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Abstract7

This paper considers a class of linear-quadratic-Gaussian (LQG) mean-field games (M-8

FGs) with partial observation structure for individual agents. Unlike other literature, there9

are some special features in our formulation. First, the individual state is driven by some10

common-noise due to the external factor and the state-average thus becomes a random11

process instead of a deterministic quantity. Second, the sensor function of individual obser-12

vation depends on state-average thus the agents are coupled in triple manner: not only in13

their states and cost functionals, but also through their observation mechanism. The decen-14

tralized strategies for individual agents are derived by the Kalman filtering and separation15

principle. The consistency condition is obtained which is equivalent to the wellposedness of16

some forward-backward stochastic differential equation (FBSDE) driven by common noise.17

Finally, the related ε-Nash equilibrium property is verified.18

1 Introduction19

The starting point of our work is the recently well-studied mean-field games (MFGs) for large-20

population system (sometimes, it is also termed multi-agent system (MAS)). The large-population21

system arises naturally in various fields such as economics, engineering, social science and oper-22

ational research, etc. For example, dynamic economic models involving competing agents ([11],23

[24], [35]); wireless power control, shared data buffer modeling and traffic engineering ([13], [18],24

[23], [27]); synchronization of coupled nonlinear oscillators ([37]); crowd and consensus dynamics25

([8], [29]), etc. The most significant feature of large-population system is the existence of a large26

number of individually negligible agents (or players) which are interrelated in their dynamics and27

(or) cost functionals via the state-average or more generally, the generated empirical measure28

over the whole population. Due to this highly complicated coupling feature, it is intractable for29

a given agent to study the centralized optimization strategies based on the information of all30
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its peers in large-population system. In fact, this will bring considerably high computational1

complexity in large-scale. Alternatively, one reasonable and practical direction is to investigate2

the related decentralized strategies based on local information only. By local information, we3

mean the related strategies should be designed upon the individual state of given agent only4

together with some mass-effect quantities but can be computed in off-line manner.5

Along this research direction, one efficient and tractable methodology to decentralized strate-6

gies is the MFGs which generally leads to a coupled system of HJB equation and Fokker-Planck7

(FP) equation in nonlinear case. In principle, the procedure of MFGs consists of the following8

four main steps (see [3], [5], [6], [19], [20], [25], etc): in Step 1, it is necessary to analyze the9

asymptotic behavior of state-average when the agent number N tends to infinity and introduce10

the related state-average limiting term. Of course, this limiting term is undetermined at this11

moment thus it should be treated as some exogenous “frozen” term; Step 2 turns to study the12

related limiting optimization problem (which is also called auxiliary or tracking problem) by13

replacing the state-average by its frozen limit term. The initial highly-coupled optimization14

problems of all agents are thus decoupled and only parameterized by this generic frozen limit.15

The related decentralized optimal strategy can be analyzed using standard control techniques16

such as dynamic programming principle (DPP) or stochastic maximum principle (SMP) (see17

e.g., [38]). As a result, some HJB equation due to DPP or Hamiltonian system due to SMP will18

be obtained to characterize this decentralized optimality; Step 3 aims to determine the frozen19

state-average limit by some consistency condition: when applying the optimal decentralized s-20

trategies derived in Step 2, the state-average limit should be reproduced as the agents number21

tends to infinity. Accordingly, some fixed-point analysis should be applied here and some FP22

equation will be introduced and coupled with the HJB equation in Step 2. As the necessary23

verification, Step 4 will show that the derived decentralized strategies should possess the ε-Nash24

equilibrium properties.25

For further analysis details of MFGs, the interested readers are referred to [12] for a sur-26

vey of mean-field games focusing on the partial differential equation aspect and related real27

applications; [3] for more recent MFG studies and the related mean-field type control; [5] for28

the probabilistic analysis of a large class of stochastic differential games for which the interac-29

tion between the players is of mean-field type; [7] for the mean-field game where considerable30

interrelated banks share the system risk and common noise; [32] for a class of risk-sensitive31

mean-field stochastic differential games; [21] for MFGs with nonlinear diffusion dynamics and32

their relations to McKean-Vlasov particle system; [16] for the dynamic optimization of large-33

population system with partial information and the associated MFG; [31] for nonlinear filtering34

theory for partially observed stochastic dynamical systems of McKean–Vlasov type stochastic35

differential equations. It is remarkable that there exists a substantial literature body to the s-36

tudy of MFGs in linear-quadratic-Gaussian (LQG) framework. Here, we mention a few of them37

which are more relevant to our current work: [4] for the linear-quadratic mean field games via38

the stochastic maximum principle and adjoint equation, [1] for the N -person linear differential39

mean-field games with explicit solution, [17] for the mean-field LQG games with a major player40

and a large number of minor players, [20] for the mean-field LQG games with nonuniform a-41

gents through the state-aggregation by empirical distribution, [28] for the mean-field LQG mixed42

games with continuum-parameterized minor players; [15] for linear-quadratic-Gaussian MFGs43

having a major agent and numerous heterogeneous minor agents in the presence of mean-field44

interactions.45
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In this paper, we discuss the mean-field games in the framework of partial observation.1

Specially, we consider a large population system wherein all agents are coupled in their state2

evolutions and cost functionals. However, due to the realistic factors such as finite datum, latent3

process or imperfect information, each agent can only access some noisy observation on his own4

state. Based on this partial observation, each agent aims to analyze the decentralized strategy5

with the help of Kalman filtering and separation principle but in large-population setting. On6

the other hand, unlike most existing MFG literature, we assume the states of all agents are7

governed by some underlying common-noise. This common noise can be interpreted as some8

exogenous and generic factors such as the macro-economic scenario, tax policy, interest rate or9

exchange rate. It follows these factors should influence all participants in a given large-population10

economy. In fact, the effect of such common noise becomes more significant when we consider11

a given industry sector with considerable small firms. Actually, the dynamic behaviors of all12

these firms should be regularized by the same external competition mechanism. For example,13

suppose all these firms produce the same type products hence their individual production plans14

will depend on the quoted price of same raw materials, or the same underlying tax regulation15

applied. The presence of common noise makes the state-average limit in MFG analysis become16

some stochastic process instead of deterministic quantity.17

In our work, the random state-average limit enters both the auxiliary state and observation18

dynamics (refer Eq. (5)-(6) below). As a result, there arise some measurability and adaptness19

issues (e.g., to verify the filtration generated by uncontrolled observation process equals that of20

the controlled observation process) when constructing the admissible control set and analyzing21

the related state-observation separation principle (see [2], [10], etc.). Such issues make our anal-22

ysis different from the MFG with partial information discussed in [19] where no common noise23

added. Thus, their state-average limit is still deterministic and the standard separation princi-24

ple via Kalman filtering technique can be applied directly therein without additional adaptness25

issues. As a solution, we give a modified separation to state and observation by taking in-26

to account random state-average limit (but without any assumption to its Gaussian-Markov27

property) and then verify the related observation filtration equivalence. Based on it, we can28

get some separation principle and derive the related decentralized control strategies. Moreover,29

the consistency condition will be established by the resulting decentralized strategies through30

some fixed-point analysis. Here, we connect the consistency condition to the well-posedness of31

some forward-backward stochastic differential equation (FBSDE). Moreover, we present some32

decoupling results of this FBSDE via some asymmetric Riccati equation system.33

As a response to above discussions, this paper investigates a class of LQG MFGs with partial34

observation and common noise. The reminder of this paper is structured as follows: Section35

2 gives the problem formulation. The decentralized strategies are derived by Kalman filtering36

method and the consistency condition is also established through some FBSDE system. Section37

3 verifies the ε-Nash equilibrium of the decentralized strategies. Section 4 gives some numerical38

computations to illustrate the theoretical results. Section 5 concludes our work and presents39

some future research directions.40

2 LQG MFGs with Partial Observation41

Consider a finite horizon [0, T ] for fixed T > 0. (Ω,F , P ) is a complete probability space on which42

a standard (d+m×N)-dimensional Brownian motion {W (t),Wi(t), 1 ≤ i ≤ N} is defined. Here,43
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d denotes the dimension of Brownian motion of common noise, m the dimension of Brownian1

motion of individual noise, and N is the number of agents in large population. Rn (Rn×k) denotes2

the n (n× k)-dimensional Euclidean space with its norm denoted by | · |. We denote the set of3

symmetric n×n matrices with real elements by Sn. Here, n, k denote the dimensions of state and4

control variable respectively. IfM ∈ Sn is positive (semi)definite, we writeM > (≥) 0. For given5

filtration {Ft}0≤t≤T , let L2
F (0, T ;Rn) (L2

F (0, T ;Rn×k)) denote the space of all Ft-progressively6

measurable processes with values in Rn (Rn×k) satisfying E
∫ T

0 |x(t)|2dt < +∞; L2(0, T ;Rn)7

(L2(0, T ;Rn×k)) the space of all deterministic functions with values in Rn (Rn×k) satisfying8 ∫ T
0 |x(t)|2dt < +∞; L∞(0, T ;Rn) (L∞(0, T ;Rn×k)) the space of uniformly bounded functions9

with values in Rn (Rn×k); C([0, T ];Rn) (C([0, T ];Rn×k)) the space of continuous functions with10

values in Rn (Rn×k). If M(·) ∈ L∞(0, T ;Sn) and M(t) > (≥) 0 for every t ∈ [0, T ], M(·) is11

positive (semi)definite, and denoted by M(·) > (≥) 0. For a given vector or matrix M , M ′12

stands for its transpose.13

We consider a large-population system with N individual agents {Ai}1≤i≤N . The state xi14

for ith agent Ai satisfies the following linear stochastic system:15

{
dxi(t) = [Aθi(t)xi(t) +B(t)ui(t) + aθi(t)x

(N)(t) +m(t)]dt+ σ(t)dWi(t) + σ̃(t)dW (t),

xi(0) = x,
(1)

with x(N)(·) , 1
N

∑N
i=1 xi(·) denoting the state-average of population. Here, Wi is the individual

noise while W is the common noise due to underlying common factors; Aθi , B denote the drift
parameters of state and control; aθi is the state-coupling parameter; σ, σ̃ denote the diffusion
coefficients. Similar setup of common noise can be found in [7]. Ai can access the following
additive white-noise partial observation:{

dYi(t) = [H(t)xi(t) + H̃θi(t)x
(N)(t) + h(t)]dt+ dVi(t),

Yi(0) = 0,
(2)

where {Vi}1≤i≤N stand for l-dimensional Brownian motions. Here, H̃θi is introduced in sensor16

function of (2) to characterize the coupling effects due to interactions of agents in large popu-17

lation system. If H̃ = 0, Equation (2) becomes the additive white-noise observation which is18

commonly seen in (linear) filtering literature (e.g., [2], [22], [30]). Define the observable filtration19

F i = {F it}0≤t≤T of Ai with F it , σ{Yi(s),W (s); 0 ≤ s ≤ t} and the filtration of common noise20

Fw = {Fwt }0≤t≤T with Fwt , σ{W (s); 0 ≤ s ≤ t}.21

In (1), (2), θi is a dynamic parameter for agent Ai in the heterogeneous population. For
sake of brief notations, we only set the coefficients (A, a, H̃) to be dependent on θi. In case other
coefficients for Ai also depend on θi, the analysis is similar and we will not present its full details
here. For θi, we assume it takes values from a finite set Θ = {1, 2, · · · ,K}, i.e., there are K
different types of heterogeneous agents (see [17] for similar setup). For example, if θi = k, then
Ai is called a k−type agent. In this paper, we are interested in the asymptotic behavior as N
tends to infinity. For 1 ≤ k ≤ K, introduce

Ik = {i|θi = k, 1 ≤ i ≤ N}, Nk = |Ik|,

where Nk is the cardinality of index set Ik. For 1 ≤ k ≤ K, let χ
(N)
k = Nk

N , then χ(N) =22

(χ
(N)
1 , · · · , χ(N)

K ) is a probability vector representing the empirical distribution of θ1, · · · , θN .23

We introduce the following assumption:24
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(A1) There exists a probability mass vector χ = (χ1, · · · , χK) such that lim
N−→+∞

χ(N) = χ and1

min
1≤k≤K

χk > 0.2

The implication of (A1) is that if the population sizeN −→ +∞, the proportion of k−type agents3

becomes stable for each k and the number of each type agents tends to infinity. Otherwise, the4

agents in given type with bounded size should be excluded from consideration when analyzing5

asymptotic behavior as N −→ +∞.6

Remark 2.1 Hereafter, the time variable t will often be suppressed to simplify the notations7

and presentations.8

For 1 ≤ i ≤ N , the admissible control set Ui of agent i is defined as

Ui := {ui(·)|ui(·) ∈ L2
Fi(0, T ;Rk)}.

Let u = (u1, · · · , ui, · · · , uN ) denote the strategy set of all N agents; u−i = (u1, · · · , ui−1,
ui+1, · · · , uN ) the strategy set except Ai. The cost functional of Ai is assummed to be:

Ji(ui(·), u−i(·)) = E
[ ∫ T

0

(
(xi − x(N))′Q(xi − x(N)) + u′iRui

)
dt+ x′i(T )Gxi(T )

]
. (3)

Here, Q,R are state and control weight matrix in running cost, while G the terminal weight of9

state. We set the following assumptions on the coefficients:10

(A2) {Ak}Kk=1 ∈ L∞(0, T ;Rn×n), B∈L∞(0, T ;Rn×k), {ak}Kk=1 ∈ L∞(0, T ;Rn×n),11

m ∈ L2(0, T ;Rn), σ ∈ L2(0, T ;Rn×m), σ̃ ∈ L2(0, T ;Rn×d);12

(A3) H, {H̃k}Kk=1 ∈ L∞(0, T ;Rl×n), h ∈ L2(0, T ;Rl);13

(A4) Q ∈ L∞(0, T ;Sn), Q ≥ 0, R(·) ∈ L∞(0, T ;Sk), R ≥ δI, for some δ > 0, G ∈ Sn, G ≥ 0.14

Under (A2), for any ui ∈ Ui, the state equation (1) admits a unique strong solution (e.g.,15

[38]). Under (A4), the cost functional (3) is well-defined.16

Now, we formulate the problem to find a Nash equilibrium of mean-field game with partial17

observation (PO).18

19

Problem (PO). Find the strategies set ū = (ū1, ū2, · · · , ūN ) such that for i = 1, 2, · · · , N,

Ji(ūi(·), ū−i(·)) = inf
ui(·)∈Ui

Ji(ui(·), ū−i(·)).

To study (PO), one efficient methodology is the mean-field LQG games which relates the “cen-
tralized” LQG problems via the limiting state-average, as the agent number tends to infinity.
Define the state-average of all agents

x(N) ,
1

N

N∑
i=1

xi =
1

N

K∑
k=1

∑
i∈Ik

xi =

K∑
k=1

χ
(N)
k x

(N)
k , (4)

where x
(N)
k , 1

Nk

∑
i∈Ik xi denotes the state-average of all k−type agents.20
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As explained in the introduction, the centralized strategies for Problem (PO) are rather
complicate and infeasible to be applied when the number of the agents tends to infinity. Al-
ternatively, we investigate the decentralized strategies via the limiting problem with the help
of the frozen limiting state-average. To this end, first we figure out the representation of the
limiting process by the heuristic arguments. Based on this, we can find the decentralized s-
trategies by the consistency condition and verify the asymptotic Nash equilibrium of the derived

decentralized strategies. Since limN−→∞ χ
(N) = χ, by (4), we may approximate x(N), {x(N)

k }
N
k=1

by x0, {x0
k}Kk=1, respectively, where x0, {x0

k}Kk=1 should have the following relation

x0 =
K∑
k=1

χkx
0
k.

1

Define the state filter for F it as

x̂i(t) , E[xi(t)|F it ].

Then x̂(N)(·) , 1
N

∑N
i=1 x̂i(·) denotes the average of state filters. Similarly, x̂(N)(·) can be

approximated by x̂0(·) =
∑K

k=1 χkx̂
0
k(·) where x̂0

k(·) , limN−→+∞
1
Nk

∑
i∈Ik x̂i(·). Moreover, due

to the common noise, x0, x0
k, x̂

0, x̂0
k should be adapted to filtration {Fwt } and this can be verified

in our late analysis. Now, we introduce the limiting state dynamics{
dyi = [Aθiyi +Bui + aθix

0 +m]dt+ σdWi + σ̃dW,

yi(0) = x,
(5)

and limiting observation process{
dȲi = [Hyi + H̃θix

0 + h]dt+ dVi,

Ȳi(0) = 0.
(6)

The limiting cost functional is given by

Ji(ui(·)) = E
[ ∫ T

0

(
(yi − x0

)′
Q(yi − x0) + u′iRui

)
dt+ y′i(T )Gyi(T )

]
. (7)

Note that (5)-(7) are limiting versions of (1)-(3) when the mean field term, x(N), is replaced
by x0, which will be determined later in the paper. Before formulating the limiting LQG
MFG, we should first analyze the control-observation information structure as the observation
process depends on the admissible control applied, and vice versa, the admissible control should
be adapted to observation process. To this end, we will use the separation method which is
originally obtained by Wonham [36] and is systematically introduced in the book Bensoussan
[2]. See also Wang and Wu [33], Wang Wu and Xiong [34] for the backward separation method.
Introduce the processes αi(·), βi(·) by{

dαi = [Aθiαi +m]dt+ σdWi,

αi(0) = x,
(8)
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and {
dβi = [Hαi + h]dt+ dVi,

βi(0) = 0.
(9)

Note that the processes αi(·), βi(·) correspond to the state and observation processes when there
is neither control nor x0 (more precisely the control and x0 are 0). Further introduce{

dx1
i = [Aθix

1
i +Bui + aθix

0]dt+ σ̃dW,

x1
i (0) = 0,

(10)

and {
dz1
i = [Hx1

i + H̃θix
0]dt,

z1
i (0) = 0.

(11)

It follows that for any control ui(·),

yi(t) = αi(t) + x1
i (t), Ȳi(t) = βi(t) + z1

i (t). (12)

Define F Ȳi,Wu,t , σ{Ȳi(s),W (s); 0 ≤ s ≤ t}, Fβi,Wt , σ{βi(s),W (s); 0 ≤ s ≤ t}, Fβit ,

σ{βi(s); 0 ≤ s ≤ t}. Here, the subscript u in F Ȳi,Wu,t emphasizes its dependence on control.
We define the following (restricted) admissible control set Ūi for limiting partial observation:

Ūi :=
{
ui(·)|ui(·) ∈ L2(0, T ;Rk), ui(·) is adapted to F Ȳi,Wu,t and Fβi,Wt

}
, 1 ≤ i ≤ N.

Now formulate the following limiting partial observation (LPO) LQG game.1

2

Problem (LPO). For the ith agent, i = 1, 2, · · · , N, find ūi(·) ∈ Ūi satisfying

Ji(ūi(·)) = inf
ui(·)∈Ūi

Ji(ui(·)).

Then ūi(·) is called an optimal control for Problem (LPO).3

Remark 2.2 In [19], a class of LQG MFG with noisy observation is also discussed but without4

the introduction of common noise. Thus, the limit state-average in [19] is deterministic and it5

does not bring any measurability issue to the observation-control analysis.6

With the definition of admissibility, it is immediate from (12) that

if ui(·) is admissible, then F Ȳi,Wu,t = Fβi,Wt .

Thus we have
ŷi(t) = E

[
yi(t)|F Ȳi,Wu,t

]
= E

[
yi(t)|Fβi,Wt

]
.

Noting that W (·) is independent of Wi(·), Vi(·), we get W (·) is independent of αi(·), βi(·). Then it

follows E
(
αi(t)|Fβi,Wt

)
= E

(
αi(t)|Fβit

)
= α̂i(t), where α̂i satisfies the Kalman filtering equation

(e.g. [2], Section 1.2){
dα̂i =

[
Aθiα̂i +m

]
dt+ PθiH

′[dβi − (Hα̂i + h)dt
]
,

α̂i(0) = x,
(13)
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and Pθi is the unique solution of the Riccati equation{
Ṗθi = AθiPθi + PθiA

′
θi
− PθiH

′HPθi + σσ′,

Pθi(0) = 0.
(14)

Noting x1
i (·) ∈ F

βi,W
t , we have ŷi = α̂i + x1

i . Besides,

dβi − (Hα̂i + h)dt = dȲi − (Hŷi + H̃θix
0 + h)dt.

Therefore,{
dŷi =

[
Aθi ŷi +Bui + aθix

0 +m
]
dt+ PθiH

′[dȲi − (Hŷi + H̃θix
0 + h)dt

]
+ σ̃dW,

ŷi(0) = x.
(15)

Introduce the innovation process

Ii(t) = βi(t)−
∫ t

0
[H(s)α̂i(s) + h(s)]ds,

which is adapted to Fβi,Wt . Let Λθi ∈ L∞(0, T ;Rn×n), λθi ∈ L2
Fw(0, T ;Rn) be the parameters of

a feedback Λθixi + λθi . Consider{
dηi = [(Aθi +BΛθi)ηi + aθix

0 +m+Bλθi ]dt+ PθiH
′dIi + σ̃dW,

ηi(0) = x.
(16)

It is clearly that ηi(·) ∈ Fβi,Wt . Define ui(t) = Λθi(t)ηi(t) +λθi(t), then ui(·) is square integrable

and adapted to Fβi,Wt . Further we have

dIi = dβi − (Hα̂i + h)dt = dȲi − (Hηi + H̃θix
0 + h)dt.

Plugging this into (16), we have

dηi = [(Aθi +BΛθi − PθiH
′H)ηi + aθix

0 +m+Bλθi − PθiH
′(H̃θix

0 + h)]dt+ PθiH
′dȲi + σ̃dW.

Therefore,

ηi(t) =Φ(t)x+ Φ(t)

∫ t

0
Φ−1(s)

[
aθix

0 +m+Bλθi − PθiH
′(H̃θix

0 + h)
]
ds

+ Φ(t)

∫ t

0
Φ−1(s)PθiH

′dȲi + Φ(t)

∫ t

0
Φ−1(s)σ̃dW,

where {
dΦ(t) = (Aθi +BΛθi − PθiH

′H)Φ(t)dt,

Φ(0) = I.

Then ηi(·), and consequently ui(·), are adapted to F Ȳi,Wu,t . It follows that ui(·) is an admissible1

control. Naturally ηi(·) is the corresponding Kalman filter, and ui(t) = Λθi(t)ηi(t) + λθi(t) is a2

feedback on it.3
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Introduce the following two equations of πθi and γθi respectively:{
π̇θi + πθiAθi +A′θiπθi − πθiBR

−1B′πθi +Q = 0,

πθi(T ) = G,
(17)

and {
dγθi +

[
(A′θi − πθiBR

−1B′)γθi + πθi(aθix
0 +m)−Qx0

]
dt+ ξθidW = 0,

γθi(T ) = 0.
(18)

Under (A2)-(A4), (14), (17) are standard Riccati equations which admit a unique solution1

Pθi , πθi ∈ C([0, T ];Rn×n). Moreover, under (A2)-(A4), the linear backward stochastic differential2

equation (LBSDE) (18) admits a unique adaptive solution pair (γθi , ξθi) ∈ L2
Fw

t
(0, T ;Rn) ×3

L2
Fw

t
(0, T ;Rn×d). Note that ξθi(·) is introduced in solution pair to ensure γθi(·) to be adapted to4

Fwt . Now we present the following result.5

Lemma 2.1 Let (A2)-(A4) hold and Pθi , πθi ∈ C([0, T ];Rn×n) are solution of (14), (17) re-
spectively, (γθi , ξθi) ∈ L2

Fw
t

(0, T ;Rn) × L2
Fw

t
(0, T ;Rn×d) is the solution pair of (18). Then the

optimal control of (LPO) is

ūi(t) = −R−1(t)B′(t)πθi(t)ŷi(t)−R
−1(t)B′(t)γθi(t), (19)

where ŷi(t) satisfies the following filtering equation
dŷi =

[
Aθi ŷi −BR

−1B′(πθi ŷi + γθi) + aθix
0 +m

]
dt+ PθiH

′[dȲi − (Hŷi + H̃θix
0 + h)dt

]
+ σ̃dW,

ŷi(0) = x.
(20)

Proof. Suppose the optimal control ūi(·) can be written by a linear feedback: ūi = Λθi ŷi + λθi
for Λθi , λθi to be determined (this can be verified in our later analysis). Here, ŷi(·) is the
Kalman filter corresponding to ūi, and yi(·), Ȳi(·) are the corresponding state and observation
to ūi respectively. Then the following relations hold:

dŷi =
[
(Aθi +BΛθi)ŷi + aθix

0 +m+Bλθi
]
dt+ PθiH

′[dȲi − (Hŷi + H̃θix
0 + h)dt

]
+ σ̃dW,

ŷi(0) = x,

ūi = Λθi ŷi + λθi ,

dyi = [Aθiyi +Būi + aθix
0 +m]dt+ σdWi + σ̃dW,

yi(0) = x,

dȲi = (Hyi + H̃θix
0 + h)dt+ dVi, Ȳi(0) = 0.

(21)

Let µ(·) be adapted to Fβi,Wt and F Ȳi,Wu,t . Consider the state yµi (·) and the observation Ȳ µ
i (·)

corresponding to ui(·), where ui(t) = Λθi(t)ŷ
µ
i (t) +λθi(t) +µ(t) ∈ Fβi,Wt and F Ȳi,Wu,t , ŷµi (t) is the
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related Kalman filter. Then we can write for any µ(·) ∈ Fβi,Wt and F Ȳi,Wu,t

dŷµi =
[
(Aθi +BΛθi)ŷ

µ
i + aθix

0 +m+Bλθi +Bµ
]
dt+ PθiH

′[dȲ µ
i − (Hŷµi + H̃θix

0 + h)dt
]

+ σ̃dW,

ŷµi (0) = x,

ui = Λθi ŷ
µ
i + λθi + µ,

dyµi = [Aθiy
µ
i +Bui + aθix

0 +m]dt+ σdWi + σ̃dW,

yµi (0) = x,

dȲ µ
i = (Hyµi + H̃θix

0 + h)dt+ dVi(t), Ȳ
µ
i (0) = 0.

(22)
Comparing (21) and (22), we have

dȲ µ
i − (Hŷµi + H̃θix

0 + h)dt = dβi − (Hα̂i + h)dt = dȲi − (Hŷi + H̃θix
0 + h)dt. (23)

Set X̃i(t) , ŷµi (t) − ŷi(t), and introduce y1,µ
i (·), y1

i (·) such that ŷµi (t) = α̂i(t) + y1,µ
i (t) and

ŷi(t) = α̂i(t) + y1
i (t). It follows that

ŷµi − ŷi = y1,µ
i − y

1
i = yµi − yi = X̃i,

and
dX̃i = (Aθi +BΛθi)X̃idt+Bµdt, X̃i(0) = 0.

Compute the value of the cost functional as follows

Ji(ui) =E
{∫ T

0

[
(yi − x0)′Q(yi − x0) + 2(yi − x0)′QX̃i + X̃ ′iQX̃i

+ (Λθi ŷi + λθi)
′ ·R(Λθi ŷi + λθi) + 2(Λθi ŷi + λθi)

′R(ΛθiX̃i + µ) + (ΛθiX̃i + µ)′(ΛθiX̃i + µ)
]
dt

+ yi(T )′Gyi(T ) + 2yi(T )′GX̃i(T ) + X̃i(T )′GX̃i(T )
}
.

Hence

Ji(ui) = Ji(ūi) + E
{∫ T

0

[
X̃ ′iQX̃i + (ΛθiX̃i + µ)′R(ΛθiX̃i + µ)

]
dt+ X̃ ′i(T )GX̃i(T )

}
+ 2Xi,

where

Xi = E
{∫ T

0

[
X̃ ′iQyi − X̃ ′iQx0 + (ΛθiX̃i + µ)′R(Λθi ŷi + λθi)

]
dt+ X̃ ′i(T )Gyi(T )

}
.

Notice that

E
[
X̃ ′i(t)R(t)yi(t)

]
= E

[
X̃ ′i(t)R(t)E(yi(t)|F Ȳi,Wu,t )

]
= E

[
X̃ ′i(t)R(t)ŷi(t)

]
.

Then we have

Xi =E
{∫ T

0

[
X̃ ′iQyi − X̃ ′iQx0 + (ΛθiX̃i + µ)′R(Λθiyi + λθi)

]
dt+ X̃ ′i(T )Gyi(T )

}
.
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Define
pi(t) = πθi(t)yi(t) + γθi(t),

where πθi(·), γθi(·) are given by (17) and (18). Applying Itô’s formula to X̃ ′i(t)pi(t), integrating
between 0 and T , and taking the expectation, we obtain

E
[
X̃ ′i(T )Gyi(T )

]
=E
{∫ T

0

[
X̃ ′i

(
Aθi +BΛθi

)′
pi + µ′B′pi + X̃ ′iπ̇θiyi

+ X̃ ′iπθi

(
Aθiyi +BΛθi ŷi +Bλθi + aθix

0 +m
)]
dt+

∫ T

0
X̃ ′idγθi

}
.

(24)

Substituting (24) into Xi, it follows that Xi = 0 and

Ji(ui) = Ji(ūi) + E
{∫ T

0

[
X̃ ′iQX̃i + (ΛθiX̃i + µ)′R(ΛθiX̃i + µ)

]
dt+ X̃ ′i(T )GX̃i(T )

}
.

with Λθi = −R−1B′πθi , λθi = −R−1B′γθi . The optimal µ is µ = 0 as in this case, X̃i ≡ 0, which1

implies the optimality of ūi. �2

Now, we aim to derive the consistency condition satisfied by the decentralized strategies. In3

below, for two matrices A,B, A⊗B denotes their Kronecker product.4

Lemma 2.2 Let (A1)-(A4) hold, then state-average limit x0 =
∑K

j=1 χjx
0
j where the set of

aggregate quantities z̄ = [(x0
1)′, · · · , (x0

K)′]′ and γ̄ = [(γ1)′, · · · , (γK)′]′ satisfies the following
consistency condition: 

dz̄ =
[
Āz̄ + B̄γ̄ + m̄

]
dt+ σ̄dW,

dγ̄ = −
[
Ǎz̄ + Ḡ′γ̄ + s̄

]
dt− ξ̄dW,

z̄(0) = x̄, γ̄(T ) = 0,

(25)

with 
Ā = Ḡ + ā⊗ χ, χ = [χ1, · · · , χK ], ā = [a′1, · · · , a′K ]′,

Ǎ = q̄⊗ χ, q̄ = [(π1a1−Q)′, · · · , (πKaK−Q)′]′,

m̄ = [m′, · · ·,m′]′, σ̄ = [σ̃′, · · ·, σ̃′]′, ξ̄ = [ξ′1, · · ·, ξ′K ]′,

s̄ = [(π1a1)′, · · · , (πKak)′]′ ·m, x̄ = [x′, · · · , x′]′,

(26)

and

Ḡ =

 A1 −BR−1B′π1

. . .

AK −BR−1B′πK

 ,

and

B̄ =

 −BR
−1B′

. . .

−BR−1B′

 .
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Proof. It follows from Lemma 2.1 that the (decentralized) strategy ũi(t) of Problem (PO) is
given by

ũi = −R−1B′πθi x̂i −R
−1B′γθi , (27)

with
dx̂i =

[
Aθi x̂i −BR

−1B′(πθi x̂i + γθi) + aθix
0 +m

]
dt

+ PθiH
′
[(
H
(
xi − x̂i

)
+ H̃θi

(
x(N) − x0

))
dt+ dVi

]
+ σ̃dW.

Taking summation for i ∈ Ik and let N −→ +∞,

dx̂0
k =
[(
Ak −BR−1B′πk − PkH ′H

)
x̂0
k −BR−1B′γk +m+ akx

0 + PkH
′Hx0

k

]
dt+ σ̃dW.

Substituting (27) into (1), we have

dxi = [Aθixi −BR
−1B′πθi x̂i −BR

−1B′γθi + aθix
(N) +m]dt+ σdWi + σ̃dW.

Taking summation for i ∈ Ik, and let N −→ +∞,

dx0
k =
[
Akx

0
k + akx

0 −BR−1B′πkx̂
0
k −BR−1B′γk +m

]
dt+ σ̃dW.

It follows that
x0
k(t) = x̂0

k(t), a.s., a.e. (28)

for any t ∈ [0, T ]. With (18), we have for k = 1, 2, · · · ,K,{
dx0

k =
[
Akx

0
k −BR−1B′πkx

0
k + akx

0 −BR−1B′γk +m
]
dt+ σ̃dW, x0

k = x,

dγk +
[
(A′k − πkBR−1B′)γk + πk(akx

0 +m)−Qx0
]
dt+ ξkdW = 0, γk(T ) = 0.

(29)

Write the above systems in compact form for k = 1, 2, · · · ,K, we formulate (25). �1

Similar to [4], suppose γ̄ = Kz̄ + Φ, thus we have the following matrix-valued equations for
K and Φ: 

K̇ +KĀ + Ḡ′K +KB̄K + Ǎ = 0,

Φ̇ +
(
Ḡ′ +KB̄

)
Φ + (s̄ +Km̄) = 0,

K(T ) = 0, Φ(T ) = 0.

(30)

K in (30) is nonsymmetric Riccati equation. We first state the following result based on [4]
(Proposition 3.2) which is a version of Radon’s lemma for nonsymmetric Riccati equation. Sup-
pose two-point boundary problem

d

dt

(
ξ1

−η1

)
=

(
Ā B̄

Ǎ Ḡ′

)(
ξ1

η1

)
,

ξ1(t0) = 0, η1(T ) = 0,

admits a unique solution for any t0 ∈ [0, T ], respectively. Then there is a unique solution K(·)2

to the nonsymmetric Riccati equation (30). Then, applying the Banach fixed point theorem for3

two-point boundary problem, we have the following general existence result to nonsymmetric4

Riccati equation (see [26] for more details):5

12



Propsition 2.1 Let (A1)-(A4) hold, there exists a unique solution of (30) if L < 1 where

L = T‖Ǎ‖T ‖B̄‖T · exp((2‖Ā‖T + 2‖Ḡ‖T + ‖B̄‖T + ‖Ǎ‖T )T )

and ‖ · ‖T denotes the super-norm of matrix-valued function on [0, T ].1

Given the special structure on Ǎ, a relaxed condition is given below which is obtained in [4]:2

Propsition 2.2 Let (A1)-(A4) hold. Suppose Ǎ is invertible, let φ(t, s) is the fundamental so-

lution to Ḡ and ‖φ‖T = sup0≤t≤T

√∫ T
t ‖φ′(s, t)Ǎ

1
2
s ‖2ds, ‖Ā−Ḡ‖T = sup0≤t≤T ‖(Ā−Ḡ)tǍ

− 1
2

t ‖.
Then there exists a unique solution of (30) if

√
T‖φ‖T ‖Ā− Ḡ‖T < 1.

Proof. Applying the similar procedures in Theorem III.6 in [4], we can obtain the condition3

above for forward-backward SDE. Details are omitted. �4

Unlike the condition in terms of two-point boundary problems, the condition of Proposition5

2.2 is given by matrix norm which is more checkable. For its illustration, we present some6

numerical example in Section 4.7

Finally, we obtain the estimation of the solution of (25) which will be used in the following8

section.9

Lemma 2.3 There exists a constant c such that

sup
1≤k≤K

E sup
0≤t≤T

|x0
k(t)|2 + sup

1≤k≤K
E sup

0≤t≤T
|γk(t)|2 ≤ c. (31)

Proof. By (29), it follows from the standard estimations for SDE and BSDE that, there
exists a constant c that

E sup
0≤t≤T

|γk(t)|2 ≤ cE
∫ T

0
(|x0(t)|2 + |m(t)|2)dt,

and

E sup
0≤t≤T

|x0
k(t)|2 ≤ cE

∫ T

0
(|x0(t)|2 + |γk(t)|2 + |m(t)|2 + |σ̃(t)|2)dt.

Therefore,

K∑
k=1

E sup
0≤t≤T

|x0
k(t)|2 ≤ c

K∑
k=1

E
∫ T

0
|x0
k(t)|2dt+ cE

∫ T

0
(|m(t)|2 + |σ̃(t)|2)dt.

Hence there exists a constant c such that

sup
1≤k≤K

E sup
0≤t≤T

|x0
k(t)|2 ≤ c,

and
sup

1≤k≤K
E sup

0≤t≤T
|γk(t)|2 ≤ c.

�10
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3 ε-Nash Equilibrium for Problem (PO)1

Now we show (ũ1, ũ2, · · · , ũN ) satisfies the ε-Nash equilibrium for (PO). Here, for 1 ≤ i ≤ N,2

ũi is given by (27) and γθi satisfies the consistent condition (25). We first give the definition of3

ε-Nash equilibrium.4

Definition 3.1 A set of controls ui(·) ∈ Ui, 1 ≤ i ≤ N, for N agents is called an ε-Nash
equilibrium with respect to the costs Ji, 1 ≤ i ≤ N, if there exists ε = εN ≥ 0 and εN → 0 as
N →∞ such that for any fixed 1 ≤ i ≤ N , we have

Ji(ui, u−i) ≤ Ji(u′i, u−i) + εN , (32)

when any alternative control u′i(·) ∈ Ui is applied by Ai.5

Our main result in this section is as follows.6

Theorem 3.1 Let (A1)-(A4) hold, then (ũ1, ũ2, · · · , ũN ) is an ε-Nash equilibrium of Problem7

(PO) with ε = O( 1√
N

+ εN ), where εN := sup1≤k≤K |χ
(N)
k − χk| → 0 as N →∞.8

For ūi(·) defined in (19) and any ui(·) ∈ Ui, we have

Ji(ũi, ũ−i)− Ji(ui, ũ−i) ≤ Ji(ũi, ũ−i)− Ji(ūi(·)) + Ji(ui(·))− Ji(ui, ũ−i).

Therefore, in order to show that (ũ1, ũ2, · · · , ũN ) satisfies the ε-Nash equilibrium, we will study9

Ji(ũi, ũ−i)− Ji(ūi(·)) and Ji(ui(·))− Ji(ui, ũ−i) in the following subsections, respectively.10

3.1 Estimation of |Ji(ũi, ũ−i)− Ji(ūi(·))|11

In order to estimate |Ji(ũi, ũ−i)−Ji(ūi(·))|, first we need to obtain the estimations of the differ-
ence between the optimal state-average and the frozen term(see Lemma 3.2) and the difference
between the decentralized and centralized states and filters(see Lemma 3.3). For k ∈ Θ, i ∈ Ik,
applying ũi(·) for Ai, we have the following close-loop state

dxi =[Akxi −BR−1B′
(
πkx̂i + ek(Kz̄ + Φ)) + akx

(N) +m]dt+ σdWi + σ̃dW,

dx̂i =
[
Akx̂i −BR−1B′

(
πkx̂i + ek (Kz̄ + Φ)) + akx

0 +m
]
dt

+ PkH
′
[
dYi −

(
Hx̂i + H̃kx

0 + h
)
dt
]

+ σ̃dW,

dYi =[Hxi + H̃kx
(N) + h]dt+ dVi,

xi(0) =x, x̂i(0) = x, Yi(0) = 0,

(33)

where for 1 ≤ k ≤ K, ek is the n× (nK) matrix with the n× n identity matrix In located in its
k− th block and other blocks are null matrix, that is ek = [0n×n, · · · , 0n×n, In, 0n×n, · · · , 0n×n].
The auxiliary system (of limiting problem) is given by

dyi =[Akyi −BR−1B′
(
πkŷi + ek

(
Kz̄ + Φ

))
+ akx

0 +m]dt+ σdWi + σ̃dW,

dŷi =
[
Akŷi −BR−1B′

(
πkŷi + ek

(
Kz̄ + Φ

))
+ akx

0 +m
]
dt

+ PkH
′
[
dȲi −

(
Hŷi + H̃kx

0 + h
)
dt
]

+ σ̃dW,

dȲi =[Hyi + H̃kx
0 + h]dt+ dVi,

yi(0) =x, ŷi(0) = x, Ȳi(0) = 0.

(34)
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Based on (33), we derive that

dx
(N)
k =[(Akx

(N)
k −BR−1B′

(
πkx̂

(N)
k + ek(Kz̄ + Φ)

)
+ akx

(N) +m]dt

+
1

Nk

∑
i∈Ik

σdWi + σ̃dW,

dx̂
(N)
k =

[
Akx̂

(N)
k −BR−1B′

(
πkx̂

(N)
k + ek(Kz̄ + Φ)

)
+ akx

0 +m
]
dt

+ σ̃dW + PkH
′
[
dY

(N)
k −

(
Hx̂

(N)
k + H̃kx

0 + h
)
dt
]
,

dY
(N)
k =[Hx

(N)
k + H̃kx

(N) + h]dt+
1

Nk

∑
i∈Ik

dVi,

x
(N)
k (0) =x, x̂

(N)
k (0) = x, Y

(N)
k (0) = 0,

(35)

where Y
(N)
k = 1

Nk

∑
i∈Ik Yi.1

For (34) and (35), applying the same method as in Lemma 2.3 and using (31), we have the2

following result.3

Lemma 3.1 There exists a constant c such that

E sup
0≤t≤T

|yi(t)|2 + E sup
0≤t≤T

|ŷi(t)|2 + E sup
0≤t≤T

|Ȳi(t)|2 ≤ c,

and
sup
k∈Θ

E sup
0≤t≤T

|x(N)
k (t)|2 + sup

k∈Θ
E sup

0≤t≤T
|x̂(N)
k (t)|2 ≤ c,

The following lemma establishes the estimations of the difference between the optimal state-4

average and the frozen term5

Lemma 3.2

sup
k∈Θ

sup
0≤t≤T

E
∣∣∣x(N)
k (t)− x0

k(t)
∣∣∣2 = O

( 1

N
+ ε2

N

)
, (36)

sup
k∈Θ

sup
0≤t≤T

E
∣∣∣x(N)
k (t)− x0

k(t)
∣∣∣2 = O

( 1

N
+ ε2

N

)
. (37)

Proof. By (29) and (35), we get
d
(
x

(N)
k − x0

k

)
=
[
Ak
(
x

(N)
k − x0

k

)
−BR−1B′πk(x̂

(N)
k − x0

k)
)

+ ak(x
(N) − x0)

]
dt+

+
1

Nk

∑
i∈Ik

σdWi,

x
(N)
k (0)− x0

k(0) =0,

(38)

and

d
(
x̂

(N)
k − x0

k

)
=
[(
Ak −BR−1B′πk

)(
x̂

(N)
k − x0

k

)]
dt

+ PkH
′
[
H
(
x

(N)
k − x̂(N)

k

)
+ H̃k

(
x(N) − x0

)]
dt+ PkH

′ 1

Nk

N∑
i∈Ik

dVi,

x̂
(N)
k (0)− x0

k(0) =0.

(39)
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It follows from (38), (39) and (28) that

E
∣∣∣x(N)
k (t)− x0

k(t)
∣∣∣2

≤CE
∫ t

0

(∣∣∣x(N)
k (s)− x0

k(s)
∣∣∣2 +

∣∣∣x̂(N)
k (s)− x0

k(s)
∣∣∣2 +

∣∣∣x(N)(s)− x0(s)
∣∣∣2)ds+ CE

∣∣∣ ∫ t

0

1

Nk

∑
i∈Ik

σdWi

∣∣∣2,
and

E
∣∣∣x̂(N)
k (t)− x0

k(t)
∣∣∣2

≤CE
∫ t

0

(∣∣∣x̂(N)
k (s)− x0

k(s)
∣∣∣2 +

∣∣∣x(N)
k (s)− x0

k(s)
∣∣∣2 +

∣∣∣x(N)(s)− x0(s)
∣∣∣2)ds+ CE

∣∣∣ ∫ t

0

1

Nk

∑
i∈Ik

dVi

∣∣∣2.
Note that ∣∣∣x(N)(s)− x0(s)

∣∣∣2
=
∣∣∣ K∑
k=1

(χ
(N)
k x

(N)
k (s)− χkx0

k(s))
∣∣∣2

=
∣∣∣ K∑
k=1

(χ
(N)
k x

(N)
k (s)− χkx

(N)
k (s)) +

K∑
k=1

(χkx
(N)
k (s)− χkx0

k(s))
∣∣∣2

≤C sup
k∈Θ
|χ(N)
k − χk|2

K∑
k=1

|x(N)
k (s)|2 + C

K∑
k=1

|x(N)
k (s)− x0

k(s)|2.

(40)

and

E
∣∣∣ ∫ t

0

1

Nk

∑
i∈Ik

σdWi

∣∣∣2 ∼ E
∣∣∣ ∫ t

0

1

Nk

∑
i∈Ik

dVi

∣∣∣2= O
( 1

N

)
.

Then (36) and (37) follow by Gronwall’s inequality. �1

Considering the difference between the decentralized and centralized states and filters, we2

have the following estimates:3

Lemma 3.3

sup
1≤i≤N

[
sup

0≤t≤T
E
∣∣∣xi(t)− yi(t)∣∣∣2] = O

( 1

N
+ ε2

N

)
, (41)

sup
1≤i≤N

[
sup

0≤t≤T
E
∣∣∣x̂i(t)− ŷi(t)∣∣∣2] = O

( 1

N
+ ε2

N

)
, (42)

sup
1≤i≤N

[
sup

0≤t≤T
E
∣∣∣Yi(t)− Ȳi(t)∣∣∣2] = O

( 1

N
+ ε2

N

)
. (43)

Proof. By (33) and (34), we get

sup
0≤s≤t

E
∣∣∣xi(s)− yi(s)∣∣∣2

≤C
∫ t

0
E
∣∣∣xi(s)− yi(s)∣∣∣2ds+ CE

∫ t

0

[∣∣∣x̂i(s)− ŷi(s)∣∣∣2 +
∣∣∣x(N)(s)− x0(s)

∣∣∣2]ds,
16



and

sup
0≤s≤t

E
∣∣∣x̂i(s)− ŷi(s)∣∣∣2 ≤ C ∫ t

0
E
∣∣∣x̂i(s)− ŷi(s)∣∣∣2ds+ CE

∣∣∣Yi(t)− Ȳi(t)∣∣∣2,
and

E
∣∣∣Yi(t)− Ȳi(t)∣∣∣2 ≤ C ∫ t

0
E
∣∣∣xi(s)− yi(s)∣∣∣2ds+ C

∫ t

0
E
∣∣∣x(N)(s)− x0(s)

∣∣∣2ds.
Recalling (40), by virtue of Lemma 3.2 and Gronwall’s inequality, we obtain (41)-(43). �1

The following is the main result of this subsection.2

Propsition 3.1 For ∀ 1 ≤ i ≤ N,∣∣∣Ji(ũi, ũ−i)− Ji(ūi)∣∣∣ = O
( 1√

N
+ εN

)
.

Proof. Applying Cauchy-Schwarz inequality, we have

sup
0≤t≤T

E
∣∣∣∣∣xi(t)− x(N)(t)

∣∣2 − ∣∣yi(t)− x0(t)
∣∣2∣∣∣

≤ sup
0≤t≤T

E
∣∣xi(t)− x(N)(t)− yi(t) + x0(t)

∣∣2
+ 2 sup

0≤t≤T
E
[∣∣yi(t)−x0(t)

∣∣ · ∣∣xi(t)−x(N)(t)− yi(t) + x0(t)
∣∣]

≤ sup
0≤t≤T

E
∣∣xi(t)− yi(t)− (x(N)(t)− x0(t))

∣∣2
+ 2
(

sup
0≤t≤T

E
∣∣yi(t)− x0(t)

∣∣2) 1
2 ·
(

sup
0≤t≤T

E
∣∣xi(t)− yi(t)− (x(N)(t)− x0(t))

∣∣2) 1
2

=O
( 1√

N
+ εN

)
,

where the last equality is obtained by using the results of Lemmas 3.1, 3.2 and 3.3. Similarly,
by (19), (27) and (42), applying the same technique we get

sup
0≤t≤T

E
∣∣∣∣∣ũi(t)∣∣2 − ∣∣ūi(t)∣∣2∣∣∣ = O

( 1√
N

+ εN

)
.

In addition,

E
∣∣∣∣∣xi(T )

∣∣2 − ∣∣yi(T )
∣∣2∣∣∣ = O

( 1√
N

+ εN

)
.

Then ∣∣∣Ji(ũi, ũ−i)− Ji(ūi)∣∣∣ = O
( 1√

N
+ εN

)
,

which completes the proof. �3
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3.2 Estimation of |Ji(ui, ũ−i)− Ji(ui(·))|1

The proof of |Ji(ui, ũ−i) − Ji(ui(·))| is similar to the proof in Subsection 3.1. We will consider
the state and cost under perturbation. Thus, we give some new notations first. For i ∈ Ik,
consider a perturbed control ui ∈ Ui for Ai and introduce

dli = [Akli +Bui + akl
(N) +m]dt+ σdWi + σ̃dW,

dY l
i = [Hli + H̃kl

(N) + h]dt+ dVi,

li(0) = x, Y l
i (0) = 0,

(44)

whereas other agents of same type still keep the control ũj , j 6= i, i.e.,

dlj =[Aθj lj −BR
−1B′

(
πθj l̂j + eθj (Kz̄ + Φ)

)
+ aθj l

(N) +m]dt

+ σdWj + σ̃dW,

dl̂j =
[
Aθj l̂j −BR

−1B′
(
πθj l̂j + eθj

(
Kz̄ + Φ

)
+ aθjx

0 +m
]
dt

+ σ̃dW + PH ′
[
dY l

j −
(
Hl̂j + H̃θjx

0 + h
)
dt
]
,

dY l
j =[Hlj + H̃θj l

(N) + h]dt+ dVj ,

lj(0) =x, l̂j(0) = x, Y l
j (0) = 0,

(45)

where l(N)(t) = 1
N

∑N
k=1 lk(t). By the definition of ε-Nash equilibrium, we need only consider

the perturbation control ui ∈ Ui such that Ji(ui, ũ−i) ≤ Ji(ũi, ũ−i), which implies

1

2
E
∫ T

0
ui(t)

′R(t)ui(t)dt ≤ Ji(ui, ũ−i) ≤ Ji(ũi, ũ−i) = Ji(ūi) +O
( 1√

N
+ εN

)
,

i.e.,

E
∫ T

0
|ui(t)|2dt ≤ c1, (46)

where c1 is a positive constant which is independent of N . Then we have the following result.2

Lemma 3.4 There exists a constant c independent of N and j such that

sup
1≤j≤N

sup
0≤t≤T

E
[
|lj(t)|2

]
+ sup

1≤j≤N
sup

0≤t≤T
E
[
|l̂j(t)|2

]
+ sup

1≤j≤N
sup

0≤t≤T
E
[
|Yj(t)|2

]
≤ c3.

Proof. By (44) and (45), it holds that

|li(t)|2 ≤ c1

{
|x|2 +

∫ t

0

[
|li(s)|2 + |ui(s)|2 +

1

N

N∑
j=1

|lj(s)|2 + |m(s)|2
]
ds

+
∣∣∣ ∫ t

0
σ(s)dWi(s)

∣∣∣2 +
∣∣∣ ∫ t

0
σ̃(s)dW (s)

∣∣∣2},
(47)

and for j 6= i,

|lj(t)|2 ≤ c1

{
|x|2 +

∫ t

0

[
|lj(s)|2 + |l̂j(s)|2 + |x0(s)|2 +

1

N

N∑
j=1

|lj(s)|2 + |m(s)|2
]
ds

+
∣∣∣ ∫ t

0
σ(s)dWj(s)

∣∣∣2 +
∣∣∣ ∫ t

0
σ̃(s)dW (s)

∣∣∣2},
(48)
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|l̂j(t)|2 ≤ c1

{
|x|2 +

∫ t

0

[
|l̂j(s)|2 + |x0(s)|2 + |m(s)|2 + |Y l

j (s)|2 + |h(s)|2
]
ds

+
∣∣∣ ∫ t

0
σ(s)dWj(s)

∣∣∣2 +
∣∣∣ ∫ t

0
σ̃(s)dW (s)

∣∣∣2}, (49)

|Y l
j (t)|2 ≤ c1

{∫ t

0

[
|lj(s)|2 +

1

N

N∑
j=1

|lj(s)|2 + |h(s)|2
]
ds+

∣∣∣ ∫ t

0
dVj(s)

∣∣∣2}, (50)

where c1 is a positive constant independent of N . Thus,

N∑
j=1

E
[
|lj(t)|2

]
+

N∑
j=1

E
[
|l̂j(t)|2

]
+

N∑
j=1

E
[
|Yj(t)|2

]

≤c1

{
N |x|2 + E

∫ t

0

[ N∑
j=1

|lj(s)|2 + |ui(s)|2 +

N∑
j=1

|l̂j(s)|2 +N |x0(s)|2 +N |m(s)|2 +

N∑
j=1

|Y l
j (s)|2

+ |h(s)|2
]
ds+

N∑
j=1

E
∣∣∣ ∫ t

0
σ(s)dWj(s)

∣∣∣2 +NE
∣∣∣ ∫ t

0
σ̃(s)dW (s)

∣∣∣2 +NE
∣∣∣ ∫ t

0
dVj(s)

∣∣∣2}

≤c1

{
N |x|2 +

∫ t

0

[ N∑
j=1

E|lj(s)|2 +

N∑
j=1

E|l̂j(s)|2 +

N∑
j=1

E|Yj(s)|2
]
ds

+NE
∫ t

0

(
|ui(s)|2 + |x0(s)|2 + |m(s)|2 + |h(s)|2 + |σ(s)|2 + |σ̃(s)|2 + 1

)
ds
}
.

By (46), we can see that ui(·) is L2-bounded. Then by Gronwall’s inequality, it follows that
there exists a constant c2 independent of N such that

1

N

N∑
j=1

sup
0≤t≤T

E
[
|lj(t)|2

]
+

1

N

N∑
j=1

sup
0≤t≤T

E
[
|l̂j(t)|2

]
+

1

N

N∑
j=1

sup
0≤t≤T

E
[
|Yj(t)|2

]
≤ c2. (51)

Plugging (51) into (47), (48), (49) and (50), it follows from Gronwall inequality that there exists
a constant c2 independent of N and j such that

sup
0≤t≤T

E
[
|lj(t)|2

]
+ sup

0≤t≤T
E
[
|l̂j(t)|2

]
+ sup

0≤t≤T
E
[
|Yj(t)|2

]
≤ c3.

�1

Correspondingly, the system for agent Ai under control ui in (LPO) is as follows
dl0i = [Akl

0
i +Bui + akx

0 +m]dt+ σdWi + σ̃dW,

dY l,0
i = [Hl0i + H̃kx

0 + h]dt+ dVi,

l0i (0) = x, Y l,0
i (0) = 0,

(52)
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and for agent Aj , j 6= i,

dl0j =[Aθj l
0
j −BR−1B′

(
πθj l̂

0
j + eθj (Kz̄ + Φ)

)
+ aθjx

0 +m]dt+ σdWj + σ̃dW,

dl̂0j =
[
Aθj l̂

0
j −BR−1B′

(
πθj l̂

0
j + eθj (Kz̄ + Φ)

)
+ aθjx

0 +m
]
dt

+ σ̃dW + PH ′
[
dY l,0

j −
(
Hl̂0j + H̃θjx

0 + h
)
dt
]
,

dY l,0
j =[Hl0j + H̃θjx

0 + h]dt+ dVj ,

l0j (0) =x, l̂0j (0) = x, Y l,0
j (0) = 0.

In order to give necessary estimates in (PO) and (LPO), we introduce the intermediate
state for Ai as 

dni = [Akni +Bui + ak
N − 1

N
n(N−1) +m]dt+ σdWi + σ̃dW,

dY n
i = [Hni +

N − 1

N
H̃kn

(N−1) + h]dt+ dVi,

ni(0) = x, Y n
i (0) = 0,

and for j 6= i,1 

dnj =[Aθjnj −BR
−1B′

(
πθj n̂j + eθj (Kz̄ + Φ)

)
+ aθj

N − 1

N
n(N−1) +m]dt+ σdWj + σ̃dW,

dn̂j =
[
Aθj n̂j −BR

−1B′
(
πθj n̂j + eθj (Kz̄ + Φ)

)
+ aθjx

0 +m
]
dt

+ σ̃dW + PH ′
[
dY n

j −
(
Hn̂j + H̃θjx

0 + h
)
dt
]
,

dY n
j =[Hnj +

N − 1

N
H̃θjn

(N−1) + h]dt+ dVj ,

nj(0) =x, n̂j(0) = x, Y n
j (0) = 0,

(53)

where n(N−1) , 1
N−1

N∑
j=1,j 6=i

nj . Define

l(N−1) ,
1

N − 1

N∑
j=1,j 6=i

lj , l̂(N−1) ,
1

N − 1

N∑
j=1,j 6=i

l̂j ,

Y
(N−1)
l ,

1

N − 1

N∑
j=1,j 6=i

Y l
j , Y (N−1)

n ,
1

N − 1

N∑
j=1,j 6=i

Y n
j .

By (45) and (53), we have the following estimates on these states.2

Lemma 3.5

sup
0≤t≤T

E
∣∣∣l̂(N−1) − n̂(N−1)

∣∣∣2 = O
( 1

N
+ ε2

N

)
,

sup
0≤t≤T

E
∣∣∣l(N−1) − n(N−1)

∣∣∣2 = O
( 1

N
+ ε2

N

)
,
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sup
0≤t≤T

E
∣∣∣Y (N−1)
l − Y (N−1)

n

∣∣∣2 = O
( 1

N
+ ε2

N

)
,

sup
0≤t≤T

E
∣∣∣l(N) − l(N−1)

∣∣∣2 = O
( 1

N
+ ε2

N

)
,

sup
0≤t≤T

E
∣∣∣n̂(N−1) − x̂0

∣∣∣2 = O
( 1

N
+ ε2

N

)
,

sup
0≤t≤T

E
∣∣∣n(N−1) − x0

∣∣∣2 = O
( 1

N
+ ε2

N

)
.

Proof. The proof is similar to that of Lemma 3.3 and omitted. �1

In addition, based on Lemma 3.5, we have2

Lemma 3.6

sup
0≤t≤T

E
∣∣∣l(N) − x0

∣∣∣2 = O
( 1

N
+ ε2

N

)
, (54)

sup
0≤t≤T

E
∣∣∣li − l0i ∣∣∣2 = O

( 1

N
+ ε2

N

)
. (55)

Proof. (54) follows from Lemma 3.5 directly. By (44) and (52), and using (54), we get (55). �3

4

Finally, applying the same technique as the proof of Proposition 3.1, we obtain the following5

proposition.6

Propsition 3.2 For any 1 ≤ i ≤ N ,∣∣∣Ji(ui, ũ−i)− Ji(ui)∣∣∣ = O
( 1√

N
+ εN

)
.

3.3 Proof of Theorem 3.17

Combining Propositions 3.1 and 3.2, we have

Ji(ũi, ũ−i) = Ji(ūi) +O
( 1√

N
+ εN

)
≤ Ji(ui) +O

( 1√
N

+ εN

)
= Ji(ui, ũ−i) +O

( 1√
N

+ εN

)
.

Thus, Theorem 3.1 follows by taking ε = O
(

1√
N

+ εN

)
. �8

4 Numerical Results9

Consider the case: n = 2,K = 2, thus there have two different types of agents: type-1 and type-210

respectively. The state of each agent has two components. Consider the following parameters11

of state, observation and cost:12
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A1 =

(
0.12 0.2
0.23 0.17

)
, A2 =

(
0.18 0.1
0.15 0.23

)
,

a1 =

(
0.18 0.2
0.1 0.13

)
, a2 =

(
0.21 0.1
0.17 0.12

)
,

B = (0.31, 0.22)′, χ1 = 0.55, χ2 = 0.45,m = (2.7, 0.45)′,

H = (0.23, 0.45), H1 = (0.03, 0.08), H2 = (−0.04, 0.05),

Q =

(
0.2 0
0 0.13

)
, G =

(
0.4 0
0 0.6

)
, h = 0.02, R = 2,

σ = (0.75, 0.65)′, σ̃ = (0.35, 0.85)′, T = 3, x(0) = 0.

Corresponding to the above parameters, the matrix Riccati equations P1, P2;π1, π2 are all1

of sizes 2× 2, and their solutions can be computed using Radon matrix representation (see e.g.,2

Ch2, Theorem 4.3, [26]) after a transform on their initial or terminal conditions (recall P is3

forward equation with initial condition, while π is backward equation with terminal condition).4

Given the solution of π1, π2, the matrix and their norms in Proposition 2.1, 2.2 can be evaluated.5

In our example here, Ǎ is invertible and
√
T‖φ‖T ‖Ā − Ḡ‖T ≈ 0.1197 < 1 thus (30) admits a6

unique solution (K,Φ). Note that the matrix Riccati equation K is of size 4×4, and its solution7

can be computed using the Runge-Kutta method [14]. Given K,Φ, the state z̄ and observation8

equation can be simulated using the Euler approximation scheme of [9]. The MFG strategies9

can be computed and we simulate the individual agent states with N = 500. The realized10

state-average for agents is also computed. The simulation results are reported by the following11

figures.12

Figure 1: Trajectories of the type-1 agents’ states when N=500
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Figure 2: Trajectories of the type-2 agents’ states when N=500

Figure 3: Trajectories of the type-1 agents state average and the mean field term

Figure 4: Trajectories of the type-2 agents state average and the mean field term

5 Conclusion and Future Work1

We discuss mean-field games (MFGs) where each individual agent can only access partial obser-2

vation on his own state. Moreover, the states of all agents are driven by a underlying common3

noise. The decentralized strategies are derived with the help of Kalman filtering together with4

consistency condition. It is notable the consistency condition is connected to the wellposed-5

ness of a FBSDE driven by the common noise. Our work suggests some future research topics.6

For example, the related MFGs for classical mean-variance problem but within the partial ob-7

servation framework; the related MFGs where common-noise process is not observable to our8

agents.9

23



Acknowledgement1

A. Bensoussan acknowledges the support from grant DMS-1612880 of National Science Foun-2

dation and Research Grants Council of the Hong Kong Special Administrative Region (City U3

11303316). J. Huang acknowledges the financial support partly by RGC Grant 502412, 15300514,4

G-YL04. The authors are grateful to Dr. Shujun Wang for helpful discussions and comments5

on the first version of the manuscript.6

References7

[1] Bardi, M. (2012). Explicit solutions of some linear-quadratic mean field games. Networks8

and Heterogeneous Media, 7, 243-261.9

[2] Bensoussan, A. (1992). Stochastic control of partially observable systems. Cambridge Uni-10

versity Press, Cambridge.11

[3] Bensoussan, A., Frehse, J., & Yam, S. (2013). Mean field games and mean field type control12

theory. Springer, New York.13

[4] Bensoussan, A., Sung, K., Yam, S., & Yung, S. (2016). Linear-quadratic mean-field games.14

J. Optimiz. Theory App., 169, 496-529.15

[5] Carmona, R., & Delarue, F. (2013). Probabilistic analysis of mean-field games. SIAM J.16

Control Optim., 51, 2705-2734.17

[6] Carmona, R., & Delarue, F. (2018). Probabilistic Theory of Mean Field Games with Ap-18

plications I-II. Springer Nature.19

[7] Carmona, R., Fouque, J., & Sun L. (2015). Mean field games and systemic risk: a toy20

model. Commun. Math. Sci., 13, 911-933.21
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