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ROBUST LINEAR QUADRATIC MEAN FIELD SOCIAL CONTROL:

A DIRECT APPROACH∗

Tinghan Xie1, Bing-Chang Wang2,** and Jianhui Huang1

Abstract. This paper investigates a robust linear quadratic mean field team control problem. The
model involves a global uncertainty drift which is common for a large number of weakly-coupled interac-
tive agents. All agents treat the uncertainty as an adversarial agent to obtain a “worst case” disturbance.
The direct approach is applied to solve the robust social control problem, where the state weight is
allowed to be indefinite. Using variational analysis, we first obtain a set of forward-backward stochastic
differential equations (FBSDEs) and the centralized controls which contain the population state aver-
age. Then the decentralized feedback-type controls are designed by mean field heuristics. Finally, the
relevant asymptotically social optimality is further proved under proper conditions.
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1. Introduction

The mean field game (MFG) [9, 34], a very powerful tool in solving problems with large-population char-
acteristic, is applied in many fields such as information technology and engineering [15, 28, 31], crowd motion
[1, 8, 33], finance and economics [13, 19, 47, 49], vaccination and medicine [5, 12, 21, 24, 35], especially for the
following recent papers connected to the COVID-19 pandemic [2, 14, 17]. The mean field optimal control prob-
lem, a special class of control problems, is introduce in [6, 11]. One special case of the mean field optimal control
problem is the linear quadratic mean field (LQ-MF) control, which can model many problems in applications
like [3, 10, 26, 36, 43].

Social optimization (team optimization) problem is a joint decision problem in which all the agents have
the same goal and work collaboratively to optimize the social cost by picking their optimal strategies. Ho and
Chu studied optimal control problems under team decision theory in [23]. In [29], Huang investigated the social
optima in LQ-MF control problems with centralized and decentralized strategies, which was further generalized
to the case with Markov jump parameters [44]. The team problems under stochastic information structure with
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suboptimal solutions was studied in [22] and the social functional variation and person-by-person optimality
was exploiting in [46].

In general, mathematical models only describe and simulate the complicatedly real world in an approximated
approach. Therefore, it is very meaningful to investigate a model with uncertainty terms [4]. In [25, 26, 45, 46],
the mean field LQ control problem with a global uncertainty term is considered by researchers. More details,
in [25], the so called “hard constraint” approach was adopted to overcome difficulties after using the Lagrange
multiplier. The “soft constraint” case (see [4, 7, 18]) was investigated in [26, 45, 46], which removed the bound of
the disturbance and add a penalty for the disturbance in cost functional. The situation that a local disturbance
appears between each agent was studied in [38, 42].

This paper studies the social optimality of the robust LQ-MF control model with a common uncertain drift
by using a direct approach. The common uncertain term appears in both state equation and cost functional
of each agent. Different from [26, 46], the weight coefficient Q of state in the cost functional is allowed to
be indefinite. The coefficients of our model are time-varying, which means the coefficients can be changed at
different times. The time-variant systems could be applied in many areas such as earth’s thermodynamic and
the human vocal tract (see [39, 41]).

Normally, there are two routes to solve MFG problems. One is called the fixed point approach (see [26, 28,
29, 46]), which starts by applying mean field approximation and constructing a fixed point problem. Then,
the N -player game is degenerated to an optimal control problem. By analyzing the optimal response of the
representative player, the decentralized strategies can be designed, which are proved are asymptotically optimal.
Another route is called the direct approach (see [16, 30, 34, 48]), which starts by solving the N -player game
problem formally under a large population and high dimensional environment. Then, by letting N goes to
infinite, one can have the decentralized optimal control.

In this paper, an LQ-MF team problem with a common uncertain drift is solved by using a direct approach. We
first perturb all the agents and used duality procedures to tackle the large-scale problem with high dimensional
FBSDE. After that, the centralized controls explicitly depending on xi and the state average x(N) are obtained
first and then the decentralized controls are designed by mean field heuristics. Compared with previous works,
this paper mainly makes the following contributions:

– Instead of using the fixed-point method (see [45, 46]), the direct approach is applied to solve the robust
LQ-MF social control problem, where the state weight Q is allowed to be indefinite.

– By the solvability of low-dimensional Ricatti-liked equation system, we obtain the condition for the uniform
convexity of a high-dimensional control problem (P3).

– Comparing to [45, 46] whose consistency condition (CC) system contains five coupled equations, we just
have four coupled Ricatti-liked equations, which is much easier to tackle. The number of coupled equations
can be even reduced to three under a specific condition. Moreover, in proving asymptotic optimality, we
obtain the consistency of mean-field approximations without setting an additional assumption.

The paper is organized as follows. The robust LQ-MF problem is formulated in Section 2. In Section 3, we
solve the worst disturbance based on the maximum principle. In Section 4, we seek the social optimal solution
under the “worst case” uncertainty and design asymptotically optimal decentralized controls by handling coupled
FBSDEs. In Section 5, we prove the asymptotically social optimality of decentralized controls. In Section 6, a
numerical example is provided to simulate the efficiency of decentralized control. Section 7 is the conclusion of
the paper.

Notation: Throughout this paper, Rn×m and Sn denote the set of all (n×m) real matrices and the set of all
(n×n) symmetric matrices, respectively. | · | is the standard Euclidean norm and 〈·, ·〉 is the standard Euclidean
inner product. For given symmetric matrix S ≥ 0, the quadratic form xTSx may be defined as |x|2S , where xT

is the transpose of x. C1([0, T ];Rn×m) be the space of all Rn×m-valued continuously differentiable functions on
[0, T ]. For notation o(1), limn→∞ o(1) = 0 and

∨
α := σ(

⋃
α Fα). For the sake of notation simplicity, we will use

c to denote a generic constant in following discussion. The value of c may be different at different places and it
only depends on the coefficients and initial values.
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2. Problem formulation

Let (Ω,F , {Ft}0≤t≤T ,P) be a complete filtered probability space augmented by all P-null sets in F . Wi(·),
i = 1, . . . , N are independent, d-dimensional standard Brownian motions defined on (Ω,F ,P). The initial
states values ξi ∈ Rn. We define σ-algebra F it = σ(Wi(s), 0 ≤ s ≤ t) and Git = F it

∨
σ{ξi}, where 1 ≤ i ≤ N .

Ft = σ(Wi(s), 0 ≤ s ≤ t, 1 ≤ i ≤ N) and Gt = Ft
∨
σ{ξi, 1 ≤ i ≤ N}. Fi = {F it}0≤t≤T is the natural filtra-

tion generated by Wi(·) and Gi = {Git}0≤t≤T , where 1 ≤ i ≤ N . Correspondingly, we denote F = {Ft}0≤t≤T ,
G = {Gt}0≤t≤T . Next we introduce the following spaces:

L2
FT

(Ω;Rm) =
{
ξ : Ω→ Rm

∣∣ ξ is FT -measurable, E|ξ|2 <∞
}
,

L∞(0, T ;Rn×m) =
{
ϕ : [0, T ]→ Rn×m

∣∣ ϕ(·) is bounded and measurable
}
,

L2
F(0, T ;Rm) =

{
x : [0, T ]× Ω→ Rm

∣∣ x(·) is F-progressively measurable,

‖x‖2L2 := E
∫ T

0

|x(t)|2dt <∞
}
,

L2
F(Ω;C([0, T ];Rm)) =

{
x : [0, T ]× Ω→ Rm

∣∣ x(·) is F-progressively measurable,

continuous, E sup
t∈[0,T ]

|x(t)|2 <∞
}
.

We consider a large-population system which contains N agents. The state processes of the ith agent, i =
1, 2, . . . , N , is modelled by the following linear stochastic differential equations (SDE) on a finite time horizon
[0, T ]:

dxi(t) =[A(t)xi(t) +B(t)ui(t) + F (t)x(N)(t) + f(t)]dt+ σ(t)dWi(t), xi(0) = ξi, (2.1)

where x(N)(t) , 1
N

∑N
i=1 xi(t) is the state average of the agents. A(·), B(·), F (·), σ(·) are deterministic matrix-

valued functions of suitable sizes. f(·) is an unknown disturbance that agents are imposed by the environment.
The coefficients appearing in (2.1) satisfy

(A1) A(·), F (·), σ(·) ∈ L∞(0, T ;Rn×n), B(·) ∈ L∞(0, T ;Rn×m), f(·) ∈ L2
G(0, T ;Rn).

The cost functional of the ith agent is given by

J Fi (u(·), f(·)) =
1

2
E
∫ T

0

{
|xi(t)− Γ(t)x(N)(t)− η(t)|2Q(t) + |ui(t)|2R1(t) − |f(t)|2R2(t)

}
dt

+
1

2
E|xi(T )− Γ̂x(N)(T )− η̂|2G,

(2.2)

where u(·) = {u1(·), . . . , uN (·)}. Q(·), R1(·), R2(·) and G are weight matrices and the coefficients appearing in
(2.2) satisfy

(A2)

{
Q(·) ∈ L∞(0, T ;Sn), R1(·), R2(·) ∈ L∞(0, T ;Sm), Γ(·) ∈ L∞(0, T ;Rn×n),

G ∈ Sn, Γ̂ ∈ Rn×n, η(·) ∈ L2
F(0, T ;Rn), η̂ ∈ L2

FT
(Ω;Rn).
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All the agents in the system work cooperatively to optimize the social cost functional

J Fsoc(u(·), f(·)) =

N∑
i=1

J Fi (u(·), f(·)). (2.3)

The decentralized control set is defined as follows:

UFi =
{
ui|ui(t) ∈ L2

Gi(0, T ;Rm), 1 ≤ i ≤ N
}
,

and the decentralized control set of all agents is defined as UF = UF1 × UF2 × · · · × UFN . For comparison, the
centralized control set is given by

UFc =
{

(u1, . . . , uN )|ui(t) ∈ L2
G(0, T ;Rm), 0 ≤ i ≤ N

}
.

According to the minimax control problem, we need to consider the possible of worst case scenario. Thus, the
social cost under the worst-case disturbance as

J wosoc(u(·)) = sup
f∈UF

c

J Fsoc(u(·), f(·)). (2.4)

For further analysis, we introduce the following assumptions.
(A3) {xi(0)} are independent with the same expectation. Exi(0) = ξ̂, 1 ≤ i ≤ N . There exists a constant c0 such
that sup1≤i≤N E|xi(0)|2 ≤ c0, where c0 is independent of N . Furthermore, {xi(0)} and Wi(t), i = 1, 2, . . . , N are
mutually independent.
(A4) R1(·) > 0, R2(·) > 0 and G ≥ 0.
From now on, we may suppress the notation of time t if necessary. Now, we introduce our robust LQ-MF
problem:

Problem 2.1. (P1) Seek a set of decentralized control laws ū = {ū1, . . . , ūN} ∈ UF such that for ε > 0,

J wosoc(ū)− ε ≤ inf
u∈UF

c

J wosoc(u) ≤ J wosoc(ū).

3. Mean field LQ control problem for the disturbance

In this section, we seek the worst-case disturbance f . First, we fix ui = ǔi ∈ UFc , i = 1, . . . , N and consider
the optimal control problem for the disturbance:

(P2) maximizef∈UF
c
J Fsoc(ǔ, f).

Then, (P2) can be rewritten as an equivalent problem

(P2a) minimizef∈UF
c
J̌ Fsoc(f),

where

J̌ Fsoc(f) =
1

2

N∑
i=1

E
∫ T

0

{
− |xi − Γx(N) − η|2Q + |f |2R2

}
dt− 1

2

N∑
i=1

E|xi(T )− Γ̂x(N)(T )− η̂|2G. (3.1)

Here xi are the solution to corresponding ǔi, i = 1, 2, . . . , N . To obtain the worst disturbance, we need to discuss
the convexity of (3.1).
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Let x=(x1, . . . , xN )T , u=(u1, . . . , uN )T , W=(W1, . . . ,WN )T , A=diag(A, . . . , A), B=diag(B, . . . , B) and σ̌ =
diag(σ, . . . , σ). Then our state equation can be rewritten as

dx = (Ǎx + Bu + 1⊗ f)dt+ σ̌dW(t),

where Ǎ = A + 1
N (11T ⊗ F ), 1=(1, . . . , 1)T . Correspondingly, the Problem (P2a) can be rewritten as

minf∈UF
c

{
1

2
E
∫ T

0

(−xTQx + 2η̌x +NfTR2f)dt− 1

2
E[xT (T )Gx(T ) + 2ὴx(T )]

}
,

where Q=diag(Q, . . . , Q)− 1
N 11T ⊗QΓ, G=diag(G, . . . , G)− 1

N 11T ⊗GΓ̂, η̌ = 1⊗ ηΓ and ὴ = 1⊗ η̂Γ̂, QΓ ,

ΓTQ+QΓ− ΓTQΓ, GΓ̂ , Γ̂TG+GΓ̂− Γ̂TGΓ̂, ηΓ = Qη − ΓTQη and η̂Γ̂ = Gη̂ − Γ̂TGη̂.
For our further analysis, we have the following assumption:

(A5) The map f 7→ J̌ Fsoc(f) is uniformly convex.
Next, we give a necessary and sufficient condition which is useful in future discussion.

Proposition 3.1. The following statements are equivalent: (i) (A5) holds true. (ii) The following equation

Ṗ + Ǎ
T
P + PǍ−P(1⊗ I)(NR2)−1(1T ⊗ I)P−Q = 0, P(T ) = −G,

admits a solution in C1([0, T ];SnN ). (iii) The equation

Ṗ + P (A+ F ) + (A+ F )TP − PR−1
2 P − (Q−QΓ) = 0, P (T ) = −(G−GΓ̂), (3.2)

admits a solution in C1([0, T ];Sn).
(iv) det

{
(0, I)eAt ( 0

I )
}
> 0, ∀ t ∈ [0, T ], holds, where

A =

(
A+ F +R−1

2 G −R−1
2

Q̆ −(A+ F +R−1
2 G)T

)
, (3.3)

and Q̆ = GR−1
2 G+ (I − Γ)TQ(I − Γ) + (A+ F )TG+G(A+ F ).

Proof. (i) ⇐⇒ (ii) is proved in Theorem 4.5 of [40]. By Theorem 4.5 of [40], we obtain (i) ⇐⇒ (iii). Moreover,
we construct an auxiliary control problem

dy = ((A+ F )y + g)dt, y(0) = 0,

J̌
′F
soc(g) =

N∑
i=1

E
{∫ T

0

(−yT Q̂y + gTR2g)dt− [yT (T )Ĝy(T )]

}
,

where Q̂ = (I − Γ)TQ(I − Γ) and Ĝ = (I − Γ̂)TG(I − Γ̂). Let p be the adjoint equation of state y and

dp = −[(A+ F )T p− Q̂y]dt, p(T ) = −Ĝy.

By Itô formula to 〈p, y〉, we have

N∑
i=1

E(〈p(T ), y(T )〉 − E〈p(0), y(0)〉) =

N∑
i=1

E
∫ T

0

〈−Q̂y, y〉+ 〈p, g〉dt.
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Thus, J̌ ′Fsoc(g) = 0 is equivalent to g = −R−1
2 p. Considering system{

dy = [(A+ F )y −R−1
2 p]dt, y(0) = 0,

dp = −[(A+ F )T p− Q̂y]dt, p(T ) = −Ĝy,
(3.4)

and letting p = Py + κ, one can obtain that

dp = Ṗ ydt+ P ((A+ F )y −R−1
2 p)dt+ dκ = −[(A+ F )T p− Q̂y]dt.

Hence, P and κ should be the solution to{
Ṗ + P (A+ F ) + (A+ F )TP − PR−1

2 P − Q̂ = 0, P (T ) = −Ĝ,
κ̇+ [(A+ F )T − PR−1

2 ]κ = 0, κ(T ) = 0.

For (iv) =⇒ (iii) is proved in Theorem 4.3 of [37]. On the other hand, we suppose (iii) holds. By Proposition 5.5
and Theorem 6.1 of Chapter 6 on [50], linear forward-backward ordinary differential equation (3.4) is solvable.
Set p̃ = p+ Ĝy, then (3.4) can be rewritten as{

dy =[(A+ F +R−1
2 Ĝ)y −R−1

2 p̃]dt, y(0) = 0,

dp̃ =[(Q̂+ (A+ F )T Ĝ+ Ĝ(A+ F ) +GR−1
2 G)y − (A+ F +R−1

2 Ĝ)T p̃]dt, p̃(T ) = 0,

which implies d

(
y
p̃

)
=

{
A
(
y
p̃

)
+ Cβ

}
dt+

{
A1

(
y
p̃

)
+ C1β

}
dW (t),

y(0) = 0, p̃(T ) = 0,

where A satisfies (3.3),

C =

(
0
0

)
, A1 =

(
0 0
0 0

)
, C1 =

(
0
0

)
.

By Theorem 3.7 of [37], we can obtain that (iii) =⇒ (iv). Then, the proposition follows.

Example 3.2. Consider Proposition 3.1 with parameters A = B = R2 = 1, F = −2, Γ = 0.5, Q = 4, G = 0,
T = 1. Then, by (3.2) we have

P (t) = − 1

t− 2
− 1, t ∈ [0, 1]. (3.5)

P (t) is well defined on [0, 1]. And by the local Lipschitz continuity property of (3.2), (3.5) is unique. Furthermore,
one can obtain that

A =

(
−1 −1
1 1

)
, eAt =

(
1− t −t
t t+ 1

)
,

and

det

{
(0, 1)eAt

(
0
1

)}
= t+ 1 > 0, ∀ t ∈ [0, 1],
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which implies (iii)⇐⇒ (iv).

According to above discussion, we have following theorem.

Theorem 3.3. Suppose that (A1)–(A4) hold. Then (P2a) has a unique minimizer if and only if (A5) hold
and the following FBSDE admits a unique solution,

dx̌i = (Ax̌i +Bǔi + Fx̌(N) + f̌)dt+ σdWi,

dp̌i = −[AT p̌i + FT p̌(N) − (Q−QΓ)x̌(N) + ηΓ]dt+

N∑
j=1

βji dWj ,

x̌i(0) = ξi, p̌i(T ) = −Gx̌i(T ) +GΓ̂x̌
(N)(T ) + η̂Γ̂,

(3.6)

where p(N)(t) = 1
N

∑N
i=1 pi(t) and f̌ = −R−1

2 p(N).

Proof. By the similar argument in Theorem 3.1 of [48], we could obtain the result.

By taking average of (3.6) and letting u(N) = 1
N

∑N
i=1 ui, we have following equations:

dx̌(N) = ((A+ F )x̌(N) +Bǔ(N) −R−1
2 p̌(N))dt+

1

N

N∑
i=1

σdWi, x̌(N)(0) =
1

N

N∑
i=1

ξi,

dp̌(N) = −[(A+ F )T p̌(N) − (Q−QΓ)x̌(N) + ηΓ]dt+
1

N

N∑
i=1

N∑
j=1

βji dWj ,

p̌(N)(T ) = −(G−GΓ̂)x̌(N)(T ) + η̂Γ̂.

(3.7)

Now we discuss the feedback form of disturbance in (P2a). We make the ansatz p̌(N) = P̄ x̌(N) + š, where
P̄ ∈ C1([0, T ]; Sn) is a matrix-value function and š ∈ C1([0, T ];Rn). Combining this equation and (3.7), one can
obtain that

dp̌(N) = ˙̄Px̌(N)dt+ P̄ ((A+ F −R−1
2 P )x̌(N) +Bǔ(N) −R−1

2 š)dt+
P̄

N

N∑
i=1

σdWi + dš

=− [(A+ F )T (P̄ x̌(N) + š)− (Q−QΓ)x̌(N) + ηΓ]dt+
1

N

N∑
i=1

N∑
j=1

βji dWj .

(3.8)

Hence, P̄ (·) is a solution of

˙̄P + P̄ (A+ F ) + (A+ F )T P̄ − P̄R−1
2 P̄ − (Q−QΓ) = 0, P̄ (T ) = −(G−GΓ̂). (3.9)

and š(·) is the solution of the following BSDE:

dš+ [(A+ F̄ )T š+ P̄Bǔ(N) + ηΓ]dt+
1

N

N∑
j=1

N∑
i=1

(
P̄ σ

N
− βji )dWj = 0, š(T ) = η̂Γ̂, (3.10)

where F̄ = F − R−1
2 P̄ . Thus, f̌ = −R−1

2 (P̄ x̌(N) + š). We can easily see that P in (3.2) is equal to P̄ here. In
what follows, P̄ will be substituted by P .
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4. Distributed strategy design

After applying the worst disturbance f̌ , one can obtain the following optimal control problem.
(P3): Minimize J Fsoc(u, f̌(u)) over {u = (u1, . . . , uN ) ∈ UFc }, where


dxi = [Axi +Bui + F̄ x(N) −R−1

2 s]dt+ σdWi, xi(0) = ξi,

ds = −[(A+ F̄ )T s+ PBu(N) + ηΓ]dt+
1

N

N∑
j=1

N∑
i=1

(βji −
Pσ

N
)dWj , s(T ) = η̂Γ̂,

(4.1)

and

J Fsoc(u) =
1

2

N∑
i=1

E
∫ T

0

{
|xi − Γx(N) − η|2Q(t) + |ui|2R1

− |P (t)x(N) + s|2
R−1

2

}
dt

+
1

2

N∑
i=1

E|xi(T )− Γ̂x(N)(T )− η̂|2G.

(4.2)

To solve (P3), we first give out a proposition.

Proposition 4.1. Suppose that (A1)–(A5) hold. If (P3) is uniformly convex in u, then (P3) has a set of
optimal controls and the following FBSDE admits a set of solutions

dxi = [Axi +Bui + F̄ x(N) −R−1
2 s]dt+ σdWi, xi(0) = ξi,

ds = −[(A+ F̄ )T s+ PBu(N) + ηΓ]dt+
1

N

N∑
j=1

N∑
i=1

(βji −
Pσ

N
)dWj , s(T ) = η̂Γ̂,

dki = [−AT ki − F̄T k(N) −Qxi +QΓx
(N) + ηΓ + PR−1

2 (Px(N) + s)]dt+ ζiidWi +
∑
j 6=i

ζji dWj ,

dl = [(A+ F̄ )l +R−1
2 (k(N) + Px(N) + s)]dt, l(0) = 0, ki(T ) = Gx̄i(T )−GΓ̂x̄

(N)(T )− η̂Γ̂,

(4.3)

where k(N) = 1
N

∑N
i=1 ki and R1ui +BT ki −BTPl = 0, i = 1, 2, . . . , N .

Proof. Let u∗ = {u∗1, u∗2, . . . , u∗N} ∈ UFc be the unique centralized optimal control of the N agents and x∗ =
{x∗1, x∗2, . . . , x∗N} be their unique corresponding states. We perturb u∗ and denote δu = u− u∗, δu(N) = u(N) −
(u∗)(N), δxi = xi − x∗i , δx(N) = 1

N

∑N
i=1 δxi = 1

N

∑N
i=1(xi − x∗i ) = 1

N

∑N
i=1 xi −

1
N

∑N
i=1 x

∗
i = x(N) − (x∗)(N),

δs = s− s∗. Then we have
dδxi = [Aδxi +Bδui + F̄ δx(N) −R−1

2 δs]dt, δxi(0) = 0,

dδs = −[(A+ F̄ )T δs+ PBδu(N)]dt+
1

N

N∑
j=1

N∑
i=1

δβji dWj , δs(T ) = 0.

By the same argument in Section 4.2, the Fréchet differential of the corresponding social cost functional is

δJ Fsoc(δu) = J Fsoc(u)− J Fsoc(u∗) + o(‖δu‖L2) = Λ1 +
1

2
Λ2,
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where

Λ1 ,
N∑
i=1

E
∫ T

0

〈Q(x∗i − Γ(x∗)(N) − η), δxi − Γδx(N)〉+ 〈R1u
∗
i , δui〉 − 〈R−1

2 (P (x∗)(N) + s̄),

(Pδx(N) + δs)〉dt+

N∑
i=1

E〈G(x∗i (T )− Γ̂(x∗)(N)(T )− η̂), δxi(T )− Γ̂δx(N)(T )〉,

Λ2 ,
N∑
i=1

E
∫ T

0

{
|δxi − Γδx(N)|2Q + |δui|2R1

− |Pδx(N) + δs|2
R−1

2

}
dt+

N∑
i=1

E|δxi(T )− Γ̂δx(N)(T )|2G.

Note that

N∑
i=1

E
∫ T

0

〈−Q(x∗i − Γ(x∗)(N) − η), δΓx(N)〉dt = E
∫ T

0

〈ΓTQ
N∑
i=1

(x∗i − Γ(x∗)(N) − η),
1

N

N∑
j=1

δxj〉dt

=E
∫ T

0

N∑
j=1

〈Γ
TQ

N

N∑
i=1

(x∗i − Γ(x∗)(N) − η), δxj〉dt =

N∑
i=1

E
∫ T

0

〈ΓTQ((I − Γ)(x∗)(N) − η), δxi〉dt.

(4.4)

and

N∑
i=1

E
∫ T

0

−〈R−1
2 (P (x∗)(N) + s̄), (Pδx(N) + δs)〉dt

=

N∑
i=1

E
∫ T

0

−〈PTR−1
2 (P (x∗)(N) + s̄), δxi〉 − 〈R−1

2 (P (x∗)(N) + s̄), δs〉dt.

(4.5)

Let 
dki = αidt+ ζiidWi +

∑
j 6=i

ζji dWj , ki(T ) = Gx∗i (T )−GΓ̂(x∗)(N)(T )− η̂Γ̂,

dl = γdt,+νidWi +
∑
j 6=i

νjdWj , l(0) = 0.
(4.6)

where 
αi =− [AT ki + F̄T k(N) +Qx∗i −QΓ(x∗)(N) − ηΓ − PR−1

2 (P (x∗)(N) + s̄)],

γ =(A+ F̄ )l +R−1
2 (k(N) + P (x∗)(N) + s̄),

N∑
j=1

νj = 0.
(4.7)

By Itô formula,

N∑
i=1

E〈ki(T ), δxi(T )〉 −
N∑
i=1

E〈ki(0), δxi(0)〉

=

N∑
i=1

E
∫ T

0

〈αi +AT ki + F̄T k(N), δxi〉+ 〈BT ki, δui〉 − 〈R−1
2 k(N), δs〉dt,

(4.8)
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and

N∑
i=1

E〈l(T ), δs(T )〉 − E〈l(0), δs(0)〉 = 0

=

N∑
i=1

E
∫ T

0

〈γ − (A+ F̄ )l, δs〉 − 〈BTPl, δui〉+
1

N
〈
N∑
j=1

νj ,

N∑
i=1

δβji 〉dt.

(4.9)

Consequently by (4.4), (4.5), (4.7), (4.8) and (4.9), we have

Λ1 =

N∑
i=1

E
∫ T

0

〈R1u
∗
i +BT ki −BTPl, δui〉dt.

Thus, Λ1 = 0 is equivalent to R1u
∗
i +BT ki−BTPl = 0, i = 1, 2, . . . , N . Then, considering (4.1), (4.6) and (4.7),

we have (4.3). The proposition follows.

It follows from (4.3) that

dx(N) = [(A+ F̄ )x(N) +Bu(N) −R−1
2 s]dt+

1

N

N∑
i=1

σdWi, x(N)(0) =
1

N

N∑
i=1

ξi,

dk(N) = [−(A+ F̄ )T k(N) − (Q−QΓ)x̄(N) + ηΓ + PR−1
2 (Px(N) + s)]dt+

1

N

N∑
i=1

N∑
j=1

ζji dWj ,

k(N)(T ) = (G−GΓ̂)x(N)(T )− η̂Γ̂.

(4.10)

To discuss the state feedback form of the optimal controls we solved in (P3), we consider the following
nonhomogeneous relationships:

ki = Kxi + Lx(N) +Ml + ϕ, k(N) = (K + L)x(N) +Ml + ϕ, s = M̄l + L̄x(N) + φ, (4.11)

where K, L, M , M̄ , L̄ ∈ C1([0, T ];Rn×n) and ϕ, φ ∈ C1([0, T ];Rn). By (4.11), (4.3) and (4.10), we have

dki =K̇xidt+K[Axi +Bui + F̄ x(N) −R−1
2 s]dt+KσdWi + L̇x(N)dt+ L[(A+ F̄ )x(N) +Bu(N)

−R−1
2 s]dt+

L

N

N∑
i=1

σdWi + Ṁldt+M((A+ F̄ )l +R−1
2 (k(N) + Px(N) + s))dt+ dϕ

=− [AT ki + F̄T k(N) +Q(xi − Γx(N) − η)− ΓTQ((I − Γ)x(N) − η)

− PR−1
2 (Px(N) + s)]dt+

N∑
j=1

ζji dWj ,

ds = ˙̄Mldt+ M̄ [(A+ F̄ )l +R−1
2 (k(N) + Px(N) + s)]dt+ ˙̄Lx(N)dt+ L̄((A+ F̄ )x(N) +Bu(N)

−R−1
2 s)dt+

L̄

N

N∑
i=1

σdWi + dφ

=− [(A+ F̄ )T (M̄l + L̄x(N) + φ) + PBu(N) + (I − Γ)TQη]dt+
1

N

N∑
j=1

N∑
i=1

(βji −
Pσ

N
)dWj .

(4.12)



ROBUST LINEAR QUADRATIC MEAN FIELD SOCIAL CONTROL 11

Comparing the diffusion terms in (4.12), we have the following results: (K + L
N )σ = ζii ,

L
N σ = ζji , j 6= i,

L̄
N

∑N
i=1 σ = 1

N

∑N
j=1

∑N
i=1(βji − Pσ

N ). Hence, combining (4.11) and the equation R1ūi + BT ki − BTPl = 0,
we have

{
ui = −R−1

1

{
BTKxi +BTLx(N) +BTϕ−BT (P −M)l

}
,

u(N) = −R−1
1

{
BT (K + L)x(N) +BTϕ−BT (P −M)l

}
.

(4.13)

Thus, using the same argument from (3.8) to (3.10), it follows that K(·) is a solution of

K̇ +KA+ATK − (BTK)TR−1
1 BTK +Q = 0, K(T ) = G, (4.14)

and L(·), M(·), L̄(·), M̄(·) satisfy



L̇+ L(A+ F̄ ) + (A+ F̄ )TL+KF̄ + F̄TK − PR−1
2 (P + L̄) +MR−1

2 (K + L+ P + L̄)

− (K + L)R−1
2 L̄− (BT (K + L))TR−1

1 BT (K + L) + (BTK)TR−1
1 BTK −QΓ = 0, L(T ) = −GΓ̂,

˙̄L+ L̄(A+ F̄ ) + (A+ F̄ )T L̄− L̄R−1
2 L̄+ M̄R−1

2 (K + L+ P + L̄)

− (BT (P + L̄))TR−1
1 BT (K + L) = 0, L̄(T ) = 0,

Ṁ +M(A+ F̄ ) + (A+ F̄ )TM − (K + L+ P )R−1
2 M̄ +MR−1

2 (M + M̄)

+ (BT (K + L))TR−1
1 BT (P −M) = 0, M(T ) = 0,

˙̄M + M̄(A+ F̄ ) + (A+ F̄ )T M̄ + M̄R−1
2 (M + M̄)− L̄R−1

2 M̄

+ (BT (P + L̄))TR−1
1 BT (P −M) = 0, M̄(T ) = 0,

(4.15)
and ϕ(·), φ(·) satisfy

{
dϕ+ (MR−1

2 +A+ F̄ )Tϕ− (BT (K + L))TR−1
1 BTϕ− (K + L+ P −M)R−1

2 φ− ηΓ = 0, ϕ(T ) = −η̂Γ̂,

dφ+ ((M̄ − L̄)R−1
2 +A+ F̄ )Tφ− PBR−1

2 BTϕ+ M̄R−1
2 ϕ+ ηΓ = 0, φ(T ) = η̂Γ̂.

(4.16)

Remark 4.2. Equation (4.15) are non-symmetric Riccati equations or Riccati-like equations. For more details
about their property and solvabibility, readers could refer to [20, 30, 32].

If L, M , M̄ ∈ C1([0, T ];Sn) are the unique solutions to (4.15), we have following result:

Proposition 4.3. Suppose that (A1)–(A5) hold. If L, M , M̄ ∈ C1([0, T ];Sn), then L̄ = −M and the original
four coupled Riccati-like equations can be simplified to three coupled equations.

Proof. According to equation (4.14), K is symmetric. It follows from taking transpose on M and multiply −1
on both sides in (4.15) that,

− ṀT + (A+ F̄ )T (−M)T + (−M)T (A+ F̄ ) + M̄TR−1
2 (K + L+ P −M)T −MTR−1

2 MT

− (BT (P −MT ))TR−1
1 BT (K + L) = 0, −MT (T ) = 0,
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Since L, M , M̄ ∈ C1([0, T ];Sn), we have L̄ = −MT = −M . Putting this result into system (4.15), it could be
simplified as



L̇+ L(A+ F̄ ) + (A+ F̄ )TL+KF̄ + F̄TK − PR−1
2 P −MR−1

2 M +MR−1
2 (K + L+ P )

+ (K + L+ P )R−1
2 M − (BT (K + L))TR−1

1 BT (K + L) + (BTK)TR−1
1 BTK −QΓ = 0,

Ṁ +M(A+ F̄ ) + (A+ F̄ )TM − (K + L+ P −M)R−1
2 M̄ +MR−1

2 M

+ (BT (K + L))TR−1
1 BT (P −M) = 0, M(T ) = 0,

˙̄M + M̄(A+ F̄ ) + (A+ F̄ )T M̄ + M̄R−1
2 M +MR−1

2 M̄ + M̄R−1
2 M̄

+ (BT (P −M))TR−1
1 BT (P −M) = 0, M̄(T ) = 0, L(T ) = −GΓ̂.

The proposition follows.

By a similar argument of Lemma 2.1 in [46], if (A1)-(A5) hold, there exists a constant δ > 0 such that
R1(t) > δI and R2(t) > δI. Then, for Q ≥ 0, (P3) is uniformly convex. However, when Q is indefinite, we have
following result.

Lemma 4.4. (P3) has uniform convexity if equations (4.14)–(4.16) has a solution, respectively.

Proof. Similar to Proposition 3.1 in [48] and Section 3 in [26], we first let úi ∈ UFc , ś ∈ C1([0, T ];Rn) and
consider the system


dyi = Ayi +Búi + Fy(N) −R−1

2 (Py(N) + ś)dt, yi(0) = 0,

dy(N) = Ay(N) +Bú(N) + Fy(N) −R−1
2 (Py(N) + ś)dt, y(N)(0) = 0,

d(yi − y(N)) = A(yi − y(N)) +B(úi − ú(N))dt, (yi − y(N))(0) = 0.

By (3.9), (4.14) and using Itô formula to |yi − y(N)|2K and |yi − y(N)|2P , we have

E|yi(T )− y(N)(T )|2G = E|yi(T )− y(N)(T )|2K(T ) − E|yi(0)− y(N)(0)|2K(0)

=E
∫ T

0

〈((BTK)TR−1
1 BTK −Q)(yi − y(N)), yi − y(N)〉+ 2〈úi − ú(N), BTK(yi − y(N))〉,

and

−E|y(N)(T )|2G−GΓ̂
= E|y(N)(T )|2P (T ) − E|y(N)(0)|2P (0)

=E
∫ T

0

〈(PR−1
2 P +Q−QΓ)y(N), y(N)〉+ 2〈ú(N), BTPy(N)〉 − 2〈ś, R−1

2 Py(N)〉.
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By Lemma 2.1 in [46], we know that
∑N
i=1 E

∫ T
0
|yi|2dt ≤ c

N

∑N
i=1 E

∫ T
0
|úi|2dt,

∑N
i=1 E

∫ T
0
|ś|2dt ≤

c
N

∑N
i=1 E

∫ T
0
|úi|2dt. By Lemma 2.3 in [40] and Proposition 3.1,

N∑
i=1

E
∫ T

0

(
|yi − Γy(N)|2Q + |úi|2R1

− |Py(N) + ś|2
R−1

2

)
dt+

N∑
i=1

E|yi(T )− Γ̂y(N)(T )|2G

=

N∑
i=1

E
∫ T

0

(
|yi − Γy(N)|2Q + |y(N)|2Q−QΓ

+ |úi − ú(N)|2R1
+ |ú(N)|2R1

− |Py(N)|2
R−1

2

− 2〈ś, R−1
2 Py(N)〉 − |ś|2

R−1
2

)
dt+

N∑
i=1

E|yi(T )− y(N)(T )|2G + |y(N)(T )|2G−GΓ̂

=

N∑
i=1

E
∫ T

0

(
|úi − ú(N) +R−1

1 BTK(yi − y(N))|2R1
+ |ú(N) −R−1

1 BPy(N)|2R1

− |Py(N)|2
BTR−1

1 B+2R−1
2
− |ś|2

R−1
2

)
dt

≥
N∑
i=1

E
∫ T

0

(
|úi +R−1

1 BTKyi −R−1
1 B(P +K)y(N)|2R1

− c

N
|úi|2

)
dt ≥ δ

N∑
i=1

E
∫ T

0

|úi|2dt.

The lemma follows.

For further proofs, we have the following assumption:
(A6) Assume that (4.14)–(4.15) admit unique solutions.

Then, by above discussion, we have following theorem.

Theorem 4.5. Suppose that (A1)–(A6) hold. Then (P3) is uniquely solvable with the optimal control ui in
(4.13).

Proof. Since (4.14)–(4.16) has a solution, respectively, the system (4.3) is decoupled and solvable (see the
Theorem 3.7 and Theorem 4.3 of Chapter 2 in [37]). By Lemma 4.4, (P3) has uniform convexity and can
achieves an optimal control, where ui = −R−1

1 BT {Kxi + Lx(N) + ϕ− (P −M)l}.

We use x̂, l̂ to approximate x(N), l in (4.3) and (4.10), respectively.

dx̂ =

{
[A+ F̄ −BR−1

1 BT (K + L)−R−1
2 L̄]x̂−BR−1

1 BTϕ+ [BR−1
1 BT (P −M)−R−1

2 M̄ ]l̂ −R−1
2 φ

}
dt,

dl̂ =[(A+ F̄ +R−1
2 (M + M̄))l̂ +R−1

2 ((K + L+ P + L̄)x̂+ ϕ+ φ)]dt, l̂(0) = 0, x̂(0) = ξ̂,

(4.17)
where K, L, L̄, M , M̄ , ϕ and φ are determined by (4.14)–(4.16). Then, according to Theorem 4.5, one can
obtain the decentralized control law for the ith agent

ūi =−R−1
1 BT [Kx̄i + Lx̂+ ϕ− (P −M)l̂]. (4.18)
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Meanwhile, we have the decentralized terms k̄i = Kx̄i+Lx̂+Ml̂+ϕ, s̄ = M̄ l̄+ L̄x̄(N) +φ, and ŝ = M̄ l̂+ L̄x̂+φ.
By applying (4.18), we have the following closed-loop system

dx̄i =

{
[A−BR−1

1 BTK]x̄i + (F̄ −R−1
2 L̄)x̄(N) −BR−1

1 BTLx̂−BR−1
1 BTϕ+BR−1

1 BT (P −M)l̂

−R−1
2 (M̄ l̄ + φ)

}
dt+ σdWi, x̄i(0) = ξi

ds̄ =−
{

(A+ F̄ )T s̄+ (BTP )TR−1
1 BTKx̄(N) + (BTP )TR−1

1 BTLx̂+ (BTP )TR−1
1 BTϕ

− (BTP )TR−1
1 BT (P −M)l̂ − (I − Γ)TQη

}
dt+

1

N

N∑
j=1

N∑
i=1

(
Pσ

N
− βji )dWj , s̄(T ) = η̂Γ̂,

dl̄ =[(A+ F̄ +R−1
2 M̄)l̄ +R−1

2 ((K + P + L̄)x̄(N) + Lx̂+Ml̂ + ϕ+ φ)]dt, l̄(0) = 0.

(4.19)

Remark 4.6. We use direct approach here and first obtain a set of centralizied optimal controls, then the
decentralizied controls are designed. Note that L, M , M̄ , L̄, ϕ, φ are not coupled with x̂ and it is simpler to
solve four Ricatti-liked equations than solving the CC system in [46] who contains five highly coupled FBSDEs.
Thus, the fixed-point equation system is not necessary here. In addition, if L, M , M̄ are symmetric, the original
four equations can be even degenerated to three Ricatti-liked equations.

Remark 4.7. Note that here the weight Q is allowed to be indefinite. If Q is negative semi-definite, then
equation (3.9) admits a solution necessarily. If Q is positive semi-definite, then equation (4.14) also admits a
solution necessarily. However, to ensure that both (3.9) and (4.14) admit solutions, the selection of Q should
reach a compromise and the magnitude of Q cannot be too “positive” or “negative”.

5. Asymptotic optimality

Definition 5.1. A set of control laws ū = {ū1, ū2, . . . , ūN} ∈ UF has robust asymptotic social optimality if

∣∣∣∣ 1

N
J wosoc(ū)− 1

N
inf
u∈UF

c

J wosoc(u)

∣∣∣∣ = O(
1√
N

),

where UFc is defined in Section 2 as a set of centralized information-based control.

Before proving asymptotically social optimality, we need to introduce some estimations first.

Lemma 5.2. Suppose that (A1)–(A6) hold. Then

E
∫ T

0

|x̄(N) − x̂|2dt+ E
∫ T

0

|l̄ − l̂|2dt = O(
1

N
).

Proof. By (4.19), we have

dx̄(N) =

{
[A−BR−1BTK + F̄ −R−1

2 L̄]x̄(N) −M)l̂ −BR−1
1 BTLx̂−BR−1

1 BTϕ+BR−1
1 BT (P

−R−1
2 (M̄ l̄ + φ)

}
dt+

1

N

N∑
i=1

σdWi, x̄(N)(0) =
1

N

N∑
i=1

ξi.

(5.1)



ROBUST LINEAR QUADRATIC MEAN FIELD SOCIAL CONTROL 15

Combining (4.10), (4.19), (4.17) and (5.1), one can obtain


dx̃ = [(A−BR−1

1 BTK + F̄ −R−1
2 L̄)x̃−R−1

2 M̄ l̃]dt+
1

N

N∑
i=1

σdWi, x̃(0) =
1

N

N∑
i=1

ξi − ξ̂,

dl̃ = [(A+ F̄ −R−1
2 M̄)l̃ +R−1

2 (K + P + L̄)x̃]dt, l̃(0) = 0,

(5.2)

where x̃ = x̄(N)− x̂, l̃ = l̄− l̂. By Cauchy-Schwarz inequality and Burkholder-Davis-Gundy’s inequality, we have

E sup
0≤s≤t

|X|2 =E sup
0≤s≤t

∣∣∣∣X(0) +

∫ s

0

AXdr +

∫ s

0

1

N

N∑
i=1

(
σ
0

)
dWi

∣∣∣∣2

≤c E sup
0≤s≤t

∫ s

0

|X|2dr +
3

N2

N∑
i=1

E
∣∣∣∣ ∫ t

0

(
σ
0

) ∣∣∣∣2dr ≤ c E
∫ t

0

|X|2dr +O
( 1

N

)
,

where X = (x̃T , l̃T )T ,

A =

(
A−BR−1

1 BTK + F̄ −R−1
2 L̄ −R−1

2 M̄
R−1

2 (K + P + L̄) A+ F̄ −R−1
2 M̄

)
,

and constant c is independent of N . Then, by Gronwall’s inequality, one can obtain that

E sup
0≤t≤T

|X|2 = O(
1

N
).

The lemma follows.

Remark 5.3. In [46], an additional Ricatti equation is needed for proving sup0≤t≤T E(|x̄(N) − x̂|2 + |s̄− ŝ|2) =

O( 1
N ), since (x̄(N) − x̂) and (s̄ − ŝ) satisfy a FBSDE system and they need to be decoupled by using Ricatti

equation method. However, in our model, x̃ and l̃ evolve by forward SDEs and we can estimate them directly
without setting such an assumption.

Theorem 5.4. Suppose that (A1)–(A6) hold. The set of decentralized control laws ū(t) = {ū1(t), ū2(t),
. . . , ūN (t)} ∈ UF given by (4.18) has asymptotic social optimality.

Proof. Let x̀i = xi − x̄i, ùi = ui − ūi, x̀(N) = x(N) − x̄(N) and s̀ = s− s̄, where i = 1, 2, . . . , N . Then by (4.3),


dx̀i = [Ax̀i +Bùi + F̄ x̀(N) −R−1

2 s̀)]dt, x̀i(0) = 0,

ds̀ = −[(A+ F̄ )T s̀− PBù(N)]dt+
1

N

N∑
j=1

N∑
i=1

(−β̀ji )dWj , s̀(T ) = 0.
(5.3)

By Lemma 5.4 in [27], if (A1)–(A6) hold, for all ui ∈ UFc , i = 1, 2, . . . , N , we have 1
NJ

wo
soc(u) ≤ 1

NJ
wo
soc(ū) ≤ c,

where c is independent of N . That implies E
∫ T

0
|ui|2dt < c. Then, by (5.3), we have E

∫ T
0

(|x̀i|2 + |ùi|2 + |s̀|2)dt <
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c. Next, considering (2.2) and (4.2), we denote

J Fsoc(u) =
1

2

N∑
i=1

E
∫ T

0

{
|xi − Γx(N) − η|2Q + |ui|2R1

− |Px(N) + s|2
R−1

2

}
dt

+
1

2

N∑
i=1

E|xi(T )− Γ̂x(N)(T )− η̂|2G =

N∑
i=1

(J Fi (ū) + J̀ Fi (ù) + Ii)

(5.4)

where

J̀ Fi (ù) =
1

2
E
∫ T

0

{
|x̀i − Γx̀(N)|2Q + |ùi|2R1

− |Px̀(N) + s̀|2
R−1

2

}
dt+

1

2
E|x̀i(T )− Γ̂x̀(N)(T )|2G,

and

N∑
i=1

Ii =

N∑
i=1

E
∫ T

0

〈Qx̄i −QΓx̄
(N) − ηΓ − PR−1

2 (Px̂+ ŝ), x̀i〉 − 〈PR−1
2 [P (x̄(N) − x̂) + (s̄− ŝ)], x̀i〉

− 〈R−1
2 (Px̂+ ŝ), s̀〉 − 〈R−1

2 [P (x̄(N) − x̂) + (s̄− ŝ)], s̀〉+ 〈R1ūi, ùi〉dt

+

N∑
i=1

E〈Gx̄i(T )−GΓ̂x̄
(N)(T )− η̂Γ̂, x̀i(T )〉.

(5.5)

We now prove
∑N
i=1 Ii = O( 1√

N
). According to the discussion in the last section, it follows that

k̄i = Kx̄i + Lx̂+Ml̂ + ϕ, k̄i(T ) = Gx̄i(T )−GΓ̂x̄
(N)(T )− η̂Γ̂. (5.6)

By (4.19), (5.3) and the similar techniques from (4.4) to (4.9),

N∑
i=1

E〈k̄i(T ), x̀i(T )〉 =

N∑
i=1

E
∫ T

0

〈−Qx̄i +QΓx̄
(N) + ηΓ −KR−1

2 (s̄− ŝ) + PR−1
2 (P + L̄)x̂+ PR−1

2 M̄ l̂

+ PR−1
2 φ+ (KF̄ + F̄TK)(x̄(N) − x̂), x̀i〉 − 〈R−1

2 (Kx̄i + Lx̂+Ml̂ + ϕ), s̀〉

+ 〈BT (Kx̄i + Lx̂+Ml̂ + ϕ), ùi〉dt,

(5.7)

and

0 =

N∑
i=1

〈l̄(T ), s̀(T )〉 − 〈l̄(0), s̀(0)〉 =

N∑
i=1

E
∫ T

0

〈R−1
2 k̄i, s̀〉+ 〈R−1

2 (Px̂+ ŝ), s̀〉 − 〈BTP l̄, ùi〉

+ 〈R−1
2 (P + L̄)(x̄(N) − x̂) +R−1

2 M̄(l̄ − l̂), s̀〉.

(5.8)

Combining (5.5)–(5.8) and Lemma 5.2, note that s̄− ŝ = M̄ l̃+ L̄x̃ andR1ūi+BT [Kx̄i+Lx̂−BT (P −M)l̂+ϕ] =
0, one can obtain

1

N

N∑
i=1

Ii = O(
1√
N

).

Then, we put this into (5.4), the theorem follows.
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Figure 1. (a) is the curve of P (t) and (b) is the curves of L, M , L̄ and M̄ .

Figure 2. (a) is the curves of x̃, l̃ and (b) is the curves of ε2
1, ε2

2 when time interval is [0, 5].

6. Numerical examples

We continue to use the parameters in Example 3.2. First, we give the figure of P (t) = − 1
t−2 − 1, t ∈ [0, 1].

Since P (t) in (3.2) is the same as it in (3.9), P (t) = − 1
t−2 − 1 could also be solution for (3.9) and its trajectory

is shown in Figure 1a. Let the population N = 100, R1 = 0.5, σ = 5, η = η̂ = 0, Γ̂ = 0.5 and the time interval is
[0,5]. Using Matlab computation and by (3.9), (4.14), P and K can be easily computed. After that, we simulate
the BSDEs from (4.15) to (4.16) and obtain their figures in Figure 1b1. Taking the initial values independently
from a uniform distribution U(−30, 60) and by equations (5.2), the curve of x̃, l̃ and s̃ is described in Figure 2a.

Denote that ε2
1 = E

∫ 1

0
|x̄(N) − x̂|2dt, ε2

2 = E
∫ 1

0
|l̄ − l̂|2dt. We let N increase from 1 to 100 and the curves of ε2

1

and ε2
2 are shown in Figure 2b. It shows that they are getting close to zero when N is becoming larger and

larger.

7. Conclusion

This paper considered a social optimality for robust LQ-MF problem with a common uncertain drift. By the
robust optimization approach, we obtain a “worst case” disturbance for all agents. Using variational analysis
and decoupling FBSDEs with mean field approximation, we construct the decentralized controls, which are

1By observing Figure 1b, we could find that the curve of L̄ and M̄ is overlapping. In fact, the situation does not change even
though we try many sets of numbers for the parameters. Therefore, we have a hypothesis that L̄ may be equal to M̄ . If so, the
system (4.15) and (4.16) are decoupled and solved directly, which may be useful in other more complicated models. Unfortunately,
we cannot prove the hypothesis rigorously in mathematics.
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further proved to be an asymptotically social optimum. For further work, it is interesting to investigate social
optimality for robust mean field LQ problem with uncertainty in common noise by the direct approach.
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