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Abstract: In this paper, we study the solvability of anticipated backward stochastic differential

equations (BSDEs, for short) with quadratic growth for one-dimensional case and multi-dimensional

case. In these BSDEs, the generator f(·), which is of quadratic growth in Z·, involves not only the

present information of solution (Y·, Z·) but also its future one. The existence and uniqueness of

such BSDEs, under different conditions, are derived for several terminal situations, including small

terminal value, bounded terminal value and unbounded terminal value.
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1 Introduction

Let (Ω,F ,F,P) be a complete filtered probability space on which a d-dimensional standard Brown-

ian motion {Wt ; 0 6 t <∞} is defined, where F = {Ft}t>0 is the natural filtration of W augmented

by all the P-null sets in F . Let T > 0 be a time horizon, and K > 0 be a constant. Consider

the following backward stochastic differential equations (BSDEs, for short) over a finite horizon

[0, T +K]:

(1.1)

 −dYt = f
(
t, Yt, Zt, Yt+δ(t), Zt+ζ(t)

)
dt− ZtdWt, t ∈ [0, T ];

Yt = ξt, Zt = ηt, t ∈ [T, T +K],

where δ(·) and ζ(·) are two deterministic R+-valued continuous functions defined on [0, T ], and ξ·

and η· are some given processes. Such an equation is called an anticipated backward stochastic
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differential equation (ABSDE, for short) that appears as an adjoint process when dealing with op-

timal control problems under delayed systems. The unknown processes, called an adapted solution

of (1.1), are the pair (Y·, Z·) of F-adapted processes taking values in Rm × Rm×d. We call ξ· the

terminal value and f(·) the generator of the corresponding BSDE (1.1). For convenience, hereafter,

by a quadratic BSDE, we mean that in BSDE (1.1), the generator f(·) grows in Z· quadratically;

if f(·) grows in Z· faster than quadratic, we call it a super-quadratic BSDE. Meanwhile, we call ξ·

the small terminal value, if there exists some constant ε > 0 such that ‖ξ‖∞ 6 ε; we call ξ· the

bounded terminal value, if ξ· ∈ L∞F (T, T +K;Rm); and we call ξ· the unbounded terminal value, if

ξ· ∈ S2
F(T, T +K;Rm) (see the definition of the norm and spaces in Section 2).

Recently, as a natural extension of BSDEs (see below for precise description), Peng and Yang

[22] studied the equation (1.1) and established the existence and uniqueness of adapted solutions

under the condition that f(·) is uniformly Lipschitz in the last four arguments. Unfortunately,

the comparison with Lipschitz generator fails to hold for the general ABSDE (1.1) (see the counter

Example 5.3 of [22]). Since then, by regarding ABSDE as a new duality type of stochastic differential

delay equations (SDDEs, for short), Chen and Wu [6] derived the maximum principle for stochastic

optimal control problem with delay. Along this line of research, Huang and Shi [16] developed the

maximum principle for optimal control of fully coupled forward-backward stochastic differential

equations with delay. Chen, Wu and Yu [7] discussed a delayed stochastic linear-quadratic (LQ,

for short) control problem and showed that the Riccati equation of this problem is a quadratic

anticipated (ordinary) differential equation, which is a special form of quadratic ABSDE (1.1).

Recently, Sun, Xiong and Yong [24] considered the stochastic LQ optimal control problems with

random coefficients using the stochastic Riccati equation, which is, in fact, the quadratic BSDEs.

In theory, Wu, Wang and Ren [26] established the existence and uniqueness of ABSDE (1.1) with

non-Lipschitz coefficients, Wen and Shi [27] and Douissi, Wen and Shi [12] analyzed the solvability

of ABSDE driven by a fractional Brownian motion and its applications in optimal control problem.

Cheridito and Nam [10] studied a class of anticipated BSDEs when the generator is a path-functional

of the solution under Lipschitz condition.

Now, let us recall the following classical BSDE:

(1.2)

−dYt = f(t, Yt, Zt)dt− ZtdWt, t ∈ [0, T ];

YT = ξT .

When (Y·, Z·) 7→ f(·, Y·, Z·) is linear, such an equation was initially formulated by Bismut [1] in

the context of maximum principle for stochastic optimal controls. Pardoux and Peng [21] firstly

investigated the general nonlinear case of (1.2). Since then, BSDEs attract many researchers’

interest. It stimulates some significant developments in many fields, such as partial differential

equation (see Pardoux and Peng [20]), stochastic optimal control (see Yong and Zhou [30]) and

mathematical finance (see El Karoui, Peng and Quenez [13]), to mention a few. Meanwhile, many

efforts have been made to relax the assumptions on the generator f(·) of BSDE (1.2) for the existence

and/or uniqueness of adapted solutions. For example, Lepeltier and San Martin [19] proved the

existence of adapted solutions of one-dimensional BSDE when the generator f(·) is continuous and
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of linear growth in (Y·, Z·) (without Lipschitz condition). Kobylanski [18] established the well-

posedness of one-dimensional BSDE (1.2) with f(·) growing quadratically in Z· and with bounded

terminal condition. Recently, Tevzadze [25] revisited the existence and uniqueness of quadratic

BSDEs by means of a fixed point argument. Briand and Hu [4, 5] proved the existence and

uniqueness of quadratic BSDEs with unbounded terminal value. Delbaen, Hu and Bao [11] further

studied super-quadratic BSDEs. Some other recent developments of quadratic BSDEs can be found

in Bahlali, Eddahbi and Ouknine [2], Barrieu and El Karoui [3], Cheridito and Nam [8, 9], Hibon,

Hu and Tang [15], Hu and Tang [17], Richou [23], Wen and Yong [28], Xing and Zitkovic [32], and

references cited therein.

As an important development of BSDEs, the ABSDEs with quadratic growth, also called the

quadratic ABSDEs, have important applications in stochastic optimal control problems, especially

in delayed stochastic LQ optimal control problems with random coefficients (see [7, 24]). To our

best knowledge, only Fujii and Takahashi [14] considered quadratic ABSDEs, and study the exis-

tence and uniqueness of a class of one-dimensional quadratic ABSDE when the generator f(·) is

independent of the anticipated term Z·+ζ(·). However, for the general ABSDE (1.1) with quadratic

growth, there does not exist any fundamental result yet. In this paper, we focus on this problem

and study the solvability of ABSDE (1.1) with quadratic growth among one-dimensional case and

multi-dimensional case. Under different conditions, with different methods, we establish the solv-

ability of quadratic ABSDEs with small terminal value, bounded terminal value and unbounded

terminal value, respectively. To tackle the difficulty of lack of comparison principle, we use the

John-Nirenberg inequality for BMO-martingale to obtain the solvability of quadratic ABSDE.

Firstly, for multi-dimensional ABSDE (1.1), we discuss the case when f(·) is of quadratic growth

in the last four arguments (Y·, Z·, Y·+δ(·), Z·+ζ(·)) and ξ· has small terminal value. In this case, we

obtain the existence and uniqueness of adapted solutions. Secondly, for one-dimensional ABSDE

(1.1), we study the case when f(·) is of quadratic growth in Z· and superlinear growth in Z·+ζ(·),

and ξ· is a bounded random variable. For such a case, we get the existence and uniqueness of local

adapted solutions. In addition, if f(·) is bounded in Z·+ζ(·), we derive the existence and uniqueness

of global adapted solutions. Thirdly, when ξ· is an unbounded random variable, we study the

solvability of one-dimensional ABSDE (1.1) with quadratic growth. The case when the generator

f(·) is of bounded growth in (Y·, Y·+δ(·), Z·+ζ(·)) and of quadratic growth in Z· is considered, and

the existence and uniqueness of adapted solutions for this situation obtained. We have borrowed

some ideas from Tevzadze [25] in Section 3, Hu and Tang [17] in Section 4, and Bahlali et al.

[2] in Section 5. However, because of the presence of the anticipated terms in the ABSDEs with

quadratic growth, some new ideas and technics have been introduced in these sections respectively,

and related examples are given to illustrate our results.

The rest of the paper is organized as follows. In Section 2, we present some preliminaries

and some spaces which will be used in the following sections. In Section 3, the existence and

uniqueness of quadratic ABSDEs with small terminal value are established. The solvability of

quadratic ABSDEs with bounded terminal value is obtained in Section 4, and we get the existence

and uniqueness of quadratic ABSDEs with unbounded terminal value in Section 5.
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2 Preliminaries

Throughout this paper, and recall from the previous section, let (Ω,F ,F,P) be a complete filtered

probability space on which a d-dimensional standard Brownian motion {Wt ; 0 6 t <∞} is defined,

where F = {Ft}t>0 is the natural filtration of W· augmented by all the P-null sets in F . The notion

Rm×d denotes the space of the m × d-matrix C with Euclidean norm |C| =
√
tr(CC∗). Next, for

any t ∈ [0, T ] and Euclidean space H, we introduce the following spaces:

L2
Ft(Ω;H) =

{
θ : Ω→ H

∣∣ θ is Ft-measurable, ‖θ‖2 ,
(
E|θ|2

) 1
2 <∞

}
,

L∞Ft(Ω;H) =
{
θ : Ω→ H

∣∣ θ is Ft-measurable, ‖θ‖∞ , esssup
ω∈Ω

|θ(ω)| <∞
}
,

L2
F(t, T ;H)=

{
X : [t, T ]×Ω→ H

∣∣ X· is F-progressively measurable,

‖X·‖L2
F(t,T ) ,

(
E
∫ T

t
|Xs|2ds

) 1
2
<∞

}
,

L∞F (t, T ;H) =
{
X : [t, T ]× Ω→ H

∣∣ X· is F-progressively measurable,

‖X·‖L∞F (t,T ) , esssup
(s,ω)∈[t,T ]×Ω

|Xs(ω)| <∞
}
,

S2
F(t, T ;H) =

{
X : [t, T ]× Ω→ H

∣∣ X· is F-adapted, continuous,

‖X·‖S2
F(t,T ) ,

{
E
(

sup
s∈[t,T ]

|Xs|2
)} 1

2
<∞

}
.

Let M = (Mt,Ft) be a uniformly integrable martingale with M0 = 0, and for p ∈ [1,∞), we set

‖M‖BMOp(P) , sup
τ

∥∥∥∥Eτ[(〈M〉∞τ ) p2 ] 1
p

∥∥∥∥
∞
,

where the supremum is taken over all F-stopping times τ , and Eτ is the conditional expectation

given Fτ . The class
{
M : ‖M‖BMOp(P) < ∞

}
is denoted by BMOp(P). Observe that ‖ · ‖BMOp

is a norm on this space and BMOp(P) is a Banach space. In the sequel, we denote BMO(P) the

space of BMO2(P) for simplicity. Next, for any Z· ∈ L2
F(0, T ;H), by Burkholder-Davis-Gundy’s

inequalities, one has

c2Eτ
[( ∫ T

τ
|Zs|2ds

)]
6 Eτ

[
sup
t∈[τ,T ]

∣∣∣ ∫ t

τ
ZsdWs

∣∣∣2] 6 C2Eτ
[( ∫ T

τ
|Zs|2ds

)]
,

for some constants c2, C2 > 0. Thus,

c2 sup
τ∈T [t,T ]

∥∥∥Eτ[( ∫ T

τ
|Zs|2ds

)]∥∥∥
∞

6 sup
τ∈T [t,T ]

∥∥∥Eτ[ sup
t∈[τ,T ]

∣∣∣ ∫ t

τ
ZsdWs

∣∣∣2]∥∥∥
∞

6 C2 sup
τ∈T [t,T ]

∥∥∥Eτ[( ∫ T

τ
|Zs|2ds

)]∥∥∥
∞
,

where T [t, T ] denotes the set of all F-stopping times τ valued in [t, T ]. Note that the above could

be infinite. Therefore, we introduce the following:

Z2[t, T ] =
{
Z· ∈ L2

F(t, T ;H)
∣∣∣ ‖Z‖Z2[t,T ] ≡ sup

τ∈T [t,T ]

∥∥∥Eτ[ ∫ T

τ
|Zs|2ds

]∥∥∥ 1
2

∞
<∞

}
.
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Recall that for Z· ∈ Z2[0, T ], the process s 7→
∫ s

0 ZrdWr (denoted by Z ·W ), s ∈ [0, T ], is a BMO-

martingale. Moreover, note that on [0, T ], Z ·W belongs to BMO(P) if and only if Z ∈ Z2[0, T ],

that is,

‖Z ·W‖2BMO(P) ≡ ‖Z‖
2
Z2[0,T ].

Definition 2.1. A pair (Y·, Z·) ∈ S2
F(0, T + K;Rm) × L2

F(0, T + K;Rm×d) is called an adapted

solution of BSDE (1.1), if P-almost surely, it satisfies (1.1). In addition, if (Y·, Z·) ∈ L∞F (0, T +

K;Rm)×Z2[0, T +K], it is called a bounded adapted solution.

Now, we recall the following three propositions, which come from Hu and Tang [17] with some

minor modification. The first one is the existence, uniqueness and a priori estimate for one dimen-

sional quadratic BSDE, and the second and third ones are interesting results concerning BMO-

martingale, which play important roles in our subsequent arguments.

Proposition 2.2. Let f : Ω × [0, T ] × R × Rd→R be an Ft-adapted scalar-valued generator.

Moreover, there exist constants C > 0, α ∈ (0, 1), β > 0 and γ > 0 such that for any t ∈
[0, T ], y, ȳ ∈ R, z, z̄ ∈ Rd, we have

|f(t, y, z)| 6 |gt|+ β|y|+ γ

2
|z|2,

|f(t, y, z)− f(t, ȳ, z̄)| 6 C
(
|y − ȳ|+ (1 + |z|+ |z̄|)|z − z̄|

)
,

where g : Ω× [0, T ]→R is Ft-adapted and |gt| 6 |Ht|1+α such that the stochastic integral H ·W is

a BMO-martingale. Then, for any bounded random variable ξ ∈ L∞FT (Ω;R), the following BSDE

Yt = ξ +

∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdWs, t ∈ [0, T ],

has a unique solution (Y·, Z·) such that Y· is bounded and Z ·W is a BMO-martingale. Moreover,

the following estimate holds,

eγ|Yt| 6 Et
[
eγe

β(T−t)|ξ|+γ
∫ T
t |gs|e

β(s−t)ds
]
, ∀t ∈ [0, T ].

Proposition 2.3. For any p ∈ [1,∞), there is a generic constant Lp > 0 such that for any uniformly

integrable martingale M ,

‖M‖BMOp(P) 6 Lp‖M‖BMO(P).

Proposition 2.4. For K̃ > 0 and any one-dimensional BMO-martingaleN such that ‖N‖BMO(P) 6

K̃. There are constants c1 > 0 and c2 > 0 depending only on K̃ such that for any BMO-martingale

M , we have

(2.1) c1‖M‖BMO(P) 6 ‖M̃‖BMO(P̃)
6 c2‖M‖BMO(P),

where M̃ ,M − 〈M,N〉 and dP̃ , E(N)|∞0 dP.
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3 Multi-dimentional Case: Small Terminal Value

In this section, we study multi-dimensional ABSDEs with quadratic growth and small terminal

value. As showed in the theory of ordinary differential equations (ODEs, for short), the equations

may not have global solutions if its generator f(·) is super-linear with respect to Y·. However, it

should be pointed out that, in case of small bounded value, the generator could be of quadratic

growth with respect to Y· and Z·. In detail, let us consider the following BSDE,

(3.1)

{
−dYt = f(t, Yt, Zt, Yt+δ(t), Zt+ζ(t))dt− ZtdWt, t ∈ [0, T ];

Yt = ξt, Zt = ηt, t ∈ [T, T +K],

where δ(·) and ζ(·) are deterministic R+-valued continuous functions defined on [0, T ] satisfying

the following two items:

(i) There exists a constant K > 0 such that

(3.2) t+ δ(t) 6 T +K; t+ ζ(t) 6 T +K, ∀t ∈ [0, T ].

(ii) There exists a constant L > 0 such that for all nonnegative and integrable h·,

(3.3)

∫ T

t
hs+δ(s)ds 6 L

∫ T+K

t
hsds;

∫ T

t
hs+ζ(s)ds 6 L

∫ T+K

t
hsds, ∀t ∈ [0, T ].

Assume that for all s ∈ [0, T ], f(s, ω, y, z, ξ, η) : Ω × Rm × Rm×d × L2
Fr(Ω;Rm) ×

L2
Fr̄(Ω;Rm×d)→L2

Fs(Ω;Rm), where r, r̄ ∈ [s, T +K], and f(·) satisfies the following condition:

Assumption 3.1. Let C be a positive constant. For all s ∈ [0, T ], y, ȳ ∈ Rm, z, z̄ ∈ Rm×d,
ξ·, ξ̄· ∈ L2

F(s, T + K;Rm), η·, η̄· ∈ L2
F(s, T + K;Rm×d), r, r̄ ∈ [s, T + K], we have f(s, 0, 0, 0, 0) is

bounded, and∣∣f(s, y, z, ξr, ηr̄)− f(s, ȳ, z̄, ξ̄r, η̄r̄)
∣∣ 6 C

(
|y|+ |ȳ|+ |z|+ |z̄|+ Es

[
|ξr|+ |ξ̄r|+ |ηr̄|+ |η̄r̄|

])
·
(
|y − ȳ|+ |z − z̄|+ Es

[
|ξr − ξ̄r|+ |ηr̄ − η̄r̄|

])
.

Assumption 3.2. The given terminal conditions ξ· ∈ L∞F (T, T +K;Rm) and η· ∈ Z2[T, T +K].

Example 3.3. Assumption 3.1 implies that the generator f(·) could be of quadratic growth with

respect to the last four arguments. The following generator

f(s, y, z, ξr, ηr̄) = y2 + z2 + Es
[
ξ2
r + η2

r̄

]
,

∀s ∈ [0, T ], y ∈ Rm, z ∈ Rm×d, ξ· ∈ L2
F(s, T +K;Rm), η· ∈ L2

F(s, T +K;Rm×d), r, r̄ ∈ [s, T +K]

satisfies such an assumption.

Next, we state and prove the main result of this section, which establishes the existence and

uniqueness of BSDE (3.1) with quadratic growth and small terminal value.
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Theorem 3.4. Let Assumptions 3.1 and 3.2 hold. There exists a small ρ > 0 such that when

(3.4) ‖ξ·‖2L∞F (T,T+K) + ‖η·‖2Z2[T,T+K] +

∥∥∥∥∫ T

0
|f(t, 0, 0, 0, 0)|dt

∥∥∥∥2

∞
6 ρ2,

BSDE (3.1) admits a unique adapted solution (Y·, Z·) in Bρ, where

Bρ ,
{

(Y·, Z·) ∈ L∞F (0, T +K;Rm)×Z2[0, T +K]
∣∣∣ ‖Y·‖2L∞F (0,T+K) + ‖Z·‖2Z2[0,T+K] 6 ρ2

}
.

Proof. The proof is divided into two steps.

Step 1. We firstly consider the existence and uniqueness of the following BSDE

(3.5)

 −dYt =
(
f(t, Yt, Zt, Yt+δ(t), Zt+ζ(t))− f(t, 0, 0, 0, 0)

)
dt− ZtdWt, t ∈ [0, T ];

Yt = ξt, Zt = ηt, t ∈ [T, T +K].

In order to solve the above equation, for every (y·, z·) ∈ L∞F (0, T +K;Rm)×Z2[0, T +K], we define

the mapping (Y·, Z·) = Γ(y·, z·) by

(3.6)

 −dYt =
(
f(t, yt, zt, yt+δ(t), zt+ζ(t))− f(t, 0, 0, 0, 0)

)
dt− ZtdWt, t ∈ [0, T ];

Yt = ξt, Zt = ηt, t ∈ [T, T +K].

Since Yt = ξt and Zt = ηt are given when t ∈ [T, T +K], we essentially need to prove the estimate

on [0, T ]. For (3.6), using Itô’s formula to |Y·|2 on [t, T ], we obtain

|Yt|2 +

∫ T

t
|Zr|2dr = |ξT |2 +

∫ T

t
2Yr ·

(
f(r, yr, zr, yr+δ(r), zr+ζ(r))− f(r, 0, 0, 0, 0)

)
dr

−2

∫ T

t
Yr · ZrdWr.

Taking the conditional expectation and using the inequality 2ab 6 1
2a

2 + 2b2, we get

(3.7)

|Yt|2 + Et
∫ T

t
|Zr|2dr

6 ‖ξ·‖2L∞F (T,T+K) + 2‖Y·‖L∞F (0,T )

(
Et
∫ T

t
|f(r, yr, zr, yr+δ(r), zr+ζ(r))− f(r, 0, 0, 0, 0)|dr

)

6 ‖ξ·‖2L∞F (T,T+K) +
1

2
‖Y·‖2L∞F (0,T ) + 2

(
Et
∫ T

t
|f(r, yr, zr, yr+δ(r), zr+ζ(r))− f(r, 0, 0, 0, 0)|dr

)2

.

Since δ(·) and ζ(·) satisfy (i) and (ii), it follows from Assumption 3.1 and Jensen’s inequality that

the last term of (3.7) naturally reduces to

(3.8)

Et
∫ T

t
|f(r, yr, zr, yr+δ(r), zr+ζ(r))− f(r, 0, 0, 0, 0)|dr

6 CEt
∫ T

t

(
|yr|+ |zr|+ Er

[
|yr+δ(r)|+ |zr+ζ(r)|

])2
dr

6 4CEt
∫ T

t

(
|yr|2 + |zr|2 + Er

[
|yr+δ(r)|2 + |zr+ζ(r)|2

])
dr

6 4C(1 + L)Et
∫ T+K

t

(
|yr|2 + |zr|2

)
dr,
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here Et[Er[ · ]] = Et[ · ]. Hence, combining (3.7) and (3.8), we can obtain

1

2
‖Y·‖2L∞F (0,T ) + ‖Z·‖2Z2[0,T ]

6 ‖ξ·‖2L∞F (T,T+K) + 2 esssup
(t,ω)∈[0,T ]×Ω

(
4C(1 + L)Et

∫ T+K

t

(
|yr|2 + |zr|2

)
dr

)2

6 ‖ξ·‖2L∞F (T,T+K) + 64C2(1 + L)2

(
(T +K)2‖y·‖4L∞F (0,T+K) + ‖z·‖4Z2[0,T+K]

)
.

Again, note that Yt = ξt and Zt = ηt when t ∈ [T, T + K]. Then, it follows from the elementary

inequality a2 + b2 6 (|a|+ |b|)2 that

‖Y·‖2L∞F (0,T+K) + ‖Z·‖2Z2[0,T+K]

6 4
(
‖ξ·‖2L∞F (T,T+K) + ‖η·‖2Z2[T,T+K]

)
+ β2

(
‖y·‖2L∞F (0,T+K) + ‖z·‖2Z2[0,T+K]

)2
,

where β , 16C(1 + L)
√

(T +K)2 + 1. Now, we can pick R such that

4
(
‖ξ·‖2L∞F (T,T+K) + ‖η·‖2Z2[T,T+K]

)
+ β2R4 6 R2.

This inequality is solvable if and only if

(3.9) ‖ξ·‖2L∞F (T,T+K) + ‖η·‖2Z2[T,T+K] 6
1

16β2
.

For example, we can take

R =

√
8
(
‖ξ·‖2L∞F (T,T+K) + ‖η·‖2Z2[T,T+K]

)
in order to satisfy this quadratic inequality. Therefore the ball

BR ,
{

(Y·, Z·) ∈ L∞F (0, T +K;Rm)×Z2[0, T +K]
∣∣∣ ‖Y·‖2L∞F (0,T+K) + ‖Z·‖2Z2[0,T+K] 6 R2

}
is such that Γ(BR) ⊂ BR.

Step 2. We prove that the mapping Γ is a contraction on BR.

For every (y·, z·), (ȳ·, z̄·) ∈ BR, let (Y·, Z·) = Γ(y·, z·) and (Ȳ·, Z̄·) = Γ(ȳ·, z̄·). For simplicity of

presentation, denote

ŷ· = y· − ȳ·, ẑ· = z· − z̄·, Ŷ· = Y· − Ȳ·, Ŷ· = Y· − Ȳ·.
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Similar to the above discussion, and noting that Ŷt = 0 and Ẑt = 0 when t ∈ [T, T +K], we get

1

2
‖Ŷ·‖2L∞F (0,T+K) + ‖Ẑ·‖2Z2[0,T+K] =

1

2
‖Ŷ·‖2L∞F (0,T ) + ‖Ẑ·‖2Z2[0,T ]

6 2 esssup
(t,ω)∈[0,T ]×Ω

[
Et
∫ T

t

∣∣∣f(r, yr, zr, yr+δ(r), zr+ζ(r))− f(r, ȳr, z̄r, ȳr+δ(r), z̄r+ζ(r))
∣∣∣dr]2

6 2C2 esssup
(t,ω)∈[0,T ]×Ω

[
Et
∫ T

t

(
|yr|+ |zr|+ |ȳr|+ |z̄r|+ Er

[
|yr+δ(r)|+ |zr+ζ(r)|+ |ȳr+δ(r)|+ |z̄r+ζ(r)|

])
·
(
|ŷr|+ |ẑr|+ Er

[
|ŷr+δ(r)|+ |ẑr+ζ(r)|

])
dr

]2

6 2C2 esssup
(t,ω)∈[0,T ]×Ω

[
Et
∫ T

t

(
|yr|+ |zr|+ |ȳr|+ |z̄r|+ Er

[
|yr+δ(r)|+ |zr+ζ(r)|+ |ȳr+δ(r)|+ |z̄r+ζ(r)|

])2
dr

· Et
∫ T

t

(
|ŷr|+ |ẑr|+ Er

[
|ŷr+δ(r)|+ |ẑr+ζ(r)|

])2
dr

]
6 64C2(1 + L)2 esssup

(t,ω)∈[0,T ]×Ω

[
Et
∫ T+K

t

(
|yr|2 + |zr|2 + |ȳr|2 + |z̄r|2

)
dr · Et

∫ T+K

t

(
|ŷr|2 + |ẑr|2

)
dr

]
6 64C2(1 + L)2[(T +K)2 + 1]

[
‖y·‖2L∞F (0,T+K) + ‖z·‖2Z2[0,T+K] + ‖ȳ·‖2L∞F (0,T+K) + ‖z̄·‖2Z2[0,T+K]

]
×
(
‖ŷ·‖2L∞F (0,T+K) + ‖ẑ·‖2Z2[0,T+K]

)
.

Noting that

‖y·‖2L∞F (0,T+K) + ‖z·‖2Z2[0,T+K] 6 R2, ‖ȳ·‖2L∞F (0,T+K) + ‖z̄·‖2Z2[0,T+K] 6 R2,

we obtain

‖Ŷ·‖2L∞F (0,T+K) + ‖Ẑ·‖2Z2[0,T+K] 6MR2
(
‖ŷ·‖2L∞F (0,T+K) + ‖ẑ·‖2Z2[0,T+K]

)
,

where

M , 256C2(1 + L)2[(T +K)2 + 1].

Now we take

R =

√
8
(
‖ξ·‖2L∞F (T,T+K) + ‖η·‖2Z2[T,T+K]

)
,

and let R < 1√
M

, which implies that

(3.10) ‖ξ·‖2L∞F (T,T+K) + ‖η·‖2Z2[T,T+K] <
1

8M
,

and Γ is a contraction on BR. By the contraction principle, the mapping Γ admits a unique fixed

point, which is the solution of (3.5). Finally, we come back to BSDE (3.1). Also, note that (3.10)

is stronger than (3.9). Now we define ρ > 0 by letting

ρ2 ,
1

16M
=

1

4096C2(1 + L)2[(T +K)2 + 1]
,

then BSDE (3.1) admits a unique adapted solution (Y·, Z·) ∈ Bρ when (3.4) holds. This completes

the proof.
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4 Scalar Case: Bounded Terminal Value

In this section, we study the solvability of one-dimensional ABSDEs with quadratic growth and

bounded terminal value. That is in the following we shall assume that m = 1. Also, for simplicity

of presentation, we let d = 1. In this section, we carefully investigate the local solution and the

global one, and divide this section into two subsections, i.e., Subsection 4.1 for the local solution

and Subsection 4.2 for the global solution. Because the character of ABSDEs with quadratic growth

comes from the anticipated term and the difficulty comes from the quadratic term, we introduce

some assumptions concerning the anticipated term and spaces concerning the technique to deal

with the quadratic term before presenting the main result of Subsection 4.1.

4.1 Local Solution

In this subsection, the existence and uniqueness of local adapted solution of BSDE (1.1) are studied.

For simplicity, we rewrite it as follows: −dYt = f
(
t, Yt, Zt, Yt+δ(t), Zt+ζ(t)

)
dt− ZtdWt, t ∈ [0, T ];

Yt = ξt, Zt = ηt, t ∈ [T, T +K],

where the deterministic continuous functions δ(·) and ζ(·) satisfy the following two items in this

section:

(i) There exists a constant K > 0 such that

t+ δ(t) 6 T +K; t+ ζ(t) 6 T +K, ∀t ∈ [0, T ].

(ii) There exists a constant L > 0 such that for all nonnegative and integrable h·,

(4.1)

∫ T

t
hs+δ(s)ds 6 L

∫ T+K

t
hsds;

∫ T

t
hs+ζ(s)ds 6 L

∫ T+K

t
hsds, ∀t ∈ [0, T ].

Now, before further specifying, let us present the assumptions.

Assumption 4.1. Assume that for all s ∈ [0, T ], f(s, ω, y, z, ξ, η) : Ω × R × R × L2
Fr(Ω;R) ×

L2
Fr̄(Ω;R)→L2

Fs(Ω;R), where r, r̄ ∈ [s, T + K]. Let C and γ be positive constants and α ∈ [0, 1).

For all s ∈ [0, T ], y, ȳ, z, z̄ ∈ R, ξ·, ξ̄·, η·, η̄· ∈ L2
F(s, T +K;R), we have

|f(s, y, z, ξr, ηr̄)| 6 C
(

1 + |y|+ Es
[
|ξr|+ |ηr̄|1+α

])
+
γ

2
|z|2;

|f(s, y, z, ξr, ηr̄)− f(s, ȳ, z̄, ξ̄r, η̄r̄)|

6 C

{
|y − ȳ|+ Es

[
|ξr − ξ̄r|

]
+
(
1 + Es

[
|ηr̄|α + |η̄r̄|α

])
· Es
[
|ηr̄ − η̄r̄|

]
+
(
1 + |z|+ |z̄|

)
|z − z̄|

}
.

Assumption 4.2. The given terminal value ξ· ∈ L∞F (T, T +K;R) and η· ∈ Z2[T, T +K].
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Note that, for BSDE (1.1), when t ∈ [T, T + K], the values of (Y·, Z·) are determined by the

values of (ξ·, η·). Now, we introduce the following space, in which the values of the elements are

determined by the values of (ξ·, η·) when t ∈ [T, T +K],

A(0, T +K) , {(U·, V·) ∈ L∞F (0, T +K;R)×Z2[0, T +K]
∣∣ Ut = ξt, Vt = ηt, t ∈ [T, T +K]}.

Example 4.3. Assumption 4.1 implies that f(·) is of linear growth with respect to y and ξ·, and of

sub-quadratic growth with respect to η·, and of quadratic growth with respect to z. For instance,

for α ∈ [0, 1), the following generator satisfies such an assumption:

f(s, y, z, ξr, ηr̄) = 1 + |y|+ |z|2 + Es
[
|ξr|+ |ηr̄|1+α

]
,

∀s ∈ [0, T ], y, z ∈ R, ξ·, η· ∈ L2
F(s, T +K;R), r, r̄ ∈ [s, T +K].

In this subsection, the main result is the following theorem, which concerns the solvability of

local adapted solution of BSDE (1.1).

Theorem 4.4. Under Assumptions 4.1 and 4.2, there exist some positive constant ε and a bounded

set Bε such that, in the interval [T − ε, T + K], the equation (1.1) admits a unique local adapted

solution (Y·, Z·) ∈ Bε.

Remark 4.5. The bounded set Bε appears in Theorem 4.4 is a product space L∞F (0, T +K;R)×
Z2[0, T+K] restricted on the time interval [T−ε, T+K]. See (4.8) below for its detailed definition.

Sketch of the Proof of Theorem 4.4. Theorem 4.4 is proved using the contraction mapping

principle in three steps. In step 1, we shall construct a mapping in a Banach space, which we call

it the quadratic solution mapping. In step 2, we shall show that the above constructed mapping is

stable in a small ball. In step 3, we shall prove that this mapping is a contraction.

The Proof of Theorem 4.4.

Step 1: Construction of the mapping

For a pair of adapted process (U·, V·) ∈ A(0, T +K), we consider the following quadratic BSDE,

(4.2)

{
−dYt = f(t, Yt, Zt, Ut+δ(t), Vt+ζ(t))dt− ZtdWt, t ∈ [0, T ];

Yt = ξt, Zt = ηt, t ∈ [T, T +K].

Since the values of (Y·, Z·) are determined by the values of (ξ·, η·) when t ∈ [T, T+K], we essentially

need to investigate (4.2) in [0, T ]. For simplicity, we rewrite (4.2) in [0, T ] as the following integral

form,

(4.3) Yt = ξT +

∫ T

t
f(s, Ys, Zs, Us+δ(s), Vs+ζ(s))ds−

∫ T

t
ZsdWs, t ∈ [0, T ].

Note that ξT is a random variable, which represents the value of the process ξt at t = T . As∣∣f(s, y, z, Us+δ(s), Vs+ζ(s))
∣∣ 6 C

(
1 + |y|+ Es[|Us+δ(s)|] + Es

[
|Vs+ζ(s)|1+α

])
+
γ

2
|z|2,
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in view of Proposition 2.2, we see that BSDE (4.3) admits a unique adapted solution (Y·, Z·), where

Y· is a bounded process and Z ·W is a BMO-martingale. Define the quadratic solution mapping

Γ : (U·, V·) 7→ Γ(U·, V·) as follows,

Γ(U·, V·) , (Y·, Z·), ∀(U·, V·) ∈ A(0, T +K).

This is a transformation in the Banach space L∞F (0, T +K;R)×Z2[0, T +K].

Hereafter, for simplicity of presentation, we denote

(4.4) ‖ξ·‖∞ , ‖ξ·‖L∞F (T,T+K), ‖η·‖Z2 , ‖η·‖Z2[T,T+K].

Introduce some constants and a quadratic (algebraic) equation which will be adopted in the fol-

lowing subsections. Set

(4.5)



Cδ , e
3γ

1−α e
CTC(T+K)+ 1

L
1−α

2

(
3γ

1−αCLe
CT

) 2
1−α
(

1+α
2δ

) 1+α
1−α

(T+K)
,

β ,
1

2
(1− α)C

2
1−α
(

2L(1 + α)
) 1+α

1−α
,

µ1 , (1− α)

(
1 +

1− α
(1 + α)γ

)
= 1− α+

(1− α)2

(1 + α)γ
,

µ2 ,
1

2
(1 + α)

(
1 +

1− α
(1 + α)γ

)
=

1 + α

2
+

1− α
2γ

,

µ , (β + Cµ1)γ
2

α−1 + Cµ2(1 + L),

µ̃ , γ−2 + Cµ2LK.

Consider the following standard quadratic equation in variable A:

δA2 −
[
1 + 4

(
µ̃e

2γ
1−α‖ξ·‖∞ +

1

4
‖η·‖2Z2

)
δ
]
A

+4
(
µ̃e

2γ
1−α‖ξ·‖∞ +

1

4
‖η·‖2Z2

)
+ 4µCδe

(
3γ

1−α e
CT (1+CLK)‖ξ·‖∞+δ‖η·‖2Z2

)
ε = 0.

The discriminant of the above equation is

∆ ,
[
1 + 4

(
µ̃e

2γ
1−α‖ξ·‖∞ +

1

4
‖η·‖2Z2

)
δ
]2

−4δ
[
4
(
µ̃e

2γ
1−α‖ξ·‖∞ +

1

4
‖η·‖2Z2

)
+ 4µCδe

(
3γ

1−α e
CT (1+CLK)‖ξ·‖∞+δ‖η·‖2Z2

)
ε
]

=
[
1− 4

(
µ̃e

2γ
1−α‖ξ·‖∞ +

1

4
‖η·‖2Z2

)
δ
]2
− 16δµCδe

(
3γ

1−α e
CT (1+CLK)‖ξ·‖∞.+δ‖η·‖2Z2

)
ε.

Taking

(4.6)
δ ,

1

8

(
µ̃e

2γ
1−α‖ξ·‖∞ +

1

4
‖η·‖2Z2

)−1
, ε 6 min

{
e−CT

3CL
,

µ̃e
2γ

1−α‖ξ·‖∞ + 1
4‖η·‖

2
Z2

8µCδe

(
3γ

1−α e
CT (1+CLK)‖ξ·‖∞.+δ‖η·‖2Z2

)},
A ,

[
1 + 4

(
µ̃e

2γ
1−α‖ξ·‖∞ + 1

4‖η·‖
2
Z2

)
δ
]
−
√

∆

2δ
=

3− 2
√

∆

4δ
6

3

4δ
= 6
(
µ̃e

2γ
1−α‖ξ·‖∞ +

1

4
‖η·‖2Z2

)
,
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we have

(4.7)

∆ > 0, 1− δA =
1 + 2

√
∆

4
,

(
µ̃e

2γ
1−α‖ξ·‖∞ +

1

4
‖η·‖2Z2

)
+ µCδ

e

(
3γ

1−α e
CT (1+CLK)‖ξ·‖∞+δ‖η·‖2Z2

)
1− δA

ε+
1

4
A =

1

2
A.

In this section, we discuss the existence and uniqueness of quadratic BSDE (1.1) over the time

interval [T − ε, T + K]. We shall prove Theorem 4.4 using the fact that the quadratic solution

mapping Γ is a contraction on the closed convex set Bε defined by

(4.8)

Bε ,
{

(U·, V·) ∈ A(T − ε, T +K)
∣∣∣ e 2γ

1−α‖U·‖L∞F (T−ε,T ) 6 Cδ
e

(
3γ

1−α e
CT (1+CLK)‖ξ·‖∞+δ‖η·‖2Z2

)
1− δA

,

‖V·‖2Z2[T−ε,T ] 6 A

}
.

Again, note that in [T, T +K], the values of (Y·, Z·) are determined by (ξ·, η·) respectively, therefore

we essentially need to prove that (1.1) has a unique adapted solution on [T − ε, T ].

Step 2: Estimates of the quadratic solution mapping

Let us prove the following assertion: Γ(Bε) ⊂ Bε, that is,

(4.9) Γ(U·, V·) ∈ Bε, ∀(U·, V·) ∈ Bε.

In order to do this, the proof is divided into the following three steps.

Step 2.1 Exponential transformation.

Define

φ(y) , γ−2[eγ|y| − γ|y| − 1], y ∈ R.

Then, for y ∈ R,

(4.10) φ′(y) = γ−1[eγ|y| − 1]sgn (y), φ′′(y) = eγ|y|, φ′′(y)− γ|φ′(y)| = 1.

Using Itô’s formula to (4.3), we have for t ∈ [T − ε, T ],

(4.11)

φ(Yt) +
1

2
Et
∫ T

t
|Zs|2ds

6 φ(‖ξ·‖∞) + CEt
∫ T

t
|φ′(Ys)|

(
2 + |Ys|+ Es

[
|Us+δ(s)|

]
+ Es

[
|Vs+ζ(s)|1+α

])
ds.

Using the following inequality, together with the definition of β in (4.5),

C|φ′(Ys)|Es
[
|Vs+ζ(s)|1+α

]
6 β|φ′(Ys)|

2
1−α +

1

4L
Es
[
|Vs+ζ(s)|2

]
,
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we obtain

(4.12)

φ(Yt) +
1

2
Et
∫ T

t
|Zs|2ds

6 φ(‖ξ·‖∞) + CEt
∫ T

t
|φ′(Ys)|

(
2 + |Ys|+ Es[|Us+δ(s)|]

)
ds

+βEt
∫ T

t
|φ′(Ys)|

2
1−αds+

1

4L
Et
∫ T

t
Es[|Vs+ζ(s)|2]ds

6 φ(‖ξ·‖∞) + CEt
∫ T

t
|φ′(Ys)|

(
(1 + |Ys|) + (1 + Es[|Us+δ(s)|])

)
ds

+βEt
∫ T

t
|φ′(Ys)|

2
1−αds+

1

4L
Et
∫ T

t
|Vs+ζ(s)|2ds.

Based on the following inequality for x > 0,

1 + x 6

(
1 +

1− α
γ(1 + α)

)
e
γ(1+α)

1−α x,

we get

(4.13)

CEt
∫ T

t
|φ′(Ys)|

(
(1 + |Ys|) + (1 + Es[|Us+δ(s)|])

)
ds

6 CEt
∫ T

t
|φ′(Ys)|

(
1 +

1− α
γ(1 + α)

)(
e
γ(1+α)

1−α |Ys| + e
γ(1+α)

1−α Es[|Us+δ(s)|]
)
ds.

It follows from Young’s inequality that we have

(4.14)

|φ′(Ys)|
(
e
γ(1+α)

1−α |Ys| + e
γ(1+α)

1−α Es[|Us+δ(s)|]
)

6 (1− α)|φ′(Ys)|
2

1−α +
1 + α

2

(
e

2γ
1−α |Ys| + e

2γ
1−αEs[|Us+δ(s)|]

)
.

According to the definition of µ1 and µ2 defined in (4.5), we get

(4.15)

CEt
∫ T

t
|φ′(Ys)|

(
(1 + |Ys|) + (1 + Es[|Us+δ(s)|])

)
ds

6 Cµ1Et
∫ T

t
|φ′(Ys)|

2
1−αds+ Cµ2Et

∫ T

t

(
e

2γ
1−α |Ys| + e

2γ
1−αEs[|Us+δ(s)|]

)
ds.

Now combining (4.10) and (4.12)-(4.15) yields

φ(Yt) +
1

2
Et
∫ T

t
|Zs|2ds

6 φ(‖ξ·‖∞) + (β + Cµ1)Et
∫ T

t
|φ′(Ys)|

2
1−αds

+Cµ2Et
∫ T

t

(
e

2γ
1−α |Ys| + e

2γ
1−αEs[|Us+δ(s)|]

)
ds+

1

4L
Et
∫ T

t
|Vs+ζ(s)|2ds

6 φ(‖ξ·‖∞) +
[
γ

2
α−1 (β + Cµ1) + Cµ2

]
Et
∫ T

t
e

2γ
1−α |Ys|ds

+Cµ2Et
∫ T

t
e

2γ
1−αEs[|Us+δ(s)|]ds+

1

4L
Et
∫ T

t
|Vs+ζ(s)|2ds.
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Note that Ut = ξt and Vt = ηt when t ∈ [T, T +K], we have

Cµ2Et
∫ T

t
e

2γ
1−αEs[|Us+δ(s)|]ds 6 Cµ2Et

∫ T

t
e

2γ
1−α esssup

ω
|Us+δ(s)|

ds

6 Cµ2LEt
∫ T+K

t
e

2γ
1−α esssup

ω
|Us|

ds

6 Cµ2Lεe
2γ

1−α‖U·‖L∞F (T−ε,T ) + Cµ2LKe
2γ

1−α‖ξ·‖∞ .

In addition, applying (4.1), one has

1

4L
Et
∫ T

t
|Vs+ζ(s)|2ds 6

1

4
Et
∫ T+K

t
|Vs|2ds =

1

4
Et
(∫ T

t
|Vs|2ds+ ET

∫ T+K

T
|ηs|2ds

)
6

1

4
Et
(∫ T

t
|Vs|2ds+ esssup

τ∈T [T,T+K], ω∈Ω
Eτ
∫ T+K

τ
|ηs|2ds

)
6

1

4
‖V·‖2Z2[T−ε,T ] +

1

4
‖η·‖2Z2 .

Therefore, we have

(4.16)

φ(Yt) +
1

2
Et
∫ T

t
|Zs|2ds

6 φ(‖ξ·‖∞) +
[
γ

2
α−1 (β + Cµ1) + Cµ2

]
εe

2γ
1−α‖Y·‖L∞F (T−ε,T )

+Cµ2Lεe
2γ

1−α‖U·‖L∞F (T−ε,T ) + Cµ2LKe
2γ

1−α‖ξ·‖∞ +
1

4
‖V·‖2Z2[T−ε,T ] +

1

4
‖η·‖2Z2 .

Step 2.2 Estimate of e
γ‖Y·‖L∞F (T−ε,T ).

In light of the last inequality of Proposition 2.2 we have

e
3γ

1−α |Yt| 6 Et
[
e

3γ
1−α e

CT

(
‖ξ·‖∞+C

∫ T
t (1+Es[|Us+δ(s)|]+Es[|Vs+ζ(s)|1+α])ds

)]
.

Set

u(s) = esssup
ω
|Us(ω)|.

Then

e
3γ

1−α |Yt| 6 Et
[
e

3γ
1−α e

CT

(
‖ξ·‖∞+C

∫ T
t (1+u(s+δ(s))+Es[|Vs+ζ(s)|1+α])ds

)]
.

6 Et
[
e

3γ
1−α e

CT

(
‖ξ·‖∞+C

∫ T+K
t (1+Lu(s))ds+C

∫ T
t Es[|Vs+ζ(s)|1+α]ds

)]
.

For t ∈ [T − ε, T +K], we have

CL

∫ T+K

t
|u(s)|ds 6 CLε‖U·‖L∞F (T−ε,T ) + CLK‖ξ·‖∞.

Using Young’s inequality, we obtain

3γ

1− α
eCTC|Vs+ζ(s)|1+α 6

1

L

1− α
2

(
3γCLeCT

1− α

(1 + α

2δ

) 1+α
2

) 2
1−α

+
1

L
δ|Vs+ζ(s)|2.
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According to the definition of Cδ defined in (4.5), note that (4.4), we further have

e
3γ

1−α |Yt| 6 Cδe

(
3γ

1−α e
CT (1+CLK)‖ξ·‖∞+ 3γ

1−α e
CTCLε‖U·‖L∞F (T−ε,T )

)
· Ete

δ
L

∫ T
t Es[|Vs+ζ(s)|2]ds.

Set

(4.17) Mt =

√
δ

L

∫ t

0
Es[|Vs+ζ(s)|2]

1
2dWs.

We have

‖M‖2BMO(P) =
δ

L
sup
τ

Eτ
∫ T

τ
Es[|Vs+ζ(s)|2]ds

=
δ

L
sup
τ

Eτ
∫ T

τ
|Vs+ζ(s)|2ds

6 δ sup
τ

Eτ
∫ T+K

τ
|Vs|2ds

6 δ sup
τ

Eτ
∫ T

τ
|Vs|2ds+ δ‖η·‖2Z2 .

Then we obtain that

e
3γ

1−α |Yt| 6 Cδe

(
3γ

1−α e
CT (1+CLK)‖ξ·‖∞+ 3γ

1−α e
CTCLε‖U·‖L∞F (T−ε,T )+δ‖η·‖2Z2

)
· Ete

sup
τ

Eτ
∫ T
τ δ|Vs|2ds

.

It follows from (4.6) and the definition of Bε that we have

sup
τ

Eτ
∫ T

τ
δ|Vs|2ds 6 ‖

√
δV ·W‖2BMO(P) = ‖

√
δV ‖2Z2[T−ε,T ] 6 δA < 1.

Then applying John-Nirenberg’s inequality yields that

e
3γ

1−α |Yt| 6 Cδ
e

(
3γ

1−α e
CT (1+CLK)‖ξ·‖∞+δ‖η·‖2Z2+ 3γ

1−α e
CTCLε‖U·‖L∞F (T−ε,T )

)
1− δ‖V ·W‖2BMO(P)

6 Cδ
e

(
3γ

1−α e
CT (1+CLK)‖ξ·‖∞+δ‖η·‖2Z2

)
1− δA

e

(
3γ

1−α e
CTCLε‖U·‖L∞F (T−ε,T )

)
.

Since 3eCTCLε 6 1 (see the choice of ε in (4.6)) and (U·, V·) ∈ Bε, we have

(4.18)

e
3γ

1−α‖Y·‖L∞F (T−ε,T ) 6 Cδ
e

(
3γ

1−α e
CT (1+CLK)‖ξ·‖∞+δ‖η·‖2Z2

)
1− δA

e

(
γ

1−α‖U·‖L∞F (T−ε,T )

)
6 Cδ

e

(
3γ

1−α e
CT (1+CLK)‖ξ·‖∞+δ‖η·‖2Z2

)
1− δA

(
Cδ
e

(
3γ

1−α e
CT (1+CLK)‖ξ·‖∞+δ‖η·‖2Z2

)
1− δA

) 1
2

6

(
Cδ
e

(
3γ

1−α e
CT (1+CLK)‖ξ·‖∞+δ‖η·‖2Z2

)
1− δA

) 3
2

,

which implies that the first half of (4.9) is obtained.

Step 2.3 Estimate of ‖Z·‖2Z2[T−ε,T ].
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From inequality (4.16), the definition of µ and µ̃ in (4.5) and note that (U·, V·) ∈ Bε, we have

1

2
Et
∫ T

t
|Zs|2ds 6 γ−2eγ‖ξ·‖∞ + µCδ

e

(
3γ

1−α e
CT (1+CLK)‖ξ·‖∞+δ‖η·‖2Z2

)
1− δA

ε

+Cµ2LKe
2γ

1−α‖ξ·‖∞ +
1

4
‖η·‖2Z2 +

1

4
A

6
(
µ̃e

2γ
1−α‖ξ·‖∞ +

1

4
‖η·‖2Z2

)
+ µCδ

e

(
3γ

1−α e
CT (1+CLK)‖ξ·‖∞+δ‖η·‖2Z2

)
1− δA

ε+
1

4
A.

In light of (4.7), we have

1

2
‖Z·‖2Z2[T−ε,T ] 6

(
µ̃e

2γ
1−α‖ξ·‖∞ +

1

4
‖η·‖2Z2

)
+ µCδ

e

(
3γ

1−α e
CT (1+CLK)‖ξ·‖∞+δ‖η·‖2Z2

)
1− δA

ε+
1

4
A =

1

2
A.

Then

‖Z·‖2Z2[T−ε,T ] 6 A,

so the other half of the desired result (4.9) is naturally obtained.

Step 3: Contraction of the quadratic solution mapping

In this subsection, we prove that the quadratic mapping defined above is a contraction mapping.

For (U·, V·) ∈ Bε and (Ũ·, Ṽ·) ∈ Bε, set

(Y·, Z·) , Γ(U·, V·), (Ỹ·, Z̃·) , Γ(Ũ·, Ṽ·).

Then

(4.19)

 −dYt = f(t, Yt, Zt, Ut+δ(t), Vt+ζ(t))dt− ZtdWt, t ∈ [T − ε, T ];

Yt = ξt, Zt = ηt, t ∈ [T, T +K],

and

(4.20)

 −dỸt = f(t, Ỹt, Z̃t, Ũt+δ(t), Ṽt+ζ(t))dt− Z̃tdWt, t ∈ [T − ε, T ];

Ỹt = ξt, Z̃t = ηt, t ∈ [T, T +K].

Note that in [T, T +K],

(4.21) Yt = Ỹt = Ut = Ũt = ξt, Zt = Z̃t = Vt = Ṽt = ηt, t ∈ [T, T +K].

In [T − ε, T ], we rewrite (4.19) and (4.20) as the following integral form:
Yt = ξT +

∫ T

t
f(s, Ys, Zs, Us+δ(s), Vs+ζ(s))ds−

∫ T

t
ZsdWs,

Ỹt = ξT +

∫ T

t
f(s, Ỹs, Z̃s, Ũs+δ(s), Ṽs+ζ(s))ds−

∫ T

t
Z̃sdWs.

We can define the process ϕ· in an obvious way such that

(4.22)

 |ϕs| 6 C(1 + |Zs|+ |Z̃s|),

f(s, Ys, Zs, Us+δ(s), Vs+ζ(s))− f(s, Ys, Z̃s, Us+δ(s), Vs+ζ(s)) = (Zs − Z̃s)ϕs.
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Then

W̃t ,Wt −
∫ t

0
ϕsds

is a Brownian motion corresponding to an equivalent probability measure P̃ defined by

dP̃ , E
(
ϕ ·W

)∣∣∣T
0
dP,

and from a priori estimate established in the above analysis, there exists K̃ > 0 such that

‖ϕ ·W‖2BMO(P) = ‖ϕ·‖2Z2[T−ε,T ] 6 K̃.

In fact, one can choose that K̃ = 3C2T + 6C2A. In light of the following equation

Yt − Ỹt +

∫ T

t
(Zs − Z̃s)dW̃s

=

∫ T

t

(
f(s, Ys, Z̃s, Us+δ(s), Vs+ζ(s))− f(s, Ỹs, Z̃s, Ũs+δ(s), Ṽs+ζ(s))

)
ds,

squaring on both sides of the last equation and then taking the conditional expectation with respect

to P̃ (denoted by Ẽ), we get

(4.23)

|Yt − Ỹt|2 + Ẽt
∫ T

t
|Zs − Z̃s|2ds

= Ẽt
[(∫ T

t

(
f(s, Ys, Z̃s, Us+δ(s), Vs+ζ(s))− f(s, Ỹs, Z̃s, Ũs+δ(s), Ṽs+ζ(s))

)
ds

)2]
6 C2Ẽt

[(∫ T

t

(
|Ys − Ỹs|+ Es[|Us+δ(s) − Ũs+δ(s)|]

+
(
1 + Es[|Vs+ζ(s)|α + |Ṽs+ζ(s)|α]

)
Es[|Vs+ζ(s) − Ṽs+ζ(s)|]

)
ds

)2]
6 3C2Ẽt

[
(T − t)

∫ T

t
|Ys − Ỹs|2ds+ (T − t)

∫ T

t
Es[|Us+δ(s) − Ũs+δ(s)|2]ds

+

∫ T

t

(
1 + Es[|Vs+ζ(s)|α + |Ṽs+ζ(s)|α]

)2
ds ·

∫ T

t
Es[|Vs+ζ(s) − Ṽs+ζ(s)|]2ds

]
.

On the one hand, set

û(s) = esssup
ω
|Us − Ũs|,

then, noting (4.21), we have

(4.24)

(T − t)
∫ T

t
Es[|Us+δ(s) − Ũs+δ(s)|2]ds 6 ε

∫ T

t
û(s+ δ(s))2ds

6 Lε

∫ T+K

t
û(s)2ds = Lε

∫ T

t
û(s)2ds 6 Lε2‖U· − Ũ·‖2L∞F (T−ε,T ).

On the other hand, for the last term of (4.23), by Hölder’s inequality, we have

(4.25)

Ẽt
[ ∫ T

t

(
1 + Es[|Vs+ζ(s)|α + |Ṽs+ζ(s)|α]

)2
ds ·

∫ T

t
Es[|Vs+ζ(s) − Ṽs+ζ(s)|]2ds

]
6 3Ẽt

[(∫ T

t

(
1 + Es[|Vs+ζ(s)|2α + |Ṽs+ζ(s)|2α]

)
ds

)2] 1
2

· Ẽt
[(∫ T

t
Es[|Vs+ζ(s) − Ṽs+ζ(s)|]2ds

)2] 1
2

.
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Similar to (4.17), set

Mt =

∫ t

0
Es[|Vs+ζ(s) − Ṽs+ζ(s)|]dWs.

Then, again noting (4.21), we have

‖M‖2BMO(P) = sup
τ

Eτ
∫ T

τ
Es[|Vs+ζ(s) − Ṽs+ζ(s)|]2ds = sup

τ
Eτ
∫ T

τ
|Vs+ζ(s) − Ṽs+ζ(s)|2ds

6 L sup
τ

Eτ
∫ T+K

τ
|Vs − Ṽs|2ds = L sup

τ
Eτ
∫ T

τ
|Vs − Ṽs|2ds 6 L‖V· − Ṽ·‖2Z2[T−ε,T ].

Hence from Proposition 2.3 and Proposition 2.4, there exist L4 > 0 and c2 > 0 such that

(4.26)
Ẽt
[(∫ T

t
Es[|Vs+ζ(s) − Ṽs+ζ(s)|]2ds

)2] 1
2

6 ‖M‖2
BMO4(P̃)

6 L2
4‖M‖2BMO(P̃)

6 L2
4c

2
2‖M‖2BMO(P) 6 LL2

4c
2
2‖V· − Ṽ·‖2Z2[T−ε,T ].

Using Hölder’s inequality, for t ∈ [T − ε, T ],

Ẽt
[(∫ T

t

(
1 + Es[|Vs+ζ(s)|2α] + Es[|Ṽs+ζ(s)|2α]

)
ds

)2] 1
2

6 Ẽt
[(
ε+ ε1−α

(∫ T

t
Es[|Vs+ζ(s)|2]ds

)α
+ ε1−α

(∫ T

t
Es[|Ṽs+ζ(s)|2]ds

)α)2] 1
2

6 ε1−αẼt
[(
εα +

(∫ T

t
Es[|Vs+ζ(s)|2]ds

)α
+
(∫ T

t
Es[|Ṽs+ζ(s)|2]ds

)α)2] 1
2

6 ε1−αẼt
[(
Tα + 2− 2α+ α

∫ T

t
Es[|Vs+ζ(s)|2]ds+ α

∫ T

t
Es[|Ṽs+ζ(s)|2]ds

)2] 1
2

6 ε1−α
(
Tα + 2− 2α+ αẼt

[( ∫ T

t
Es[|Vs+ζ(s)|2]ds

)2] 1
2

+ αẼt
[( ∫ T

t
Es[|Ṽs+ζ(s)|2]ds

)2] 1
2

)
.

Similar to the above discussion, and noting that (4.21), we have

Ẽt
[(∫ T

t
Es[|Vs+ζ(s)|]2ds

)2] 1
2

6 LL2
4c

2
2

(
‖V·‖2Z2[T−ε,T ] + ‖η‖2Z2

)
6 LL2

4c
2
2

(
A+ ‖η‖2Z2

)
,

Ẽt
[(∫ T

t
Es[|Ṽs+ζ(s)|]2ds

)2] 1
2

6 LL2
4c

2
2

(
‖Ṽ·‖2Z2[T−ε,T ] + ‖η‖2Z2

)
6 LL2

4c
2
2

(
A+ ‖η‖2Z2

)
.

Hence

(4.27)
Ẽt
[(∫ T

t

(
1 + Es[|Vs+ζ(s)|2α] + Es[|Ṽs+ζ(s)|2α]

)
ds

)2] 1
2

6 ε1−α
(
Tα + 2 + 2αLL4

4c
2
2

(
A+ ‖η·‖2Z2

))
.

Combining (4.25), (4.26) and (4.27), one has

(4.28)
Ẽt
[ ∫ T

t

(
1 + Es[|Vs+ζ(s)|α + |Ṽs+ζ(s)|α]

)2
ds ·

∫ T

t
Es[|Vs+ζ(s) − Ṽs+ζ(s)|]2ds

]
6 3ε1−α

(
Tα + 2 + 2αLL4

4c
2
2

(
A+ ‖η·‖2Z2

))
· LL2

4c
2
2‖V· − Ṽ·‖2Z2[T−ε,T ].
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Again, combining (4.23), (4.24) and (4.28), we obtain that

(4.29)

|Yt − Ỹt|2 + Ẽt
∫ T

t
|Zs − Z̃s|2ds

6 3C2ε2‖Y· − Ỹ·‖2L∞F (T−ε,T ) + 3C2Lε2‖U· − Ũ·‖2L∞F (T−ε,T )

+9C2LL2
4c

2
2

(
Tα + 2 + 2αLL4

4c
2
2

(
A+ ‖η·‖2Z2

))
ε1−α · ‖V· − Ṽ·‖2Z2[T−ε,T ].

In view of estimates (2.1), we have for t ∈ [T − ε, T ],

(1− 3C2ε2)‖Y· − Ỹ·‖2L∞F (T−ε,T ) + c2
1‖Z· − Z̃·‖2Z2[T−ε,T ]

6 3C2ε2‖Y· − Ỹ·‖2L∞F (T−ε,T ) + C̃ε1−α · ‖V· − Ṽ·‖2Z2[T−ε,T ],

where

C̃ = 9C2LL2
4c

2
2

(
Tα + 2 + 2αLL4

4c
2
2

(
A+ ‖η·‖2Z2

))
.

It is then standard to show that there exists a small positive constant ε such that the mapping Γ

is a contraction on the previously given set Bε. The desired result is obtained.

4.2 Global Solution

Based on the previous result concerning the local solution of BSDE (1.1), we investigate the global

adapted solution of a class of BSDE (1.1). Before presenting the main result, we present the

assumption:

Assumption 4.6. Assume that f(s, ω, z) : [0, T ] × Ω × R→R is an Fs-adapted scalar-valued

generator, and for all s ∈ [0, T ], h(s, ω, y, ξ, η) : Ω×R×L2
Fr(Ω;R)×L2

Fr̄(Ω;R)→L2
Fs(Ω;R), where

r, r̄ ∈ [s, T + K]. Let C be a positive constant. For all s ∈ [0, T ], y, ȳ, z, z̄ ∈ R, ξ·, ξ̄·, η·, η̄· ∈
L2
F(s, T +K;R), we have

|f(s, z)| 6 C(1 + |z|2), |h(s, y, ξr, ηr̄)| 6 C
(
1 + |y|+ Es[ξr]

)
;

|f(s, z)− f(s, z̄)| 6 C(1 + |z|+ |z̄|)|z − z̄|;
|h(s, y, ξr, ηr̄)− h(s, ȳ, ξ̄r, η̄r̄)| 6 C

(
|y − ȳ|+ Es

[
|ξr − ξ̄r|+ |ηr̄ − η̄r̄|

])
.

Example 4.7. Assumption 4.6 requires that h(·) should be bounded with respect to η·. For

example, the generators

f(s, z) = 1 + |z|2, h(s, y, ξr, ηr̄) = 1 + |y|+ Es
[
|ξr|+ | sin(ηr̄)|

]
,

∀s ∈ [0, T ], y, z ∈ R, ξ·, η· ∈ L2
F(s, T +K;R), r, r̄ ∈ [s, T +K]

satisfy such an assumption.

In this subsection, the main result is the following theorem, which concerns the solvability of

global adapted solution of BSDE (1.1).

Theorem 4.8. Let Assumptions 4.2 and 4.6 hold. Then, the following BSDE

(4.30)

{
−dYt = [f(t, Zt) + h(t, Yt, Yt+δ(t), Zt+ζ(t))]dt− ZtdWt, t ∈ [0, T ];

Yt = ξt, Zt = ηt, t ∈ [T, T +K],
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has a unique adapted solution (Y·, Z·) on [0, T+K] such that Y· is bounded and Z ·W is a BMO(P)-

martingale.

Proof. Since when t ∈ [T, T + K], the values of (Y·, Z·) of BSDE (4.30) are determined, we

essentially need to prove that (4.30) has a unique adapted solution on [0, T ]. In order to do this,

we first consider the equation (4.30) on [T − θλ, T + K] for a positive constant θλ that will be

determined later.

For simplicity of presentation, we rewrite BSDE (4.30) as the following integral form,

(4.31)

 Yt = ξT +

∫ T

t

(
f(s, Zs) + h(s, Ys, Ys+δ(s), Zs+ζ(s))

)
ds−

∫ T

t
ZsdWs, t ∈ [0, T ];

Yt = ξt, Zt = ηt, t ∈ [T, T +K].

Note that there exists a constant C̃ > 0 such that ‖ξ·‖2∞ 6 C̃. It follows from Assumption 4.6 that

we have the following inequality

(4.32)
|2xh(s, y, ξr, ηr̄)| 6 C̃ + C̃|x|2 + C̃|y|2 + C̃Es[|ξr|2],

∀s ∈ [0, T ], x, y ∈ R, ξ·, η· ∈ L2
F(s, T +K;R), r, r̄ ∈ [s, T +K].

Let α(·) be the unique solution of the following equation,

α(t) = C̃ +

∫ T+K

t
C̃ds+

∫ T+K

t

(
(1 + L)C̃ + C̃

)
α(s)ds, t ∈ [0, T +K].

It is easy to observe that α(·) is a continuously decreasing function in t and

α(t) = C̃ +

∫ T+K

t
C̃
(

1 + (1 + L)α(s)
)
ds+ C̃

∫ T+K

t
α(s)ds, t ∈ [0, T +K].

Define

λ , sup
t∈[0,T+K]

α(t) = α(0).

As ‖ξ·‖2∞ 6 C̃ 6 λ, Theorem 4.4 shows that there exists θλ > 0, which only depends on λ, such

that BSDE (4.31) has a local solution on [T − θλ, T + K] and it can be constructed through the

Picard iteration. Without loss of generality, we suppose that f(s, 0) = 0, s ∈ [0, T ].

Let us consider the Picard iteration: Y 0
t = ξT +

∫ T

t
Z0
sdWs, t ∈ [T − θλ, T ];

Y 0
t = ξt, Z0

t = ηt, t ∈ [T, T +K],

and for i > 0,

Y i+1
t = ξT +

∫ T

t

[
f(s, Zi+1

s ) + h(s, Y i
s , Y

i
s+δ(s), Z

i
s+ζ(s))

]
ds−

∫ T

t
Zi+1
s dWs

= ξT +

∫ T

t
h(s, Y i

s , Y
i
s+δ(s), Z

i
s+ζ(s))ds−

∫ T

t
Zi+1
s dW̃ i+1

s , t ∈ [T − θλ, T ];

Y i+1
t = ξt, Zi+1

t = ηt, t ∈ [T, T +K],

21



where

f(s, Zi+1
s ) = Zi+1

s ϕi+1
s ,

and

W̃ i+1
t = Wt −

∫ t

0
ϕi+1
s 1[T−θλ,T ](s)ds

is a Brownian motion corresponding to an equivalent probability measure Pi+1 which is denoted by

P̃ hereafter for simplicity, and whose expectation is denoted by Ẽ.

By induction, we show that the following inequality holds for i > 0,

(4.33) |Y i
t |2 6 α(t), t ∈ [T − θλ, T +K].

Actually, it is easy to see that |Y 0
t |2 6 α(t), and suppose that |Y i

t |2 6 α(t) for t ∈ [T − θλ, T +K].

Then we just need to prove that |Y i+1
t |2 6 α(t) for t ∈ [T − θλ, T + K]. Using Itô’s formula and

the inequality (4.32), it is straightforward to deduce the following estimate for r ∈ [T − θλ, t],

(4.34)

Ẽr[|Y i+1
t |2] + Ẽr

∫ T

t
|Zi+1
s |2ds

= Ẽr[|ξT |2] + C̃Ẽr
∫ T

t
2Y i+1

s h(s, Y i
s , Y

i
s+δ(s), Z

i
s+ζ(s))ds

6 C̃ +

∫ T

t
C̃ds+ C̃Ẽr

∫ T

t
|Y i+1
s |2ds+ C̃Ẽr

∫ T

t
|Y i
s |2ds+ C̃Ẽr

∫ T

t
Es[|Y i

s+δ(s)|
2]ds

6 C̃ +

∫ T

t
C̃ds+ C̃Ẽr

∫ T

t
|Y i+1
s |2ds+ C̃

∫ T

t
α(s)ds+ C̃

∫ T

t
α(s+ δ(s))ds

6 C̃ + C̃

∫ T

t
Ẽr[|Y i+1

s |2]ds+ C̃

∫ T

t

(
1 + α(s)

)
ds+ C̃L

∫ T+K

t
α(s)ds

6 C̃ + C̃

∫ T+K

t
Ẽr[|Y i+1

s |2]ds+ C̃

∫ T+K

t

(
1 + (1 + L)α(s)

)
ds.

Then we get

Ẽr[|Y i+1
t |2] 6 C̃ + C̃

∫ T+K

t

(
1 + (1 + L)α(s)

)
ds+ C̃

∫ T+K

t
Ẽr[|Y i+1

s |2]ds.

It follows from the comparison theorem that we have

Ẽr[|Y i+1
t |2] 6 α(t), t ∈ [T − θλ, T +K].

Setting r = t, we obtain

|Y i+1
t |2 6 α(t), t ∈ [T − θλ, T +K].

Therefore, inequality (4.33) holds.

Since Yt = lim
i
Y i
t , the constructed local solution (Y·, Z·) in [T −θλ, T +K] satisfies the following

estimate,

|Yt|2 6 α(t), t ∈ [T − θλ, T +K].

In particular, |YT−θλ |2 6 α(T − θλ) 6 λ.
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Taking T − θλ as the terminal time and YT−θλ as the terminal value and applying Theorem 4.4,

we obtain that BSDE (4.31) has a local solution (Y, Z) on [T −2θλ, T − θλ+K] through the Picard

iteration. Also, using the Picard iteration and the fact that |YT−θλ |2 6 α(T − θλ), we deduce that

|Yt|2 6 α(t) for t ∈ [T − 2θλ, T − θλ +K]. Repeating the preceding process, we can extend the pair

(Y·, Z·) to the whole interval [0, T + K] within a finite of steps such that Y· is uniformly bounded

by λ. Next, we show that Z ·W is a BMO(P)-martingale.

Similar to the proof of the inequality (4.11), we have (with γ = 2C)

φ(Yt) +
1

2
Et
∫ T

t
|Zs|2ds

6 φ(‖ξ·‖∞) + CEt
∫ T

t
|φ′(Ys)|

(
2 + |Ys|+ Es[Ys+δ(s)]

)
ds

6 φ(‖ξ·‖∞) + CEt
∫ T

t
φ′(λ)

(
2 + |Ys|+ Es[Ys+δ(s)]

)
ds

6 φ(‖ξ·‖∞) + Cφ′(λ)Et
∫ T+K

t

(
2 + (1 + L)|Ys|

)
ds

6 φ(‖ξ·‖∞) + Cφ′(λ)

∫ T+K

t

(
2 + (1 + L)λ

)
ds.

Hence, we have

‖Z ·W‖2BMO(P) 6 2φ(‖ξ·‖∞) + 2Cφ′(λ)
(
2 + (1 + L)λ

)
(T +K),

which implies that Z ·W is a BMO(P)-martingale.

Finally, we shall prove the uniqueness. Similarly, we first consider the uniqueness on the interval

[T −ε, T ]. Let (Y·, Z·) and (Ỹ·, Z̃·) be two adapted solutions. Then we have (recall that ϕ· is defined

by (4.22))

Yt − Ỹt =

∫ T

t

(
[f(s, Zs)− f(s, Z̃s)] + [h(s, Ys, Ys+δ(s), Zs+ζ(s))− h(s, Ỹs, Ỹs+δ(s), Z̃s+ζ(s))]

)
ds

−
∫ T

t
(Zs − Z̃s)dWs

=

∫ T

t

(
h(s, Ys, Ys+δ(s), Zs+ζ(s))− h(s, Ỹs, Ỹs+δ(s), Z̃s+ζ(s))

)
ds−

∫ T

t
(Zs − Z̃s)dW̃s.

Similar to the two inequalities in (4.29), for any stopping time τ taking values in [T −ε, T ], we have

|Yτ − Ỹτ |2 + Ẽτ
∫ T

τ
|Zs − Z̃s|2ds

= Ẽτ
[(∫ T

τ

(
h(s, Ys, Ys+δ(s), Zs+ζ(s))− h(s, Ỹs, Ỹs+δ(s), Z̃s+ζ(s))

)
ds

)2]
6 C2Ẽτ

[(∫ T

τ

(
|Ys − Ỹs|+ Es[|Ys+δ(s) − Ỹs+δ(s)|] + Es[|Zs+ζ(s) − Z̃s+ζ(s)|]

)
ds

)2]
6 3C2εẼτ

[ ∫ T

τ
|Ys − Ỹs|2ds+

∫ T

τ
Es[|Ys+δ(s) − Ỹs+δ(s)|2]ds+

∫ T

τ
Es[|Zs+ζ(s) − Z̃s+ζ(s)|]2ds

]
.
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On the one hand,∫ T

τ
Es[|Ys+δ(s) − Ỹs+δ(s)|2]ds 6

∫ T

τ
esssup

ω
|Ys+δ(s) − Ỹs+δ(s)|2ds 6 L

∫ T+K

τ
esssup

ω
|Ys − Ỹs|2ds

= L

∫ T

τ
esssup

ω
|Ys − Ỹs|2ds 6 Lε‖Y· − Ỹ·‖2L∞F (T−ε,T ).

On the other hand,

‖Z − Z̃‖2BMO(P) = sup
τ

Eτ
∫ T

τ
Es[|Zs+ζ(s) − Z̃s+ζ(s)|]2ds = sup

τ
Eτ
∫ T

τ
|Zs+ζ(s) − Z̃s+ζ(s)|2ds

6 L sup
τ

Eτ
∫ T+K

τ
|Zs − Z̃s|2ds = L sup

τ
Eτ
∫ T

τ
|Zs − Z̃s|2ds 6 L‖Z· − Z̃·‖2Z2[T−ε,T ].

Using Hölder’s inequality, and similar to (4.26), there exist L4 > 0 and c2 > 0 such that

Ẽτ
[ ∫ T

τ
Es[|Zs+ζ(s) − Z̃s+ζ(s)|]2ds

]
6 εẼτ

[(∫ T

τ
Es[|Zs+ζ(s) − Z̃s+ζ(s)|]2ds

)2
] 1

2

6 ε‖Z − Z̃‖4
BMO(P̃)

6 εL2
4‖Z − Z̃‖2BMO(P̃)

6 εL2
4c

2
2‖Z − Z̃‖2BMO(P) 6 εLL2

4c
2
2‖Z· − Z̃·‖2Z2[T−ε,T ].

Then we obtain that

|Yτ − Ỹτ |2 + Ẽτ
∫ T

τ
|Zs − Z̃s|2ds

6 3C2(1 + L)ε2‖Y· − Ỹ·‖2L∞F (T−ε,T ) + 3C2LL2
4c

2
2ε

2‖Z· − Z̃·‖2Z2[T−ε,T ].

Therefore, again, noting that Yt − Ỹt ≡ 0 and Zt − Z̃t ≡ 0 in [T, T + K], we have (on the interval

[T − ε, T +K]),

‖Y· − Ỹ·‖2L∞F (T−ε,T ) + c2
1‖Z· − Z̃·‖2Z2[T−ε,T ]

6 3C2(1 + L)ε2‖Y· − Ỹ·‖2L∞F (T−ε,T ) + 3C2LL2
4c

2
2ε

2‖Z· − Z̃·‖2Z2[T−ε,T ].

Since

|ϕ·| 6 C(1 + |Z·|+ |Z̃·|),

the two generic constants c1 and c2 only depend on the sum

‖Z·‖2Z2[0,T+K] + ‖Z̃·‖2Z2[0,T+K].

Then when ε is sufficiently small, we conclude that Y· = Ỹ· and Z· = Z̃· on [T − ε, T ]. Repeating

iteratively within a finite of steps, we can derive the uniqueness on the interval [0, T ].

5 Scalar Case: Unbounded Terminal Value

In this section, we study a class of one-dimensional anticipated BSDE with quadratic growth and

with unbounded terminal value, i.e., the terminal value ξ· belongs to S2
F(0, T +K;R). Before going

further, we show a lemma first. In the following, for a function g(·), we use gµ(·) to denote the

partial derivative of g(·) at µ with µ = t, y. Also, gµµ(·) is defined similarly.
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Lemma 5.1. Let λ(t, y) : [0, T ]× R→R be a continuous function satisfying the following items:

(i) sup
t∈[0,T ]

|λ(t, y)| ∈ L1(R);

(ii) λt(·) is continuous such that sup
t∈[0,T ]

|λt(t, y)| ∈ L1(R).

Then the function

φ(t, y) ,
∫ y

0
exp

(
2

∫ s

0
λ(t, r)dr

)
ds, (t, y) ∈ [0, T ]× R,

satisfies the differential equation φyy(t, y)− 2λ(t, y)φy(t, y) = 0, and has the following properties:

1. φ(t, ·) is a one to one function from R onto R, and both φ(t, ·) and its inverse φ−1(t, ·) are

smooth functions for all t ∈ [0, T ]. Moreover, φ(t, ·) and φ−1(t, ·) are globally Lipschitz in y

for every t ∈ [0, T ], i.e., there exists constant L such that

|φ(t, y)− φ(t, ȳ)| 6 L|y − ȳ|, |φ−1(t, y)− φ−1(t, ȳ)| 6 L|y − ȳ|, ∀ t ∈ [0, T ], y, ȳ ∈ R.

2. φy(·) is a positive bounded function, and φt(·) is continuous in t and Lipschitz continuous

in y.

Sketch of proof. From the definition, one has

φt(t, y) =

∫ y

0
exp

(
2

∫ s

0
λ(t, r)dr

)(
2

∫ s

0
λt(t, r)dr

)
ds

φy(t, y) = exp
(

2

∫ y

0
λ(t, r)dr

)
, φyy(t, y) = 2λ(t, y) exp

(
2

∫ y

0
λ(t, r)dr

)
.

Since λ(·) is continuous, clearly, φ(·) and φ−1(·) are continuous, one to one, strictly increasing

function, and belongs to C2(R), moreover, φyy(t, y)− 2h(t, y)φy(t, y) = 0.

Since λ(t, ·) is integrable for every t ∈ [0, T ], it is directly to see that φy(·) is bounded and

positive, and therefore φ(t, ·) and φ−1(t, ·) are globally Lipschitz with respect to y. Moreover, one

can check that φt(·) is continuous in t and Lipschitz continuous in y.

Now, consider the following equation,

(5.1)

 −dYt =
(
f(t, Yt, Yt+δ(t), Zt+ζ(t)) + λ(t, Yt)Z

2
t

)
dt− ZtdWt, t ∈ [0, T ];

Yt = ξt, Zt = ηt, t ∈ [T, T +K],

where the deterministic continuous functions δ(·) and ζ(·) satisfy (3.2) and (3.3). In order to

establish the existence and uniqueness of the above equation, we need the following assumptions.

Assumption 5.2. Assume that for all s ∈ [0, T ], f(s, ω, y, ξ, η) : Ω × R × ×L2
Fr(Ω;R) ×

L2
Fr̄(Ω;R)→L2

Fs(Ω;R), where r, r̄ ∈ [s, T + K]. Let C be a positive constant such that for all

s ∈ [0, T ], y, ȳ ∈ R, ξ·, ξ̄·, η·, η̄· ∈ L2
F(s, T +K;R), r, r̄ ∈ [s, T +K], we have

|f(s, y, ξr, ηr̄)| 6 C,

|f(s, y, ξr, ηr̄)− f(s, ȳ, ξ̄r, η̄r̄)| 6 C
(
|y − ȳ|+ Es

[
|ξr − ξ̄r|+ |ηr̄ − η̄r̄|

])
.
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Assumption 5.3. The terminal value ξ· ∈ S2
F(T, T +K;R) and η· ∈ L2

F(T, T +K;R).

Theorem 5.4. Let Assumptions 5.2 and 5.3 hold, and suppose that λ(·) satisfy the condition

of Lemma 5.1. Then BSDE (5.1) admits a unique adapted solution (Y·, Z·) in S2
F(0, T + K;R) ×

L2
F(0, T +K;R).

Example 5.5. The following coefficients satisfy the assumptions of Theorem 5.4: For every s ∈
[0, T ], y ∈ R, ξ·, η· ∈ L2

F(s, T +K;R), r, r̄ ∈ [s, T +K],

f(s, y, ξr, ηr̄) = 1 + | sin(y)|+ Es
[
| cos(ξr)|+ | cos(ηr̄)|

]
,

λ(s, y)z2 = e−y
2
s · z2.

Proof of Theorem 5.4. In order to solve the equation (5.1), let φ(·) be as follows,

φ(t, y) ,
∫ y

0
exp

(
2

∫ s

0
λ(t, r)dr

)
ds, ∀ t ∈ [0, T ], y ∈ R.

Applying Itô formula to φ(t, Yt) on [0, T ], and note that φyy(t, y)− 2h(t, y)φy(t, y) = 0, we have

φ(t, Yt) = φ(T, ξT ) +

∫ T

t

(
φy(r, Yr)f(r, Yr, Yr+δ(r), Zr+ζ(r))− φt(r, Yr)

)
dr

−
∫ T

t
φy(r, Yr)ZrdWr, t ∈ [0, T ].

Now, if we let

Ȳt , φ(t, Yt), Z̄t , φy(t, Yt)Zt, t ∈ [0, T ],

then the equation (5.1) can be transformed formally to the following classical anticipated BSDE:

(5.2) Ȳt = ξ̄T +

∫ T

t
f(r, Ȳr, Ȳr+δ(r), Z̄r+ζ(r))dr −

∫ T

t
Z̄rdWr, t ∈ [0, T ],

where
f(s, y, ξr, ηr̄) = φy(s, φ

−1(s, y))f
(
s, φ−1(s, y), φ−1(r, ξr),

ηr̄
φy(s, φ−1(s, y))

)
−φs(s, φ−1(s, y)), r, r̄ ∈ [s, T +K], s ∈ [t, T ],

ξ̄(s) = φ−1(s, ξs), s ∈ [T, T +K].

From Lemma 5.1, φy(·) is a positive bounded function, and both φ and its inverse φ−1(·) are smooth

functions which are globally Lipschitz, we then deduce that (5.1) admits an adapted solution if and

only if (5.2) admits an adapted solution. Moreover, under Assumption 5.2, it is easy to see that

f(·) is Lipschitz continuous in all of it arguments. Furthermore, since ξ· ∈ S2
F(0, T + K;R) and

φ−1(·) is globally Lipschitz, it follows that ξ̄· is also belongs to S2
F(0, T +K;R). Now, from Theorem

4.2 of Peng and Yang [22], the classical anticipated BSDE (5.2) admits a unique adapted solution

(Ȳ , Z̄) ∈ S2
F(0, T + K;R) × L2

F(0, T + K;R), which implies that BSDE (5.1) also admits unique

adapted solution. In fact, the triple (Y·, Z·) defined by

Yt , φ−1(t, Ȳt), Zt ,
Z̄)

φy(t, φ−1(t, Ȳt))
, t ∈ [0, T ],

is the unique adapted solution of BSDE (5.1). This completes the proof.
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