right)\right] \\
& +\left(\mathbb{E} u_{k}\right)^{T}\left(R_{k}+\bar{R}_{k}\right) \mathbb{E} u_{k}>0, k \in \mathbb{N}
\end{aligned}
$$

for any non-zero $u \in \mathcal{U}_{a d}$, which implies $\Theta_{2}>0$.

4. Closed-loop Optimal Control via Riccati Equations

In this section, we first find the optimal control within the class of linear state feedback controls by using matrix minimum principle. Secondly, several sequences of bounded linear operators are presented and problem (MF-LQ) is reformulated as an operator stochastic linear-quadratic optimal control problem. We then find the optimal control via Riccati equations.

4.1. Linear Feedback Control

The linear feedback controls a linear functional of the system states, which gives the control based on the current system states. Suppose that a control having the following form is in used:

$$
\begin{equation*}
u_{k}=L_{k}^{x} x_{k}+\bar{L}_{k}^{x} \mathbb{E} x_{k}+L_{k}^{y} y_{k}+\bar{L}_{k}^{y} \mathbb{E} y_{k}, \quad k \in \mathbb{N}, \tag{8}
\end{equation*}
$$

where $L_{k}^{x}, \bar{L}_{k}^{x}, L_{k}^{y}, \bar{L}_{k}^{y} \in \mathbb{R}^{m \times n}$. Under (8), the closed-loop system (1) becomes

$$
\left\{\begin{align*}
x_{k+1}= & A_{k} x_{k}+\bar{A}_{k} \mathbb{E} x_{k}+B_{k}\left(L_{k}^{x} x_{k}+\bar{L}_{k}^{x} \mathbb{E} x_{k}+L_{k}^{y} y_{k}+\bar{L}_{k}^{y} \mathbb{E} y_{k}\right) \tag{9}\\
& +\bar{B}_{k}\left[\left(L_{k}^{x}+\bar{L}_{k}^{x}\right) \mathbb{E} x_{k}+\left(L_{k}^{y}+\bar{L}_{k}^{y}\right) \mathbb{E} y_{k}\right] \\
& +\left\{C_{k} x_{k}+\bar{C}_{k} \mathbb{E} x_{k}+D_{k}\left(L_{k}^{x} x_{k}+\bar{L}_{k}^{x} \mathbb{E} x_{k}+L_{k}^{y} y_{k}+\bar{L}_{k}^{y} \mathbb{E} y_{k}\right)\right. \\
& \left.+\bar{D}_{k}\left[\left(L_{k}^{x}+\bar{L}_{k}^{x}\right) \mathbb{E} x_{k}+\left(L_{k}^{y}+\bar{L}_{k}^{y}\right) \mathbb{E} y_{k}\right]\right\} w_{k}, \\
y_{k+1}= & \left(F_{k} y_{k}+\bar{F}_{k} \mathbb{E} y_{k}\right)+\left(G_{k} y_{k}+\bar{G}_{k} \mathbb{E} y_{k}\right) v_{k}, \\
x_{0}= & \zeta^{x}, y_{0}=\zeta^{y},
\end{align*}\right.
$$

and the cost functional (3) may be represented as

$$
\begin{align*}
& J\left(\zeta^{x}, \zeta^{y}, u\right) \\
= & \sum_{k=0}^{N-1}\left\{\operatorname{Tr}\left[Q_{k}\left(\mathbb{E}\left(x_{k} x_{k}^{T}\right)-\mathbb{E}\left(x_{k} y_{k}^{T}\right)-\mathbb{E}\left(y_{k} x_{k}^{T}\right)+\mathbb{E}\left(y_{k} y_{k}^{T}\right)\right)\right]\right. \\
& +\operatorname{Tr}\left[\bar{Q}_{k}\left(\mathbb{E} x_{k} \mathbb{E} x_{k}^{T}-\mathbb{E} x_{k} \mathbb{E} y_{k}^{T}-\mathbb{E} y_{k} \mathbb{E} x_{k}^{T}+\mathbb{E} y_{k} \mathbb{E} y_{k}^{T}\right)\right] \\
& +\operatorname{Tr}\left[\left(L_{k}^{x}\right)^{T} R_{k} L_{k}^{x} \mathbb{E}\left(x_{k} x_{k}^{T}\right)+\left(\left(L_{k}^{x}\right)^{T} R_{k} \bar{L}_{k}^{x}+\left(\bar{L}_{k}^{x}\right)^{T} R_{k} L_{k}^{x}+\left(\bar{L}_{k}^{x}\right)^{T} R_{k} \bar{L}_{k}^{x}\right) \mathbb{E} x_{k} \mathbb{E} x_{k}^{T}\right] \\
& +\operatorname{Tr}\left[\left(L_{k}^{x}\right)^{T} R_{k} L_{k}^{y} \mathbb{E}\left(y_{k} x_{k}^{T}\right)+\left(\left(L_{k}^{x}\right)^{T} R_{k} \bar{L}_{k}^{y}+\left(\bar{L}_{k}^{x}\right)^{T} R_{k} L_{k}^{y}+\left(\bar{L}_{k}^{x}\right)^{T} R_{k} \bar{L}_{k}^{y}\right) \mathbb{E} y_{k} \mathbb{E} x_{k}^{T}\right] \\
& +\operatorname{Tr}\left[\left(L_{k}^{y}\right)^{T} R_{k} L_{k}^{x} \mathbb{E}\left(x_{k} y_{k}^{T}\right)+\left(\left(L_{k}^{y}\right)^{T} R_{k} \bar{L}_{k}^{x}+\left(\bar{L}_{k}^{y}\right)^{T} R_{k} L_{k}^{x}+\left(\bar{L}_{k}^{y}\right)^{T} R_{k} \bar{L}_{k}^{x}\right) \mathbb{E} x_{k} \mathbb{E} y_{k}^{T}\right] \tag{10}\\
& +\operatorname{Tr}\left[\left(L_{k}^{y}\right)^{T} R_{k} L_{k}^{y} \mathbb{E}\left(y_{k} y_{k}^{T}\right)+\left(\left(L_{k}^{y}\right)^{T} R_{k} \bar{L}_{k}^{y}+\left(\bar{L}_{k}^{y}\right)^{T} R_{k} L_{k}^{y}+\left(\bar{L}_{k}^{y}\right)^{T} R_{k} \bar{L}_{k}^{y}\right) \mathbb{E} y_{k} \mathbb{E} y_{k}^{T}\right] \\
& +\operatorname{Tr}\left[\left(L_{k}^{x}+\bar{L}_{k}^{x}\right)^{T} \bar{R}_{k}\left(L_{k}^{x}+\bar{L}_{k}^{x}\right) \mathbb{E} x_{k} \mathbb{E} x_{k}^{T}+\left(L_{k}^{x}+\bar{L}_{k}^{x}\right)^{T} \bar{R}_{k}\left(L_{k}^{y}+\bar{L}_{k}^{y}\right) \mathbb{E} y_{k} \mathbb{E} x_{k}^{T}\right] \\
& \left.+\operatorname{Tr}\left[\left(L_{k}^{y}+\bar{L}_{k}^{y}\right)^{T} \bar{R}_{k}\left(L_{k}^{x}+\bar{L}_{k}^{x}\right) \mathbb{E} x_{k} \mathbb{E} y_{k}^{T}+\left(L_{k}^{y}+\bar{L}_{k}^{y}\right)^{T} \bar{R}_{k}\left(L_{k}^{y}+\bar{L}_{k}^{y}\right) \mathbb{E} y_{k} \mathbb{E} y_{k}^{T}\right]\right\} \\
& +\operatorname{Tr}\left[Q_{N}\left(\mathbb{E}\left(x_{N} x_{N}^{T}\right)-\mathbb{E}\left(x_{N} y_{N}^{T}\right)-\mathbb{E}\left(y_{N} x_{N}^{T}\right)+\mathbb{E}\left(y_{N} y_{N}^{T}\right)\right)\right] \\
& \left.\left.\operatorname{E} x_{N} \mathbb{E} x_{N}^{T}-\mathbb{E} x_{N} \mathbb{E} y_{N}^{T}-\mathbb{E} y_{N} \mathbb{E} x_{N}^{T}+\mathbb{E} y_{N} \mathbb{E} y_{N}^{T}\right)\right] .
\end{align*}
$$

From the form (8) of the control, we may view $\left\{\left(L_{k}^{x}, \bar{L}_{k}^{x}, L_{k}^{y}, \bar{L}_{k}^{y}\right), k \in \mathbb{N}\right\}$ as the new control input. Write

$$
\begin{cases}X_{k}=\mathbb{E}\left(x_{k} x_{k}^{T}\right), \quad \bar{X}_{k}=\mathbb{E} x_{k}\left(\mathbb{E} x_{k}\right)^{T}, \quad X Y_{k}=\mathbb{E}\left(x_{k} y_{k}^{T}\right), \\ \overline{X Y_{k}}=\mathbb{E} x_{k}\left(\mathbb{E} y_{k}\right)^{T}, \quad Y_{k}=\mathbb{E}\left(y_{k} y_{k}^{T}\right), \quad \bar{Y}_{k}=\mathbb{E} y_{k}\left(\mathbb{E} y_{k}\right)^{T} .\end{cases}
$$

Then by (9), we may express the new system states as

$$
\left\{\begin{array}{l}
X_{k+1}=\mathcal{X}_{k}\left(L_{k}^{x}, \bar{L}_{k}^{x}, L_{k}^{y}, \bar{L}_{k}^{y}\right), \quad \bar{X}_{k+1}=\overline{\mathcal{X}}_{k}\left(L_{k}^{x}, \bar{L}_{k}^{x}, L_{k}^{y}, \bar{L}_{k}^{y}\right), \tag{11}\\
X Y_{k+1}=\mathcal{X} \mathcal{Y}_{k}\left(L_{k}^{x}, \bar{L}_{k}^{x}, L_{k}^{y}, \bar{L}_{k}^{y}\right), \quad \bar{X} Y_{k+1}=\mathcal{X} \mathcal{Y}_{k}\left(L_{k}^{x}, \bar{L}_{k}^{x}, L_{k}^{y}, \bar{L}_{k}^{y}\right), \\
Y_{k+1}=\mathcal{Y}_{k}, \quad \bar{Y}_{k+1}=\overline{\mathcal{Y}}_{k} .
\end{array}\right.
$$

The derivations are straightforward an hence omitted here. After some calculations, $J\left(\zeta^{x}, \zeta^{y}, u\right)$ with u defined in (8) may be represented in terms of $X, \bar{X}, X Y, X \bar{X}, Y$
and \bar{Y} as follows:

$$
\begin{align*}
& J\left(\zeta^{x}, \zeta^{y}, u\right) \\
= & \sum_{k=0}^{N-1}\left\{\operatorname{Tr}\left[Q_{k}\left(X_{k}-X Y_{k}-\left(X Y_{k}\right)^{T}+Y_{k}\right)\right]\right. \\
& +\operatorname{Tr}\left[\bar{Q}_{k}\left(\bar{X}_{k}-\bar{X} Y_{k}-\left(\bar{X} Y_{k}\right)^{T}+\bar{Y}_{k}\right)\right] \\
& +\operatorname{Tr}\left[\left(L_{k}^{x}\right)^{T} R_{k} L_{k}^{x} X_{k}+\left(\left(L_{k}^{x}\right)^{T} R_{k} \bar{L}_{k}^{x}+\left(\bar{L}_{k}^{x}\right)^{T} R_{k} L_{k}^{x}+\left(\bar{L}_{k}^{x}\right)^{T} R_{k} \bar{L}_{k}^{x}\right) \bar{X}_{k}\right] \\
& +\operatorname{Tr}\left[\left(L_{k}^{x}\right)^{T} R_{k} L_{k}^{y}\left(X Y_{k}\right)^{T}+\left(\left(\left(L_{k}^{x}\right)^{T} R_{k} \bar{L}_{k}^{y}+\left(\bar{L}_{k}^{x}\right)^{T} R_{k} L_{k}^{y}+\left(\bar{L}_{k}^{x}\right)^{T} R_{k} \bar{L}_{k}^{y}\right)\left(\bar{X} Y_{k}\right)^{T}\right]\right. \\
& +\operatorname{Tr}\left[\left(L_{k}^{y}\right)^{T} R_{k} L_{k}^{x} X Y_{k}+\left(\left(L_{k}^{y}\right)^{T} R_{k} \bar{L}_{k}^{x}+\left(\bar{L}_{k}^{y}\right)^{T} R_{k} L_{k}^{x}+\left(\bar{L}_{k}^{y}\right)^{T} R_{k} \bar{L}_{k}^{x}\right) X Y_{k}\right] \tag{12}\\
& +\operatorname{Tr}\left[\left(L_{k}^{y}\right)^{T} R_{k} L_{k}^{y} Y_{k}+\left(\left(L_{k}^{y}\right)^{T} R_{k} \bar{L}_{k}^{y}+\left(\bar{L}_{k}^{y}\right)^{T} R_{k} L_{k}^{y}+\left(\bar{L}_{k}^{y}\right)^{T} R_{k} \bar{L}_{k}^{y}\right) \bar{Y}_{k}\right] \\
& \left.+\operatorname{Tr}\left[\left(L_{k}^{x}+\bar{L}_{k}^{x}\right)^{T} \bar{R}_{k}\left(L_{k}^{x}+\bar{L}_{k}^{x}\right) \bar{X}_{k}+\left(L_{k}^{x}+\bar{L}_{k}^{x}\right)^{T} \bar{R}_{k}\left(L_{k}^{y}+\bar{L}_{k}^{y}\right)(\overline{X Y})_{k}\right)^{T}\right] \\
& \left.+\operatorname{Tr}\left[\left(L_{k}^{y}+\bar{L}_{k}^{y}\right)^{T} \bar{R}_{k}\left(L_{k}^{x}+\bar{L}_{k}^{x}\right) \bar{X} Y_{k}+\left(L_{k}^{y}+\bar{L}_{k}^{y}\right)^{T} \bar{R}_{k}\left(L_{k}^{y}+\bar{L}_{k}^{y}\right) \bar{Y}_{k}\right]\right\} \\
& +\operatorname{Tr}\left[Q_{N}\left(X_{N}-X Y_{N}-\left(X Y_{N}\right)^{T}+Y_{N}\right)\right] \\
& +\operatorname{Tr}\left[\bar{Q}_{N}\left(\bar{X}_{N}-\bar{X} Y_{N}-\left(\overline{X Y} Y_{N}\right)^{T}+\bar{Y}_{N}\right)\right] \\
& \equiv \mathcal{J}\left(X_{0}, \bar{X}_{0}, X Y_{0}, \overline{X Y} Y_{0}, Y_{0}, \bar{Y}_{0}, \mathcal{L}\right),
\end{align*}
$$

where $\mathcal{L} \equiv\left\{\left(L_{k}^{x}, \bar{L}_{k}^{x}, L_{k}^{y}, \bar{L}_{k}^{y}\right), k \in \mathbb{N}\right\}$. Therefore, Problem (MF-LQ) is equivalent to the following problem:

$$
\left\{\begin{array}{l}
\min _{L_{k}^{x}, \bar{L}_{L}^{x}, L_{k}^{3}, \bar{L}_{k}^{\bar{y}} \in \mathbb{R}^{m \times n}, k \in \mathbb{N}} \mathcal{J}\left(X_{0}, \bar{X}_{0}, X Y_{0}, \overline{X Y} Y_{0}, Y_{0}, \bar{Y}_{0}, \mathcal{L}\right), \tag{13}\\
\text { subject to (11). }
\end{array}\right.
$$

Clearly, this is a matrix dynamical optimization problem. A natural way to deal with this class of problems is by the matrix minimum principle (Athans, 1967). Following the framework above, we can obtain the optimal control of form (8). Define the optimal feedback gains $L_{k}^{o}=\left(L_{k}^{x o}, L_{k}^{y o}, \bar{L}_{k}^{x o}, \bar{L}_{k}^{y o}\right), k \in \mathbb{N}$. We first introduce some notation and then present the result. Let

$$
\left\{\begin{align*}
\bar{W}_{k}^{(1)}= & R_{k}+B_{k}^{T} P_{k+1}^{x} B_{k}+D_{k}^{T} P_{k+1}^{x} D_{k} \tag{14}\\
\bar{W}_{k}^{(2)}= & R_{k}+\bar{R}_{k}+\left(B_{k}+\bar{B}_{k}\right)^{T}\left(P_{k+1}^{x}+\bar{P}_{k+1}^{x}\right)\left(B_{k}+\bar{B}_{k}\right) \\
& +\left(D_{k}+\bar{D}_{k}\right)^{T} P_{k+1}^{x}\left(D_{k}+\bar{D}_{k}\right) \\
\bar{H}_{k}^{(1)}= & A_{k}^{T} P_{k+1}^{x} B_{k}+C_{k}^{T} P_{k+1}^{x} D_{k}, \\
\bar{H}_{k}^{(2)}= & \left(A_{k}+\bar{A}_{k}\right)^{T}\left(P_{k+1}^{x}+\bar{P}_{k+1}^{x}\right)\left(B_{k}+\bar{B}_{k}\right)+\left(C_{k}+\bar{C}_{k}\right)^{T} P_{k+1}^{x}\left(D_{k}+\bar{D}_{k}\right) \\
\bar{H}_{k}^{(3)}= & F_{k}^{T} P_{k+1}^{x y} B_{k}+\rho G_{k}^{T} P_{k+1}^{x y} D_{k} \\
\bar{H}_{k}^{(4)}= & \left(F_{k}+\bar{F}_{k}\right)^{T}\left(P_{k+1}^{x y}+\bar{P}_{k+1}^{x y}\right)\left(B_{k}+\bar{B}_{k}\right)+\rho\left(G_{k}+\bar{G}_{k}\right)^{T} P_{k+1}^{x y}\left(D_{k}+\bar{D}_{k}\right),
\end{align*}\right.
$$

with

$$
\begin{align*}
& \left\{\begin{aligned}
P_{k}^{x}= & Q_{k}+\left(L_{k}^{x o}\right)^{T} R_{k} L_{k}^{x o}+\left(A_{k}+B_{k} L_{k}^{x o}\right)^{T} P_{k+1}^{x}\left(A_{k}+B_{k} L_{k}^{x o}\right) \\
& +\left(C_{k}+D_{k} L_{k}^{x o}\right)^{T} P_{k+1}^{x}\left(C_{k}+D_{k} L_{k}^{x o}\right), \\
P_{N}^{x}= & Q_{N},
\end{aligned}\right. \\
& \left\{\begin{aligned}
\bar{P}_{k}^{x}= & \bar{Q}_{k}+\left(L_{k}^{x o}\right)^{T} R_{k} \bar{L}_{k}^{x o}+\left(\bar{L}_{k}^{x o}\right)^{T} R_{k} L_{k}^{x o}+\left(\bar{L}_{k}^{x o}\right)^{T} R_{k} \bar{L}_{k}^{x o} \\
& +\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)^{T} \bar{R}_{k}\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right) \\
& +\left(A_{k}+B_{k} L_{k}^{x o}\right)^{T} P_{k+1}^{x}\left[\bar{A}_{k}+B_{k} \bar{L}_{k}^{x o}+\bar{B}_{k}\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right] \\
& +\left[\bar{A}_{k}+B_{k} \bar{L}_{k}^{x o}+\bar{B}_{k}\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right]^{T} P_{k+1}^{x}\left(A_{k}+B_{k} L_{k}^{x o}\right) \\
& +\left[\bar{A}_{k}+B_{k} \bar{L}_{k}^{x o}+\bar{B}_{k}\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right]^{T} P_{k+1}^{x}\left[\bar{A}_{k}+B_{k} \bar{L}_{k}^{x o}+\bar{B}_{k}\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right] \\
& +\left[A_{k}+\bar{A}_{k}+\left(B_{k}+\bar{B}_{k}\right)\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right]^{T} \bar{P}_{k+1}^{x}\left[A_{k}+\bar{A}_{k}+\left(B_{k}+\bar{B}_{k}\right)\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right]
\end{aligned}\right. \tag{16}\\
& +\left(C_{k}+D_{k} L_{k}^{x o}\right)^{T} P_{k+1}^{x}\left[\bar{C}_{k}+D_{k} \bar{L}_{k}^{x o}+\bar{D}_{k}\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right] \\
& +\left[\bar{C}_{k}+D_{k} \bar{L}_{k}^{x o}+\bar{D}_{k}\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right]^{T} P_{k+1}^{x}\left(C_{k}+D_{k} L_{k}^{x o}\right) \\
& \begin{array}{l}
+\left[\bar{C}_{k}+D_{k} \bar{L}_{k}^{x o}+\bar{D}_{k}\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right]^{T} P_{k+1}^{x}\left[\bar{C}_{k}+D_{k} \bar{L}_{k}^{x o}+\bar{D}_{k}\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right], \\
\bar{Q}_{N},
\end{array} \\
& \left\{\begin{aligned}
P_{k}^{x y}= & -Q_{k}+\left(L_{k}^{y o}\right)^{T} R_{k} L_{k}^{x o}+\left(B_{k} L_{k}^{y o}\right)^{T} P_{k+1}^{x}\left(A_{k}+B_{k} L_{k}^{x o}\right) \\
& +\left(D_{k} L_{k}^{y o}\right)^{T} P_{k+1}^{x}\left(C_{k}+D_{k} L_{k}^{x o}\right)+F_{k}^{T} P_{k+1}^{x y}\left(A_{k}+B_{k} L_{k}^{x o}\right) \\
& +\rho G_{k}^{T} P_{k+1}^{x y}\left(C_{k}+D_{k} L_{k}^{x o}\right), \\
P_{N}^{x y}= & -Q_{N},
\end{aligned}\right. \tag{17}
\end{align*}
$$

$$
\begin{align*}
& \left\{\begin{aligned}
\bar{P}_{k}^{x y}= & -\bar{Q}_{k}+\left(L_{k}^{y o}\right)^{T} R_{k} \bar{L}_{k}^{x o}+\left(\bar{L}_{k}^{y o}\right)^{T} R_{k} L_{k}^{x o}+\left(\bar{L}_{k}^{y o}\right)^{T} R_{k} \bar{L}_{k}^{x o} \\
& +\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)^{T} \bar{R}_{k}\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)+\left[B_{k} \bar{L}_{k}^{y o}+\bar{B}_{k}\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right]^{T} P_{k+1}^{x}\left(A_{k}+B_{k} L_{k}^{x o}\right)
\end{aligned}\right. \\
& +\left(B_{k} L_{k}^{y o}\right)^{T} P_{k+1}^{x}\left[\bar{A}_{k}+B_{k} \bar{L}_{k}^{x o}+\bar{B}_{k}\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right] \\
& +\left[B_{k} \bar{L}_{k}^{y o}+\bar{B}_{k}\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right]^{T} P_{k+1}^{x}\left[\bar{A}_{k}+B_{k} \bar{L}_{k}^{x o}+\bar{B}_{k}\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right] \\
& +\left[\left(B_{k}+\bar{B}_{k}\right)\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right]^{T} \bar{P}_{k+1}^{x}\left[\left(A_{k}+\bar{A}_{k}\right)+\left(B_{k}+\bar{B}_{k}\right)\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right] \\
& +\left[D_{k} \bar{L}_{k}^{y o}+\bar{D}_{k}\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right]^{T} P_{k+1}^{x}\left(C_{k}+D_{k} L_{k}^{x o}\right) \\
& +\left(D_{k} L_{k}^{y o}\right)^{T} P_{k+1}^{x}\left[\bar{C}_{k}+D_{k} \bar{L}_{k}^{x o}+\bar{D}_{k}\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right] \tag{18}\\
& +\left[D_{k} \bar{L}_{k}^{y o}+\bar{D}_{k}\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right]^{T} P_{k+1}^{x}\left[\bar{C}_{k}+D_{k} \bar{L}_{k}^{x o}+\bar{D}_{k}\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right] \\
& +F_{k}^{T} P_{k+1}^{x y}\left[\bar{A}_{k}+B_{k} \bar{L}_{k}^{x o}+\bar{B}_{k}\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right] \\
& +\bar{F}_{k}^{T} P_{k+1}^{x y}\left[A_{k}+\bar{A}_{k}+\left(B_{k}+\bar{B}_{k}\right)\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right] \\
& +\left(F_{k}+\bar{F}_{k}\right)^{T} \bar{P}_{k+1}^{x y}\left[A_{k}+\bar{A}+\left(B_{k}+\bar{B}_{k}\right)\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right] \\
& +\rho G_{k}^{T} P_{k+1}^{x y}\left[\bar{C}_{k}+D_{k} \bar{L}_{k}^{x o}+\bar{D}_{k}\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right] \\
& \begin{array}{l}
+\rho \bar{G}_{k}^{T} P_{k+1}^{x y}\left[C_{k}+\bar{C}_{k}+\left(D_{k}+\bar{D}_{k}\right)\left(L_{k}^{x o}+\bar{L}_{k}^{x o}\right)\right], \\
-Q_{N},
\end{array} \\
& \bar{P}_{N}^{x y}=-Q_{N}, \\
& \left\{\begin{aligned}
P_{k}^{y}= & Q_{k}+\left(L_{k}^{y o}\right)^{T} R_{k} L_{k}^{y o}+\left(B_{k} L_{k}^{y o}\right)^{T} P_{k+1}^{x} B_{k} L_{k}^{y o}+\left(D_{k} L_{k}^{y o}\right)^{T} P_{k+1}^{x} D_{k} L_{k}^{y o} \\
& +F_{k}^{T} P_{k+1}^{x y} B_{k} L_{k}^{y o}+\rho G_{k}^{T} P_{k+1}^{x y} D_{k} L_{k}^{y o}+\left(B_{k} L_{k}^{y o}\right)^{T}\left(P_{k+1}^{x y}\right)^{T} F_{k} \\
& +\rho\left(D_{k} L_{k}^{y o}\right)^{T}\left(P_{k+1}^{x y}\right)^{T} G_{k}+F_{k}^{T} P_{k+1}^{y} F_{k}+G_{k}^{T} P_{k+1}^{y} G_{k}, \\
P_{N}^{y}= & Q_{N},
\end{aligned}\right. \tag{19}
\end{align*}
$$

and

$$
\left\{\begin{aligned}
\bar{P}_{k}^{y}= & \bar{Q}_{k}+\left(L_{k}^{y o}\right)^{T} R_{k} \bar{L}_{k}^{y o}+\left(\bar{L}_{k}^{y o}\right)^{T} R_{k} L_{k}^{y o}+\left(\bar{L}_{k}^{y o}\right)^{T} R_{k} \bar{L}_{k}^{y o} \\
& +\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)^{T} \bar{R}_{k}\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)+\left(B_{k} L_{k}^{y o}\right)^{T} P_{k+1}^{x}\left[B_{k} \bar{L}_{k}^{y o}+\bar{B}_{k}\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right] \\
& +\left[B_{k} \bar{L}_{k}^{y o}+\bar{B}_{k}\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right]^{T} P_{k+1}^{x} B_{k} L_{k}^{y o} \\
& +\left[B_{k} \bar{L}_{k}^{y o}+\bar{B}_{k}\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right]^{T} P_{k+1}^{x}\left[B_{k} \bar{L}_{k}^{y o}+\bar{B}_{k}\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right] \\
& +\left[\left(B_{k}+\bar{B}_{k}\right)\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right]^{T} \bar{P}_{k+1}^{x}\left[\left(B_{k}+\bar{B}_{k}\right)\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right] \\
& +\left(D_{k} L_{k}^{y o}\right)^{T} P_{k+1}^{x}\left[D_{k} \bar{L}_{k}^{y o}+\bar{D}_{k}\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right] \\
& +\left[D_{k} \bar{L}_{k}^{y o}+\bar{D}_{k}\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right]^{T} P_{k+1}^{x} D_{k} L_{k}^{x o} \\
& +\left[D_{k} \bar{L}_{k}^{y o}+\bar{D}_{k}\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right]^{T} P_{k+1}^{x}\left[D_{k} \bar{L}_{k}^{y o}+\bar{D}_{k}\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right] \\
& +F_{k}^{T} P_{k+1}^{x y}\left[B_{k} \bar{L}_{k}^{y o}+\bar{B}_{k}\left(L_{k}+\bar{L}_{k}^{y o}\right)\right]+\bar{F}_{k}^{T} P_{k+1}^{x y}\left[\left(B_{k}+\bar{B}_{k}\right)\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right] \\
& +\left(F_{k}+\bar{F}_{k}\right)^{T} \bar{P}_{k+1}^{x y}\left[\left(B_{k}+\bar{B}_{k}\right)\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right] \\
& +\rho G_{k}^{T} P_{k+1}^{x y}\left[D_{k} \bar{L}_{k}^{y o}+\bar{D}_{k}\left(L_{k}+\bar{L}_{k}^{y o}\right)\right]+\rho \bar{G}_{k}^{T} P_{k+1}^{x y}\left[\left(D_{k}+\bar{D}_{k}\right)\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right] \\
& +\left[B_{k} \bar{L}_{k}^{y o}+\bar{B}_{k}\left(L_{k}+\bar{L}_{k}^{y o}\right)\right]^{T}\left(P_{k+1}^{x y}\right)^{T} F_{k}+\left[\left(B_{k}+\bar{B}_{k}\right)\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right]^{T}\left(P_{k+1}^{x y}\right)^{T} \bar{F}_{k} \\
& +\left[\left(B_{k}+\bar{B}_{k}\right)\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right]^{T}\left(\bar{P}_{k+1}^{x y}\right)^{T}\left(F_{k}+\bar{F}_{k}\right) \\
& +\rho\left[D_{k} \bar{L}_{k}^{y o}+\bar{D}_{k}\left(L_{k}+\bar{L}_{k}^{y o}\right)\right]^{T}\left(P_{k+1}^{x y}\right)^{T} G_{k} \\
& +\rho\left[\left(D_{k}+\bar{D}_{k}\right)\left(L_{k}^{y o}+\bar{L}_{k}^{y o}\right)\right]^{T}\left(P_{k+1}^{x y}\right)^{T} \bar{G}_{k} \\
& +F_{k}^{T} P_{k+1}^{y} \bar{F}_{k}+\bar{F}_{k}^{T} P_{k+1}^{y} F_{k}+\bar{F}_{k}^{T} P_{k+1}^{y} \bar{F}_{k} \\
& +\left(F_{k}+\bar{F}_{k}\right)^{T} \bar{P}_{k+1}^{y}\left(F_{k}+\bar{F}_{k}\right)+G_{k}^{T} P_{k+1}^{y} \bar{G}_{k}+\bar{G}_{k}^{T} P_{k+1}^{y} G_{k}+\bar{G}_{k}^{T} P_{k+1}^{y} \bar{G}_{k}, \\
\bar{P}_{N}^{y}=\bar{Q}_{N} . &
\end{aligned}\right.
$$

The optimal control can be obtained by the following theorem.
Theorem 4.1. For Problem (MF-LQ), under the condition

$$
\begin{equation*}
Q_{k}, Q_{k}+\bar{Q}_{k} \geq 0, k \in \overline{\mathbb{N}}, R_{k}, R_{k}+\bar{R}_{k}>0, k \in \mathbb{N} \tag{21}
\end{equation*}
$$

the unique optimal control within the class of controls of form (8) is

$$
\begin{align*}
u_{k}^{o}= & {\left[-\left(\bar{W}_{k}^{(1)}\right)^{-1}\left(\bar{H}_{k}^{(1)}\right)^{T}\right] x_{k}+\left[-\left(\bar{W}_{k}^{(2)}\right)^{-1}\left(\bar{H}_{k}^{(2)}\right)^{T}+\left(\bar{W}_{k}^{(1)}\right)^{-1}\left(\bar{H}_{k}^{(1)}\right)^{T}\right] \mathbb{E} x_{k} } \\
& +\left[-\left(\bar{W}_{k}^{(1)}\right)^{-1}\left(\bar{H}_{k}^{(3)}\right)^{T}\right] y_{k}+\left[-\left(\bar{W}_{k}^{(2)}\right)^{-1}\left(\bar{H}_{k}^{(4)}\right)^{T}+\left(\bar{W}_{k}^{(1)}\right)^{-1}\left(\bar{H}_{k}^{(3)}\right)^{T}\right] \mathbb{E} y_{k}, \tag{22}\\
\equiv & L_{k}^{x o} x_{k}+\bar{L}_{k}^{x o} \mathbb{E} x_{k}+L_{k}^{y o} y_{k}+\bar{L}_{k}^{y o} \mathbb{E} y_{k}, k \in \mathbb{N},
\end{align*}
$$

with the property $P_{k}^{x}, P_{k}^{x}+\bar{P}_{k}^{x} \geq 0, k \in \overline{\mathbb{N}}$.
Proof. See the Appendix.

4.2. Operator Linear-quadratic Problem

In this subsection, the optimal control via operator linear-quadratic theory shall be derived. Firstly, we reformulate the discrete-time operator LQ problem. A linear controlled system in abstract form rewritten from (1) is

$$
\left\{\begin{array}{l}
x_{k+1}=\left(\mathcal{A}_{k} x_{k}+\mathcal{B}_{k} u_{k}\right)+\left(\mathcal{C}_{k} x_{k}+\mathcal{D}_{k} u_{k}\right) w_{k} \tag{23}\\
y_{k+1}=\mathcal{F}_{k} y_{k}+\mathcal{G}_{k} y_{k} v_{k} \\
x_{0}=\zeta^{x}, y_{0}=\zeta^{y}
\end{array}\right.
$$

with several sequences of operators

$$
\begin{cases}\mathcal{A}_{k} z=A_{k} z+\bar{A}_{k} \mathbb{E} z, & \mathcal{B}_{k} u=B_{k} u+\bar{B}_{k} \mathbb{E} u \tag{24}\\ \mathcal{C}_{k} z=C_{k} z+\bar{C}_{k} \mathbb{E} z, & \mathcal{D}_{k} u=D_{k} u+\bar{D}_{k} \mathbb{E} u \\ \mathcal{F}_{k} z=F_{k} z+\bar{F}_{k} \mathbb{E} z, & \mathcal{G}_{k} z=G_{k} z+\bar{G}_{k} \mathbb{E} z\end{cases}
$$

where $z \in \mathcal{Z}_{k}, u \in \mathcal{U}_{k}, \mathcal{A}_{k}, \mathcal{C}_{k}, \mathcal{F}_{k}, \mathcal{G}_{k}$ are from \mathcal{Z}_{k} to \mathcal{Z}_{k} and $\mathcal{B}_{k}, \mathcal{D}_{k}$ are from \mathcal{U}_{k} to \mathcal{U}_{k}, $k \in \mathbb{N}$. Furthermore, the performance functional in the form of inner products (5) has been presented in previous section. We now define operators

$$
\begin{cases}\mathcal{Q}_{k} z=\left(Q_{k}+\mathbb{E}^{*} \bar{Q}_{k} \mathbb{E}\right) z, & z \in \mathcal{Z}_{k}, \tag{25}\\ \mathcal{R}_{k} u=\left(R_{k}+\mathbb{E}^{*} \bar{R}_{k} \mathbb{E}\right) u, & u \in \mathcal{U}_{k}, \\ & k \in \mathbb{N}\end{cases}
$$

Recall that $\mathbb{E}\left[y_{k}^{T}\left(Q_{k}+\mathbb{E}^{*} \bar{Q}_{k} \mathbb{E}\right) x_{k}\right]=\left\langle\mathcal{Q}_{k} x_{k}, y_{k}\right\rangle$ with similar meanings for related notation. Hence,

$$
\begin{align*}
J\left(\zeta^{x}, \zeta^{y}, u\right)= & \sum_{k=0}^{N-1}\left(\left\langle\mathcal{Q}_{k} x_{k}, x_{k}\right\rangle-2\left\langle\mathcal{Q}_{k} x_{k}, y_{k}\right\rangle+\left\langle\mathcal{Q}_{k} y_{k}, y_{k}\right\rangle+\left\langle\mathcal{R}_{k} u_{k}, u_{k}\right\rangle\right) \tag{26}\\
& +\left\langle\mathcal{Q}_{N} x_{N}, x_{N}\right\rangle-2\left\langle\mathcal{Q}_{N} x_{N}, y_{N}\right\rangle+\left\langle\mathcal{Q}_{N} y_{N}, y_{N}\right\rangle .
\end{align*}
$$

Problem (MF-LQ) in abstract form can be represented as

$$
\left\{\begin{array}{l}
\text { Minimize }(26), \tag{27}\\
\text { subject to } u \in \mathcal{U}_{a d}, \text { with }(x ., y ., u .), \text { satisfying }(23)
\end{array}\right.
$$

We then use u^{*} to represent the optimal control for Problem (MF-LQ) in abstract form. Suppose we have a sequence of self-adjoint linear operators $\left\{\mathcal{P}_{k}^{x}: \mathcal{Z}_{k} \mapsto \mathcal{Z}_{k} ; k \in \overline{\mathbb{N}}\right\}$, $\left\{\mathcal{P}_{k}^{y}: \mathcal{Z}_{k} \mapsto \mathcal{Z}_{k} ; k \in \overline{\mathbb{N}}\right\}$ and linear operator $\left\{\mathcal{P}_{k}^{x y}: \mathcal{Z}_{k} \mapsto \mathcal{Z}_{k} ; k \in \overline{\mathbb{N}}\right\}$ determined by

$$
\begin{cases}\mathcal{P}_{k}^{x} \mathcal{Z}_{l} \equiv & \left\{\mathcal{P}_{k}^{x} z \mid z \in \mathcal{Z}_{l}\right\} \subseteq \mathcal{Z}_{l}, \quad l \leq k \\ \mathcal{P}_{k}^{x y} \mathcal{Z}_{l} \equiv & \left\{\mathcal{P}_{k}^{x y} z \mid z \in \mathcal{Z}_{l}\right\} \subseteq \mathcal{Z}_{l}, \quad l \leq k \\ \mathcal{P}_{k}^{y} \mathcal{Z}_{l} \equiv & \left\{\mathcal{P}_{k}^{y} z \mid z \in \mathcal{Z}_{l}\right\} \subseteq \mathcal{Z}_{l}, \quad l \leq k\end{cases}
$$

where $\mathcal{Z}_{l} \subseteq \mathcal{Z}_{k}, l \leq k$. Clearly,

$$
\begin{align*}
& \left\langle\mathcal{P}_{k+1}^{x} x_{k+1}, x_{k+1}\right\rangle \\
& =\left\langle\mathcal{P}_{k+1}^{x}\left[\left(\mathcal{A}_{k} x_{k}+\mathcal{B}_{k} u_{k}\right)+\left(\mathcal{C}_{k} x_{k}+\mathcal{D}_{k} u_{k}\right) w_{k}\right],\left[\left(\mathcal{A}_{k} x_{k}+\mathcal{B}_{k} u_{k}\right)+\left(\mathcal{C}_{k} x_{k}+\mathcal{D}_{k} u_{k}\right) w_{k}\right]\right\rangle \tag{28}\\
& =\mathbb{E}\left[\left(\mathcal{A}_{k} x_{k}+\mathcal{B}_{k} u_{k}\right)^{T} \mathcal{P}_{k+1}^{x}\left(\mathcal{A}_{k} x_{k}+\mathcal{B}_{k} u_{k}\right)\right]+\mathbb{E}\left[\left(\mathcal{C}_{k} x_{k}+\mathcal{D}_{k} u_{k}\right)^{T} \mathcal{P}_{k+1}^{x}\left(\mathcal{C}_{k} x_{k}+\mathcal{D}_{k} u_{k}\right)\right] \\
& =\left\langle\mathcal{P}_{k+1}^{x}\left(\mathcal{A}_{k} x_{k}+\mathcal{B}_{k} u_{k}\right),\left(\mathcal{A}_{k} x_{k}+\mathcal{B}_{k} u_{k}\right)\right\rangle+\left\langle\mathcal{P}_{k+1}^{x}\left(\mathcal{C}_{k} x_{k}+\mathcal{D}_{k} u_{k}\right),\left(\mathcal{C}_{k} x_{k}+\mathcal{D}_{k} u_{k}\right)\right\rangle,
\end{align*}
$$

$$
\begin{align*}
& \left\langle\mathcal{P}_{k+1}^{x y} x_{k+1}, y_{k+1}\right\rangle \\
& =\left\langle\mathcal{P}_{k+1}^{x y}\left[\left(\mathcal{A}_{k} x_{k}+\mathcal{B}_{k} u_{k}\right)+\left(\mathcal{C}_{k} x_{k}+\mathcal{D}_{k} u_{k}\right) w_{k}\right],\left[\mathcal{F}_{k} y_{k}+\mathcal{G}_{k} y_{k} v_{k}\right]\right\rangle \\
& =\mathbb{E}\left[\left(\mathcal{F}_{k} y_{k}\right)^{T} \mathcal{P}_{k+1}^{x y}\left(\mathcal{A}_{k} x_{k}+\mathcal{B}_{k} u_{k}\right)\right]+\rho \mathbb{E}\left[\left(\mathcal{G}_{k} y_{k}\right)^{T} \mathcal{P}_{k+1}^{x y}\left(\mathcal{C}_{k} x_{k}+\mathcal{D}_{k} u_{k}\right)\right] \tag{29}\\
& =\left\langle\mathcal{P}_{k+1}^{x y}\left(\mathcal{A}_{k} x_{k}+\mathcal{B}_{k} u_{k}\right), \mathcal{F}_{k} y_{k}\right\rangle+\rho\left\langle\mathcal{P}_{k+1}^{x y}\left(\mathcal{C}_{k} x_{k}+\mathcal{D}_{k} u_{k}\right), \mathcal{G}_{k} y_{k}\right\rangle
\end{align*}
$$

$$
\begin{align*}
& \left\langle\mathcal{P}_{k+1}^{y} y_{k+1}, y_{k+1}\right\rangle \\
& =\left\langle\mathcal{P}_{k+1}^{y}\left(\mathcal{F}_{k} y_{k}+\mathcal{G}_{k} y_{k} v_{k}\right),\left(\mathcal{F}_{k} y_{k}+\mathcal{G}_{k} y_{k} v_{k}\right)\right\rangle \\
& =\mathbb{E}\left[\left(\mathcal{F}_{k} y_{k}\right)^{T} \mathcal{P}_{k+1}^{y} \mathcal{F}_{k} y_{k}\right]+\mathbb{E}\left[\left(\mathcal{G}_{k} y_{k}\right)^{T} \mathcal{P}_{k+1}^{y} \mathcal{G}_{k} y_{k}\right] \tag{30}\\
& =\left\langle\mathcal{P}_{k+1}^{y} \mathcal{F}_{k} y_{k}, \mathcal{F}_{k} y_{k}\right\rangle+\left\langle\mathcal{P}_{k+1}^{y} \mathcal{G}_{k} y_{k}, \mathcal{G}_{k} y_{k}\right\rangle
\end{align*}
$$

We now consider the problem by backward recursion with only $k \in\{N-1, N\}$. By (28)-(30), we have

$$
\begin{align*}
\left\langle\mathcal{P}_{N}^{x} x_{N}, x_{N}\right\rangle= & \left\langle\mathcal{P}_{N}^{x}\left(\mathcal{A}_{N-1} x_{N-1}+\mathcal{B}_{N-1} u_{N-1}\right),\left(\mathcal{A}_{N-1} x_{N-1}+\mathcal{B}_{N-1} u_{N-1}\right)\right\rangle \\
& +\left\langle\mathcal{P}_{N}^{x}\left(\mathcal{C}_{N-1} x_{N-1}+\mathcal{D}_{N-1} u_{N-1}\right),\left(\mathcal{C}_{N-1} x_{N-1}+\mathcal{D}_{N-1} u_{N-1}\right)\right\rangle, \\
\left\langle\mathcal{P}_{N}^{x y} x_{N}, y_{N}\right\rangle= & \left\langle\mathcal{P}_{N}^{x y}\left(\mathcal{A}_{N-1} x_{N-1}+\mathcal{B}_{N-1} u_{N-1}\right), \mathcal{F}_{N-1} y_{N-1}\right\rangle \tag{31}\\
& +\rho\left\langle\mathcal{P}_{N}^{x y}\left(\mathcal{C}_{N-1} x_{N-1}+\mathcal{D}_{N-1} u_{N-1}\right), \mathcal{G}_{N-1} y_{N-1}\right\rangle \\
\left\langle\mathcal{P}_{N}^{y} y_{N}, y_{N}\right\rangle= & \left\langle\mathcal{P}_{N}^{y} \mathcal{F}_{N-1} y_{N-1}, \mathcal{F}_{N-1} y_{N-1}\right\rangle+\left\langle\mathcal{P}_{N}^{y} \mathcal{G}_{N-1} y_{N-1}, \mathcal{G}_{N-1} y_{N-1}\right\rangle .
\end{align*}
$$

Let $\mathcal{P}_{N}^{x}=-\mathcal{P}_{N}^{x y}=\mathcal{P}_{N}^{y}=\mathcal{Q}_{N}$. By taking (31) into J_{N-1}^{N}, we have

$$
\begin{align*}
& J_{N-1}^{N}\left(x_{N-1}, y_{N-1}, u\right) \\
& =\left\langle\mathcal{Q}_{N-1} x_{N-1}, x_{N-1}\right\rangle-2\left\langle\mathcal{Q}_{N-1} x_{N-1}, y_{N-1}\right\rangle+\left\langle\mathcal{Q}_{N-1} y_{N-1}, y_{N-1}\right\rangle \\
& \quad+\left\langle\mathcal{R}_{N-1} u_{N-1}, u_{N-1}\right\rangle+\left\langle\mathcal{Q}_{N} x_{N}, x_{N}\right\rangle-2\left\langle\mathcal{Q}_{N} x_{N}, y_{N}\right\rangle+\left\langle\mathcal{Q}_{N} y_{N}, y_{N}\right\rangle \tag{32}\\
& =2\left\langle\Theta_{1, N-1} u_{N-1}, x_{N-1}\right\rangle+\left\langle\Theta_{2, N-1} u_{N-1}, u_{N-1}\right\rangle+2\left\langle\Theta_{3, N-1} u_{N-1}, y_{N-1}\right\rangle \\
& \quad+\left\langle\Lambda_{1, N-1} x_{N-1}, x_{N-1}\right\rangle+2\left\langle\Lambda_{2, N-1} x_{N-1}, y_{N-1}\right\rangle+\left\langle\Lambda_{3, N-1} y_{N-1}, y_{N-1}\right\rangle
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
\Theta_{1, N-1}=\mathcal{A}_{N-1}^{T} \mathcal{P}_{N}^{x} \mathcal{B}_{N-1}+\mathcal{C}_{N-1}^{T} \mathcal{P}_{N}^{x} \mathcal{D}_{N-1}, \tag{33}\\
\Theta_{2, N-1}=\mathcal{R}_{N-1}+\mathcal{B}_{N-1}^{T} \mathcal{P}_{N}^{x} \mathcal{B}_{N-1}+\mathcal{D}_{N-1}^{T} \mathcal{P}_{N}^{x} \mathcal{D}_{N-1}, \\
\Theta_{3, N-1}=\mathcal{F}_{N-1}^{T} \mathcal{P}_{N}^{x y} \mathcal{B}_{N-1}+\rho \mathcal{G}_{N-1}^{T} \mathcal{P}_{N}^{x y} \mathcal{D}_{N-1}, \\
\Lambda_{1, N-1}=\mathcal{Q}_{N-1}+\mathcal{A}_{N-1}^{T} \mathcal{P}_{N}^{x} \mathcal{A}_{N-1}+\mathcal{C}_{N-1}^{T} \mathcal{P}_{N}^{x} \mathcal{C}_{N-1}, \\
\Lambda_{2, N-1}=-\mathcal{Q}_{N-1}+\mathcal{F}_{N-1}^{T} \mathcal{P}_{N}^{x y} \mathcal{A}_{N-1}+\rho \mathcal{G}_{N-1}^{T} \mathcal{P}_{N}^{x y} \mathcal{C}_{N-1}, \\
\Lambda_{3, N-1}=\mathcal{Q}_{N-1}+\mathcal{F}_{N-1}^{T} \mathcal{P}_{N}^{y} \mathcal{F}_{N-1}+\mathcal{G}_{N-1}^{T} \mathcal{P}_{N}^{y} \mathcal{G}_{N-1} .
\end{array}\right.
$$

If $\Theta_{2, N-1}$ is positive definite and self-adjoint, (32) can then be rewritten as

$$
\begin{align*}
& J_{N-1}^{N}\left(x_{N-1}, y_{N-1}, u\right) \\
&=\left\langle\left(\Lambda_{1, N-1}-\Theta_{1, N-1} \Theta_{2, N-1}^{-1} \Theta_{1, N-1}^{*}\right) x_{N-1}, x_{N-1}\right\rangle \\
&+2\left\langle\left(\Lambda_{2, N-1}-\Theta_{3, N-1} \Theta_{2, N-1}^{-1} \Theta_{1, N-1}^{*}\right) x_{N-1}, y_{N-1}\right\rangle \tag{34}\\
&+\left\langle\left(\Lambda_{3, N-1}-\Theta_{3, N-1} \Theta_{2, N-1}^{-1} \Theta_{3, N-1}^{*}\right) y_{N-1}, y_{N-1}\right\rangle \\
&+\left\langle\Theta_{2, N-1}\left(u_{N-1}+\Theta_{2, N-1}^{-1} \Theta_{1, N-1}^{*} x_{N-1}+\Theta_{2, N-1}^{-1} \Theta_{3, N-1}^{*} \cdot y_{N-1}\right),\right. \\
&\left.\quad\left(u_{N-1}+\Theta_{2, N-1}^{-1} \Theta_{1, N-1}^{*} x_{N-1}+\Theta_{2, N-1}^{-1} \Theta_{3, N-1}^{*} y_{N-1}\right)\right\rangle .
\end{align*}
$$

Let

$$
\left\{\begin{array}{l}
\mathcal{P}_{N-1}^{x}=\Lambda_{1, N-1}-\Theta_{1, N-1} \Theta_{2, N-1}^{-1} \Theta_{1, N-1}^{*}, \tag{35}\\
\mathcal{P}_{N-1}^{x y}=\Lambda_{2, N-1}-\Theta_{3, N-1} \Theta_{2, N-1}^{-1} \Theta_{1, N-1}^{*}, \\
\mathcal{P}_{N-1}^{y}=\Lambda_{3, N-1}-\Theta_{3, N-1} \Theta_{2, N-1}^{-1} \Theta_{3, N-1}^{*},
\end{array}\right.
$$

and the cost functional (34) may achieve its minimum if we select

$$
\begin{equation*}
u_{N-1}^{*}=-\Theta_{2, N-1}^{-1} \Theta_{1, N-1}^{*} x_{N-1}-\Theta_{2, N-1}^{-1} \Theta_{3, N-1}^{*} y_{N-1}, \tag{36}
\end{equation*}
$$

where the minimum is

$$
\begin{align*}
& J_{N-1}^{N}\left(x_{N-1}, y_{N-1}, u^{*}\right) \\
= & \left\langle\mathcal{P}_{N-1}^{x} x_{N-1}, x_{N-1}\right\rangle+2\left\langle\mathcal{P}_{N-1}^{x y} x_{N-1}, y_{N-1}\right\rangle+\left\langle\mathcal{P}_{N-1}^{y} y_{N-1}, y_{N-1}\right\rangle . \tag{37}
\end{align*}
$$

For this, we reach to the following lemma, which gives a compact form of \mathcal{P}_{N-1}^{x}, $\mathcal{P}_{N-1}^{x y}$ and \mathcal{P}_{N-1}^{y}.

Lemma 4.2. If

$$
\begin{equation*}
Q_{N-1}, Q_{N-1}+\bar{Q}_{N-1} \geq 0, \quad Q_{N}, Q_{N}+\bar{Q}_{N} \geq 0, \quad R_{N-1}, R_{N-1}+\bar{R}_{N-1}>0 \tag{38}
\end{equation*}
$$

then $\mathcal{P}_{N-1}^{x}, \mathcal{P}_{N-1}^{x y}, \mathcal{P}_{N-1}^{y}$ defined in (31) have the following form

$$
\left\{\begin{array}{l}
\mathcal{P}_{N-1}^{x}=\left(I-\mathbb{E}^{*}\right) S_{N-1}^{x}(I-\mathbb{E})+\mathbb{E}^{*} T_{N-1}^{x} \mathbb{E} \tag{39}\\
\mathcal{P}_{N-1}^{x y}=\left(I-\mathbb{E}^{*}\right) S_{N-1}^{x y}(I-\mathbb{E})+\mathbb{E}^{*} T_{N-1}^{x y} \mathbb{E} \\
\mathcal{P}_{N-1}^{y}=\left(I-\mathbb{E}^{*}\right) S_{N-1}^{y}(I-\mathbb{E})+\mathbb{E}^{*} T_{N-1}^{y} \mathbb{E}
\end{array}\right.
$$

where

$$
\left\{\begin{aligned}
S_{N-1}^{x}= & Q_{N-1}+A_{N-1}^{T} Q_{N} A_{N-1}+C_{N-1}^{T} Q_{N} C_{N-1}-H_{N-1}^{(1)}\left(W_{N-1}^{(1)}\right)^{-1}\left(H_{N-1}^{(1)}\right)^{T}, \\
T_{N-1}^{x}= & Q_{N-1}+\bar{Q}_{N-1}+\left(A_{N-1}+\bar{A}_{N-1}\right)^{T}\left(Q_{N}+\bar{Q}_{N}\right)\left(A_{N-1}+\bar{A}_{N-1}\right) \\
& +\left(C_{N-1}+\bar{C}_{N-1}\right)^{T} Q_{N}\left(C_{N-1}+\bar{C}_{N-1}\right)-H_{N-1}^{(2)}\left(W_{N-1}^{(2)}\right)^{-1}\left(H_{N-1}^{(2)}\right)^{T}, \\
S_{N-1}^{x y}= & -Q_{N-1}+F_{N-1}^{T} Q_{N} A_{N-1}+\rho G_{N-1}^{T} Q_{N} C_{N-1}-H_{N-1}^{(3)}\left(W_{N-1}^{(1)}\right)^{-1}\left(H_{N-1}^{(1)}\right)^{T}, \\
T_{N-1}^{x y}= & -Q_{N-1}-\bar{Q}_{N-1}+\left(F_{N-1}+\bar{F}_{N-1}\right)^{T}\left(Q_{N}+\bar{Q}_{N}\right)\left(A_{N-1}+\bar{A}_{N-1}\right) \\
& +\rho\left(G_{N-1}+\bar{G}_{N-1}\right)^{T} Q_{N}\left(C_{N-1}+\bar{C}_{N-1}\right)-H_{N-1}^{(4)}\left(W_{N-1}^{(2)}\right)^{-1}\left(H_{N-1}^{(2)}\right)^{T}, \\
S_{N-1}^{y}= & Q_{N-1}+F_{N-1}^{T} Q_{N} F_{N-1}+G_{N-1}^{T} Q_{N} G_{N-1}-H_{N-1}^{(3)}\left(W_{N-1}^{(1)}\right)^{-1}\left(H_{N-1}^{(3)}\right)^{T}, \\
T_{N-1}^{y}= & Q_{N-1}+\bar{Q}_{N-1}+\left(F_{N-1}+\bar{F}_{N-1}\right)^{T}\left(Q_{N}+\bar{Q}_{N}\right)\left(F_{N-1}+\bar{F}_{N-1}\right) \\
& +\left(G_{N-1}+\bar{G}_{N-1}\right)^{T} Q_{N}\left(G_{N-1}+\bar{G}_{N-1}\right)-H_{N-1}^{(4)}\left(W_{N-1}^{(2)}\right)^{-1}\left(H_{N-1}^{(4)}\right)^{T}, \\
S_{N}^{x}= & Q_{N}, T_{N}^{x}=Q_{N}+\bar{Q}_{N}, S_{N}^{x y}=-Q_{N}, \\
T_{N}^{x y}= & -Q_{N}-\bar{Q}_{N}, S_{N}^{y}=Q_{N}, T_{N}^{y}=Q_{N}+\bar{Q}_{N} .
\end{aligned}\right.
$$

with

$$
\left\{\begin{aligned}
W_{N-1}^{(1)}= & R_{N-1}+B_{N-1}^{T} Q_{N} B_{N-1}+D_{N-1}^{T} Q_{N} D_{N-1}, \\
W_{N-1}^{(2)}= & R_{N-1}+\bar{R}_{N-1}+\left(B_{N-1}+\bar{B}_{N-1}\right)^{T}\left(Q_{N}+\bar{Q}_{N}\right)\left(B_{N-1}+\bar{B}_{N-1}\right) \\
& +\left(D_{N-1}+\bar{D}_{N-1}\right)^{T} Q_{N}\left(D_{N-1}+\bar{D}_{N-1}\right), \\
H_{N-1}^{(1)}= & A_{N-1}^{T} Q_{N} B_{N-1}+C_{N-1}^{T} Q_{N} D_{N-1}, \\
H_{N-1}^{(2)}= & \left(A_{N-1}+\bar{A}_{N-1}\right)^{T}\left(Q_{N}+\bar{Q}_{N}\right)\left(B_{N-1}+\bar{B}_{N-1}\right) \\
& +\left(C_{N-1}+\bar{C}_{N-1}\right)^{T} Q_{N}\left(D_{N-1}+\bar{D}_{N-1}\right), \\
H_{N-1}^{(3)}= & F_{N-1}^{T} Q_{N} B_{N-1}+\rho G_{N-1}^{T} Q_{N} D_{N-1}, \\
H_{N-1}^{(4)}= & \left(F_{N-1}+\bar{F}_{N-1}\right)^{T}\left(Q_{N}+\bar{Q}_{N}\right)\left(B_{N-1}+\bar{B}_{N-1}\right) \\
& +\rho\left(G_{N-1}+\bar{G}_{N-1}\right)^{T} Q_{N}\left(D_{N-1}+\bar{D}_{N-1}\right),
\end{aligned}\right.
$$

Proof. See the Appendix.
We now express the optimal control using Riccati difference equations by the following theorem.

Theorem 4.3. Let

$$
\begin{equation*}
Q_{k}, Q_{k}+\bar{Q}_{k} \geq 0,, k \in \overline{\mathbb{N}}, R_{k}, R_{k}+\bar{R}_{k}>0, \tag{40}
\end{equation*}
$$

and introduce Riccati equations

$$
\left\{\begin{align*}
& S_{k}^{x}=Q_{k}+A_{k}^{T} S_{k+1}^{x} A_{k}+C_{k}^{T} S_{k+1}^{x} C_{k}-H_{k}^{(1)}\left(W_{k}^{(1)}\right)^{-1}\left(H_{k}^{(1)}\right)^{T}, \tag{41}\\
& T_{k}^{x}=Q_{k}+ \bar{Q}_{k}+\left(A_{k}+\bar{A}_{k}\right)^{T} T_{k+1}^{x}\left(A_{k}+\bar{A}_{k}\right)+\left(C_{k}+\bar{C}_{k}\right)^{T} S_{k+1}^{x}\left(C_{k}+\bar{C}_{k}\right) \\
&-H_{k}^{(2)}\left(W_{k}^{(2)}\right)^{-1}\left(H_{k}^{(2)}\right)^{T}, \\
& S_{k}^{x y}=-Q_{k}+F_{k}^{T} S_{k+1}^{x y} A_{k}+\rho G_{k}^{T} S_{k+1}^{x y} C_{k}-H_{k}^{(3)}\left(W_{k}^{(1)}\right)^{-1}\left(H_{k}^{(1)}\right)^{T}, \\
& T_{k}^{x y}=-Q_{k}-\bar{Q}_{k}+\left(F_{k}+\bar{F}_{k}\right)^{T} T_{k+1}^{x y}\left(A_{k}+\bar{A}_{k}\right)+\rho\left(G_{k}+\bar{G}_{k}\right)^{T} S_{k+1}^{x y}\left(C_{k}+\bar{C}_{k}\right) \\
&-H_{k}^{(4)}\left(W_{k}^{(2)}\right)^{-1}\left(H_{k}^{(2)}\right)^{T}, \\
& S_{k}^{y}=Q_{k}+F_{k}^{T} S_{k+1}^{y} F_{k}+G_{k}^{T} S_{k+1}^{y} G_{k}-H_{k}^{(3)}\left(W_{k}^{(1)}\right)^{-1}\left(H_{k}^{(3)}\right)^{T}, \\
& T_{k}^{y}= Q_{k}+\bar{Q}_{k}+\left(F_{k}+\bar{F}_{k}\right)^{T} T_{k+1}^{y}\left(F_{k}+\bar{F}_{k}\right)+\left(G_{k}+\bar{G}_{k}\right)^{T} S_{k+1}^{y}\left(G_{k}+\bar{G}_{k}\right) \\
&-H_{k}^{(4)}\left(W_{k}^{(2)}\right)^{-1}\left(H_{k}^{(4)}\right)^{T}, \\
& S_{N}^{x}= Q_{N}, T_{N}^{x}=Q_{N}+\bar{Q}_{N}, S_{N}^{x y}=-Q_{N}, \\
& T_{N}^{x y}=-Q_{N}-\bar{Q}_{N}, S_{N}^{y}=Q_{N}, T_{N}^{y}=Q_{N}+\bar{Q}_{N} .
\end{align*}\right.
$$

with

$$
\left\{\begin{array}{l}
W_{k}^{(1)}=R_{k}+B_{k}^{T} S_{k+1}^{x} B_{k}+D_{k}^{T} S_{k+1}^{x} D_{k}, \tag{42}\\
W_{k}^{(2)}=R_{k}+\bar{R}_{k}+\left(B_{k}+\bar{B}_{k}\right)^{T} T_{k+1}^{x}\left(B_{k}+\bar{B}_{k}\right)+\left(D_{k}+\bar{D}_{k}\right)^{T} S_{k+1}^{x}\left(D_{k}+\bar{D}_{k}\right), \\
H_{k}^{(1)}=A_{k}^{T} S_{k+1}^{x} B_{k}+C_{k}^{T} S_{k+1}^{x} D_{k}, \\
H_{k}^{(2)}=\left(A_{k}+\bar{A}_{k}\right)^{T} T_{k+1}^{x}\left(B_{k}+\bar{B}_{k}\right)+\left(C_{k}+\bar{C}_{k}\right)^{T} S_{k+1}^{x}\left(D_{k}+\bar{D}_{k}\right), \\
H_{k}^{(3)}=F_{k}^{T} S_{k+1}^{x y} B_{k}+\rho G_{k}^{T} S_{k+1}^{x y} D_{k}, \\
H_{k}^{(4)}=\left(F_{k}+\bar{F}_{k}\right)^{T} T_{k+1}^{x y}\left(B_{k}+\bar{B}_{k}\right)+\rho\left(G_{k}+\bar{G}_{k}\right)^{T} S_{k+1}^{x y}\left(D_{k}+\bar{D}_{k}\right) .
\end{array}\right.
$$

The unique optimal control for Problem (MF-LQ) is

$$
\begin{align*}
u_{k}^{*}= & -\left(W_{k}^{(1)}\right)^{-1}\left(H_{k}^{(1)}\right)^{T}\left(x_{k}-\mathbb{E} x_{k}\right)-\left(W_{k}^{(2)}\right)^{-1}\left(H_{k}^{(2)}\right)^{T} \mathbb{E} x_{k} \tag{43}\\
& -\left(W_{k}^{(1)}\right)^{-1}\left(H_{k}^{(3)}\right)^{T}\left(y_{k}-\mathbb{E} y_{k}\right)-\left(W_{k}^{(2)}\right)^{-1}\left(H_{k}^{(4)}\right)^{T} \mathbb{E} y_{k}, k \in \mathbb{N} .
\end{align*}
$$

Proof. See the Appendix.

5. An Example

Basing upon the general theory in previous sections, in this section, we consider an example extended from financial application in asset-liability management with numerical results.

5.1. Example Setting

Suppose an investment market and a loan market consisting of m risky investment acceptable assets, one risk-free asset and one loan product over a time horizon N. Let $B_{k}=\left(B_{k}^{1}, \ldots, B_{k}^{m}\right)$ be the row vector of random excess returns of the m risky assets, a_{k} and f_{k} are given return of the risk-free asset and repayment of loan at time period k respectively. We assume that vectors $B_{k}, k=0,1, \ldots, N-1$ are statistically independent and the only information known about the random excess return vector B_{k} is its first two moments: its mean $\mathbb{E}\left(B_{k}\right)$ and covariance $\operatorname{Cov}\left(B_{k}\right)$.

Let x_{k} and y_{k} be the total asset and liability at the beginning of the k-th period, respectively. Let $u_{k}^{i}, i=1,2, \ldots, m$, be the amount invested in the i-th risky asset at period k. The system combined with assets and liabilities at the beginning of the ($k+1$)-th period is given by

$$
\left\{\begin{array}{l}
x_{k+1}=a_{k} x_{k}+B_{k} u_{k}, \tag{44}\\
y_{k+1}=f_{k} y_{k}, \\
x_{0}=\zeta^{x}, y_{0}=\zeta^{y},
\end{array}\right.
$$

Define

$$
\left\{\begin{array}{l}
D_{k}^{i}=(0, \ldots, 0,1,0, \ldots, 0), \text { where } 1 \text { is the } i \text { th entry, } \\
w_{k}^{i}=B_{k}^{i}-\mathbb{E}\left(B_{k}^{i}\right), w_{k}=\left(w_{k}^{1}, w_{k}^{2}, \ldots, w_{k}^{m}\right)^{T}, \quad i=1, \ldots, m, \quad k=1, \ldots, N-1 .
\end{array}\right.
$$

These lead to

$$
\left\{\begin{array}{l}
x_{k+1}=a_{k} x_{k}+\mathbb{E} B_{k} u_{k}+\sum_{i=1}^{m} D_{k}^{i} u_{k} w_{k}^{i} \tag{45}\\
y_{k+1}=f_{k} y_{k} \\
x_{0}=\zeta^{x}, y_{0}=\zeta^{y}
\end{array}\right.
$$

Clearly, $x_{k}, y_{k} \in \mathbb{R}, k \in \mathbb{N} . a_{k}, f_{k} \in \mathbb{R}$ and $\mathbb{E} B_{k}, D_{k}^{i} \in \mathbb{R}^{1 \times m}$ are deterministic. By taking expectation of the system state, we have

$$
\left\{\begin{array}{l}
\mathbb{E} x_{k+1}=a_{k} \mathbb{E} x_{k}+\mathbb{E} B_{k} \mathbb{E} u_{k}, \\
\mathbb{E} y_{k+1}=f_{k} \mathbb{E} y_{k}, \\
\mathbb{E} x_{0}=\mathbb{E} \zeta^{x}, \mathbb{E} y_{0}=\mathbb{E} \zeta^{y}
\end{array}\right.
$$

Hence,

$$
\left\{\begin{array}{l}
x_{k+1}-\mathbb{E} x_{k+1}=a_{k}\left(x_{k}-\mathbb{E} x_{k}\right)+\mathbb{E} B_{k}\left(u_{k}-\mathbb{E} u_{k}\right)+\sum_{i=1}^{m} D_{k}^{i} u_{k} w_{k}^{i}, \tag{46}\\
y_{k+1}-\mathbb{E} y_{k+1}=f_{k}\left(y_{k}-\mathbb{E} y_{k}\right), \\
x_{0}=\zeta^{x}, y_{0}=\zeta^{y} .
\end{array}\right.
$$

Define \mathcal{F}_{k}^{\prime} by the information set at the beginning of period k which is generated by $\left\{\zeta^{x}, w_{l}, l=0,1, \ldots, k\right\}$. Recall that w_{k} is a martingale difference sequence defined on a probability space (Ω, \mathcal{F}, P), where $\mathbb{E}\left[w_{k+1} w_{k+1}^{T} \mid \mathcal{F}_{k}^{\prime}\right]=\alpha_{k+1}=\operatorname{Cov}\left(B_{k+1}\right)$. The cost functional (an extension of variance function) associated with (44) is

$$
\begin{equation*}
J\left(\zeta^{x}, \zeta^{y}, u\right)=\sum_{k=0}^{N-1} \mathbb{E}\left(u_{k}^{T} R_{k} u_{k}\right)+\mathbb{E}\left(q_{N}\left(x_{N}-y_{N}\right)^{2}\right)+\bar{q}_{N}\left(\mathbb{E}\left(x_{N}-y_{N}\right)\right)^{2}, \tag{47}
\end{equation*}
$$

where $q_{N}, \bar{q}_{N}, R_{k}, k \in \mathbb{N}$ are deterministic symmetric matrices with appropriate dimensions. In this paper, we consider the case where short-selling of stock is allowed, i.e., $u_{k}^{i}, i=1, \ldots, k$, could take values in \mathbb{R}. Hence, the admissible policy set of $u=\left(u_{0}, u_{1}, \cdots, u_{N-1}\right)$ in this section

$$
\mathcal{U}_{a d} \equiv\left\{u \mid u_{k} \in \mathbb{R}^{m}, \text { is } \mathcal{F}_{k}^{\prime} \text {-measurable }, \mathbb{E}\left|u_{k}\right|^{2}<\infty\right\} .
$$

Problem (MF-LQ) extended from asset-liability management is represented as follows:
Problem (MF-AL). For any given square-integrable initial values ζ^{x} and ζ^{y}, find $u^{o} \in \mathcal{U}_{\text {ad }}$ such that

$$
\begin{equation*}
J\left(\zeta^{x}, \zeta^{y}, u^{o}\right)=\inf _{u \in \mathcal{U}_{a d}} J\left(\zeta^{x}, \zeta^{y}, u\right) \tag{48}
\end{equation*}
$$

We then call u^{o} an optimal control for Problem (MF-AL).
To proceed, we recall the following lemma (Dunne \& Stone, 1993).
Lemma 5.1. Let $M \in \mathbb{R}^{n \times n}, c \in \mathbb{R}^{n}$. If $c \in \operatorname{Range}(M)$, then

$$
\left(M \pm c c^{T}\right)^{\dagger}=M-\frac{M^{\dagger} c c^{T} M^{\dagger}}{c^{T} M^{\dagger} c} .
$$

By Theorem 4.3, we have the following result. Suppose that

$$
\begin{equation*}
R_{k}>0, k \in \mathbb{N}, \quad q_{N}, q_{N}+\bar{q}_{N} \geq 0 \tag{49}
\end{equation*}
$$

The unique optimal strategy for Problem (MF-AL) is given by

$$
\begin{align*}
u_{k}^{o}= & -\left(W_{k}^{(1)}\right)^{-1}\left(H_{k}^{(1)}\right)^{T}\left(x_{k}-\mathbb{E} x_{k}\right)-\left(W_{k}^{(2)}\right)^{-1}\left(H_{k}^{(2)}\right)^{T} \mathbb{E} x_{k} \tag{50}\\
& -\left(W_{k}^{(1)}\right)^{-1}\left(H_{k}^{(3)}\right)^{T}\left(y_{k}-\mathbb{E} y_{k}\right)-\left(W_{k}^{(2)}\right)^{-1}\left(H_{k}^{(4)}\right)^{T} \mathbb{E} y_{k}, k \in \mathbb{N} .
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
W_{k}^{(1)}=R_{k}+S_{k+1}^{x} \mathbb{E}\left(B_{k}^{T} B_{k}\right), \\
W_{k}^{(2)}=R_{k}+T_{k+1}^{x} \mathbb{E} B_{k}^{T} \mathbb{E} B_{k}+S_{k+1}^{x} \operatorname{Cov}\left(B_{k}\right), \\
H_{k}^{(1)}=a_{k} S_{k+1}^{x} \mathbb{E} B_{k}, \\
H_{k}^{(2)}=a_{k} T_{k+1}^{x} \mathbb{E} B_{k}, \\
H_{k}^{(3)}=f_{k} S_{k+1}^{x y} \mathbb{E} B_{k}, \\
H_{k}^{(4)}=f_{k} T_{k+1}^{x y} \mathbb{E} B_{k},
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
S_{k}^{x}=a_{k}^{2} S_{k+1}^{x}\left[1-S_{k+1}^{x} \mathbb{E} B_{k}\left(R_{k}+S_{k+1}^{x} \mathbb{E}\left(B_{k}^{T} B_{k}\right)\right)^{-1} \mathbb{E} B_{k}^{T}\right], \\
T_{k}^{x}=a_{k}^{2} T_{k+1}^{x}\left[1-T_{k+1}^{x} \mathbb{E} B_{k}\left(R_{k}+T_{k+1}^{x} \mathbb{E} B_{k}^{T} \mathbb{E} B_{k}+S_{k+1}^{x} \operatorname{Cov}\left(B_{k}\right)\right)^{-1} \mathbb{E} B_{k}^{T}\right], \\
S_{k}^{x y}=a_{k} f_{k} S_{k+1}^{x y}\left[1-S_{k+1}^{x} \mathbb{E} B_{k}\left(R_{k}+S_{k+1}^{x} \mathbb{E}\left(B_{k}^{T} B_{k}\right)\right)^{-1} \mathbb{E} B_{k}^{T}\right], \\
T_{k}^{x y}=a_{k} f_{k} T_{k+1}^{x y}\left[1-T_{k+1}^{x} \mathbb{E} B_{k}\left(R_{k}+T_{k+1}^{x} \mathbb{E} B_{k}^{T} \mathbb{E} B_{k}+S_{k+1}^{x} \operatorname{Cov}\left(B_{k}\right)\right)^{-1} \mathbb{E} B_{k}^{T}\right], \\
S_{k}^{y}=f_{k}^{2}\left[S_{k+1}^{y}-\left(S_{k+1}^{x y}\right)^{2} \mathbb{E} B_{k}\left(R_{k}+S_{k+1}^{x} \mathbb{E}\left(B_{k}^{T} B_{k}\right)\right)^{-1} \mathbb{E} B_{k}^{T}\right], \\
T_{k}^{y}=f_{k}^{2}\left[T_{k+1}^{y}-\left(T_{k+1}^{x y}\right)^{2} \mathbb{E} B_{k}\left(R_{k}+T_{k+1}^{x} \mathbb{E} B_{k}^{T} \mathbb{E} B_{k}+S_{k+1}^{x} \operatorname{Cov}\left(B_{k}\right)\right)^{-1} \mathbb{E} B_{k}^{T}\right], \\
S_{N}^{x}=q_{N}, T_{N}^{x}=q_{N}+\bar{q}_{N}, S_{N}^{x y}=-q_{N}, \\
T_{N}^{x y}=-q_{N}-\bar{q}_{N}, S_{N}^{y}=q_{N}, T_{N}^{y}=q_{N}+\bar{q}_{N} .
\end{array}\right.
$$

Under the optimal strategy (50), the optimal solution of cost functional is

$$
\begin{aligned}
& J\left(\zeta^{x}, \zeta^{y}, u^{o}\right)=\mathbb{E}\left[S_{0}^{x}\left(\zeta^{x}-\mathbb{E} \zeta^{x}\right)^{2}+T_{0}^{x}\left(\mathbb{E} \zeta^{x}\right)^{2}+2 S_{0}^{x y}\left(\zeta^{x}-\mathbb{E} \zeta^{x}\right)\left(\zeta^{y}-\mathbb{E} \zeta^{y}\right)\right. \\
&\left.+T_{0}^{x y} \mathbb{E} \zeta^{x} \mathbb{E} \zeta^{y}+S_{0}^{y}\left(\zeta^{y}-\mathbb{E} \zeta^{y}\right)^{2}+T_{0}^{y}\left(\mathbb{E} \zeta^{y}\right)^{2}\right]
\end{aligned}
$$

and its related expectation of system state in N-th period is

$$
\mathbb{E}\left(x_{N}-y_{N}\right)=\prod_{k=1}^{N-1} N_{k} \mathbb{E} \zeta^{x}+\left(\sum_{k=0}^{N-1} \prod_{j=k+1}^{N-1} N_{j} M_{k} \prod_{j=1}^{k-1} f_{k}-\prod_{k=1}^{N-1} f_{k}\right) \mathbb{E} \zeta^{y}
$$

with $N_{k}=a_{k}\left(1-T_{k+1}^{x} \mathbb{E} B_{k}\left(W_{k}^{(2)}\right)^{-1} \mathbb{E} B_{k}^{T}\right)$ and $M_{k}=-f_{k} T_{k+1}^{x y} \mathbb{E} B_{k}\left(W_{k}^{(2)}\right)^{-1} \mathbb{E} B_{k}^{T}$.

5.2. Numerical Results

Consider a 3-period numerical example. Coefficients are given as follows:
$a_{k}=0.5, f_{k}=0.6, \mathbb{E} B_{k}=(0.2,0.3,0.4), R_{k}=I, \bar{R}_{k}=0, q_{3}=1, \bar{q}_{3}=-1$,
$\operatorname{Cov}\left(B_{k}\right)=\left(\begin{array}{ccc}1 & 0.2 & 0.3 \\ 0.2 & 1 & 0.6 \\ 0.3 & 0.6 & 1\end{array}\right)$.
By simple calculation, we have
$\mathbb{E} B_{k}^{T} \mathbb{E} B_{k}=\left(\begin{array}{lll}0.040 & 0.060 & 0.080 \\ 0.060 & 0.090 & 0.120 \\ 0.080 & 0.120 & 0.160\end{array}\right), \quad \mathbb{E}\left(B_{k}^{T} B_{k}\right)=\left(\begin{array}{lll}1.040 & 0.260 & 0.380 \\ 0.260 & 1.090 & 0.720 \\ 0.380 & 0.720 & 1.160\end{array}\right)$.
Based on the result in Section 5.1, the Riccati solutions for S_{k} and T_{k} for $k=0,1,2,3$ are given by

$$
\begin{array}{lll}
S_{3}^{x}=1, & S_{3}^{x y}=-1, & S_{3}^{y}=1 \\
S_{2}^{x}=0.2260, & S_{2}^{x y}=-0.2712, & S_{2}^{y}=0.3254 \\
S_{1}^{x}=0.0540, & S_{1}^{x y}=-0.0777, & S_{1}^{y}=0.1119 \\
S_{0}^{x}=0.0133, & S_{0}^{x y}=-0.0230, & S_{0}^{y}=0.0397
\end{array}
$$

and $T_{k}^{x}=T_{k}^{x y}=T_{k}^{y}=0$, which lead $N_{k}=a_{k}$ and $M_{k}=0$. We also obtain the optimal control, that is $u_{k}^{o}=O_{k}^{x}\left(x_{k}-\mathbb{E} x_{k}\right)+O_{k}^{y}\left(y_{k}-\mathbb{E} y_{k}\right), k=0,1,2$, where

$$
\begin{aligned}
& O_{2}^{x}=\left(\begin{array}{lll}
-0.0300 & -0.0429-0.0730
\end{array}\right), \\
& O_{2}^{y}=\left(\begin{array}{lll}
0.0359 & 0.0515 & 0.0876
\end{array}\right), \\
& O_{1}^{x}=\left(\begin{array}{lll}
-0.0150 & -0.0223-0.0319
\end{array}\right), \\
& O_{1}^{y}=\left(\begin{array}{lll}
0.0216 & 0.0321 & 0.0460
\end{array}\right), \\
& O_{0}^{x}=\left(\begin{array}{ll}
-0.0048 & -0.0072-0.0098
\end{array}\right), \\
& O_{0}^{y}=\left(\begin{array}{lll}
0.0069 & 0.0104 & 0.0141
\end{array}\right) .
\end{aligned}
$$

6. Conclusion

In this paper, we first formulate the Problem (MF-LQ) and give necessary and sufficient conditions for the solvability of the problem. Two approaches, dynamical optimization by matrix minimum principle and operator linear-quadratic method, are investigated to derive the optimal control, where six Riccati equations are obtained accordingly. Also, after concerning with the solution of this problem under multidimensional noise assumption, we give an financial application with numerical results.

The current research may be extended in the following ways. In this paper, we find that the solvability of the problem is related to the definiteness of the system coefficient matrices. For future research, we may study a model with relaxation of conditions such as indefinite mean-field stochastic linear-quadratic optimal control problems. We may also expend the problem from finite horizon to infinite horizon, where the stability of system should be considered first.

References

Ait Rami, M. A., Chen, X., \& Zhou, X. Y. (2002). Discrete-time indefinite LQ control with state and control dependent noises. Journal of Global Optimization, 23(3-4), 245-265.
Andersson, D., \& Djehiche, B. (2011). A maximum principle for SDEs of mean-field type. Applied Mathematics \& Optimization, 63(3), 341-356.
Athans, M. (1967). The matrix minimum principle. Information and control, 11(5), 592-606.

Bauso, D., Tembine, H., \& Başar, T. (2012). Robust mean field games with application to production of an exhaustible resource. IFAC Proceedings Volumes, 45(13), 454-459.
Beghi, A., \& D'alessandro, D. (1998). Discrete-time optimal control with control-dependent noise and generalized Riccati difference equations. Automatica, 34(8), 1031-1034.
Bensoussan, A., Frehse, J., \& Yam, P. (2013). Mean field games and mean field type control theory (Vol. 101). New York: Springer.
Bensoussan, A., Sung, K., Yam, P., \& Yung, S. (2016). Linear-quadratic mean field games. Journal of Optimization Theory and Applications 169(2), 496-529.
Beutler, Frederick J. (1965). The operator theory of the pseudo-inverse I. Bounded operators. Journal of mathematical analysis and applications 10(3), 451-470.
Bossy, M., \& Talay, D. (1997). A stochastic particle method for the McKean-Vlasov and the Burgers equation. Mathematics of Computation of the American Mathematical Society, 66(217), 157-192.
Buckdahn, Rainer, Boualem Djehiche, Juan Li, \& Shige Peng (2009). Mean-field backward stochastic differential equations: a limit approach. The Annals of Probability 37.4: 15241565.

Buckdahn, R., Li, J., \& Peng, S. (2009). Mean-field backward stochastic differential equations and related partial differential equations. Stochastic Processes and their Applications, 119(10), 3133-3154.
Buckdahn, R., Djehiche, B., \& Li, J. (2011). A general stochastic maximum principle for SDEs of mean-field type. Applied Mathematics \& Optimization, 64(2), 197-216.
Cairns, A. (2000). Some notes on the dynamics and optimal control of stochastic pension fund models in continuous time. Astin Bulletin, 30(1), 19-55.
Carmona, R., \& Delarue, F. (2013). Mean field forward-backward stochastic differential equations. Electronic Communications in Probability, 18(68), 1-15.
Carmona, R., \& Lacker, D. (2015). A probabilistic weak formulation of mean field games and applications. The Annals of Applied Probability, 25(3), 1189-1231.
Chan, T. (1994). Dynamics of the McKean-Vlasov equation. The Annals of Probability, 22(1), 431-441.
Chen, P., Yang, H., \& Yin, G. (2008). Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model. Insurance: Mathematics and Economics, 43(3), 456-465.
Cui, X., Li, X., \& Li, D. (2014). Unified framework of mean-field formulations for optimal multi-period mean-variance portfolio selection. IEEE Transactions on Automatic Control, 59(7), 1833-1844.
Cui, X., Li, D., \& Li, X. (2017).
Dai Pra, P., \& den Hollander, F. (1996). McKean-Vlasov limit for interacting random processes in random media. Journal of statistical physics, 84(3-4), 735-772.
Dang, D. M., Forsyth, P. A., \& Li, Y. (2016). Convergence of the embedded mean-variance optimal points with discrete sampling. Numerische Mathematik, 132(2), 271-302.
Dawson, D. A. (1983). Critical dynamics and fluctuations for a mean-field model of cooperative behaviour. Journal of Statistical Physics, 31(1), 29-85.
Dawsont, D. A., \& Gärtner, J. (1987). Large deviations from the McKean-Vlasov limit for weakly interacting diffusions. Stochastics: An International Journal of Probability and Stochastic Processes, 20(4), 247-308.
Du, H., Li, J., \& Wei, Q. (2011). Mean-field backward stochastic differential equations with continuous coefficients. In Control Conference (CCC), 2011 30th Chinese (pp. 1312-1316).

IEEE.
Dunne, T., \& Stone, M. (1993). Downdating the Moore-Penrose generalized inverse for crossvalidation of centred least squares prediction. Journal of the Royal Statistical Society. Series B. Methodological, 55(2), 369-375.

Elliott, R., Li, X., \& Ni, Y. H. (2013). Discrete time mean-field stochastic linear-quadratic optimal control problems. Automatica, 49(11), 3222-3233.
Freidlin, M. I., \& Wentzell, A. D. (1984). Random Perturbations. In Random Perturbations of Dynamical Systems (pp. 15-43). Springer US.
Gärtner, J. (1988). On the McKean-Vlasov Limit for Interacting Diffusions. Mathematische Nachrichten, 137(1), 197-248.
Guéant, O., Lasry, J. M., \& Lions, P. L. (2011). Mean field games and applications. In ParisPrinceton lectures on mathematical finance 2010 (pp. 205-266). Springer Berlin Heidelberg.
Hou, D., \& Xu, Z. (2016). A Robust Markowitz Mean-Variance Portfolio Selection Model with an Intractable Claim. SIAM Journal on Financial Mathematics, 7(1), 124-151.
Huang, M., Malhamé, R. P., \& Caines, P. E. (2006). Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Communications in Information \& Systems, 6(3), 221-252.
Huang, Y., Zhang, W., \& Zhang, H. (2008). Infinite horizon linear quadratic optimal control for discrete-time stochastic systems. Asian Journal of Control, 10(5), 608-615.
Lasry, J. M., \& Lions, P. L. (2007). Mean field games. Japanese Journal of Mathematics, 2(1), 229-260.
Li, D., \& Ng, W. L. (2000). Optimal dynamic portfolio selection: Multiperiod mean-variance formulation. Mathematical Finance, 10(3), 387-406.
Li, X., Sun, J., \& Yong, J. (2016). Mean-field stochastic linear quadratic optimal control problems: closed-loop solvability. Probability, Uncertainty and Quantitative Risk, 1(1), 2.
Markowitz, H. (1952). Portfolio selection. The journal of finance, 7(1), 77-91.
McKean, H. P. (1966). A class of Markov processes associated with non-linear parabolic equations. Proceedings of the National Academy of Sciences, 56(6), 1907-1911.
Meyer-Brandis, T., Oksendal, B., \& Zhou, X. Y. (2012). A mean-field stochastic maximum principle via Malliavin calculus. Stochastics an International Journal of Probability and Stochastic Processes, 84(5-6), 643-666.
Moore, J. B., Zhou, X. Y., \& Lim, A. E. (1999). Discrete time LQG controls with control dependent noise. Systems \& Control Letters, 36(3), 199-206.
Mou, L., \& Yong, J. (2006). Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method. J. Ind. Manag. Optim, 2(1), 93-115.
Ni, Y. H., Li, X., \& Zhang, J. F. (2014). Linear-Quadratic Control of Discrete-Time Stochastic Systems with Indefinite Weight Matrices and Mean-Field Terms. Preprint.
Ni, Y. H., Elliott, R., \& Li, X. (2015). Discrete-time mean-field Stochastic linear-quadratic optimal control problems, II: Infinite horizon case. Automatica, 57, 65-77.
Ni, Y. H., Zhang, J. F., \& Li, X. (2015). Indefinite mean-field stochastic linear-quadratic optimal control. IEEE Transactions on Automatic Control, 60(7), 1786-1800.
Ni, Y. H., Li, X., \& Zhang, J. F. (2016). Indefinite mean-field stochastic linear-quadratic optimal control: from finite horizon to infinite horizon. IEEE Transactions on Automatic Control, 61(11), 3269-3284.
Papanicolaou, G. C., Stroock, D., \& Varadhan, S. S. (1977). Martingale approach to some limit theorems. In Duke Turbulence Conference (Duke Univ., Durham, NC, 1976), Paper (Vol. 6).

Rockafellar, R. T., \& Wets, R. J. (1990). Generalized linear-quadratic problems of deterministic and stochastic optimal control in discrete time. SIAM Journal on control and optimization, 28(4), 810-822.
Sun, J., \& Yong, J. (2016). Stochastic Linear Quadratic Optimal Control Problems in Infinite Horizon. Applied Mathematics \& Optimization, 1-39.
Wonham, W. M. (1968). On a matrix Riccati equation of stochastic control. SIAM Journal on Control, 6(4), 681-697.
Xie, S., Li, Z., \& Wang, S. (2008). Continuous-time portfolio selection with liability: Meanvariance model and stochastic LQ approach. Insurance: Mathematics and Economics, 42(3), 943-953.
Yong, J. (2013). Linear-quadratic optimal control problems for mean-field stochastic differential equations. SIAM Journal on Control and Optimization, 51(4), 2809-2838.
Zhang, M., \& Chen, P. (2016). Mean-variance asset-liability management under constant elasticity of variance process. Insurance: Mathematics and Economics, 70, 11-18.
Zhou, X. Y., \& Yin, G. (2003). Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model. SIAM Journal on Control and Optimization, 42(4), 1466-1482.

Ziemba, W. T. (2003). The stochastic programming approach to asset, liability, and wealth management.

Appendix

Proof of Theorem 4.1

From Proposition 3.2, we know that Problem (MF-LQ) admits a unique minimizer under condition (21). Thus, the optimal control uniquely exists. We now introduce the Lagrangian function associated with Problem (13),

$$
\begin{aligned}
\mathfrak{L}= & \sum_{k=0}^{N-1} \mathfrak{L}_{k}+\operatorname{Tr}\left[Q_{N}\left(X_{N}-X Y_{N}-\left(X Y_{N}\right)^{T}+Y_{N}\right)\right] \\
& +\operatorname{Tr}\left[\bar{Q}_{N}\left(\bar{X}_{N}-\bar{X} Y_{N}-\left(\overline{X Y}{ }_{N}\right)^{T}+\bar{Y}_{N}\right)\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathfrak{L}_{k}=\operatorname{Tr}\left[Q_{k}\left(X_{k}-X Y_{k}-\left(X Y_{k}\right)^{T}+Y_{k}\right)\right]+\operatorname{Tr}\left[\bar{Q}_{k}\left(\bar{X}_{k}-\bar{X} Y_{k}-\left(X Y_{k}\right)^{T}+\bar{Y}_{k}\right)\right] \\
& +\operatorname{Tr}\left[\left(L_{k}^{x}\right)^{T} R_{k} L_{k}^{x} X_{k}+\left(\left(L_{k}^{x}\right)^{T} R_{k} \bar{L}_{k}^{x}+\left(\bar{L}_{k}^{x}\right)^{T} R_{k} L_{k}^{x}+\left(\bar{L}_{k}^{x}\right)^{T} R_{k} \bar{L}_{k}^{x}\right) \bar{X}_{k}\right] \\
& +\operatorname{Tr}\left[\left(L_{k}^{x}\right)^{T} R_{k} L_{k}^{y}\left(X Y_{k}\right)^{T}+\left(\left(L_{k}^{x}\right)^{T} R_{k} \bar{L}_{k}^{y}+\left(\bar{L}_{k}^{x}\right)^{T} R_{k} L_{k}^{y}+\left(\bar{L}_{k}^{x}\right)^{T} R_{k} \bar{L}_{k}^{y}\right)\left(X Y_{k}\right)^{T}\right] \\
& +\operatorname{Tr}\left[\left(L_{k}^{y}\right)^{T} R_{k} L_{k}^{x} X Y_{k}+\left(\left(L_{k}^{y}\right)^{T} R_{k} \bar{L}_{k}^{x}+\left(\bar{L}_{k}^{y}\right)^{T} R_{k} L_{k}^{x}+\left(\bar{L}_{k}^{y}\right)^{T} R_{k} \bar{L}_{k}^{x}\right) X Y_{k}\right] \\
& +\operatorname{Tr}\left[\left(L_{k}^{y}\right)^{T} R_{k} L_{k}^{y} Y_{k}+\left(\left(L_{k}^{y}\right)^{T} R_{k} \bar{L}_{k}^{y}+\left(\bar{L}_{k}^{y}\right)^{T} R_{k} L_{k}^{y}+\left(\bar{L}_{k}^{y}\right)^{T} R_{k} \bar{L}_{k}^{y} \bar{Y}_{k}\right]\right. \\
& +\operatorname{Tr}\left[\left(L_{k}^{x}+\bar{L}_{k}^{x}\right)^{T} \bar{R}_{k}\left(L_{k}^{x}+\bar{L}_{k}^{x}\right) \bar{X}_{k}+\left(L_{k}^{x}+\bar{L}_{k}^{x}\right)^{T} \bar{R}_{k}\left(L_{k}^{y}+\bar{L}_{k}^{y}\right)\left(\bar{X} Y_{k}\right)^{T}\right] \\
& +\operatorname{Tr}\left[\left(L_{k}^{y}+\bar{L}_{k}^{y}\right)^{T} \bar{R}_{k}\left(L_{k}^{x}+\bar{L}_{k}^{x}\right) X Y_{k}+\left(L_{k}^{y}+\bar{L}_{k}^{y}\right)^{T} \bar{R}_{k}\left(L_{k}^{y}+\bar{L}_{k}^{y}\right) \bar{Y}_{k}\right] \\
& +\operatorname{Tr}\left[\left(\begin{array}{c}
P_{k+1}^{x} \\
\bar{P}_{k+1}^{x} \\
2 P_{k+1}^{x y} \\
2 \bar{P}_{k+1}^{x y} \\
P_{k+1}^{y} \\
\bar{P}_{k+1}^{y}
\end{array}\right)^{T}\left(\begin{array}{c}
\mathcal{X}_{k}\left(L_{k}^{x}, \bar{L}_{k}^{x}, L_{k}^{y}, \bar{L}_{k}^{y}\right)-X_{k+1} \\
\overline{\mathcal{X}}_{k}\left(L_{k}^{x}, \bar{L}_{k}^{x}, L_{k}^{y}, \bar{L}_{k}^{y}\right)-\bar{X}_{k+1} \\
\mathcal{X} \mathcal{Y}_{k}\left(L_{k}^{x}, \bar{L}_{k}^{x}, L_{k}^{y} \bar{L}_{k}^{y}\right)-X Y_{k+1} \\
\overline{\mathcal{X}} \mathcal{Y}_{k}\left(L_{k}^{x}, \bar{L}_{k}^{x}, L_{k}^{y}, \bar{L}_{k}^{y}\right)-\bar{X} Y_{k+1} \\
\mathcal{Y}_{k}-Y_{k+1} \\
\overline{\mathcal{Y}}_{k}-\bar{Y}_{k+1}
\end{array}\right)\right],
\end{aligned}
$$

and $P_{k+1}^{x} \bar{P}_{k+1}^{x} P_{k+1}^{x y} \bar{P}_{k+1}^{x y} P_{k+1}^{y} \bar{P}_{k+1}^{y}, k \in \mathbb{N}$ are the Lagrangian multipliers. Denote $\mathbb{P}_{k+1}=\left(P_{k+1}^{x} \bar{P}_{k+1}^{x} 2 P_{k+1}^{x y} 2 \bar{P}_{k+1}^{x y} P_{k+1}^{y} \bar{P}_{k+1}^{y}\right)$ and $\mathbb{X}_{k}=\left(X_{k} \bar{X}_{k} X Y_{k} X \bar{X} Y_{k} Y_{k} \bar{Y}_{k}\right)$. Clearly, by the matrix minimum principle (Athans, 1967), the optimal feedback gains L_{k}^{o} and Lagrangian multipliers \mathbb{P}_{k} satisfy the following first-order necessary conditions

$$
\left\{\begin{array}{l}
\frac{\partial \mathfrak{L}_{k}}{\partial L_{k}^{o}}=0, \quad \mathbb{P}_{k}=\frac{\partial \mathfrak{L}_{k}}{\partial \mathbb{X}_{k}}, \quad k \in \mathbb{N}, \\
\mathbb{P}_{N}=\left(Q_{N} \bar{Q}_{N}-2 Q_{N}-2 \bar{Q}_{N} Q_{N} \bar{Q}_{N}\right),
\end{array}\right.
$$

i.e.,

$$
\left\{\begin{array}{l}
\frac{\partial \mathfrak{L}_{k}}{\partial L_{k}^{x o}}=0, \frac{\partial \mathfrak{L}_{k}}{\partial \bar{L}_{k}^{x o}}=0, \frac{\partial \mathfrak{L}_{k}}{\partial L_{k}^{y o}}=0, \frac{\partial \mathfrak{L}_{k}}{\partial \bar{L}_{k o}^{y o}}=0, \\
P_{k}^{x}=\frac{\partial \mathfrak{L}_{k}}{\partial X_{k}}, \bar{P}_{k}^{x}=\frac{\partial \mathfrak{L}_{k}}{\partial \bar{X}_{k}}, P_{k}^{x y}=\frac{1}{2} \frac{\partial \mathfrak{L}_{k}}{\partial X Y_{k}}, \\
\bar{P}_{k}^{x y}=\frac{1}{2} \frac{\partial \mathfrak{L}_{k}}{\partial X Y_{k}}, P_{k}^{y}=\frac{\partial \mathfrak{L}_{k}}{\partial Y_{k}}, \bar{P}_{k}^{y}=\frac{\partial \mathfrak{L}_{k}}{\partial \bar{Y}_{k}}, k \in \mathbb{N} \\
P_{N}^{x}=Q_{N}, \bar{P}_{N}^{x}=\bar{Q}_{N}, P_{N}^{x y}=-Q_{N}, \\
\bar{P}_{N}^{x y}=-\bar{Q}_{N}, P_{N}^{y}=Q_{N}, \bar{P}_{N}^{y}=\bar{Q}_{N} .
\end{array}\right.
$$

Now, we shall calculate several gradient matrices. Firstly, we have

$$
\begin{align*}
\frac{\partial \mathfrak{L}_{k}}{\partial L_{k}^{x}}= & 2 X_{k}\left[\left(L_{k}^{x}\right)^{T}\left(R_{k}+B_{k}^{T} P_{k+1}^{x} B_{k}+D_{k}^{T} P_{k+1}^{x} D_{k}\right)+A_{k}^{T} P_{k+1}^{x} B_{k}+C_{k}^{T} P_{k+1}^{x} D_{k}\right] \\
& +2 \bar{X}_{k}\left\{(\overline { L } _ { k } ^ { x }) ^ { T } \left[R_{k}+\bar{R}_{k}+2 X Y_{k}\left[\left(L_{k}^{y}\right)^{T}\left(R_{k}+B_{k}^{T} P_{k+1}^{x} B_{k}+D_{k}^{T} P_{k+1}^{x} D_{k}\right)\right.\right.\right. \\
& \left.+F_{k}^{T} P_{k+1}^{x y} B_{k}+\rho G_{k}^{T} P_{k+1}^{x y} D_{k}\right]+2 \overline{X Y} Y_{k}\left\{(\overline { L } _ { k } ^ { y }) ^ { T } \left[R_{k}+\bar{R}_{k}\right.\right. \\
& \left.+\left(B_{k}+\bar{B}_{k}\right)^{T}\left(P_{k+1}^{x}+\bar{P}_{k+1}^{x}\right)\left(B_{k}+\bar{B}_{k}\right) \quad+\left(D_{k}+\bar{D}_{k}\right)^{T} P_{k+1}^{x}\left(D_{k}+\bar{D}_{k}\right)\right] \\
& +\left(L_{k}^{y}\right)^{T}\left[\bar{R}_{k}+\left(B_{k}+\bar{B}_{k}\right)^{T}\left(P_{k+1}^{x}+\bar{P}_{k+1}^{x}\right)\left(B_{k}+\bar{B}_{k}\right)-B_{k}^{T} P_{k+1}^{x} B_{k}\right. \tag{51}\\
& \left.+\left(D_{k}+\bar{D}_{k}\right)^{T} P_{k+1}^{x}\left(D_{k}+\bar{D}_{k}\right)-D_{k}^{T} P_{k+1}^{x} D_{k}\right] \\
& +\left(F_{k}+\bar{F}_{k}\right)^{T}\left(P_{k+1}^{x y}+\bar{P}_{k+1}^{x y}\right)\left(B_{k}+\bar{B}_{k}\right)-F_{k}^{T} P_{k+1}^{x y} B_{k} \\
& \left.+\rho\left(G_{k}+\bar{G}_{k}\right)^{T} P_{k+1}^{x y}\left(D_{k}+\bar{D}_{k}\right)-\rho G_{k}^{T} P_{k+1}^{x y} D_{k}\right\} \\
= & 2\left(X_{k}-\bar{X}_{k}\right)\left(\left(L_{k}^{x}\right)^{T} \bar{W}_{k}^{(1)}+\bar{H}_{k}^{(1)}\right)+2 \bar{X}_{k}\left(\left(L_{k}^{x}+\bar{L}_{k}^{x}\right)^{T} \bar{W}_{k}^{(2)}+\bar{H}_{k}^{(2)}\right) \\
& +2\left(X Y_{k}-\overline{X Y}_{k}\right)\left(\left(L_{k}^{y}\right)^{T} \bar{W}_{k}^{(1)}+\bar{H}_{k}^{(3)}\right)+2 \overline{X Y}_{k}\left(\left(L_{k}^{y}+\bar{L}_{k}^{y}\right)^{T} \bar{W}_{k}^{(2)}+\bar{H}_{k}^{(4)}\right), \\
\frac{\partial \mathfrak{L}_{k}}{\partial \bar{L}_{k}^{x}=} & 2 \bar{X}_{k}\left\{(L _ { k } ^ { x } + \overline { L } _ { k } ^ { x }) ^ { T } \left[R_{k}+\bar{R}_{k}+\left(B_{k}+\bar{B}_{k}\right)^{T}\left(P_{k+1}^{x}+\bar{P}_{k+1}^{x}\right)\left(B_{k}+\bar{B}_{k}\right)\right.\right. \\
& \left.+\left(D_{k}+\bar{D}_{k}\right)^{T} P_{k+1}^{x}\left(D_{k}+\bar{D}_{k}\right)\right]+\left(A_{k}+\bar{A}_{k}\right)^{T}\left(P_{k+1}^{x}+\bar{P}_{k+1}^{x}\right)\left(B_{k}+\bar{B}_{k}\right) \\
& \left.+\left(C_{k}+\bar{C}_{k}\right)^{T} P_{k+1}^{x}\left(D_{k}+\bar{D}_{k}\right)\right\} \\
& +2 \bar{X}_{k}\left\{(L _ { k } ^ { y } + \overline { L } _ { k } ^ { y }) ^ { T } \left[R_{k}+\bar{R}_{k}+\left(B_{k}+\bar{B}_{k}\right)^{T}\left(P_{k+1}^{x}+\bar{P}_{k+1}^{x}\right)\left(B_{k}+\bar{B}_{k}\right)\right.\right. \tag{52}\\
& \left.+\left(D_{k}+\bar{D}_{k}\right)^{T} P_{k+1}^{x}\left(D_{k}+\bar{D}_{k}\right)\right]+\left(F_{k}+\bar{F}_{k}\right)^{T}\left(P_{k+1}^{x y}+\bar{P}_{k+1}^{x y}\right)\left(B_{k}+\bar{B}_{k}\right) \\
& \left.+\rho\left(G_{k}+\bar{G}_{k}\right)^{T} P_{k+1}^{x y}\left(D_{k}+\bar{D}_{k}\right)\right\} \\
= & 2 \bar{X}_{k}\left(\left(L_{k}^{x}+\bar{L}_{k}^{x}\right)^{T} \bar{W}_{k}^{(2)}+\bar{H}_{k}^{(2)}\right)+2 \overline{X Y} Y_{k}\left(\left(L_{k}^{y}+\bar{L}_{k}^{y}\right)^{T} \bar{W}_{k}^{(2)}+\bar{H}_{k}^{(4)}\right),
\end{align*}
$$

Similarly, it can be shown that

$$
\begin{align*}
\frac{\partial \mathfrak{L}_{k}}{\partial L_{k}^{y}}= & 2\left(Y_{k}-\bar{Y}_{k}\right)\left(\left(L_{k}^{y}\right)^{T} \bar{W}_{k}^{(1)}+\bar{H}_{k}^{(3)}\right)+2 \bar{Y}_{k}\left(\left(L_{k}^{y}+\bar{L}_{k}^{y}\right)^{T} \bar{W}_{k}^{(2)}+\bar{H}_{k}^{(4)}\right) \tag{53}\\
& +2\left(X Y_{k}-X \overline{X Y}_{k}\right)^{T}\left(\left(L_{k}^{x}\right)^{T} \bar{W}_{k}^{(1)}+\bar{H}_{k}^{(1)}\right)+2\left(X Y_{k}\right)^{T}\left(\left(L_{k}^{x}+\bar{L}_{k}^{x}\right)^{T} \bar{W}_{k}^{(2)}+\bar{H}_{k}^{(2)}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial \mathfrak{L}_{k}}{\partial \bar{L}_{k}^{y}}=2 \bar{Y}_{k}\left(\left(L_{k}^{y}+\bar{L}_{k}^{y}\right)^{T} \bar{W}_{k}^{(2)}+\bar{H}_{k}^{(4)}\right)+\left(\bar{X} Y_{k}\right)^{T}\left(\left(L_{k}^{x}+\bar{L}_{k}^{x}\right)^{T} \bar{W}_{k}^{(2)}+\bar{H}_{k}^{(2)}\right) \tag{54}
\end{equation*}
$$

Here, $\bar{W}_{k}^{(i)}, i=1,2, \bar{H}_{k}^{(j)}, j=1,2,3,4$, are defined in (14). Combining (51)-(54), $L_{k}^{x o}, \bar{L}_{k}^{x o}, L_{k}^{y o}$ and $\bar{L}_{k}^{y o}$ must satisfy

$$
\left\{\begin{array}{l}
\left(X_{k}-\bar{X}_{k}\right)\left(\left(L_{k}^{x}\right)^{T} \bar{W}_{k}^{(1)}+\bar{H}_{k}^{(1)}\right)+\bar{X}_{k}\left(\left(L_{k}^{x}+\bar{L}_{k}^{x}\right)^{T} \bar{W}_{k}^{(2)}+\bar{H}_{k}^{(2)}\right) \tag{55}\\
+\left(X Y_{k}-\bar{X} Y_{k}\right)\left(\left(L_{k}^{y}\right)^{T} \bar{W}_{k}^{(1)}+\bar{H}_{k}^{(3)}\right)+\bar{X} Y_{k}\left(\left(L_{k}^{y}+\bar{L}_{k}^{y}\right)^{T} \bar{W}_{k}^{(2)}+\bar{H}_{k}^{(4)}\right)=0, \\
\bar{X}_{k}\left(\left(L_{k}^{x}+\bar{L}_{k}^{x}\right)^{T} \bar{W}_{k}^{(2)}+\bar{H}_{k}^{(2)}\right)+\bar{X} Y_{k}\left(\left(L_{k}^{y}+\bar{L}_{k}^{y}\right)^{T} \bar{W}_{k}^{(2)}+\bar{H}_{k}^{(4)}\right)=0, \\
\left(Y_{k}-\bar{Y}_{k}\right)\left(\left(L_{k}^{y}\right)^{T} \bar{W}_{k}^{(1)}+\bar{H}_{k}^{(3)}\right)+\bar{Y}_{k}\left(\left(L_{k}^{y}+\bar{L}_{k}^{y}\right)^{T} \bar{W}_{k}^{(2)}+\bar{H}_{k}^{(4)}\right) \\
+\left(X Y_{k}-X Y_{k}\right)^{T}\left(\left(L_{k}^{x}\right)^{T} \bar{W}_{k}^{(1)}+\bar{H}_{k}^{(1)}\right)+\left(X Y_{k}\right)^{T}\left(\left(L_{k}^{x}+\bar{L}_{k}^{x}\right)^{T} \bar{W}_{k}^{(2)}+\bar{H}_{k}^{(2)}\right)=0, \\
\left.\bar{Y}_{k}\left(\left(L_{k}^{y}+\bar{L}_{k}^{y}\right)^{T} \bar{W}_{k}^{(2)}+\bar{H}_{k}^{(4)}\right)+(\overline{X Y})_{k}\right)^{T}\left(\left(L_{k}^{x}+\bar{L}_{k}^{x}\right)^{T} \bar{W}_{k}^{(2)}+\bar{H}_{k}^{(2)}\right)=0 .
\end{array}\right.
$$

Note that (55) holds for any initial values $X_{0}-\bar{X}_{0}, \bar{X}_{0}, X Y_{0}-\bar{X} Y_{0}, \bar{X} Y_{0}, Y_{0}-\bar{Y}_{0}$ and \bar{Y}_{0}. Hence, (55) reduces to

$$
\left\{\begin{array}{l}
\left(L_{k}^{x}\right)^{T} \bar{W}_{k}^{(1)}+\bar{H}_{k}^{(1)}=0, \\
\left(L_{k}^{x}+\bar{L}_{k}^{x}\right)^{T} \bar{W}_{k}^{(2)}+\bar{H}_{k}^{(2)}=0, \\
\left(L_{k}^{y}\right)^{T} \bar{W}_{k}^{(1)}+\bar{H}_{k}^{(3)}=0, \\
\left(L_{k}^{y}+\bar{L}_{k}^{y}\right)^{T} \bar{W}_{k}^{(2)}+\bar{H}_{k}^{(4)}=0,
\end{array}\right.
$$

which are obtained by letting coefficients be zero in (55). Clearly, we obtain the optimal feedback gains within the class of controls (8)

$$
\left\{\begin{array}{l}
L_{k}^{x o}=-\left(\bar{W}_{k}^{(1)}\right)^{-1}\left(\bar{H}_{k}^{(1)}\right)^{T}, \\
\bar{L}_{k}^{x o}=-\left(\bar{W}_{k}^{(2)}\right)^{-1}\left(\bar{H}_{k}^{(2)}\right)^{T}+\left(\bar{W}_{k}^{(1)}\right)^{-1}\left(\bar{H}_{k}^{(1)}\right)^{T}, \\
L_{k}^{y o}=-\left(\bar{W}_{k}^{(1)}\right)^{-1}\left(\bar{H}_{k}^{(3)}\right)^{T}, \\
\bar{L}_{k}^{y o}=-\left(\bar{W}_{k}^{(2)}\right)^{-1}\left(\bar{H}_{k}^{(4)}\right)^{T}+\left(\bar{W}_{k}^{(1)}\right)^{-1}\left(\bar{H}_{k}^{(3)}\right)^{T} .
\end{array}\right.
$$

We now derive the expressions of $P_{k}^{x}, \bar{P}_{k}^{x}, P_{k}^{x y}, \bar{P}_{k}^{x y}, P_{k}^{y}, \bar{P}_{k}^{y}$. By (51), we have

$$
\left\{\begin{array}{l}
P_{k}^{x}=\left.\frac{\partial \mathfrak{L}_{k}}{\partial X_{k}}\right|_{L_{k}^{x}=L_{k}^{x o}} \\
\bar{P}_{k}^{x}=\left.\frac{\partial \mathfrak{L}_{k}}{\partial \bar{X}_{k}}\right|_{L^{x}=L_{k}^{x o} \bar{L}_{k}^{x}=\bar{L}_{k}^{x o}} \\
P_{k}^{x y}=\left.\frac{1}{2} \frac{\partial \mathfrak{L}_{k}^{x}}{\partial X Y_{k}}\right|_{L_{k}^{x}=L_{k}^{x o}, L_{k}^{y}=L_{k}^{y o}} \\
\bar{P}_{k}^{x y}=\left.\frac{1}{2} \frac{\partial \mathfrak{L}_{k}}{\partial \bar{X} Y_{k}}\right|_{L_{k}^{x}=L_{k}^{x o}, \bar{L}_{k}^{x}=\bar{L}_{k}^{x o}, L_{k}^{y}=L_{k}^{y o}, \bar{L}_{k}^{y}=\bar{L}_{k}^{y o}}, \\
P_{k}^{y}=\left.\frac{\partial \mathfrak{L}_{k}}{\partial Y_{k}}\right|_{L_{k}^{y}=L_{k}^{y o}}, \\
\bar{P}_{k}^{y}=\left.\frac{\partial \mathfrak{L}_{k}}{\partial \bar{Y}_{k}}\right|_{L_{k}^{y}=L_{k}^{y o}, \bar{L}_{k}^{y}=\bar{L}_{k}^{y o}},
\end{array}\right.
$$

which are (15)-(20). The final step is to assure that for any $k \in \overline{\mathbb{N}}, P_{k}^{x}, P_{k}^{x}+\bar{P}_{k}^{x} \geq 0$. We prove this by backward induction. Clearly, $P_{N}^{x}, P_{N}^{x}+\bar{P}_{N}^{x} \geq 0$ by definition. For $k=N-1, P_{N-1}^{x}$ is positive semi-definite and

$$
\begin{aligned}
P_{N-1}^{x}+\bar{P}_{N-1}^{x}= & Q_{N-1}+\bar{Q}_{N-1}+\left(L_{N-1}^{x o}+\bar{L}_{N-1}^{x o}\right)^{T} R_{N-1}\left(L_{N-1}^{x o}+\bar{L}_{N-1}^{x o}\right) \\
& +\left[A_{N-1}+\bar{A}_{N-1}+\left(B_{N-1}+\bar{B}_{N-1}\right)\left(L_{N-1}^{x o}+\bar{L}_{N-1}^{x o}\right)\right]^{T}\left(P_{N}^{x}+\bar{P}_{N}^{x}\right) \\
& \cdot\left[A_{N-1}+\bar{A}_{N-1}+\left(B_{N-1}+\bar{B}_{N-1}\right)\left(L_{N-1}^{x o}+\bar{L}_{N-1}^{x o}\right)\right] \\
& +\left[C_{N-1}+\bar{C}_{N-1}+\left(D_{N-1}+\bar{D}_{N-1}\right)\left(L_{N-1}^{x o}+\bar{L}_{N-1}^{x o}\right)\right]^{T} P_{N}^{x} \\
& \cdot\left[C_{N-1}+\bar{C}_{N-1}+\left(D_{N-1}+\bar{D}_{N-1}\right)\left(L_{N-1}^{x o}+\bar{L}_{N-1}^{x o}\right)\right] \geq 0
\end{aligned}
$$

After simple calculation, we have

$$
\begin{aligned}
& J_{N-1}^{N}\left(x_{N-1}, y_{N-1}, u^{o}\right) \\
& =\mathbb{E}\left(\left(x_{N-1}-y_{N-1}\right)^{T} Q_{N-1}\left(x_{N-1}-y_{N-1}\right)\right)+\left(\mathbb{E}\left(x_{N-1}-y_{N-1}\right)\right)^{T} \bar{Q}_{N-1} \mathbb{E}\left(x_{N-1}-y_{N-1}\right) \\
& \quad+\mathbb{E}\left(u_{N-1}^{T} R_{N-1} u_{N-1}\right)+\left(\mathbb{E} u_{N-1}\right)^{T} \bar{R}_{N-1} \mathbb{E} u_{N-1}+\mathbb{E}\left(\left(x_{N}-y_{N}\right)^{T} Q_{N}\left(x_{N}-y_{N}\right)\right) \\
& \quad+\left(\mathbb{E}\left(x_{N}-y_{N}\right)\right)^{T} \bar{Q}_{N} \mathbb{E}\left(x_{N}-y_{N}\right) \\
& =\mathbb{E}\left(x_{N-1}^{T} P_{N-1}^{x} x_{N-1}\right)+\left(\mathbb{E} x_{N-1}\right)^{T} \bar{P}_{N-1}^{x} \mathbb{E} x_{N-1}+2 \mathbb{E}\left(y_{N-1}^{T} P_{N-1}^{x y} x_{N-1}\right) \\
& \quad+2\left(\mathbb{E} y_{N-1}\right)^{T} \bar{P}_{N-1}^{x y} \mathbb{E} x_{N-1}+\mathbb{E}\left(y_{N-1}^{T} P_{N-1}^{y} y_{N-1}\right)+\left(\mathbb{E} y_{N-1}\right)^{T} \bar{P}_{N-1}^{y} \mathbb{E} y_{N-1} .
\end{aligned}
$$

We can easily induce that $P_{k}^{x}, P_{k}^{x}+\bar{P}_{k}^{x} \geq 0$. Note that

$$
\begin{aligned}
& J_{k}^{N}\left(x_{k}, y_{k},\left.u^{o}\right|_{\{k, k+1, \cdots, N-1\}}\right) \\
& =\mathbb{E}\left(\left(x_{k}-y_{k}\right)^{T} Q_{k}\left(x_{k}-y_{k}\right)\right)+\left(u_{k}^{o}\right)^{T} R_{k} u_{k}^{o}+\mathbb{E}\left(x_{k}-y_{k}\right)^{T} \bar{Q}_{k} \mathbb{E}\left(x_{k}-y_{k}\right) \\
& \quad+\left(\mathbb{E} u_{k}^{o}\right)^{T} \bar{R}_{k} \mathbb{E} u_{k}^{o}+J_{k+1}^{N}\left(x_{k+1}, y_{k+1},\left.u^{o}\right|_{\{k+1, k+2, \cdots, N-1\}}\right) .
\end{aligned}
$$

Proof of Lemma 4.2

We now reformulate equations (24) and (25) in terms of $\mathbb{E}, I-\mathbb{E}$ as follows

$$
\left\{\begin{array}{l}
\mathcal{A}_{k} z=\left[A_{k}(I-\mathbb{E})+\left(A_{k}+\bar{A}_{k}\right) \mathbb{E}\right] z \\
\mathcal{C}_{k} z=\left[C_{k}(I-\mathbb{E})+\left(C_{k}+\bar{C}_{k}\right) \mathbb{E}\right] z \\
\mathcal{F}_{k} z=\left[F_{k}(I-\mathbb{E})+\left(F_{k}+\bar{F}_{k}\right) \mathbb{E}\right] z \\
\mathcal{G}_{k} z=\left[G_{k}(I-\mathbb{E})+\left(G_{k}+\bar{G}_{k}\right) \mathbb{E}\right] z \\
\mathcal{B}_{k} u=\left[B_{k}(I-\mathbb{E})+\left(B_{k}+\bar{B}_{k}\right) \mathbb{E}\right] u \\
\mathcal{D}_{k} u=\left[D_{k}(I-\mathbb{E})+\left(D_{k}+\bar{D}_{k}\right) \mathbb{E}\right] u,
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\mathcal{Q}_{k} z=\left[\left(I-\mathbb{E}^{*}\right) Q_{k}(I-\mathbb{E})+\mathbb{E}^{*}\left(Q_{k}+\bar{Q}_{k}\right) \mathbb{E}\right] z, \\
\mathcal{R}_{k} u=\left[\left(I-\mathbb{E}^{*}\right) R_{k}(I-\mathbb{E})+\mathbb{E}^{*}\left(R_{k}+\bar{R}_{k}\right) \mathbb{E}\right] u .
\end{array}\right.
$$

Obviously, from (24)-(33), we have

$$
\begin{aligned}
\Theta_{2, N-1}= & \mathcal{R}_{N-1}+\mathcal{B}_{N-1}^{T} \mathcal{P}_{N}^{x} \mathcal{B}_{N-1}+\mathcal{D}_{N-1}^{T} \mathcal{P}_{N}^{x} \mathcal{D}_{N-1} \\
= & \left(I-\mathbb{E}^{*}\right)\left[R_{N-1}+B_{N-1}^{T} Q_{N} B_{N-1}+D_{N-1}^{T} Q_{N} D_{N-1}\right](I-\mathbb{E}) \\
& +\mathbb{E}^{*}\left[R_{N-1}+\bar{R}_{N-1}+\left(B_{N-1}+\bar{B}_{N-1}\right)^{T}\left(Q_{N}+\bar{Q}_{N}\right)\left(B_{N-1}+\bar{B}_{N-1}\right)\right. \\
& \left.+\left(D_{N-1}+\bar{D}_{N-1}\right)^{T} Q_{N}\left(D_{N-1}+\bar{D}_{N-1}\right)\right] \mathbb{E} \\
= & \left(I-\mathbb{E}^{*}\right) W_{N-1}^{(1)}(I-\mathbb{E})+\mathbb{E}^{*} W_{N-1}^{(2)} \mathbb{E} .
\end{aligned}
$$

Similarly,

$$
\left\{\begin{array}{l}
\Theta_{1, N-1}=\left(I-\mathbb{E}^{*}\right) H_{N-1}^{(1)}(I-\mathbb{E})+\mathbb{E}^{*} H_{N-1}^{(2)} \mathbb{E}, \tag{56}\\
\Theta_{2, N-1}=\left(I-\mathbb{E}^{*}\right) W_{N-1}^{(1)}(I-\mathbb{E})+\mathbb{E}^{*} W_{N-1}^{(2)} \mathbb{E}, \\
\Theta_{3, N-1}=\left(I-\mathbb{E}^{*}\right) H_{N-1}^{(3)}(I-\mathbb{E})+\mathbb{E}^{*} H_{N-1}^{(4)} \mathbb{E},
\end{array}\right.
$$

and

$$
\left\{\begin{align*}
\Lambda_{1, N-1}= & \left(I-\mathbb{E}^{*}\right)\left(Q_{N-1}+A_{N-1}^{T} Q_{N} A_{N-1}+C_{N-1}^{T} Q_{N} C_{N-1}\right)(I-\mathbb{E}) \tag{57}\\
& +\mathbb{E}^{*}\left[Q_{N-1}+\bar{Q}_{N-1}+\left(A_{N-1}+\bar{A}_{N-1}\right)^{T}\left(Q_{N}+\bar{Q}_{N}\right)\left(A_{N-1}+\bar{A}_{N-1}\right)\right. \\
& \left.+\left(C_{N-1}+\bar{C}_{N-1}\right)^{T} Q_{N}\left(C_{N-1}+\bar{C}_{N-1}\right)\right] \mathbb{E}, \\
\Lambda_{2, N-1}= & \left(I-\mathbb{E}^{*}\right)\left(-Q_{N-1}+F_{N-1}^{T} Q_{N} A_{N-1}+\rho G_{N-1}^{T} Q_{N} C_{N-1}\right)(I-\mathbb{E}) \\
& +\mathbb{E}^{*}\left[-Q_{N-1}-\bar{Q}_{N-1}+\left(F_{N-1}+\bar{F}_{N-1}\right)^{T}\left(Q_{N}+\bar{Q}_{N}\right)\left(A_{N-1}+\bar{A}_{N-1}\right)\right. \\
& \left.+\rho\left(G_{N-1}+\bar{G}_{N-1}\right)^{T} Q_{N}\left(C_{N-1}+\bar{C}_{N-1}\right)\right] \mathbb{E}, \\
\Lambda_{3, N-1}= & \left(I-\mathbb{E}^{*}\right)\left(Q_{N-1}+F_{N-1}^{T} Q_{N} F_{N-1}+G_{N-1}^{T} Q_{N} G_{N-1}\right)(I-\mathbb{E}) \\
& +\mathbb{E}^{*}\left[Q_{N-1}+\bar{Q}_{N-1}+\left(F_{N-1}+\bar{F}_{N-1}\right)^{T}\left(Q_{N}+\bar{Q}_{N}\right)\left(F_{N-1}+\bar{F}_{N-1}\right)\right. \\
& \left.+\left(G_{N-1}+\bar{G}_{N-1}\right)^{T} Q_{N}\left(G_{N-1}+\bar{G}_{N-1}\right)\right] \mathbb{E} .
\end{align*}\right.
$$

To proceed, we need $\Theta_{2, N-1}^{-1}$. Under condition (38), $\mathcal{P}_{N}^{x} \geq 0$ and

$$
\begin{align*}
& \left\langle\mathcal{R}_{N-1} u_{N-1}, u_{N-1}\right\rangle \\
& =\mathbb{E}\left(u_{N-1}^{T} R_{N-1} u_{N-1}\right)+\left(\mathbb{E} u_{N-1}\right)^{T} \bar{R}_{N-1} \mathbb{E} u_{N-1} \\
& =\mathbb{E}\left[\left(u_{N-1}-\mathbb{E} u_{N-1}\right)^{T} R_{N-1}\left(u_{N-1}-\mathbb{E} u_{N-1}\right)\right] \\
& \\
& \quad+\left(\mathbb{E} u_{N-1}\right)^{T}\left(R_{N-1}+\bar{R}_{N-1}\right) \mathbb{E} u_{N-1} \tag{58}\\
& \geq \lambda_{1}^{(N-1)} \mathbb{E}\left|u_{N-1}-\mathbb{E} u_{N-1}\right|_{m}^{2}+\lambda_{2}^{(N-1)}\left|\mathbb{E} u_{N-1}\right|_{m}^{2} \\
& =\lambda_{1}^{(N-1)}\left(\mathbb{E}\left|u_{N-1}\right|_{m}^{2}-\left|\mathbb{E} u_{N-1}\right|_{m}^{2}\right)+\lambda_{2}^{(N-1)}\left|\mathbb{E} u_{N-1}\right|_{m}^{2} \\
& \geq \lambda^{(N-1)}\left(\mathbb{E}\left|u_{N-1}\right|_{m}^{2}-\left|\mathbb{E} u_{N-1}\right|_{m}^{2}+\left|\mathbb{E} u_{N-1}\right|_{m}^{2}\right) \\
& = \\
& \lambda^{(N-1)}\left\|u_{N-1}\right\|_{m}^{2} .
\end{align*}
$$

Here $|\cdot|_{m}$ denotes the norm in $\mathbb{R}^{m} ; \lambda_{1}^{(N-1)}, \lambda_{2}^{(N-1)}$ are the smallest eigenvalues of matrices R_{N-1} and $R_{N-1}+\bar{R}_{N-1}$, respectively, and $\lambda^{(N-1)}=\min \left\{l_{1}^{(N-1)}, \lambda_{2}^{(N-1)}\right\}$; $\|\cdot\|_{m}$ is the norm induced by inner product in \mathcal{U}_{N-1}. Hence, $\Theta_{2, N-1}$ must be positive definite and self-adjoint. So far, (35)-(37) are established. Furthermore, the technique of operator pseudo-inverse is used to compute $\Theta_{2, N-1}^{-1}$ (Beutler, 1965; Elliott, Li \& Ni, 2013). Clearly, $(I-\mathbb{E})(I-\mathbb{E})^{\dagger}=\left(\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right), \mathbb{E}^{\dagger}=\left(\begin{array}{ll}0 & 0 \\ 0 & I\end{array}\right),(I-\mathbb{E})(I-\mathbb{E})^{\dagger}+\mathbb{E}^{\dagger}=I$ and $\mathbb{E}(I-\mathbb{E})^{\dagger}=0,(I-\mathbb{E}) \mathbb{E}^{\dagger}=0$. From (56) and (57), we get

$$
\begin{aligned}
\Theta_{2, N-1}^{-1} & =\left(\mathcal{R}_{N-1}+\mathcal{B}_{N-1}^{T} \mathcal{P}_{N}^{x} \mathcal{B}_{N-1}+\mathcal{D}_{N-1}^{T} \mathcal{P}_{N}^{x} \mathcal{D}_{N-1}\right)^{-1} \\
& =(I-\mathbb{E})^{\dagger}\left(W_{N-1}^{(1)}\right)^{-1}\left(I-\mathbb{E}^{*}\right)^{\dagger}+\mathbb{E}^{\dagger}\left(W_{N-1}^{(2)}\right)^{-1}\left(\mathbb{E}^{*}\right)^{\dagger} .
\end{aligned}
$$

In fact, we have

$$
\begin{aligned}
& {\left[\left(I-\mathbb{E}^{*}\right) W_{N-1}^{(1)}(I-\mathbb{E})+\mathbb{E}^{*} W_{N-1}^{(2)} \mathbb{E}\right]\left[(I-\mathbb{E})^{\dagger}\left(W_{N-1}^{(1)}\right)^{-1}\left(I-\mathbb{E}^{*}\right)^{\dagger}+\mathbb{E}^{\dagger}\left(W_{N-1}^{(2)}\right)^{-1}\left(\mathbb{E}^{*}\right)^{\dagger}\right]} \\
& =\left(I-\mathbb{E}^{*}\right)(I-\mathbb{E})(I-\mathbb{E})^{\dagger}\left(I-\mathbb{E}^{*}\right)^{\dagger}+\mathbb{E}^{*} \mathbb{E} \mathbb{E}^{\dagger}\left(\mathbb{E}^{*}\right)^{\dagger} \\
& =I .
\end{aligned}
$$

Hence, by simple calculation, we get (39). And we can easily derive that \mathcal{P}_{N-1}^{x} is positive definite.

Proof of Theorem 4.3

Suppose that $\mathcal{P}_{k+1}^{x} \geq 0$. By combining (28)-(30), we get

$$
\begin{aligned}
\left\langle\mathcal{P}_{k+1}^{x} x_{k+1}, x_{k+1}\right\rangle= & \left\langle\mathcal{P}_{k+1}^{x}\left(\mathcal{A}_{k} x_{k}+\mathcal{B}_{k} u_{k}\right),\left(\mathcal{A}_{k} x_{k}+\mathcal{B}_{k} u_{k}\right)\right\rangle \\
& +\left\langle\mathcal{P}_{k+1}^{x}\left(\mathcal{C}_{k} x_{k}+\mathcal{D}_{k} u_{k}\right),\left(\mathcal{C}_{k} x_{k}+\mathcal{D}_{k} u_{k}\right)\right\rangle \\
\left\langle\mathcal{P}_{k+1}^{x y} x_{k+1}, y_{k+1}\right\rangle= & \left\langle\mathcal{P}_{k+1}^{x y}\left(\mathcal{A}_{k} x_{k}+\mathcal{B}_{k} u_{k}\right), \mathcal{F}_{k} y_{k}\right\rangle \\
& +\rho\left\langle\mathcal{P}_{k+1}^{x y}\left(\mathcal{C}_{k} x_{k}+\mathcal{D}_{k} u_{k}\right), \mathcal{G}_{k} y_{k}\right\rangle \\
\left\langle\mathcal{P}_{k+1}^{y} y_{k+1}, y_{k+1}\right\rangle= & \left\langle\mathcal{P}_{k+1}^{y} \mathcal{F}_{k} y_{k}, \mathcal{F}_{k} y_{k}\right\rangle+\left\langle\mathcal{P}_{k+1}^{y} \mathcal{G}_{k} y_{k}, \mathcal{G}_{k} y_{k},\right\rangle .
\end{aligned}
$$

We may isolate the following term from (26) in terms of k :

$$
\begin{aligned}
& \left\langle\mathcal{Q}_{k} x_{k}, x_{k}\right\rangle-2\left\langle\mathcal{Q}_{k} x_{k}, y_{k}\right\rangle+\left\langle\mathcal{Q}_{k} y_{k}, y_{k}\right\rangle+\left\langle\mathcal{R}_{k} u_{k}, u_{k}\right\rangle \\
& \quad+\left\langle\mathcal{P}_{k+1}^{x} x_{k+1}, x_{k+1}\right\rangle-2\left\langle\mathcal{P}_{k+1}^{x y} x_{k+1}, y_{k+1}\right\rangle+\left\langle\mathcal{P}_{k+1}^{y} y_{k+1}, y_{k+1}\right\rangle \\
& = \\
& 2\left\langle\Theta_{1, k} u_{k}, x_{k}\right\rangle+\left\langle\Theta_{2, k} u_{k}, u_{k}\right\rangle+2\left\langle\Theta_{3, k} u_{k}, y_{k}\right\rangle+\left\langle\Lambda_{1, k} x_{k}, x_{k}\right\rangle+2\left\langle\Lambda_{2, k} x_{k}, y_{k}\right\rangle+\left\langle\Lambda_{3, k} y_{k}, y_{k}\right\rangle \\
& = \\
& \left\langle\left(\Lambda_{1, k}-\Theta_{1, k} \Theta_{2, k}^{-1} \Theta_{1, k}^{*}\right) x_{k}, x_{k}\right\rangle+2\left\langle\left(\Lambda_{2, k}-\Theta_{3, k} \Theta_{2, k}^{-1} \Theta_{1, k}^{*}\right) x_{k}, y_{k}\right\rangle+\left\langle\left(\Lambda_{3, k}-\Theta_{3, k} \Theta_{2, k}^{-1} \Theta_{3, k}^{*}\right) y_{k}, y_{k}\right\rangle \\
& \quad+\left\langle\Theta_{2, k}\left(u_{k}+\Theta_{2, k}^{-1} \Theta_{1, k}^{*} x_{k}+\Theta_{2, k}^{-1} \Theta_{3, k}^{*} y_{k}\right),\left(u_{k}+\Theta_{2, k}^{-1} \Theta_{1, k}^{*} x_{k}+\Theta_{2, k}^{-1} \Theta_{3, k}^{*} y_{k}\right)\right\rangle
\end{aligned}
$$

where

$$
\left\{\begin{aligned}
\Theta_{1, k} & =\mathcal{A}_{k}^{T} \mathcal{P}_{k+1}^{x} \mathcal{B}_{k}+\mathcal{C}_{k}^{T} \mathcal{P}_{k+1}^{x} \mathcal{D}_{k} \\
& =\left(I-\mathbb{E}^{*}\right) H_{k}^{(1)}(I-\mathbb{E})+\mathbb{E}^{*} H_{k}^{(2)} \mathbb{E}, \\
\Theta_{2, k} & =\mathcal{R}_{k}+\mathcal{B}_{k}^{T} \mathcal{P}_{k+1}^{x} \mathcal{B}_{k}+\mathcal{D}_{k}^{T} \mathcal{P}_{k+1}^{x} \mathcal{D}_{k} \\
& =\left(I-\mathbb{E}^{*}\right) W_{k}^{(1)}(I-\mathbb{E})+\mathbb{E}^{*} W_{k}^{(2)} \mathbb{E}, \\
\Theta_{3, k} & =\mathcal{F}_{k}^{T} \mathcal{P}_{k+1}^{x y} \mathcal{B}_{k}+\rho \mathcal{G}_{k}^{T} \mathcal{P}_{k+1}^{x y} \mathcal{D}_{k} \\
& =\left(I-\mathbb{E}^{*}\right) H_{k}^{(3)}(I-\mathbb{E})+\mathbb{E}^{*} H_{k}^{(4)} \mathbb{E},
\end{aligned}\right.
$$

$$
\left\{\begin{aligned}
\Lambda_{1, k}= & \mathcal{Q}_{k}+\mathcal{A}_{k}^{T} \mathcal{P}_{k+1}^{x} \mathcal{A}_{k}+\mathcal{C}_{k}^{T} \mathcal{P}_{k+1}^{x} \mathcal{C}_{k} \\
= & \left(I-\mathbb{E}^{*}\right)\left(Q_{k}+A_{k}^{T} S_{k+1}^{x} A_{k}+C_{k}^{T} S_{k+1}^{x} C_{k}\right)(I-\mathbb{E}) \\
& +\mathbb{E}^{*}\left[Q_{k}+\bar{Q}_{k}+\left(A_{k}+\bar{A}_{k}\right)^{T} T_{k+1}^{x}\left(A_{k}+\bar{A}_{k}\right)\right. \\
& \left.+\left(C_{k}+\bar{C}_{k}\right)^{T} S_{k+1}^{x}\left(C_{k}+\bar{C}_{k}\right)\right] \mathbb{E}, \\
\Lambda_{2, k}= & -\mathcal{Q}_{k}+\mathcal{F}_{k}^{T} \mathcal{P}_{k+1}^{x y} \mathcal{A}_{k}+\rho \mathcal{G}_{k}^{T} \mathcal{P}_{k+1}^{x y} \mathcal{C}_{k} \\
= & \left(I-\mathbb{E}^{*}\right)\left(-Q_{k}+F_{k}^{T} S_{k+1}^{x y} A_{k}+\rho G_{k}^{T} S_{k+1}^{x y} C_{k}\right)(I-\mathbb{E}) \\
& +\mathbb{E}^{*}\left[-Q_{k}-\bar{Q}_{k}+\left(F_{k}+\bar{F}_{k}\right)^{T} T_{k+1}^{x y}\left(A_{k}+\bar{A}_{k}\right)\right. \\
& \left.+\rho\left(G_{k}+\bar{G}_{k}\right)^{T} S_{k+1}^{x y}\left(C_{k}+\bar{C}_{k}\right)\right] \mathbb{E}, \\
\Lambda_{3, k}= & \mathcal{Q}_{k}+\mathcal{F}_{k}^{T} \mathcal{P}_{k+1}^{y} \mathcal{F}_{k}+\mathcal{G}_{k}^{T} \mathcal{P}_{k+1}^{y} \mathcal{G}_{k} \\
= & \left(I-\mathbb{E}^{*}\right)\left(Q_{k}+F_{k}^{T} S_{k+1}^{y} F_{k}+G_{k}^{T} S_{k+1}^{y} G_{k}\right)(I-\mathbb{E}) \\
& +\mathbb{E}^{*}\left[Q_{k}+\bar{Q}_{k}+\left(F_{k}+\bar{F}_{k}\right)^{T} T_{k+1}^{y}\left(F_{k}+\bar{F}_{k}\right)\right. \\
& \left.+\left(G_{k}+\bar{G}_{k}\right)^{T} S_{k+1}^{y}\left(G_{k}+\bar{G}_{k}\right)\right] \mathbb{E} .
\end{aligned}\right.
$$

Similar to (58), we have a positive-definite and self-adjoint $\Theta_{2, k}$ under condition (40) and hence

$$
\Theta_{2, k}^{-1}=(I-\mathbb{E})^{\dagger}\left(W_{k}^{(1)}\right)^{-1}\left(I-\mathbb{E}^{*}\right)^{\dagger}+\mathbb{E}^{\dagger}\left(W_{k}^{(2)}\right)^{-1}\left(\mathbb{E}^{*}\right)^{\dagger} .
$$

Let

$$
\left\{\begin{array}{l}
\mathcal{P}_{k}^{x}=\Lambda_{1, k}-\Theta_{1, k} \Theta_{2, k}^{-1} \Theta_{1, k}^{*}=\left(I-\mathbb{E}^{*}\right) S_{k}^{x}(I-\mathbb{E})+\mathbb{E}^{*} T_{k}^{x} \mathbb{E}, \\
\mathcal{P}_{k}^{x y}=\Lambda_{2, k}-\Theta_{3, k} \Theta_{2, k}^{-1} \Theta_{1, k}^{*}=\left(I-\mathbb{E}^{*}\right) S_{k}^{x y}(I-\mathbb{E})+\mathbb{E}^{*} T_{k}^{x y} \mathbb{E}, \\
\mathcal{P}_{k}^{y}=\Lambda_{3, k}-\Theta_{3, k} \Theta_{2, k}^{-1} \Theta_{3, k}^{*}=\left(I-\mathbb{E}^{*}\right) S_{k}^{y}(I-\mathbb{E})+\mathbb{E}^{*} T_{k}^{y} \mathbb{E} .
\end{array}\right.
$$

Then, in a backward recursion,

$$
\begin{aligned}
& J_{k}^{N}\left(x_{k}, y_{k},\left.u^{o}\right|_{\{k, k+1, \cdots, N-1\}}\right)=\left\langle\mathcal{P}_{k}^{x} x_{k}, x_{k}\right\rangle+2\left\langle\mathcal{P}_{k}^{x y} x_{k}, y_{k}\right\rangle+\left\langle\mathcal{P}_{k}^{y} x_{k}, x_{k}\right\rangle \\
& +\sum_{i=k}^{N-1}\left\langle\Theta_{2, i}\left(u_{i}+\Theta_{2, i}^{-1} \Theta_{1, i}^{*} x_{i}+\Theta_{2, i}^{-1} \Theta_{3, i}^{*} y_{i}\right),\left(u_{i}+\Theta_{2, i}^{-1} \Theta_{1, i}^{*} x_{i}+\Theta_{2, i}^{-1} \Theta_{3, i}^{*} y_{i}\right)\right\rangle .
\end{aligned}
$$

We can prove $\mathcal{P}_{k}^{x} \geq 0$ by induction. Consequently,

$$
\begin{aligned}
& J\left(\zeta^{x}, \zeta^{y}, u^{o}\right)=\left\langle\mathcal{P}_{0}^{x} x_{0}, x_{0}\right\rangle+2\left\langle\mathcal{P}_{0}^{x y} x_{0}, y_{0}\right\rangle+\left\langle\mathcal{P}_{0}^{y} x_{0}, x_{0}\right\rangle \\
& +\sum_{k=0}^{N-1}\left\langle\Theta_{2, k}\left(u_{k}+\Theta_{2, k}^{-1} \Theta_{1, k}^{*} x_{k}+\Theta_{2, k}^{-1} \Theta_{3, k}^{*} y_{k}\right),\left(u_{k}+\Theta_{2, k}^{-1} \Theta_{1, k}^{*} x_{k}+\Theta_{2, k}^{-1} \Theta_{3, k}^{*} y_{k}\right)\right\rangle,
\end{aligned}
$$

and the optimal control

$$
\begin{aligned}
u_{k}^{*}= & -\Theta_{2, k}^{-1} \Theta_{1, k}^{*} x_{k}-\Theta_{2, k}^{-1} \Theta_{3, k}^{*} y_{k} \\
= & -(I-\mathbb{E})^{\dagger}\left(W_{k}^{(1)}\right)^{-1}\left(H_{k}^{(1)}\right)^{T}\left(x_{k}-\mathbb{E} x_{k}\right)-\mathbb{E}^{\dagger}\left(W_{k}^{(2)}\right)^{-1}\left(H_{k}^{(2)}\right)^{T} \mathbb{E} x_{k} \\
& -(I-\mathbb{E})^{\dagger}\left(W_{k}^{(1)}\right)^{-1}\left(H_{k}^{(3)}\right)^{T}\left(y_{k}-\mathbb{E} y_{k}\right)-\mathbb{E}^{\dagger}\left(W_{k}^{(2)}\right)^{-1}\left(H_{k}^{(4)}\right)^{T} \mathbb{E} y_{k}, \quad k \in \mathbb{N},
\end{aligned}
$$

which is (8) by computing $u_{k}^{*}=(I+\mathbb{E}) u_{k}^{*}+\mathbb{E} u_{k}^{*}$.

