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Abstract

In the analysis of censored survival data, to avoid a biased inference of treatment
effects on the hazard function of the survival time, it is important to consider the
treatment heterogeneity. Without requiring any prior knowledge about the subgroup
structure, we propose a data driven subgroup analysis procedure for the heteroge-
nous Cox model by constructing a pairwise fusion penalized partial likelihood-based
objective function. The proposed method can determine the number of subgroups,
identify the group structure and estimate the treatment effect simultaneously and
automatically. A majorized alternating direction method of multipliers algorithm
is then developed to deal with the numerically challenging high-dimensional prob-
lems. We also establish the oracle properties and the model selection consistency for
the proposed penalized estimator. Our proposed method is evaluated by simulation
studies and further illustrated by the analysis of the breast cancer data.
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1 INTRODUCTION

In the study of survival analysis, one of the main purposes is to estimate the covariate effects on survival times. Various important
topics on classical Cox’s proportional hazards model have been widely discussed by specifying that the covariates have log-linear
effects on the hazard function of survival time. For example, Fan and Li,1 Zhang and Lu,2 and Zhao et al3 developed variable
selection approaches for the Cox model. Bradic et al,4 Huang et al,5 and Fang et al6 investigated the asymptotic properties of
the penalized partial likelihood estimators for high dimensional Cox models. Chen et al,7 Qu et al,8 and Kong et al9 studied
functional Cox regression models. All these studies are based on the assumption that the covariate effects possess homogeneity.
In clinical medicine applications, treatment effects are usually heterogenous, i.e., the same treatment may result in different

effects over different groups of patients with similar characteristics. In these situations, the homogeneous assumption in classical
model would lead to biased estimates. Thus, identifying the group-specific treatment effect is the key in the process of precision
medicine treatment. Some subgroup analysis methods have been developed. Among others, Kravitz et al,10 Rothwell,11 and
Lagakos12 used descriptive statistics to analyze heterogenous experimental data; Wei and Kosorok,13 Shen and He,14 and Wu
et al15 studied the problem of treatment heterogeneity based on the finite mixture models, such as Gaussian mixture model,
logistic-normal mixture model, and logistic-Cox mixture model. Recently, Ma and Huang16 and Ma et al17 developed a kind of
regularization method to identify the grouping structure and estimate the treatment effect simultaneously based on a data driven
process. Furthermore, Zhang et al18 extended the regularization method to the quantile regression model and proposed a robust
subgroup identification method. Chen et al19 utilized this method to analyze the zero-inflated Poisson regression model.
The works mentioned above focus on complete observation data except Wu et al.15 For censored survival data, the incom-

plete data information and complexity of survival models bring challenges for subgroup analysis. In this paper, we consider the
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subgroup analysis in the heterogenous Cox model under the assumption of sparsity subgroup structure. Based on the objective
function constructed through combining the negative logarithmic partial likelihood function and a concave fusion penalty func-
tion, we can identify the subgroup structure and estimate treatment effects simultaneously without any prior knowledge about
the group structure. The likelihood-based regularization approaches make the statistical inference of identifying the subgroup
structure and estimating treatment effects become an automated procedure and so it is easy to implement.
To overcome the computational difficulties caused from the complicated nature of the likelihood-based objective function, we

borrow the ideas of the majorized alternating direction method of multipliers (ADMM) algorithm.20 Compared to the classical
ADMM algorithm suggested by Ma and Huang,16 this algorithm is able to efficiently handle large scale problems to get more
accurate solutions by transforming an objective function into a majorized convex function with a pairwise fusion penalty. We
take the ridge solution of the negative log-likelihood function as the initial solution of the algorithm, and find that the initial
solution performs well in identifying the subgroup structure in our simulation studies.
Using the oracle estimator as a bridge, we obtain the oracle property of the proposed estimator. Concretely, we obtain the

consistency and asymptotic normality of the oracle estimator at first. Then we show that the oracle estimator and the proposed
estimator are asymptotically equivalent. Thus, the latter is consistent and possesses the asymptotic normality. This property also
illustrates that the proposed method can identify the subgroup structure of the model as if we knew it in advance.
The rest of this article is organized as follows. In Section 2, we introduce the heterogenous Cox model with right censored data

and propose a penalized estimation approach. Section 3 presents the majorized ADMM algorithm for computing the proposed
estimators. In Section 4, we establish the consistency and the asymptotic normality of the proposed estimator. We then conduct
simulation studies to demonstrate the performance of the proposed method in Section 5, and use the method to analyze a real
data example in Section 6. Section 7 provides some concluding remarks. The proofs of the theoretical results are relegated to
the Appendix.

2 HETEROGENOUS COX MODEL AND ESTIMATION PROCEDURE

Consider a survival study containing n independent subjects. For subject i, letUi andCi denote the failure time and the censoring
time, respectively. Then the observed data consist of {(Ti,Δi) ∶ i = 1,⋯ , n}, where Ti = Ui ∧Ci and Δi = 1{Ui≤Ci}. LetXi and
Zi denote covariates with dimensions p and q, respectively. Let �(t|Xi, Zi) be the conditional hazard rate function of U given
Xi and Zi. Then the homogeneous Cox model is

�(t|Xi, Zi) = �0(t) exp(ZT
i � +X

T
i �), i = 1,⋯ , n, (1)

where �0(t) is the baseline hazard function, � and � are unknown regression parameters denoting the average effects. However,
the homogeneous assumption about covariate effects is not satisfied when the effects of Xi are different among subjects. To
describe the treatment heterogeneity, we propose the heterogeneous Cox model as follows:

�(t|Xi, Zi) = �0(t) exp(ZT
i � +X

T
i �i), i = 1,⋯ , n, (2)

where �i is subject-specific effect ofXi on the hazard function.We suppose that n subjects are divided intoK potential subgroups
according to set  = (1,… ,K ), and �i ≡ �k for all i ∈ k, k = 1,⋯ , K . For this model, we focus on identifying the subgroup
set  and estimating parameters {�1,⋯ , �K} and �.
For the coefficient of X, define � = (�T1 ,… , �TK )

T and � = (�T1 ,… , �Tn )
T . The negative partial log-likelihood function is

ln(�, �) = −
n
∑

i=1
Δi(ZT

i � +X
T
i �i) +

n
∑

i=1
Δi log

(

∑

j∈R(Ti)
exp(ZT

j � +X
T
j �j)

)

, (3)

where R(Ti) = {j ∶ Tj ≥ Ti} is the risk set. For the purpose of identifying the subgroup structure, we use a concave pairwise
penalty p (||�i − �j||, �) to shrink small value of ||�i − �j|| to 0, where || ⋅ || is the L2-norm of a vector. Then the criterion
function is

Qn(�, �) = ln(�, �) +
∑

i<j
p (||�i − �j||, �), (4)

where � ≥ 0 is a tuning parameter. Thus, we can obtain the estimator (�̂(�), �̂(�)) by minimizing the objective function (4) with
a given turning parameter �. Finally, the estimator for � is the distinct value of �̂(�), denoted by �̂(�) = (�̂T1 (�),… , �̂T

K̂
(�))T .

The identified subgroup structure is ̂k(�) = {i ∶ �̂i(�) = �̂k(�), 1 ≤ i ≤ n}, where 1 ≤ k ≤ K̂(�).
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The penalty function can be naively chosen as the L1 penalty function p (t, �) = �|t|, but L1 penalty tends to choose too
many subgroups. Following Ma and Huang,16 a better choice of the penalty function is the smoothly clipped absolute deviation
(SCAD)21 with

p (t, �) = �

|t|

∫
0

min{1, ( − x∕�)+∕( − 1)}dx,

or the minimax concave penalty (MCP)22 with

p (t, �) = �

|t|

∫
0

(1 − x∕(�))+dx.

3 MAJORIZED ADMM ALGORITHM

In this section, we present the algorithm to find the solution path (�̂(�), �̂(�)). Introducing a new set of parameters uij = �i − �j ,
we can reformulate the criterion function Qn(�, �) as

Qn(�, �,u) = ln(�, �) +
∑

i<j
p (||uij||, �)

subject to �i − �j − uij = 0, where u = (uTij , i < j)T . Following Ma et al,17 we can solve this minimization problem using the
standard ADMM algorithm by approximating ln(�, �) as the quadratic function

ln(�, �) ≈ln(�(m−1), � (m−1)) + ∇ln(�(m−1), � (m−1))T
(

(�, �) − (�(m−1), � (m−1))
)

+
(

(�, �)T − (�(m−1), � (m−1))T
)

∇2ln(�(m−1), � (m−1))
(

(�, �) − (�(m−1), � (m−1))
)

,

where (�(m−1), � (m−1)) is the value of parameter in the mth iteration step. However, the quadratic approximation is only accurate
when (�, �) is close to (�(m−1), � (m−1)), and the calculation of the second order derivative ∇2ln(�, �) is time consuming. Hence,
it motivates us to utilize the idea of the majorized ADMM algorithm.20
Introduce another set of parameters Yi = ZT

i �+X
T
i �i, and let Y = (Y1,… , Yn)T . The negative log partial-likelihood function

ln(�, �) can be rewritten as

g(Y) = −
n
∑

i=1
ΔiYi +

n
∑

i=1
Δi log

(

∑

j∈R(Ti)
exp(Yj)

)

.

Then we need to minimize
Qn(�, �,u,Y) = g(Y) +

∑

i<j
p (||uij||, �) (5)

subject to �i−�j −uij = 0 and Yi = ZT
i �+X

T
i �i. Since∇

2g(Y) ⪯ G̃ for G̃ = 1
2
diag{g̃1,… , g̃n} and g̃j =

n
∑

i=1
ΔiIj∈R(Ti), we have

g(Y) ≤ g̃(Y;Y′) ∶= g(Y′) + ⟨Y − Y′,∇g(Y′)⟩ + 1
2
‖Y − Y′‖2

G̃

for any Y and Y′ with ‖x‖2
G̃
= ⟨x, G̃x⟩. The objective function (5) is then tansformed to the majorized augmented Lagrangian

function as follows

Q′
n(�, �,Y,u;w, v,Y

′) =g̃(Y;Y′) +
∑

i<j
p (‖uij‖, �) +

n
∑

i=1
⟨wi, Yi −ZT

i � −X
T
i �i⟩

+
∑

i<j
⟨vij , �i − �j − uij⟩ +

#
2

n
∑

i=1
(Yi −ZT

i � −X
T
i �i)

2 + #
2
∑

i<j
||�i − �j − uij||2,

where the dual variables w = (wi, i = 1,… , n)T and v = (vTij , i < j)T are the Lagrange multipliers, and # is the penalty
parameter. We then compute the estimators �̂ and �̂ through the following majorized ADMM algorithm.
At the mth iteration, for a given value of parameter (�(m−1), �(m−1),Y(m−1),u(m−1);w(m−1), v(m−1),Y′(m−1)), cluster size K (m−1),

and subgroup set (m−1), the iteration goes as follows:
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Step 1. Update (�(m), � (m)) by minimizing

Q′
n(�, �,Y

(m−1),u(m−1);w(m−1), v(m−1),Y′(m−1));

Step 2. Update (Y(m),u(m)) by minimizing

Q′
n(�

(m), � (m),Y,u;w(m−1), v(m−1),Y′(m−1))

and update
Y ′(m)i = ZT

i �
(m) +XT

i �
(m)
i (6)

for i = 1,… , n;

Step 3. Update w(m) and v(m) by
w(m)
i =w(m−1)

i + %#(Y (m)i −ZT
i �

(m) −XT
i �

(m)
i ),

v(m)ij =v(m−1)ij + %#(�(m)i − �(m)j − u(m)ij ),
(7)

where the constant % ∈ (0, (1 +
√

5)∕2);

Step 4. Update K (m) and (m) by clustering � (m).

At Step 1, for fixed (Y,u,w, v,Y′), it suffices to minimize the following objective function in order to update � and �:
n
∑

i=1
⟨wi, Yi −ZT

i � −X
T
i �i⟩ +

∑

i<j
⟨vij , �i − �j − uij⟩

+ #
2

n
∑

i=1
(Yi −ZT

i � −X
T
i �i)

2 + #
2
∑

i<j
||�i − �j − uij||2.

(8)

Define Z = (Z1,… , Zn)T , X = diag(XT
1 ,… , XT

n ) and A = D ⊗ Ip, where D = {(ei − ej), i < j}T with ei being an n × 1
vector whose ith entry is 1 and the remaining ones are 0, Ip is a p × p identity matrix, and⊗ is a Kronecker product. For given
K and , let W = {!ik} be an n × K matrix, where the entry !ik takes 1 if i ∈ k and 0 otherwise. In addition, we define
W̃ = W ⊗ Ip, X̃ = XW̃ and Ã = AW̃. Thus, after removing the terms irrelevant to � and �, the minimal point of (8) is
obtained equivalently by minimizing

1
2
‖Y − Z� − X̃� + w

#
‖

2 + 1
2
‖Ã� − u + v

#
‖

2.

At the mth iteration, the parameters � and � are updated through the following equations

�(m) =H−1
 S(m−1) ,

� (m) =W̃�(m),
�(m) =(ZTZ)−1ZT (Y(m−1) − X� (m) + #−1w(m−1)),

(9)

where H = X̃TQZX̃ + ÃT Ã, and S(m−1) = X̃TQZ(Y(m−1) + #−1w(m−1)) + ÃT (u(m−1) − #−1v(m−1)). It deserves to note that the
updated solution of parameter � (m) includes the integrated information of �(m), (m−1) and K (m−1).
At Step 2, for fixed (�, �,w, v,Y′), we need to get the minimal points

argmin
Y

⟨Y,∇g(Y′)⟩ + 1
2
‖Y − Y′‖2

G̃
(10)

+
n
∑

i=1
⟨wi, Yi −ZT

i � −X
T
i �i⟩ +

#
2

n
∑

i=1
(Yi −ZT

i � −X
T
i �i)

2,

argmin
uij

1
2
‖�i − �j +

vij
#
− uij‖2 +

1
#
p (‖uij‖, �). (11)

At the mth iteration, for (10), it can be solved that for i = 1,… , n,

Y (m)i = (g̃i + #)−1
[

− ∇ig(Y′(m−1)) + g̃iY
′(m−1)
i −w(m−1)

i + #(ZT
i �

(m) +XT
i �

(m)
i )

]

. (12)

For (11), we can get the closed form of u(m)ij for some commonly used penalties, such as group MCP and group SCAD. For the
group SCAD penalty with parameter  , i.e.,

p′ (‖uij‖, �) = �I(‖uij‖ ≤ �) +
(� − ‖uij‖)+

 − 1
I(‖uij‖ > �),
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we have

u(m)ij =

⎧

⎪

⎨

⎪

⎩

S(c(m−1)ij ; �∕#), ‖c(m−1)ij ‖ ≤ � + �∕#,
(

#(−1)−�∕‖c(m−1)ij ‖

)

c(m−1)ij

#−#−1
, � + �∕# < ‖c(m−1)ij ‖ ≤ �,

c(m−1)ij , ‖c(m−1)ij ‖ > �,

(13)

where c(m−1)ij = �(m)i − �(m)j +
v(m−1)ij

#
and S(c; �) = (1 − �∕‖c‖)+c. For group MCP penalty with parameter  , i.e.,

p′ (‖uij‖, �) =
(� − ‖uij‖)+


,

we have

u(m)ij =

⎧

⎪

⎨

⎪

⎩

S
( #c(m−1)ij

#−1∕
; �
#−1∕

)

, ‖c(m−1)ij ‖ ≤ �,

c(m−1)ij , ‖c(m−1)ij ‖ > �.
(14)

At Step 4, we first solve the following optimization problem

ũ(m)ij = argmin
ũij

1
2
‖�(m)i − �(m)j − ũij‖2 + p (‖ũij‖, �), (15)

and then update K (m) and (m) by clustering individuals i and j into the same group if ũij = 0. This step is critical to clustering
analysis of the regression coefficient � so that Step 1 can be carried out smoothly in the recursive process. The performance of
the algorithm depends on the choice of the penalty function and the tuning parameter �.
The initial points in the algorithm are taken as follows. Since covariateZ has no subgroup effect, we simply take the estimator

�̂ as �(0) by treating the hazard function as a homogeneous effect model. As a reasonable initial point of parameter �, it should
reflect not only the form of the assumed hazard function but also the subgroup relation among different individuals. So we
consider the ridge solution of the negative log-likelihood function as � (0). Concretely, we define

� (0) = argmin
�
ln(�(0), �) +

�∗

2
∑

i<j
‖�i − �j‖2,

where tuning parameter �∗ is taken as 0.001 in our simulation studies, and utilize a majorized algorithm to find the solution of
� (0) through (5). We takeK (0) = ⌊

√

n⌋ to ensure that there are enough groups at the beginning of the iteration. A cluster analysis
method can then be applied to � (0) for determining (0) = ((0)1 ,… ,(0)K (0)). Take Y(0) = Y′(0) = Z�(0) + X� (0), u(0) = A� (0) and
w(0) = v(0) = 0.
Denote the primal residual as

r(m) =
n
∑

i=1
(y(m)i − zTi �

(m) − xTi �
(m)
i )2 +

∑

i<j
||�(m)i − �(m)j − u(m)ij ||

2. (16)

We stop the iteration when r(m) is small enough.
We summarize the above descriptions in Algorithm 1.

Algorithm 1 Majorized ADMM algorithm

Initialize (�(0), �(0),Y(0),u(0);w(0), v(0),Y′(0)), K (0), and (0)
for m = 1, 2,⋯ do

Update (� (m), �(m)) using (9)
Update (Y(m),u(m)) using (12) (13), and (14)
Update Y′(m) using (6)
Update (w(m), v(m)) using (7)
Compute ũ(m)ij using (15), and update (K (m),(m)) according to ũ(m)ij
Compute r(m) using (16)
if r(m) is small enough then

Stop and denote the last interation by (�̂, �̂)
end if

end for
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4 ASYMPTOTIC RESULTS

Let Ni(t) = 1(Ti≤t,Δi=1), Yi(t) = 1(Ti≥t), and � be the end time of study. Suppose that ∫ �
0 �0(t)dt < ∞. The negative partial

log-likelihood function can be rewritten as

ln(�, �) = −
n
∑

i=1

�

∫
0

[

(

ZT
i � +X

T
i �i

)

− log

{ n
∑

j=1
Yj(t) exp(ZT

j � +X
T
j �j)

}]

dNi(t).

The objective function is Qn(�, �) = ln(�, �) + Pn(�), where Pn(�) =
∑

i<j p (||�i − �j||, �). Denote the true subgroup set
as 0 = (0,1,⋯ ,0,K0). Define W̃0 = W0

⊗ Ip, X̃0 = XW̃0 , B = (Z, X̃0), and let Bi be the i-th column of BT . Let
� = (�T ,�T )T , and S (0)(�,B, t) = n−1

∑n
i=1 Yi(t) exp(B

T
i �). Thus, with the prior information of 0, we write the negative partial

log-likelihood function as

l̃n(�) = −
n
∑

i=1

�

∫
0

[

BTi � − log[nS
(0)(�,B, t)]

]

dNi(t).

Then the oracle estimator �̂or = (�̂or, �̂or) is the minimizer of l̃n(�).
Now we present the asymptotic results of the proposed estimators.

Theorem 1. Suppose that Conditions (C1)-(C3) given in the Appendix hold. Let �0 be the true value of parameter �. Then
(i) �̂or

p
←←←←←→ �0;

(ii)
√

n(�̂or − �0) converges in distribution to the multivariate normal distribution with zero mean and covariance matrix
Σ−1(�0), where Σ(�0) is given in the Appendix.

Theorem 1 shows that when the grouping structure is known, the oracle estimator is consistent and asymptotically normal.
Next, when the true subgroup set 0 is known, we define the oracle parameter space of � as

0 = {� ∈ R
np ∶ �i = �j = �k, for any i, j ∈ 0,k, 1 ≤ k ≤ K0}.

Define (�̂or, �̂or) as the minimizer of ln(�, �) with subject to � ∈0 . Set �0 and �0 to be the true parameter. We first consider
the case of K0 ≥ 2 and have the following result.

Theorem 2. Suppose that Conditions (C1)-(C4) given in the Appendix hold. Let b = mini∈0,k,j∈0,k′ ,k≠k′ ||�0i − �0j|| =
mink≠k′ ||�0k − �0k′ ||. Assume that b > a� for constant a in Condition (C4) and b ≫ �2. Then there exists a local minimizer
(�̂(�), �̂(�)) of the objective function Qn(�, �; �) satisfying P

(

(�̂(�), �̂(�)) = (�̂or, �̂or)
)

→ 1.

Next, we consider the case of a homogeneous model in which K0 = 1 and �01 =⋯ = �0n ≡ �0.

Theorem 3. Suppose that Conditions (C1)-(C4) given in the Appendix hold. When there is only one group, we define the oracle
parameter space of � as  = {� ∈ Rnp ∶ �i ≡ �, i = 1,⋯ , n}, and the oracle estimator (�̂or, �̂or) as the minimizer of ln(�, �)
with � ∈ . Then there exists a local minimizer (�̂(�), �̂(�)) of the objective function Qn(�, �; �) satisfying P

(

(�̂(�), �̂(�)) =
(�̂or, �̂or)

)

→ 1.

Let �̂(�) be the distinct value of �̂(�) and �̂or be the distinct value of �̂or. By Theorems 1–3, we conclude that n1∕2(�̂(�)−�0)
converges in distribution to the multivariate normal distribution with mean 0 and covariance matrix Σ−1(�0).

5 SIMULATION STUDIES

We conducted simulation studies to evaluate the performance of the proposed method. The data were generated from model
(2) with censoring rate 0.20, where �0(t) = 1, � = (−1, 1)T , and Zi = (Zi1, Zi2)T was generated from multivariate normal
with mean 0, variance 1 and correlation 0.4. We considered four examples: (i) one treatment variable with two latent subgroups
of equal size; (ii) multi-treatment variable with two subgroups of unequal size; (iii) one treatment variable with three latent
subgroups of equal size; (iv) one treatment variable with a homogeneous effect. Two penalties, group SCAD and group MCP,
were used in the examples to compare their performance with oracle estimators. The parameter  was taken as 3.7 and 2.5 for
SCAD and MCP, respectively. We set sample size n = 100 or 200 in Examples 1, 2 and 4 and n = 150 or 300 in Example 3,
and let # = 1 in the majorized ADMM algorithm.
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To implement the algorithm, we adopt the warm start to update the solution path of � and � along different values of �, and
use the modified BIC criterion in Lee et al23 to select the optimal tuning parameter � by minimizing

BIC(�) = ln(�̂(�), �̂(�)) + Cn
log n
n
(K̂(�)p + q),

where Cn = log(nK̂(�) + q). The simulation results are based on 100 replications.
Example 1. We first generatedXi from Bernoulli(0.5)+1. Let 1 = {1,… , n∕2} and 2 = {n∕2+1,… , n}, and the effects of

variableX on the survival time were divided into 2 groups with equal size. We considered the following two cases to investigate
the effect of the size of the difference between the subgroup-specific treatment effects:
Case 1: �i = −1.5 for i ∈ 1 and �i = 1.5 for i ∈ 2, that is, � = (−1.5, 1.5)T .
Case 2: �i = −3 for i ∈ 1 and �i = 3 for i ∈ 2, that is � = (−3, 3)T .
We also compared our approach with the subgroup analysis approach under the logistic-Cox mixture model15 in Example 1.

TABLE 1 Simulation results for estimation of group size K in Example 1.

n METHOD MEAN MEDIAN SD TPR
Case 1: � = (−1.5, 1.5) and � = (−1, 1)

100 GMCP 2.10 2 0.333 0.911
GSCAD 2.09 2 0.321 0.909

200 GMCP 2.13 2 0.367 0.922
GSCAD 2.08 2 0.273 0.923

Case 2: � = (−3, 3) and � = (−1, 1)
100 GMCP 2 2 0 0.978

GSCAD 2 2 0 0.979
200 GMCP 2 2 0 0.980

GSCAD 2 2 0 0.984

The true value of K is K = 2. SD represents standard deviation; TPR represents rate of individuals selected into the subgroups
correctly.

The simulation results for Exapmle 1 are summarized in Tables 1 and 2 and Figure 1. Figure 1 includes two kinds of fusion-
grams for GMCP when n = 100, where one is from one simulated dataset and the other is based on the median estimate of 100
replications for each fixed tuning parameter. The plots from one dataset show how the group size and estimates change as the
tuning parameter value increases. It is clear that regression coefficients will be estimated as one group for large enough value
of the tuning parameter. As a comparison, the estimates in the fusiongram based on 100 replications are more concentrated.
This implies that our ridge initial solution can statistically subgroup the regression coefficients to some degree. The fusiongram
for GSCAD and the fusiongram for n = 200 are similar and so omitted here. Table 1 reports the estimates of group size K in
Example 1. The means and medians of K̂ under both GMCP and GSCAD selectors are close to the true value. When the dif-
ference of treatment effects between two subgroups increases, the true positive rate (TPR) becomes larger and are closer to 1,
indicating identification of the subgroup structure more accurate. Table 2 further shows the estimates of regression coefficients.
We can see that the MEANs and MEDIANs are close to the true values of the parameters, and the standard deviations reduce
as the sample size increases. Noting that the logistic-Cox mixture model assumes that the parameter K = 2 is given and the
grouping membership satisfies a logistic model, its parameter space is much smaller than our model. Table 2 shows the biases
and standard errors of our estimators are comparable to those obtained by fitting the logistic-Cox mixture model.

Example 2. Suppose Xi = (Xi1, Xi2)T , where Xi1 and Xi2 were generated from Bernoulli(0.5) + 1 and Uniform(1, 3),
respectively. Set �i = (−2, 0.5)T for i ∈ 1, and �i = (2, 3)T for i ∈ 2, where 1 = {1,… , 2n∕5}, and 2 = {2n∕5 + 1,… , n}.
Thus, � = (�T1 , �

T
2 )
T with �1 = (−2, 2)T and �2 = (0.5, 3)T .

Example 3. Suppose that Xi was generated from Bernoulli(0.5) + 1. Set 1 = {1,… , n∕3}, 2 = {n∕3 + 1,… , 2n∕3}, and
3 = {2n∕3 + 1,… , n}.We set �i = −3 for i ∈ 1, �i = 0 for i ∈ 2, and �i = 3 for i ∈ 3. That is � = (−3, 0, 3)T .

Example 4. Consider the homogeneous model where Xi was generated from Bernoulli(0.5) + 1, and �i ≡ 1 for all i.
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TABLE 2 Simulation results for estimation of regression coefficients in Example 1.

n PARAMETER METHOD MEAN MEDIAN SD
Case 1: � = (−1.5, 1.5) and � = (−1, 1)

100 � GMCP (−1.760, 1.773) (−1.782, 1.789) (0.413, 0.421)
GSCAD (−1.735, 1.791) (−1.773, 1.778) (0.409, 0.406)
Mixture (−1.545, 1.543) (−1.520, 1.570) (0.500, 0.487)
Oracle (−1.518, 1.586) (−1.505, 1.594) (0.339, 0.287)

� GMCP (−0.850, 0.844) (−0.869, 0.854) (0.232, 0.236)
GSCAD (−0.843, 0.841) (−0.859, 0.852) (0.229, 0.234)
Mixture (−1.021, 1.013) (−1.020, 1.026) (0.235, 0.242)
Oracle (−1.025, 1.027) (−1.015, 1.012) (0.175, 0.168)

200 � GMCP (−1.704, 1.667) (−1.715, 1.698) (0.299, 0.287)
GSCAD (−1.750, 1.625) (−1.773, 1.671) (0.307, 0.328)
Mixture (−1.521, 1.550) (−1.516, 1.554) (0.271, 0.256)
Oracle (−1.532, 1.538) (−1.531, 1.522) (0.215, 0.215)

� GMCP (−0.924, 0.925) (−0.917, 0.910) (0.158, 0.149)
GSCAD (−0.918, 0.910) (−0.916, 0.903) (0.162, 0.162)
Mixture (−1.032, 1.033) (−1.031, 1.033) (0.140, 0.137)
Oracle (−1.020, 1.019) (−1.014, 1.013) (0.112, 0.113)

Case 2: � = (−3, 3) and � = (−1, 1)
100 � GMCP (−2.969, 3.171) (−3.013, 3.175) (0.642, 0.471)

GSCAD (−2.976, 3.175) (−3.019, 3.175) (0.645, 0.475)
Mixture (−2.846, 2.879) (−2.944, 3.109) (0.896, 1.124)
Oracle (−3.077, 3.167) (−3.013, 3.137) (0.545, 0.450)

� GMCP (−0.957, 0.965) (−0.932, 0.969) (0.217, 0.215)
GSCAD (−0.960, 0.968) (−0.936, 0.969) (0.215, 0.218)
Mixture (−0.965, 0.968) (−0.975, 1.004) (0.281, 0.296)
Oracle (−1.025, 1.028) (−1.015, 1.015) (0.178, 0.172)

200 � GMCP (−2.815, 2.931) (−2.831, 2.955) (0.493, 0.436)
GSCAD (−2.856, 2.944) (−2.897, 2.987) (0.487, 0.464)
Mixture (−3.002, 3.013) (−3.008, 3.058) (0.538, 0.572)
Oracle (−3.077, 3.069) (−3.081, 3.040) (0.339, 0.328)

� GMCP (−0.977, 0.966) (−1.000, 1.006) (0.186, 0.199)
GSCAD (−0.994, 0.976) (−1.005, 1.006) (0.171, 0.186)
Mixture (−1.012, 1.015) (−1.024, 1.020) (0.158, 0.164)
Oracle (−1.021, 1.018) (−1.018, 1.009) (0.114, 0.114)

SD represents standard deviation; Mixture denotes the subgroup analysis results under the logistic-Cox mixture model15.

The simulation results for Examples 2–4 are summarized in Tables 3–7 and Figures 2–5. The figures show the fusiongram
for estimation in Examples 2–4, respectively. Tabels 3, 5 and 7 display the estimates of group size K and the TPR in Examples
2–4, respectively. The means and medians of K̂ under both GMCP and GSCAD selectors are close to the true value, and the
TPR are close to 1, which reflect that our methods can identify the group structure correctly with high probability. As the sample
size increases, the standard deviation of K̂ decreases and the TPR increases, which demonstrate the good performances of our
approaches. Furthermore, Tables 4, 6 and 7 report the estimates of the regression coefficients. The MEAN and MEDIAN of
estimators are very close to the true value, and standard deviation (SD) for parameters reduce as the sample size increases.
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(a) Fusiongram based on one dataset
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FIGURE 1 Fusiongram for estimation of parameter � for GMCP in Example 1 when n = 100.

TABLE 3 Simulation results for estimation of group size K in Example 2.

n METHOD MEAN MEDIAN SD TPR
100 GMCP 2.10 2 0.362 0.982

GSCAD 2.08 2 0.339 0.984
200 GMCP 2.07 2 0.256 0.991

GSCAD 2.07 2 0.256 0.991

The true value of K is K = 2. SD represents standard deviation; TPR represents rate of individuals selected into the subgroups
correctly.
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TABLE 4 Simulation results for estimation of regression coefficients in Example 2.

n PARAMETER METHOD MEAN MEDIAN SD
True Value: �1 = (−2, 2), �2 = (0.5, 3) and � = (−1, 1)

100 �̂1 GMCP (−2.062, 2.110) (−1.996, 2.107) (0.558, 0.465)
GSCAD (−2.059, 2.108) (−1.996, 2.120) (0.555, 0.463)
Oracle (−2.108, 2.111) (−2.064, 2.058) (0.606, 0.351)

�̂2 GMCP (0.496, 2.995) (0.507, 3.004) (0.475, 0.755)
GSCAD (0.497, 3.012) (0.507, 3.004) (0.474, 0.727)
Oracle (0.486, 3.244) (0.529, 3.247) (0.453, 0.470)

�̂ GMCP (−0.942, 0.957) (−0.972, 0.978) (0.279, 0.283)
GSCAD (−0.946, 0.959) (−0.977, 0.978) (0.271, 0.274)
Oracle (−1.058, 1.060) (−1.053, 1.071) (0.150, 0.173)

200 �̂1 GMCP (−1.989, 1.973) (−1.976, 1.974) (0.389, 0.250)
GSCAD (−1.989, 1.973) (−1.976, 1.974) (0.389, 0.250)
Oracle (−2.108, 2.070) (−2.095, 2.065) (0.413, 0.249)

�̂2 GMCP (0.485, 2.929) (0.479, 2.981) (0.329, 0.456)
GSCAD (0.485, 2.929) (0.479, 2.981) (0.329, 0.456)
Oracle (0.516, 3.090) (0.501, 3.066) (0.273, 0.275)

�̂ GMCP (−0.984, 1.003) (−0.989, 1.024) (0.163, 0.165)
GSCAD (−0.984, 1.003) (−0.989, 1.024) (0.163, 0.165)
Oracle (−1.021, 1.009) (−1.001, 0.996) (0.123, 0.114)

SD represents standard deviation.

TABLE 5 Simulation results for estimation of group size K in Example 3.

n METHOD MEAN MEDIAN SD TPR
150 GMCP 2.99 3 0.225 0.866

GSCAD 3.03 3 0.264 0.866
300 GMCP 3.01 3 0.100 0.874

GSCAD 3 3 0 0.876

The true value of K is K = 3. SD represents standard deviation; TPR represents rate of individuals selected into the subgroups
correctly.

6 APPLICATION

We applied the proposed method to analyzing the breast cancer data,24,25 which can be found in the “nki" data set in the R
package “dynpred". This trail was carried out in the Dutch Cancer Institute, where 295 patients with breast cancer were put
into two treatment groups by the type of surgery (excision and mastectomy), some of them accompanying with two kinds of
adjuvant therapies, chemotherapy or hormonal therapy. The main goal is to investigate effects of different surgical treatments
on patients’ hazard. Hence we focused on the observed data from 255 patients who were not treated with the hormonal therapy
for the analysis. Let Ui and Ci be survival and censoring times for the ith patient, i = 1,… , n where n = 255. Let X denote the
treatment group indicator defined as 1 for patients treated with excision and 0 for patients treated with mastectomy. According
to the iterative sure independence screening result26, we took 5 additional baseline covariates Z1,⋯ , Z5 into consideration,
including age (age), the logarithmic intensity ratio for estrogen-receptor status (mlratio), histological grade (ℎistolgrade = 1 if
well differentiated; 0 otherwise), vascular invasion (vasc.inv = 1 for more than 3 vessels; 0 otherwise), and the cross-validated
version of the prognostic index (PICV ). All the continuous covariates were standardized for convenience.
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(b) Fusiongram based on 100 replications
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FIGURE 2 Fusiongram for estimation of parameter � by GMCP selector in Example 2 when n = 200.

To check for the possible heterogeneity of treatment effects, we first fitted the homogeneous Cox model based on the excision
treatment group. Figure 6 displays the plot of the kernel density estimate of the martingale residual. We observed that the
distribution has multiple modes, indicating the existence of heterogeneous treatment effects.
To demonstrate the heterogeneity of treatment effects, we fitted the proposed heterogeneous Cox model in (2) using our

subgroup analysis procedure with group MCP and group SCAD penalties, where the optimal tuning parameter was determined
by the modified BIC criterion. Figure 7 displays the fusiongram for the estimate of �. The grouping and parameter estimation
results with GMCP are summarized in Table 8, while the results with GSCAD are similar and so are omitted. For comparison,
we also provide the estimation results by fitting both the homogeneous Cox model and the logistic-Cox mixture model15 in the
table. It can be seen from the table that the fitted homogenous Cox model could not detect any significant treatment effect, while
both the logistic-Cox mixture approach and the proposed subgroup analysis approach identified the significant subgroup-specific
treatment effects.
Furthermore, we present the grouping result in Table 9 according to the type of surgery. It can be seen from the table that

our subgroup analysis approach identifies 90% of the patients with the excision and 4% of the patients with the mastectomy as
one subgroup and 96% of the patients with the mastectomy and 10% of the patients with excision as another subgroup. For the
patients in subgroup 1, the excision can reduce the hazard and prolong the lifetime significantly; while for the patients in subgroup
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(a) Fusiongram based on one dataset
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(b) Fusiongram based on 100 replications
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FIGURE 3 Fusiongram for estimation of parameter � by GSCAD selector in Example 2 when n = 200.

2, the mastectomy is better than the excision. The subgroup analysis approach15 provides the estimates of the probabilities that
patients belong to each subgroup under the logistic model.
The key difference between our approach and the subgroup analysis approach15 is that the number of the potential subgroups

K and the grouping structure are left completely unspecified in our proposed model, while Wu et al.15 assumed that K = 2 and
the subgroup membership satisfies a logistic model. Our subgroup analysis method is more flexible and applicable.

7 DISCUSSION

In this paper, we conduct the subgroup analysis for the heterogenous Cox model using the concave fusion penalized partial
likelihood approach. The proposed approach can identify the grouping structure and estimate the heterogeneous covariate effects
involved in the model simultaneously and automatically. To obtain an efficient solution to the objective function, we apply
the majorized ADMM algorithm which not only converges faster but also calculates more accurately than the local quadratic
approximated ADMM algorithm suggested by Ma el al.17 Our simulation and real data analysis demonstrate that the proposed
method performs well. We expect that the proposed approach can be extensively used for subgroup analysis with survival data.
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FIGURE 4 Fusiongram for estimation of parameter � for GMCP in Example 3 when n = 150.

TABLE 6 Simulation results for estimation of regression coefficients in Example 3.

n PARAMETER METHOD MEAN MEDIAN SD
True Value: � = (−3, 0, 3), � = (−1, 1)

150 �1 GMCP −3.422 −3.453 0.556
GSCAD −3.429 −3.387 0.553
Oracle −3.087 −3.043 0.429

�2 GMCP 0.062 0.074 0.393
GSCAD 0.033 0.041 0.420
Oracle −0.007 0.001 0.233

�3 GMCP 3.309 3.219 0.552
GSCAD 3.280 3.204 0.578
Oracle 3.076 3.040 0.364

� GMCP (−0.747, 0.727) (−0.777, 0.720) (0.228, 0.224)
GSCAD (−0.716, 0.713) (−0.714, 0.716) (0.234, 0.233)
Oracle (−1.033, 1.024) (−1.029, 1.016) (0.129, 0.133)

300 �1 GMCP −3.283 −3.289 0.388
GSCAD −3.288 −3.283 0.411
Oracle −3.065 −3.031 0.298

�2 GMCP −0.068 −0.067 0.314
GSCAD −0.068 −0.072 0.298
Oracle −0.007 −0.007 0.152

�3 GMCP 3.088 3.016 0.525
GSCAD 3.133 3.158 0.523
Oracle 3.033 3.038 0.238

� GMCP (−0.775, 0.788) (−0.797, 0.816) (0.182, 0.186)
GSCAD (−0.785, 0.790) (−0.795, 0.805) (0.183, 0.185)
Oracle (−1.012, 1.017) (−1.009, 1.013) (0.099, 0.094)

SD represents standard deviation.
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FIGURE 5 Fusiongram for estimation of parameter � for GMCP in Example 4 when n = 200.

TABLE 7 Simulation results for estimation of K and regression coefficients in Example 4.

n PARAMETER METHOD MEAN MEDIAN SD
100 K GMCP 1.08 1 0.273

GSCAD 1.09 1 0.288
Oracle − − −

� GMCP 1.022 0.999 0.221
GSCAD 1.017 0.995 0.221
Oracle 1.042 1.026 0.245

� GMCP (−1.004, 0.999) (−0.995, 0.991) (0.178, 0.171)
GSCAD (−1.000, 0.997) (−0.990, 0.988) (0.180, 0.170)
Oracle (−1.026, 1.026) (−1.017, 1.008) (0.170, 0.170)

200 K GMCP 1.04 1 0.197
GSCAD 1.01 1 0.100
Oracle − − −

� GMCP 1.022 1.021 0.184
GSCAD 1.024 1.023 0.183
Oracle 1.020 1.019 0.172

� GMCP (−1.029, 1.030) (−1.039, 1.027) (0.114, 0.118)
GSCAD (−1.029, 1.030) (−1.032, 1.024) (0.113, 0.117)
Oracle (−1.019, 1.018) (−1.015, 1.008) (0.109, 0.111)

SD represents standard deviation.

The main differences between our method andMa et al’s17 are threefold. First, we deal with the Cox model with heterogeneity
and censoring, while they consider the heterogenous linear model with complete data. Second, we use the negative partial
likelihood-based loss function, while they use the least squares-based loss function. Third, to solve the minimization problem,
we utilize the majorized ADMM algorithm, while they apply the local quadratic approximated ADMM algorithm.
Further, the proposed method can be extended to handling the case where the unknown number of subgroups and the dimen-

sion of covariates can increase with sample size in the proposed heterogenous Cox model. For this situation, we propose to use



Xiangbin Hu ET AL 15

−2 −1 0 1

0
.0

0
.5

1
.0

1
.5

Martingale Residual

D
e

n
si

ty

FIGURE 6 The kernel density plot of the residuals after controlling for the effects of the 5 covariates for the patients treated
with the excision in the Breast Cancer data.

TABLE 8 Analysis results for Breast Cancer Data.

PL Mixture GMCP
Covariate Estimate (ESE) p−value Estimate (ESE) p-value Estimate (ESE) p-value
Subgroup 1 −0.311(0.244) .203 −1.571(0.409) < .001∗ −3.981(0.575) < .001∗

Subgroup 2 −(−) − 1.374(0.425) .001∗ 1.917(0.343) < .001∗

age −0.323(0.110) .003∗ −0.058(0.146) .689 −0.320(0.109) .003∗

mlratio −0.285(0.152) .060 −0.347(0.179) .053 −0.420(0.155) .006∗

histolgrade −1.110(0.542) .041∗ −1.004(0.587) .087 −1.289(0.551) .019∗

vasc.inv 0.642(0.250) .010∗ 0.046(0.324) .889 1.081(0.274) < .001∗

PICV 0.421(0.165) .011∗ 0.534(0.166) .001∗ 0.505(0.171) .003∗

PL represents partial likelihood approach;Mixture denotes the subgroup analysis results under the logistic-Coxmixturemodel15;
∗ represents significance at 0.05 level.

the criterion function

Qn(�, �) = ln(�, �) +
∑

i<j
p(1) (||�i − �j||, �1) +

q
∑

j=1
p(2) (�j , �2).

With the penalty functions p(1) (⋅, �1) and p
(2)
 (⋅, �2), we can conduct subgroup analysis and variable selection simultaneously.
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FIGURE 7 Fusiongram for estimation of parameter � in Breast Cancer Data analysis.

TABLE 9 The number of patients with different type of surgery in two subgroups.

Treatment Subgroup 1 Subgroup 2 Total
Excision 128 15 143

Mastectomy 5 107 112
Total 133 122 255

ACKNOWLEDGEMENTS

The authors are grateful to the Editor, Associate Editor, and two referees for their valuable comments and suggestions that greatly
improved the paper. This research is supported in part by National Natural Science Foundation of China (11771366), and the
Research Grant Council of Hong Kong (15301218, 15303319).

References

1. Fan J, Li R. Variable selection for Cox’s proportional hazards model and frailty model. Ann Stat. 2002;30(1):74–99.

2. Zhang HH, Lu W. Adaptive Lasso for Cox’s proportional hazards model. Biometrika. 2007;94(3):691–703.

3. Zhao H, Wu Q, Li G, Sun J. Simultaneous estimation and variable selection for interval-censored data with broken adaptive
ridge regression. J Am Stat Assoc. 2020;115(529):204–216.

4. Bradic J, Fan J, Jiang J. Regularization for Cox’s proportional hazards model with NP-dimensionality. Ann Stat.
2011;39(6):3092–3120.

5. Huang J, Sun T, Ying Z, YuY, Zhang C. Oracle inequalities for the lasso in the Coxmodel. Ann Stat. 2013;41(3):1142–1165.

6. Fang EX, Ning Y, Liu H. Testing and confidence intervals for high dimensional proportional hazards models. J R Stat Soc
Series B Stat Methodol. 2017;79(5):1415–1437.

7. Chen K, Chen K, Muller HG, Wang JL. Stringing high-dimensional data for function analysis. J Am Stat Assoc.
2011;106(493):275–284.



Xiangbin Hu ET AL 17

8. Qu S, Wang JL, Wang X. Optimal estimation for the functional cox model. Ann Stat. 2016;44(4):1708–1738.

9. Kong D, Ibrahim JG, Lee E, Zhu H. FLCRM: Functional linear cox regression model. Biometrics. 2018;74(1):109–117.

10. Kravitz RL, Duan N, Braslow J. Evidence-based medicine, heterogeneity of treatment effects, and the trouble with averages.
Milbank Q. 2004;82(4):661–687.

11. Rothwell PM. Subgroup analysis in randomised controlled trials: importance, indications, and interpretation. Lancet.
2005;365(9454):176–186.

12. Lagakos SW. The challenge of subgroup analyses-reporting without distorting. N Engl J Med. 2006;354(16):1667–1669.

13. Wei S, Kosorok MR. Latent supervised learning. J Am Stat Assoc. 2013;108(503):957–970.

14. Shen J, He X. Inference for subgroup analysis with a structured logistic-normal mixture model. J Am Stat Assoc.
2015;110(509):303–312.

15. Wu R, Zheng M, Yu W. Subgroup analysis with time-to-event data under a logistic-Cox mixture model. Scand J Stat.
2016;43(3):863–878.

16. Ma S, Huang J. A concave pairwise fusion approach to subgroup analysis. J Am Stat Assoc. 2017;112(517):410–423.

17. Ma S, Huang J, Zhang Z, Liu M. Exploration of heterogeneous treatment effects via concave fusion. Int J Biostat.
2019;16(1):20180026.doi:10.1515/ijb-2018-0026.

18. Zhang Y, Wang JH, Zhu Z. Robust subgroup identification. [published ahead of print, 2019]. Stat Sin.
doi:10.5705/ss.202017.0179.

19. Chen K, Huang R, Chan NH, Yau CY. Subgroup analysis of zero-inflated Poisson regression model with applications to
insurance data. Insur Math Econ. 2019;86(5):8–18.

20. Li M, Sun D, Toh KC. A majorized ADMM with indefinite proximal terms for linearly constrained convex composite
optimization. SIAM J Optim. 2016;26(2):922–950.

21. Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc.
2001;96(456):1348–1360.

22. Zhang C. Nearly unbiased variable selection under minimax concave penalty. Ann Stat. 2010;38(2):894–942.

23. Lee ER, Noh H, Park BU. Model selection via Bayesian Information Criterion for quantile regression models. J Am Stat
Assoc. 2014;109(505):216–229.

24. van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature.
2002;415(6871):530–536.

25. van de Vijver MJ, He Y, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl
J Med. 2002;347(25):1999–2009.

26. Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature space. J R Stat Soc Series B Stat Methodol.
2008;70(5):849–911.



18 Xiangbin Hu ET AL

APPENDIX

A PROOFS OF THEOREMS

To establish the asymptotic properties of the proposed estimator, we need the following regularity conditions.
(C1) The end time of study � satisfies that ∫ �

0 �0(t)dt <∞.
(C2) The covariates Xi and Zi satisfy that ||Xi|| ≤ c1 and ||Zi|| ≤ c2 with probability 1.
(C3) The dimension of covariates p, q and the true cluster size K0 are constants. The sizes of 0,k satisfy that |0,k|∕n → pk

for k = 1,⋯ , K0 when n goes to infinity.
(C4) Set the penalty function � (t) = �−1p (t, �). Suppose that � (t) is symmetric, non-decreasing and concave on [0,∞). � (t)

is constant when t ≥ a�, where a is a positive constant. Furthermore, � (0) = 0 and the derivative �′ (t) satisfies that �
′
 (0

+) = 1.

We introduce more notation before proving the theorems.

Let S (l)(�,B, t) = n−1
∑n
i=1 Yi(t)B

⊗l
i exp(BTi �), where a

⊗l = 1, a, aaT for l = 0, 1, 2. Define the score function

Ũn(�) = −
n
∑

i=1

�

∫
0

[

Bi −
S (1)(�,B, t)
S (0)(�,B, t)

]

dNi(t),

and the Hessian matrix

H̃n(�) =
n
∑

i=1

�

∫
0

[

S (2)(�,B, t)
S (0)(�,B, t)

−
{

S (1)(�,B, t)
S(0)(�,B, t)

}⊗2
]

dNi(t).

Let S (k,l)(�,B, t) = 1
|0,k|

∑

i∈0,k
Yi(t)B

⊗l
i exp(BTi �), where l = 0, 1, 2 and k = 1,⋯ , K0. Then we have

S (l)(�,B, t) = 1
n

n
∑

i=1
Yi(t)B

⊗l
i exp(BTi �) =

K0
∑

k=1

|0,k|
n

S (k,l)(�,B, t).

Note that Bi, i ∈ 0,k are independent and identically distributed random vectors. Denote the expectation of S (k,l)(�,B, t) by
s(k,l)(�, t), and s(l)(�, t) =

∑K
k=1 pks

(k,l)(�, t), where |0,k|∕n→ pk when n→∞. Then we have

sup
t∈[0,�]

|S (k,l)(�,B, t) − s(k,l)(�, t)|∞
p
←←←←←→ 0,

and supt∈[0,�] |S (l)(�,B, t) − s(l)(�, t)|∞
p
←←←←←→ 0, where | ⋅ |∞ denotes the maximum norm. Define

Σ(�0) =

�

∫
0

{

s(2)(�0, t)
s(0)(�0, t)

−
(

s(1)(�0, t)
s(0)(�0, t)

)⊗2}

s(0)(�0, t)�0(t)dt.

A.1 Proof of Theorem 1
(i) The proof of the first part is based on the techniques for the consistency of the M-estimator. Note that

1
n
(

l̃n(�) − l̃n(�0)
)

= −1
n

n
∑

i=1

�

∫
0

[

BTi (� − �0) − log
S (0)(�,B, t)
S (0)(�0,B, t)

]

dNi(t).

Define

An(�) = −
1
n

n
∑

i=1

�

∫
0

[

BTi (� − �0) − log
S (0)(�,B, t)
S (0)(�0,B, t)

]

Yi(t) exp(BTi �0)�0(t)dt

= −

�

∫
0

[

S (1)(�0,B, t)T (� − �0) − log
{

S (0)(�,B, t)
S (0)(�0,B, t)

}

S (0)(�0,B, t)
]

�0(t)dt
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as the compensator of 1
n

(

l̃n(�) − l̃n(�0)
)

, and Mi(t) = Ni(t) − ∫ t
0 Yi(u) exp(B

T
i �0)�0(u)du. Since Mi(t) is a locally square

integrable martingale, then

1
n
(

l̃n(�) − l̃n(�0)
)

− An(�) = −
1
n

n
∑

i=1

�

∫
0

[

BTi (� − �0) − log
S (0)(�,B, t)
S (0)(�0,B, t)

]

dMi(t)

is also a locally square integrable martingale. Hence 1
n

(

l̃n(�) − l̃n(�0)
)

− An(�) has a predictable variation process
⟨1
n
(

l̃n(�) − l̃n(�0)
)

− An(�),
1
n
(

l̃n(�) − l̃n(�0)
)

− An(�)
⟩

= 1
n2

n
∑

i=1

�

∫
0

⎡

⎢

⎢

⎣

{

BTi (� − �0) − log
∑n
i=1 Yi(t) exp(B

T
i �)

∑n
i=1 Yi(t) exp(B

T
i �)

}2

Yi(t) exp(BTi �0)�0(t)
⎤

⎥

⎥

⎦

dt

=1
n

�

∫
0

[

(� − �0)TS (2)(�,B, t)(� − �0) − 2(� − �0)TS (1)(�,B, t) log
S (0)(�,B, t)
S (0)(�0,B, t)

+
{

log
S (0)(�,B, t)
S (0)(�0,B, t)

}2
]

�0(t)dt.

By Conditions (C2) and (C3), for any k and l, s(k,l)(�, t) and s(l)(�, t) are bounded. Then, by Condition (C1), the predictable
variation process has a finite limit. This gives that limn→∞

1
n

(

l̃n(�) − l̃n(�0)
)

= A(�), where

A(�) = lim
n→∞

An(�) = −

�

∫
0

[

s(1)(�0, t)T (� − �0) − log
{

s(0)(�, t)
s(0)(�0, t)

}

s(0)(�0, t)
]

�0(t)dt.

Noting that �̂or is the global minimizer of l̃n(�), it is also the global minimizer of 1
n

(

l̃n(�) − l̃n(�0)
)

. Since A(�) is a convex
function about � and has a global minimizer �0, it follows that �̂or

p
←←←←←→ �0.

(ii) To prove this part, it suffices to show that 1
√

n
Ũn(�0) converges to a zero mean multivariate normal distribution with

covariance matrix Σ(�0), and |

1
n
H̃n(�̂or) − Σ(�0)|∞

p
←←←←←→ 0. For this, we only need to verify the conditions of Theorem 8.2.1 of

Fleming and Harrington (1991). Recall that

sup
0≤t≤�

|S (l)(�0,B, t) − s(l)(�0, t)|∞
p
←←←←←→ 0.

Noting that )
)�
S (k,0)(�,B, t) = S (k,1)(�,B, t) and )

)�
S (k,1)(�,B, t) = S (k,2)(�,B, t), we have )

)�
s(k,0)(�, t) = s(k,1)(�, t) and

)
)�
s(k,1)(�, t) = s(k,2)(�, t), k = 1,⋯ , K . Since s(l)(�, t) is a linear combination of s(k,l)(�, t), it follows that )

)�
s(0)(�, t) = s(1)(�, t)

and )
)�
s(1)(�, t) = s(2)(�, t). By Condition (C2), s(l)(�, t) is bounded. In addition, as the composition of continuous functions is

continuous, we then get that s(l)(�0, t), 0 < t < � are equicontinuous for l = 0, 1, 2.
Condition (C2) gives that ||Bi|| ≤

√

c21 + c
2
2 with probability 1. Noting that Yi is a decreasing counting process from 1 to 0,

and BTi �0 > −||Bi|| ⋅ ||�0||, we have

n−1∕2 sup
1≤i≤n,0≤t≤�

||Bi||Yi(t)1{BTi �0>−||Bi||⋅||�0||}
p
←←←←←→ 0.

Finally, the convexity of negative partial log-likelihood ensures that 1
n
H̃n(�0) is positive definite and so its limit is

Σ(�0) =

�

∫
0

{

s(2)(�0, t)
s(0)(�0, t)

−
(

s(1)(�0, t)
s(0)(�0, t)

)⊗2}

s(0)(�0, t)�0(t)dt.

By Theorem 8.2.1 in Fleming and Harrington(1991), we conclude the asymptotic normality of 1
√

n
Ũn(�0) and |

1
n
H̃n(�̂or) −

Σ(�0)|∞
p
←←←←←→ 0.

By the Taylor’s expansion, we get that Ũn(�̂or) = Ũn(�0) − H̃n(�̃)(�̂or − �0), where �̃ is a vector between �̂or and �0. Noting
that Ũn(�̂or) = 0, we have

1
n
H̃n(�̃)

√

n(�̂or − �0) =
1
√

n
Ũn(�0).
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Using the fact that both 1
n
H̃n(�̂or) and

1
n
H̃n(�0) converge to Σ(�0) in probability, H̃n(�̃) also converges to Σ(�0) in probability.

Besides, as 1
√

n
Ũn(�0) converges to a zero mean normal distribution with covariance matrix Σ(�0), we conclude that

√

n(�̂or−�0)
converges to a normal distribution with zero mean and covariance matrix Σ−1(�0).

A.2 Proof of Theorem 2
Define the mapping T ∗ ∶ Rnp → RK0p as

T ∗(�) = {|0,k|−1
∑

i∈0,k

�Ti , k = 1,⋯ , K0}T ,

and let the one-to-one mapping T ∶ 0 → RK0p satisfying T (�) = T ∗(�). For any vector � ∈ Rnp, set � = T ∗(�) and
�∗ = T −1(T ∗(�)) = T −1(�). Noting that for any vector � ∈ Rq and �∗ ∈0 , we have ln(�, �

∗) = l̃n((�T ,�T )T ). Hence, �̂or

defined in Theorem 1 equals to
(

(�̂or)T , T (�̂or)T
)T . Consider the neighbourhood of (�0, �0), i.e.,

Θ = {� ∈ Rq , � ∈ Rnp ∶ ||� − �0|| ≤ �n,maxi ||�i − �0i|| ≤ �n},

where �n → 0 as n goes to infinity. To conclude the theorem, it suffices to clarify the following two steps.
(i) For any (�T , �T )T ∈ Θ, if (�T , (�∗)T )T ≠ ((�̂or)T , (�̂or)T )T , then Qn(�, �∗) > Qn(�̂or, �̂or).
(ii) For any (�T , �T )T ∈ Θ and large enough n, Qn(�, �) ≥ Qn(�, �∗).
In fact, by Theorem 1, we have P

(

(�̂or, �̂or) ∈ Θ
)

→ 1. If (i) and (ii) hold, for any (�T , �T )T ∈ Θ satisfying (�T , (�∗)T )T ≠
((�̂or)T , (�̂or)T )T and large enough n, we have Qn(�, �) > Qn(�̂or, �̂or). That means that there is a local minimizer of Qn(�, �; �)
satisfying that (�̂(�), �̂(�)) = (�̂or, �̂or) with probability tend to 1.
For (i), since ln(�, �∗) = l̃n

(

(�T ,�T )T
)

> l̃n
(

((�̂or)T , (�̂or)T )T
)

= ln(�̂or, �̂or), we only need to consider the penalty function
Pn(�) = �

∑

i<j � (||�i − �j||). Note that �∗i = �
∗
j when subjects i and j are from the same group. Thus,

Pn(�∗) = �
∑

i<j,i∈0,k,j∈0,k′
� (||�∗i − �

∗
j ||) = �

∑

k≠k′

|0,k||0,k′ |
2

� (||�k − �k′ ||).

For any (�T , �T )T ∈ Θ, we have maxi ||�i − �0i|| ≤ �n. Then for any k ≠ k′,

||�k − �k′ ||
≥||�0k − �0k′ || − ||�k − �0k|| − ||�0k′ − �k′ || ≥ ||�0k − �0k′ || − 2maxk ||�k − �0k||

≥b − 2max
k

|

|

|

|

|

|

|

|

|

|

|

|

|0,k|−1
∑

i∈0,k

(�i − �0i)
|

|

|

|

|

|

|

|

|

|

|

|

≥ bn − 2|0,k|−1maxk
∑

i∈0,k

|

|

|

|

(�i − �0i)||||

≥b − 2max
i

||�i − �0i|| ≥ b − 2�n > a�.

(A1)

The last inequality follows since b > a� and b ≫ �n. By Condition (C4), � (||�k − �k′ ||) is a constant, and Pn(�∗) is only
dependent on sample size n for any (�T , �T )T ∈ Θ, which can be denoted as Cn. By the fact that (�̂or, �̂or) is the unique global
minimizer of l̃n(�,�), we get

Qn(�, �∗) = ln(�, �∗) + Cn > ln(�̂or, �̂or) + Cn = Qn(�̂or, �̂or)

when (�T , (�∗)T )T ≠ ((�̂or)T , (�̂or)T )T . Thus, (i) is concluded.
For (ii), by the Taylor’s expansion, we have

Qn(�, �) −Qn(�, �∗) =
)ln(�, �)
)�T

|

|

|

|�=�̃
(� − �∗) +

)Pn(�)
)�T

|

|

|

|�=�̃
(� − �∗) =∶ Γ1 + Γ2,

where �̃ is a vector between � and �∗.
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We first consider the second term Γ2. Note that Pn(�) = �
∑

i<j,i∈0,k,j∈0,k′
� (||�i − �j||). Then

Γ2 =
)Pn(�)
)�T

|

|

|

|�=�̃
(� − �∗)

=�
∑

n≥j>i≥1
�′ (||�̃i − �̃j||)

(�̃i − �̃j)T

||�̃i − �̃j||
(�i − �∗i ) + �

∑

1≤j<i≤n
�′ (||�̃j − �̃i||)

−(�̃j − �̃i)T

||�̃j − �̃i||
(�i − �∗i )

=�
∑

1≤i<j≤n
�′ (||�̃i − �̃j||)

(�̃i − �̃j)T

||�̃i − �̃j||
{

(�i − �∗i ) − (�j − �
∗
j )
}

.

On one hand, when subjects i and j are from different groups, that is i ∈ 0,k and j ∈ 0,k′ , k ≠ k′, we have

||�̃i − �̃j|| ≥ ||�0i − �0j|| − 2maxi ||�̃i − �0i|| = ||�0k − �0k′ || − 2maxi ||�̃i − �0i||.

Since (�, �) ∈ Θ, we can see that maxi ||�i − �0i|| ≤ �n. By (A1), we have maxk ||�k − �0k|| ≤ �n for � = T ∗(�). Then �∗
satisfies that maxi ||�∗i − �0i|| ≤ �n. By the definition of �̃, we have maxi ||�̃i − �0i|| ≤ �n, and ||�̃i − �̃j|| ≥ b − 2�n > a�.
By Condition (C4), � (t) is a constant when t > a� and �′ (t) ≡ 0 when t > a�. Thus, when subjects i and j are from different
groups, �′ (||�̃i − �̃j||) ≡ 0. On the other hand, �

∗
i = �

∗
j when i and j are from the same group. Hence (�̃i−�̃j )T

||�̃i−�̃j ||
= (�i−�j )T

||�i−�j ||
and

�′ (||�̃i − �̃j||)
(�̃i − �̃j)T

||�̃i − �̃j||
{

(�i − �∗i ) − (�j − �
∗
j )
}

= �′ (||�̃i − �̃j||)||�̃i − �̃j||.

Note that
max
k

max
i,j∈0,k

||�̃i − �̃j|| = maxk max
i,j∈0,k

||�̃i − �∗i + �
∗
i − �

∗
j + �

∗
j − �̃j||

≤2max
i

||�̃i − �∗i || ≤ 2maxi (||�̃i − �0i|| + ||�∗i − �0i||) ≤ 4�n.

By Condition (C4), we have

Γ2 =
K0
∑

k=1

∑

{i,j∈0,k,i<j}
��′ (||�̃i − �̃j||)||�i − �j|| ≥

K0
∑

k=1

∑

{i,j∈0,k,i<j}
��′ (4�n)||�i − �j||.

Now we turn to the first term Γ1. Let

Ui =
)ln(�, �)
)�i

|

|

|

|�=�̃
= −

�

∫
0

XidNi(t) +

�

∫
0

Yi(t)Xi exp(ZT
i � +X

T
i �̃i)

1
n

∑n
j=1 Yj(t) exp(Z

T
j � +X

T
j �̃j)

dN̄(t), (A2)

where N̄(t) = 1
n

∑n
i=1Ni(t). Then after some calculation, we have

Γ1 =
n
∑

i=1
UT
i (�i − �

∗
i ) =

K0
∑

k=1

∑

i∈0,k

UT
i (�i − �

∗
i ) =

K0
∑

k=1

∑

i,j∈0,k

UT
i (�i − �j)
|0,k|

=
K0
∑

k=1

∑

i,j∈0,k

UT
i (�i − �j)
2|0,k|

+
K0
∑

k=1

∑

i,j∈0,k

UT
j (�j − �i)

2|0,k|

=
K0
∑

k=1

∑

i,j∈0,k

(Ui − Uj)T (�i − �j)
2|0,k|

=
K0
∑

k=1

∑

{i,j∈0,k,i<j}

(Ui − Uj)T (�i − �j)
|0,k|

≥ −
K0
∑

k=1

∑

{i,j∈0,k,i<j}

2maxi ||Ui|| ⋅ ||�i − �j||
|min|

,

where |min| = mink=1,⋯,K0 |0,k|. Following the same clues as before, for any (�, �) ∈ Θ, we have (�, �̃) ∈ Θ. Then, by
Condition (C2) and (A2), we can find a constant CU such that maxi ||Ui|| ≤ CU with probability 1.
Note that limn→∞ �′ (4�n) = 1 and |min| goes to infinity as n→∞. For large enough n, we can get that

Qn(�, �) −Qn(�, �∗) = Γ1 + Γ2 ≥
K0
∑

k=1

∑

{i,j∈0,k,i<j}
||�i − �j||

[

��′ (4�n) − 2CU∕|min|
]

≥ 0.

Thus, (ii) is concluded.
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A.3 Proof of Theorem 3
Proof. Similar to the proof of Theorem 2, we define the mapping T and T ∗ when K0 = 1 and 0 = . For any vector
� ∈ Rnp, set � = T ∗(�) ∈ Rp and �∗ = T −1(�) ∈. The neighbourhood of true parameter Θ and �n are the same as those in
Theorem 2. Then we only need to show the following two steps.
(i) For any (�T , �T )T ∈ Θ, if (�T , (�∗)T )T ≠ ((�̂or)T , (�̂or)T )T , then Qn(�, �∗) > Qn(�̂or, �̂or).
(ii) For any (�T , �T )T ∈ Θ and large enough n, Qn(�, �) ≥ Qn(�, �∗).
For (i), when there is only one group, we have �∗i ≡ � and so Pn(�∗) = Pn(�̂or) ≡ 0. Since ln(�, �∗) = ln(�̂or, �̂or), it follows

that Qn(�, �∗) > Qn(�̂or, �̂or).
For (ii),

Qn(�, �) −Qn(�, �∗) =
)ln(�, �)
)�T

|

|

|

|�=�̃
(� − �∗) +

)Pn(�)
)�T

|

|

|

|�=�̃
(� − �∗) =∶ Γ1 + Γ2,

where �̃ is a vector between � and �∗. We first consider the second term

Γ2 =
)Pn(�)
)�T

|

|

|

|�=�̃
(� − �∗) = �

∑

1≤i<j≤n
�′ (||�̃i − �̃j||)

(�̃i − �̃j)T

||�̃i − �̃j||
{

(�i − �∗i ) − (�j − �
∗
j )
}

.

Since i and j are from the same group, we have �∗i = �
∗
j and

(�̃i−�̃j )T

||�̃i−�̃j ||
= (�i−�j )T

||�i−�j ||
. Furthermore, maxi,j ||�̃i − �̃j|| ≤ 4�n. Then by

Condition (C4), we get that

Γ2 = �
∑

1≤i<j≤n
�′ (||�̃i − �̃j||)||�̃i − �̃j|| ≥ �

∑

1≤i<j≤n
�′ (4�n)||�̃i − �̃j||.

For the first term Γ1, we have

Ui =
)ln(�, �)
)�i

|

|

|

|�=�̃
= −

�

∫
0

XidNi(t) +

�

∫
0

Yi(t)Xi exp(ZT
i � +X

T
i �̃i)

1
n

∑n
j=1 Yj(t) exp(Z

T
j � +X

T
j �̃j)

dN̄(t),

where N̄(t) = 1
n

∑n
i=1Ni(t). Since there is a constant CU such that maxi ||Ui|| ≤ CU with probability 1, it yields that

Γ1 ≥ −
∑

1≤i<j≤n

2maxi ||Ui|| ⋅ ||�i − �j||
|n|

≥ −
∑

1≤i<j≤n

2CU ||�i − �j||
|n|

.

Noting that limn→∞ �′ (4�n) = 1, we obtain that for large enough n,

Qn(�, �) −Qn(�, �∗) = Γ1 + Γ2 ≥
∑

1≤i<j≤n
||�i − �j||

[

��′ (4�n) − 2CU∕|n|
]

≥ 0.

Hence, (ii) is concluded.
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