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SOCIAL OPTIMA IN LEADER-FOLLOWER MEAN FIELD LINEAR

QUADRATIC CONTROL∗

Jianhui Huang1, Bing-Chang Wang2 and Tinghan Xie1,∗∗

Abstract. This paper investigates a linear quadratic mean field leader-follower team problem, where
the model involves one leader and a large number of weakly-coupled interactive followers. The leader
and the followers cooperate to optimize the social cost. Specifically, for any strategy provided first by the
leader, the followers would like to choose a strategy to minimize social cost functional. Using variational
analysis and person-by-person optimality, we construct two auxiliary control problems. By solving
sequentially, the auxiliary control problems with consistent mean field approximations, we can obtain
a set of decentralized social optimality strategy with help of a class of forward-backward consistency
systems. The relevant Stackelberg equilibrium is further proved under some proper conditions.
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1. Introduction

Mean field games have been studied by researchers from various aspects [7, 8, 10, 25]. They involve a large
number of population and the interaction between each individual is negligible. The mean field game approach
has been applied in many fields such as finance [14], economics [41], information technology [21], engineering
[13, 24] and medicine [4]. The mean field linear quadratic (LQ) control problem is a special class of control
problems, which can model many problems in applications and its solution exhibits elegant properties. For
more work about the problem, readers can refer to [3, 9, 18, 19, 22, 26, 36, 37, 39, 44].

For the model with one major player and N minor players, the state of the major player has a significant
influence on state equations and cost functionals of other minor individuals, which can be considered as a
strong effect of the major player on minor ones. Mean field games (control) with major and minor players have
been discussed in some literature, such as [23, 32] for LQ problems, [6, 33] for nonlinear problems, [12, 20] for
probabilistic approaches and [11] for finite-state problems. In such types of problem, there is no hierarchical
structure of decision making between the major player and the minor players.
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In contrast to the model discussed above, leader-follower (Stackelberg) problems contain at least two hier-
archies of players. One hierarchy of the players is defined as the leaders with a major position and another
hierarchy of the players is defined as the followers with a minor position. The leader has priority to announce a
strategy first and then the followers seek their strategies to minimize their cost functionals with response to the
given strategy of leader. According to the followers’ optimal points, the leader will choose his optimal strategy
to minimize its cost functional. Leader-follower problem also has been widely investigated. For example, the
two-person leader-follower problem combines with stochastic LQ differential game had been studied by Yong
in [43] and the problem of one leader and N followers who play a noncooperative game under LQ stochastic
differential game had been studied by Moon and Basar in [31]. For further literature related to Stackelberg
games, readers can refer to [1, 2, 27, 29, 34, 35, 38].

Different from noncooperative games, the social optimization (team optimization) problem is a joint decision
problem which all the players have the same goal and work cooperatively. The aim of each player is to select an
optimal strategy and maximize the total payoff. Team optimization problem has been studied for many years.
Marschak [30] first considered team optimization based on game theory. Ho and Chu studied team decision theory
in optimal control problems [17]. Groves did the research of viewing the incentive problem as a team problem
which the information for decisions is incomplete [16]. The team theory and person-by-person optimization with
binary decision was investigated by Bauso and Pesenti [5] and the team problems under stochastic information
structure with suboptimal solutions was studied in [15].

In this paper, we investigate social optimality of the leader-follower mean field LQ control problem. Our model
contains one leader and N followers. The leader’s state appears in both state equation and cost functional of
each follower. It shows that the dynamics and cost functionals of the N followers are directly influenced by
the behavior of the leader. Unlike the model in [23, 31], our model has a population state average term in
all state equations and cost functionals. This implies that such state dynamics and cost functionals are highly
interactive and coupled. In reality, it is almost impossible for one player to obtain all the information of other
players. Therefore, decentralized control which is based on the individual information set will be used instead of
centralized control which is based on full information set and the information structure of each agent is different.

Compared with previous works, this paper mainly makes the following contributions:

– A social optimum problem is studied for mean field models with hierarchical structure. Unlike the problem
in [31] where the leader and followers play a noncooperative game and try to minimize their own individual
cost functional, all individuals in our models aim to minimize the social cost functional which equals
the summation of cost functionals of all players. The N followers are coupled by the population state
average term. Since the cost functional presents individual performance in the game problems, the order
of magnitude of the perturbation is 1

N which can be ignored. The population state average term may
be approximated by a stochastic process directly (see [18]). However, in the team problems, the order
of magnitude of the perturbation cannot be ignored after summing up all the cost functionals, which
makes the problem very complicated. To overcome such difficulties, we approximate some terms as N
goes to infinity and use a duality procedure combined with auxiliary equations to transform the variation
of the social cost functional into a standard LQ control form. Then, we construct an auxiliary control
problem and a forward-backward consistency system which contains four equations to help us obtain the
decentralized form of the optimal controls for the N followers.

– The decentralized controls of the leader-follower problem are obtained and the solvability of a high-
dimensional consistency condition system (CC system) is discussed. Since the leader’s state equation and
cost functional are fully coupled with the followers’ state equations and cost functionals, it is more difficult
to solve the leader’s problem. Except constructing auxiliary problem by mean field approximation as in
the former part, we need to construct six auxiliary equations and use duality relations to obtain the
decentralized form of the optimal control for the leader. Unlike the problem for N followers, the final
CC system of the leader’s problem contains ten equations which becomes a high-dimensional problem.
To solve such equations directly is very difficult since they are fully coupled and have high-dimensional
characteristics. We transform the high-dimensional CC system to a simple form of linear forward-backward
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stochastic differential equation (FBSDE; see [28, 42]) and discuss the solvability of the FBSDE through
Ricatti equation method.

– The decentralized strategies of leader-follower problem are proved to be Stackelberg equilibrium by per-
turbation analysis. Different from [22, 23, 31, 40], we discuss the Stackelberg equilibrium for the team
optimization problem. First, we need to prove the decentralized strategies for the followers have asymp-
totic social optimality. Because of the Stackelberg problem contains two hierarchies, we consider two
coupled cost functionals (the leader and the followers) when using the standard method (see [22]). We
prove the asymptotic optimality by decoupling them with two duality procedures and some arguments in
error estimates. Second, we need to prove the decentralized strategies for the leader-follower problem is
Stackelberg equilibrium. Also, some error estimates are very hard to be given directly since they are fully
coupling. We decompose them by applying Ricatti equation method and then estimate them in proper
order.

In the real world, our model can be used to describe some examples. For an automatic machine, the major
part first gives an information to the system and the minor parts will adjust their parameters automatically
such that the whole system keeps in the best state. For the economic environment, the small companies may
hesitate to make decisions and often follow a monopoly company when facing to the volatility of the market.
A monopoly company announces a decision first. Once the small companies try to make decisions according to
their own situations, the monopoly company adjusts its decision such that the sum of the social wealth can be
maximized. Moreover, the relationship between the employer and the employees or the federal government and
the government in each state also can be described by our model.

The paper is organized as follows. The problem is formulated in Section 2. In Section 3, we solve the optimal
controls for followers based on person-by-person optimality and obtain the CC system of the follower’s problem.
In Section 4, we seek the social optimal solution of the leader’s problem and give the CC system of the leader’s
problem. Then the CC system is transformed to a simple form of linear FBSDE in Section 5 and its wellposeness
is discussed. In Section 6, we give the details of proving the Stackelberg equilibrium. Also, some prior lemmas
will be introduced and proved. In Section 7, a numerical example is provided to simulate the efficiency of
decentralized control. Section 8 is the conclusion of the paper.

Notation: throughout this paper, Rn×m and Sn denote the set of all (n×m) real matrices and the set of all
(n×n) symmetric matrices, respectively. ‖ · ‖ is the standard Euclidean norm and 〈·, ·〉 is the standard Euclidean
inner product. For given symmetric matrix S ≥ 0, the quadratic form xTSx may be defined as ‖x‖2S , where xT

is the transpose of x. C1([0, T ];Rn×m) be the space of all Rn×m-valued continuously differentiable functions on
[0, T ]. For notation o(1), limn→∞ o(1) = 0. By [42], for sake of notation simplicity, we will use K to denote a
generic constant in following discussion. The value of K may be different at different places and it only depends
on the coefficients and initial values.

2. Problem formulation

Let (Ω,F ,P) be a complete probability space which contains all P-null sets in F . ξi ∈ Rn are the values of
the initial states and Wi(·) are d-dimensional standard Brownian motions, where i = 0, 1, . . . , N . ξi and Wi(·)
are defined on (Ω,F ,P). Consider a large-population system which contains one leader and N followers. The
state processes of the leader and the ith follower, i = 1, 2, . . . , N, are modeled by the following linear stochastic
differential equations (SDE) on a finite time horizon [0, T ]:{

dx0(t) = [A0(t)x0(t) + B0(t)u0(t) + C0(t)x(N)(t)]dt + D0(t)dW0(t), x0(0) = ξ0,

dxi(t) = [A(t)xi(t) + B(t)ui(t) + C(t)x(N)(t) + F(t)x0(t)]dt + D(t)dWi(t), xi(0) = ξi,
(2.1)

where x(N)(t) := 1
N

∑N
i=1 xi(t) is the state average of the followers. Let σ-algebra F i

t = σ(Wi(s), 0 ≤ s ≤ t)
and Git = F i

t

∨
σ{ξi, ξ0,W0(s), 0 ≤ s ≤ t}, where 0 ≤ i ≤ N . Ft = σ(Wi(s), 0 ≤ s ≤ t, 0 ≤ i ≤ N) and Gt =

Ft

∨
σ{ξi, 0 ≤ i ≤ N}. Fi = {F i

t}0≤t≤T is the natural filtration generated by Wi(·) and Gi = {Git}0≤t≤T , where
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0 ≤ i ≤ N . Correspondingly, we denote F = {Ft}0≤t≤T , G = {Gt}0≤t≤T . Next we introduce the following spaces:

L∞(0, T ;Rn×m) =
{
ϕ : [0, T ]→ Rn×m∣∣ ϕ(·) is bounded and measurable

}
,

L2
F(Ω;Rm) =

{
ξ : Ω→ Rm

∣∣ ξ is F-measurable, E‖ξ‖2 <∞
}
,

L2
F(0, T ;Rm) =

{
x : [0, T ]× Ω→ Rm

∣∣ x(·) is F-progressively

measurable, ‖x(t)‖2L2 := E
∫ T

0

‖x(t)‖2dt <∞
}
,

L2
F(Ω;C([0, T ];Rm)) =

{
x : [0, T ]× Ω→ Rm

∣∣ x(·) is F-progressively

measurable, continuous, E sup
t∈[0,T ]

‖x(t)‖2 <∞
}
,

M[0, T ] := L2
F(Ω;C([0, T ];Rn))× L2

F(Ω;C([0, T ];Rm))× L2
F(0, T ;Rm×d).

The set of admissible controls for the leader is defined as follows:

U0 =
{
u0|u0(t) ∈ L2

G0(0, T ;Rm)
}
,

and the set of admissible controls for the ith follower is defined as follows:

Ui =
{
ui|ui(t) ∈ L2

Gi(0, T ;Rm)
}
, 1 ≤ i ≤ N.

These are the decentralized control sets and we let U = U1 × U2 × · · · × UN . For comparison, the centralized
control set is given by

Uc =
{

(u0, u1, . . . , uN )|ui(t) ∈ L2
G(0, T ;Rm), 0 ≤ i ≤ N

}
.

Now we introduce the cost functionals of the leader and the ith follower, 1 ≤ i ≤ N . For the leader, the cost
functional is defined as follows:

J0(u0(·);u(·)) = E
{∫ T

0

[
‖x0(t)−Θ0(t)x(N)(t)− η0(t)‖2Q0(t) + ‖u0(t)‖2R0(t)

]
dt

+ ‖x0(T )− Θ̂0x
(N)(T )− η̂0‖2G0

}
,

(2.2)

where u(·) = (u1(t), . . . , uN (t)) ∈ Uc. Q0(·), R0(·) and G0(·) are weight matrices. Q0(·) and Θ0(·) represent
the coupling between the leader and the population state average. This implies that the states of the followers
can influence the cost functional of the leader. For the ith follower, the individual cost functional is defined as
follows:

Ji(u0(·);u(·)) = E
{∫ T

0

[
‖xi(t)−Θ(t)x(N)(t)−Θ1(t)x0(t)− η(t)‖2Q(t) + ‖ui(t)‖2R(t)

]
dt

+ ‖xi(T )− Θ̂x(N)(T )− Θ̂1x0(T )− η̂‖2G
}
,

(2.3)

where Q(·), R(·) and G(·) are weight matrices. Q(·), Θ(·) and Θ1(·) represent the coupling between the ith
follower, the population state average and the leader. This implies that the cost functional of the ith follower
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will be affected by the behavior of both the leader and the other followers. All the individuals in the system,
including the leader and followers, aim to minimize the social cost functional, which is denoted by

J (N)
soc (u0(·);u(·)) = αNJ0(u0(·);u(·)) +

N∑
i=1

Ji(u0(·);u(·)), α > 0.

Similar to [23] and [32], we have a scaling factor αN before J0(u0(·);u(·)) such that J0(u0(·);u(·)) and
Ji(u0(·);u(·)) have the same order of magnitude. Otherwise, if αN = 1, then the performance of the leader
will be insensitive when N becomes larger. Now we introduce our assumptions.
(A1) The coefficients of (1), (2) and (3) satisfy

{
A0(·), C0(·), A(·), C(·), F (·) ∈ L∞(0, T ;Rn×n),

B0(·), B(·) ∈ L∞(0, T ;Rn×m), D0(·), D(·) ∈ L∞(0, T ;Rn×d).


Q0(·), Q(·) ∈ L∞(0, T ;Sn), R0(·), R(·) ∈ L∞(0, T ;Sm),

Θ0(·),Θ1(·),Θ(·) ∈ L∞(0, T ;Rn×n), η0(·), η(·) ∈ L2(0, T ;Rn),

Θ̂0, Θ̂1, Θ̂ ∈ Rn×n, G0, G ∈ Sn, η̂0, η̂ ∈ Rn.

(A2) x0(0) and W0(·) are mutually independent. {xi(0), 1 ≤ i ≤ N} and {Wi(·), 1 ≤ i ≤ N} are indepen-

dent of each other. Exi(0) = ξ̂, 1 ≤ i ≤ N . For some constant K, which is independent of N , such that
sup1≤i≤N E‖xi(0)‖2 ≤ K. Furthermore, x0(0), W0(·) and {xi(0), 1 ≤ i ≤ N}, {Wi(t), 1 ≤ i ≤ N} are inde-
pendent of each other.
(A3) Q0(·) ≥ 0, R0(·) > δI, G0 ≥ 0 and Q(·) ≥ 0, R(·) > δI, G ≥ 0, for some δ > 0.

From now on, we may suppress the notation of time t if necessary. We introduce our leader-follower problem:

Problem 2.1. Under (A1)–(A3), for any u0 ∈ U0, to find a mapping M: U0 → U , and a control ū0 ∈ U0 such
that


J (N)
soc (u0;M(u0)) = inf

u∈Uc
J (N)
soc (u0;u),

J (N)
soc (ū0;M(ū0)) = inf

u0∈U0
J (N)
soc (u0;M(u0)).

Note that the M here is a mapping, which is different from the notation M[0, T ] we just introduced.

3. The mean field LQ control problem for the N followers

3.1. Person-by-person optimality

Fix u0 ∈ U0. The leader firstly announces his own open-loop strategy. Let ū = {ū1, ū2, . . . , ūN} be the
centralized optimal control of the followers and x̄ = {x̄1, x̄2, . . . , x̄N} be the corresponding states. Now we
perturb ūi and fix other ūj , where j 6= i. Then we denote δui = ui− ūi, δxi = xi− x̄i, where ui is the control after
perturbing and xi is its corresponding state. The Fréchet differential δJ0(δui) = J0(u0;u)−J0(u0; ū) + o(‖δui‖)
and δJi(δui) = Ji(u0;u) − Ji(u0; ū) + o(‖δui‖), where i = 1, . . . , N . Therefore, the variations of the state
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equations for the leader, the ith follower and the jth follower, where j 6= i, are
dδx0 = (A0δx0 + C0δx

(N))dt, δx0(0) = 0,

dδxi = (Aδxi +Bδui + Cδx(N) + Fδx0)dt, δxi(0) = 0,

dδxj = (Aδxj + Cδx(N) + Fδx0)dt, δxj(0) = 0, j 6= i,

and the variations of their corresponding cost functionals are

1

2
δJ0(δui) = E

{∫ T

0

〈Q0(x̄0 −Θ0x̄
(N) − η0), δx0 −Θ0δx

(N)〉dt

+ 〈G0(x̄0(T )− Θ̂0x̄
(N)(T )− η̂0), δx0(T )− Θ̂0δx

(N)(T )〉
}
,

1

2
δJi(δui) = E

{∫ T

0

〈Q(x̄i −Θx̄(N) −Θ1x̄0 − η), δxi −Θδx(N) −Θ1δx0〉+ 〈Rūi, δui〉dt

+ 〈G(x̄i(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), δxi(T )− Θ̂δx(N)(T )− Θ̂1δx0(T )〉
}
,

1

2
δJj(δui) = E

{∫ T

0

〈Q(x̄j −Θx̄(N) −Θ1x̄0 − η), δxj −Θδx(N) −Θ1δx0〉dt

+ 〈G(x̄j(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), δxj(T )− Θ̂δx(N)(T )− Θ̂1δx0(T )〉
}
,

respectively. Consequently, we have the variation of the social cost functional as:

1

2
δJ (N)

soc (δui) =
1

2

[
αNδJ0(δui) +

∑
j 6=i

δJj(δui) + δJi(δui)
]

= E
{∫ T

0

αN〈Q0(x̄0 −Θ0x̄
(N) − η0), δx0〉 − αN〈ΘT

0 Q0(x̄0 −Θ0x̄
(N) − η0), δx(N)〉+ 〈Q(x̄i −Θx̄(N)

−Θ1x̄0 − η), δxi〉 − 〈ΘTQ(x̄i −Θx̄(N) −Θ1x̄0 − η), δx(N)〉 − 〈ΘT
1 Q(x̄i −Θx̄(N) −Θ1x̄0 − η), δx0〉

+ 〈Rūi, δui〉+
∑
j 6=i

〈Q(x̄j −Θx̄(N) −Θ1x̄0 − η), δxj〉 −
∑
j 6=i

〈ΘTQ(x̄j −Θx̄(N) −Θ1x̄0 − η), δx(N)〉

−
∑
j 6=i

〈ΘT
1 Q(x̄j −Θx̄(N) −Θ1x̄0 − η), δx0〉dt+ αN〈G0(x̄0(T )− Θ̂0x̄

(N)(T )− η̂0), δx0(T )〉

− αN〈Θ̂T
0 G0(x̄0(T )− Θ̂0x̄

(N)(T )− η̂0), δx(N)(T )〉+ 〈G(x̄i(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), δxi(T )〉
− 〈Θ̂TG(x̄i(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), δx(N)(T )〉 − 〈Θ̂T

1 G(x̄i(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂),

δx0(T )〉+
∑
j 6=i

〈G(x̄j(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), δxj(T )〉 −
∑
j 6=i

〈Θ̂TG(x̄j(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )

− η̂), δx(N)(T )〉 −
∑
j 6=i

〈Θ̂T
1 G(x̄j(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), δx0(T )〉

}
.

(3.1)
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When N →∞, it follows that

1

2
δJ (N)

soc (δui) = E
{∫ T

0

α〈Q0(x̄0 −Θ0x̄
(N) − η0), Nδx0〉 − α〈ΘT

0 Q0(x̄0 −Θ0x̄
(N) − η0), Nδx(N)〉

+ 〈Q(x̄i −Θx̄(N) −Θ1x̄0 − η), δxi〉+ 〈Rūi, δui〉+

〈
1

N

∑
j 6=i

Q(x̄j −Θx̄(N) −Θ1x̄0 − η), Nδxj

〉

−

〈
1

N

∑
j 6=i

ΘTQ(x̄j −Θx̄(N) −Θ1x̄0 − η), Nδx(N)

〉
−

〈
1

N

∑
j 6=i

ΘT
1 Q(x̄j −Θx̄(N) −Θ1x̄0 − η),

Nδx0

〉
dt+ α〈G0(x̄0(T )− Θ̂0x̄

(N)(T )− η̂0), Nδx0(T )〉 − α〈Θ̂T
0 G0(x̄0(T )− Θ̂0x̄

(N)(T )− η̂0),

Nδx(N)(T )〉+ 〈G(x̄i(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), δxi(T )〉+

〈
1

N

∑
j 6=i

G(x̄j(T )− Θ̂x̄(N)(T )

−Θ̂1x̄0(T )− η̂), Nδxj(T )

〉
−

〈
1

N

∑
j 6=i

Θ̂TG(x̄j(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), Nδx(N)(T )

〉

−

〈
1

N

∑
j 6=i

Θ̂T
1 G(x̄j(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), Nδx0(T )

〉}
+ o(1).

Note that E sup0≤t≤T ‖δx0‖2 = O( 1
N2 ), E sup0≤t≤T ‖δx(N)‖2 = O( 1

N2 ) and 〈ΘTQ(x̄i − Θx̄(N) − Θ1x̄0 −
η), δx(N)〉 + 〈ΘT

1 Q(x̄i − Θx̄(N) − Θ1x̄0 − η), δx0〉 + 〈Θ̂TG(x̄i(T ) − Θ̂x̄(N)(T ) − Θ̂1x̄0(T ) − η̂), δx(N)(T )〉 +
〈Θ̂T

1 G(x̄i(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), δx0(T )〉 = o(1) (the rigorous proof will be shown in Section 6). Let


δx†0 = lim

N→+∞
(Nδx0),

δx† = lim
N→+∞

(Nδxj) = lim
N→+∞

∑
j 6=i

δxj

 , j 6= i.
(3.2)

Here Nδx0 converges to δx†0 such that E
∫ T

0
‖Nδx0 − δx†0‖2 = O( 1

N2 ). Similarly,
∑

j 6=i δxj and Nδxj converge

to δx† (see Section 6 for the detailed proof). Then one can obtain

{
dδx†0 = (A0δx

†
0 + C0δxi + C0δx

†)dt, δx†0(0) = 0,

dδx† = (Aδx† + Cδxi + Cδx† + Fδx†0)dt, δx†(0) = 0.
(3.3)

When N →∞, by mean field approximation, we use x̂ to approximate x̄(N). Note that x̂ will be affected by u0

which is given by the leader. Moreover, the influence of individual follower on x̂ may be negligible. Hence, by
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straightforward computation, we simplified the social cost functional as follows:

1

2
δJ (N)

soc (δui) = E
{∫ T

0

〈αQ0Ψ1 −ΘT
1 QΨ3, δx

†
0〉+ 〈QΨi

2 −ΘTQΨ3 − αΘT
0 Q0Ψ1, δxi〉

+ 〈Rūi, δui〉+ 〈QΨ3 −ΘTQΨ3 − αΘT
0 Q0Ψ1, δx

†〉dt+ 〈αG0Ψ4(T )

− Θ̂T
1 GΨ6(T ), δx†0(T )〉+ 〈GΨ6(T )− Θ̂TGΨ6(T )− αΘ̂T

0 G0Ψ4(T ),

δx†(T )〉+ 〈GΨi
5(T )− Θ̂TGΨ6(T )− αΘ̂T

0 G0Ψ4(T ), δxi(T )〉
}
,

(3.4)

where

{
Ψ1(·) := x̄0 −Θ0x̂− η0, Ψi

2(·) := x̄i −Θx̂−Θ1x̄0 − η,
Ψ3(·) := (I −Θ)x̂−Θ1x̄0 − η,

are related to time t, and

{
Ψ4(T ) := x̄0(T )− Θ̂0x̂(T )− η̂0, Ψi

5(T ) := x̄i(T )− Θ̂x̂(T )− Θ̂1x̄0(T )− η̂,
Ψ6(T ) := (I − Θ̂)x̂(T )− Θ̂1x̄0(T )− η̂,

are related to time T which are terminal terms.
It is very important to formulate an auxiliary control problem to obtain the decentralized optimal control

for analyzing the problem of social optimality. Usually, an auxiliary control problem is a standard LQ control
problem (see [22, 40]). However, (3.4) contains δx†0 and δx†, which are the terms we do not want them appear
in the social cost functional. Therefore, we need to use a duality procedure (see [44, Chapter 3]) to get off the

dependence of δJ (N)
soc (δui) on δx†0 and δx†. To this end, we introduce two auxiliary equations

{
dk1 = α1dt+ β1dW0, k1(T ) = αG0Ψ4(T )− Θ̂T

1 GΨ6(T ),

dk2 = α2dt+ β2dW0, k2(T ) = (I − Θ̂T )GΨ6(T )− αΘ̂T
0 G0Ψ4(T ).

(3.5)

Using Itô formula, we have the following duality relations

E〈αG0Ψ4(T )− Θ̂T
1 GΨ6(T ), δx†0(T )〉

= E〈k1(0), δx†0(0)〉+ E
∫ T

0

〈k1, A0δx
†
0 + C0δxi + C0δx

†〉+ 〈α1, δx
†
0〉dt,

E〈(I − Θ̂T )GΨ6(T )− αΘ̂T
0 G0Ψ4(T ), δx†(T )〉

= E〈k2(0), δx†(0)〉+ E
∫ T

0

〈k2, Aδx
† + Cδxi + Cδx† + Fδx†0〉+ 〈α2, δx

†〉dt.

(3.6)
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Putting (3.4) and (3.6) together, we obtain

1

2
δJ (N)

soc (δui) = E
{∫ T

0

〈Rūi, δui〉+ 〈αQ0Ψ1 −ΘT
1 QΨ3 + α1 + FT k2 +AT

0 k1, δx
†
0〉

+ 〈QΨ3 −ΘTQΨ3 − αΘT
0 Q0Ψ1 + CT

0 k1 + CT k2 + α2 +AT k2, δx
†〉

+ 〈QΨi
2 −ΘTQΨ3 − αΘT

0 Q0Ψ1 + CT
0 k1 + CT k2, δxi〉dt

+ 〈GΨi
5(T )− Θ̂TGΨ6(T )− αΘ̂T

0 G0Ψ4(T ), δxi(T )〉
}
.

Comparing the coefficients, it follows that{
α1 = −(αQ0Ψ1 −ΘT

1 QΨ3 + FT k2 +AT
0 k1),

α2 = −(QΨ3 −ΘTQΨ3 − αΘT
0 Q0Ψ1 + CT

0 k1 + CT k2 +AT k2).

Then, according to above discussion, the two auxiliary equations can be rewritten as:


dk1 = −(αQ0Ψ1 −ΘT

1 QΨ3 + FT k2 +AT
0 k1)dt+ β1dW0,

dk2 = −(QΨ3 −ΘTQΨ3 − αΘT
0 Q0Ψ1 + CT

0 k1 + CT k2 +AT k2)dt+ β2dW0,

k1(T ) = αG0Ψ4(T )− Θ̂T
1 GΨ6(T ), k2(T ) = (I − Θ̂T )GΨ6(T )− αΘ̂T

0 G0Ψ4(T ),

and the variation of social cost functional is equivalent to

1

2
δJ (N)

soc (δui) = E
{∫ T

0

〈Qx̄i, δxi〉+ 〈Rūi, δui〉+ 〈−Q(Θx̂+ Θ1x̄0 + η)

−ΘTQΨ3 − αΘT
0 Q0Ψ1 + CT

0 k1 + CT k2, δxi〉dt+ 〈Gx̄i(T ), δxi(T )〉

+ 〈−G(Θ̂x̂(T ) + Θ̂1x̄0(T ) + η̂)− Θ̂TGΨ6(T )− αΘ̂T
0 G0Ψ4(T ), δxi(T )〉

}
.

(3.7)

3.2. Decentralized strategy design for followers

As discussed in previous subsection, when N is sufficiently large, a stochastic process x̂ can be used to
approximate x(N). Now, we can introduce the following auxiliary control problem for the ith follower.

Problem 3.1. (P2) Minimize Ĵi((u0, x̂);ui) over ui ∈ Ui, where

dxi = [Axi + Bui + Cx̂ + Fx̄0(u0)]dt + DdWi, xi(0) = ξi, i = 1, 2, . . . ,N, (3.8)

Ĵi((u0, x̂);ui) = E
{∫ T

0

‖xi‖2Q + ‖ui‖2R + 2〈χ1, xi〉dt+ ‖xi(T )‖2G + 2〈χ2, xi(T )〉
}
, (3.9)

with {
χ1 = −Q(Θx̂+ Θ1x̄0(u0) + η)−ΘTQΨ3 − αΘT

0 Q0Ψ1 + CT
0 k1 + CT k2,

χ2 = −G(Θ̂x̂(T ) + Θ̂1x̄0(u0)(T ) + η̂)− Θ̂TGΨ6(T )− αΘ̂T
0 G0Ψ4(T ).
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Here, x̄0(u0) means x̄0 is related to u0. x̄0, x̂, k1 and k2 are determined by

dx̄0 = [A0x̄0 +B0u0 + C0x̂]dt+D0dW0, x̄0(0) = ξ0,

dx̂ = [Ax̂+Bû+ Cx̂+ Fx̄0(u0)]dt, x̂(0) = ξ̂,

dk1 = −(αQ0Ψ1 −ΘT
1 QΨ3 + FT k2 +AT

0 k1)dt+ β1dW0,

dk2 = −(QΨ3 −ΘTQΨ3 − αΘT
0 Q0Ψ1 + CT

0 k1 + CT k2 +AT k2)dt+ β2dW0,

k1(T ) = αG0Ψ4(T )− Θ̂T
1 GΨ6(T ), k2(T ) = (I − Θ̂T )GΨ6(T )− αΘ̂T

0 G0Ψ4(T ),

(3.10)

where x̂ and û are the approximations of x(N) and 1
N

∑N
i=1 ui, respectively.

In what follows, we let ū = M(u0) = {ū1, ū2, . . . , ūN} ∈ U . Note that ū here represents the decentralized
optimal control, which is different from the same notation in the beginning of Section 3.

Proposition 3.2. Assume that (A1)–(A3) hold. For given u0 ∈ U0, (P2) has a unique optimal control

ūi = −R−1BT pi,

where pi is an adaptive solution to the following backward stochastic differential equation (BSDE)

dpi = −(AT pi +Qx̄i + χ1)dt+ ζ0dW0 + ζidWi, pi(T ) = Gx̄i(T ) + χ2.

Proof. The variation of the state equation in (3.8) is

dδxi = (Aδxi +Bδui)dt, δxi(0) = 0, i = 1, 2, . . . , N,

and the variation of the corresponding cost functional is

1

2
δĴi((u0, x̂);ui) = E

{∫ T

0

〈Qx̄i, δxi〉+ 〈Rūi, δui〉+ 〈χ1, δxi〉dt+ 〈Gx̄i(T ), δxi(T )〉+ 〈χ2, δxi(T )〉
}
. (3.11)

Using a similar argument from (3.5) to (3.7), we construct the following auxiliary equation

dpi = −(AT pi +Qx̄i + χ1)dt+ ζ0dW0 + ζidWi, pi(T ) = Gx̄i(T ) + χ2, (3.12)

and have the following duality relation between pi and δxi by using Itô formula

E〈pi(T ), δxi(T )〉 = E〈pi(0), δxi(0)〉+ E
∫ T

0

〈AT pi − (AT pi +Qx̄i + χ1), δxi〉+ 〈BT pi, δui〉dt.

For given u0 ∈ U0, since Q ≥ 0 and R > δI, for some δ > 0, (3.9) is uniformly convex and it has a unique
optimal control. Combining above equation with (3.11), we have

1

2
δĴi((u0, x̂);ui) = E

∫ T

0

〈Rūi +BT pi, δui〉dt.

(3.11) equal zero is equivalent to

Rūi +BT pi = 0.
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Thus, we have

ūi = −R−1BT pi. (3.13)

The proposition follows.

Substituting (3.13) into (3.8) and combining (3.12), we have the following FBSDE

{
dx̄i = [Ax̄i −BR−1BT pi + Cx̂+ Fx̄0]dt+DdWi, xi(0) = ξi, i = 1, 2, . . . , N,

dpi = −(AT pi +Qx̄i + χ1)dt+ ζ0dW0 + ζidWi, pi(T ) = Gxi(T ) + χ2.
(3.14)

By taking limits, the above FBSDE can be rewritten as:

{
dx̂ = [(A+ C)x̂+ Fx̄0 −BR−1BT p̂]dt, x̂(0) = ξ̂,

dp̂ = −(AT p̂+Qx̂+ χ1)dt+ ζ0dW0, p̂(T ) = Gx̂(T ) + χ2.
(3.15)

3.3. The consistency condition of the follower problem

Let



Ξ1 := (I −ΘT )Q(I −Θ) + αΘT
0 Q0Θ0, ΞG

1 := (I − Θ̂T )G(I − Θ̂) + αΘ̂T
0 G0Θ̂0,

Ξ2 := (I −ΘT )QΘ1 + αΘT
0 Q0, ΞG

2 := (I − Θ̂T )GΘ̂1 + αΘ̂T
0 G0,

Ξ3 := (I −ΘT )Qη − αΘT
0 Q0η0, ΞG

3 := (I − Θ̂T )Gη̂ − αΘ̂T
0 G0η̂0,

Ξ4 := ΘT
1 QΘ1 + αQ0, ΞG

4 := Θ̂T
1 GΘ̂1 + αG0,

Ξ5 := ΘT
1 Qη − αQ0η0, ΞG

5 := Θ̂T
1 Gη̂ − αG0η̂0.

Combining (3.10) and (3.15), we can obtain the CC system



dx̂ = [(A+ C)x̂+ Fx̄0 −BR−1BT k2]dt, x̂(0) = ξ̂,

dx̄0 = [A0x̄0 +B0u0 + C0x̂]dt+D0dW0, x̄0(0) = ξ0,

dk1 = −[Ξ4x̄0 − ΞT
2 x̂+AT

0 k1 + FT k2 + Ξ5]dt+ β1dW0,

dk2 = −[Ξ1x̂− Ξ2x̄0 + CT
0 k1 + (A+ C)T k2 − Ξ3]dt+ β2dW0,

k1(T ) = ΞG
4 x̄0(T )− (ΞG

2 )T x̂(T ) + ΞG
5 , k2(T ) = ΞG

1 x̂(T )− ΞG
2 x̄0(T )− ΞG

3 ,

(3.16)

where p̂ = k2 can be easily verified.

4. The optimal control problem for the leader

Now, let (P2) have a unique solution. Then, for u0 ∈ U0 given by leader, the followers choose their optimal
control ū =M(u0) = {ū1, ū2, . . . , ūN} ∈ U , where ūi is shown in (3.13). Now we consider the optimal control
of the leader to further minimize the social cost functional. In the infinite population system, x(N) may be
approximated by x̂. Hence, we can construct the following auxiliary optimal control problem for the leader.



12 J. HUANG ET AL.

Problem 4.1. (P3) Minimize Ĵ (N)
soc (u0; ū) over u0 ∈ U0, where

dx0 = [A0x0 + B0u0 + C0x̂]dt + D0dW0, x0(0) = ξ0,

Ĵ (N)
soc (u0; ū) = αN Ĵ0(u0; ū) +

N∑
i=1

Ĵi(u0; ū).
(4.1)

(P3) is based on (P2). Therefore, combining (3.13), the equations below (3.4) and the equations (2), (3) with
mean field approximations, the cost functionals of the leader and the ith follower are

Ĵ0(u0; ū) = E
{∫ T

0

〈Q0Ψ1,Ψ1〉+ 〈R0u0, u0〉dt+ 〈G0Ψ4,Ψ4〉
}
,

Ĵi(u0; ū) = E
{∫ T

0

〈QΨi
2,Ψ

i
2〉+ 〈BT pi, R

−1BT pi〉dt+ 〈GΨi
5,Ψ

i
5〉
}
,

where x̂, x̄0, k1, k2, x̄i, pi are determined by (3.16) and (3.14).

Using a similar argument in Section 3, we let ū0 be the optimal strategy of the leader and perturb u0 in (4.1),
where δu0 = u0 − ū0. Since x̄0, x̂, x̄i and pi are determined by u0, we denote their corresponding perturbations
as: δx̄0 = x̄0(u0) − x̄0(ū0), δx̂ = x̂(u0) − x̂(ū0), δx̄i = x̄i(u0) − x̄i(ū0) and δpi = pi(u0) − pi(ū0). For sake of
notation simplicity, we drop (ū0) in the following x̄0(ū0), x̂(ū0), x̄i(ū0) and pi(ū0), etc. Then, one can obtain

dδx̄0 = [A0δx̄0 +B0δu0 + C0δx̂]dt, δx̄0(0) = 0,

and the variations of corresponding cost functionals

1

2
δĴ0(δu0) = E

{∫ T

0

〈Q0Ψ1, δx̄0 −Θ0δx̂〉+ 〈R0ū0, δu0〉dt+ 〈G0Ψ4, δx̄0(T )− Θ̂0δx̂(T )〉
}
,

1

2

N∑
i=1

δĴi(δu0) =

N∑
i=1

E
{∫ T

0

〈QΨi
2, δx̄i −Θδx̂−Θ1δx̄0〉+ 〈R−1BT pi, B

T δpi〉dt

+ 〈GΨi
5, δx̄i(T )− Θ̂δx̂(T )− Θ̂1δx̄0(T )〉

}
.

Here Ψ1, Ψi
2, Ψ4(T ), Ψi

5(T ), are related to ū0. In what follows, Ψ1, Ψi
2, Ψ3, Ψ4(T ), Ψi

5(T ), Ψ6(T ) will be related
to ū0. Therefore, the variation of the social cost functional is

1

2
δĴ (N)

soc (δu0)

= αNE
∫ T

0

〈Q0Ψ1, δx̄0〉 − 〈ΘT
0 Q0Ψ1, δx̂〉+ 〈R0ū0, δu0〉dt

+

N∑
i=1

E
∫ T

0

〈QΨi
2, δx̄i〉 − 〈ΘTQΨi

2, δx̂〉 − 〈ΘT
1 QΨi

2, δx̄0〉+ 〈BR−1BT pi, δpi〉dt

+ αN〈G0Ψ4(T ), δx̄0(T )〉 − αN〈Θ̂T
0 G0Ψ4(T ), δx̂(T )〉 −

N∑
i=1

〈Θ̂T
1 GΨi

5(T ), δx̄0(T )〉

−
N∑
i=1

〈Θ̂TGΨi
5(T ), δx̂(T )〉+

N∑
i=1

〈GΨi
5(T ), δx̄i(T )〉.

(4.2)
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Similarly, the variations of those equations in (3.14) and (3.16) are given by
dδx̄i = [Aδx̄i −BR−1BT δpi + Cδx̂+ Fδx̄0]dt, δx̄i(0) = 0, i = 1, 2, . . . , N,

dδpi = −(AT δpi +Qδxi + [Ξ1 −Q]δx̂− Ξ2δx̄0 + CT
0 δk1 + CT δk2)dt+ δζ0dW0 + δζidWi,

δpi(T ) = Gδxi(T ) + [ΞG
1 −G]δx̂(T )− ΞG

2 δx̄0(T ),

and 
dδx̂ = [(A+ C)δx̂+ Fδx̄0 −BR−1BT δk2]dt, δx̂(0) = 0,

dδk1 = −[Ξ4δx̄0 − ΞT
2 δx̂+AT

0 δk1 + FT δk2]dt+ δβ1dW0,

dδk2 = −[Ξ1δx̂− Ξ2δx̄0 + CT
0 δk1 + (A+ C)T δk2]dt+ δβ2dW0,

δk1(T ) = ΞG
4 δx̄0(T )− (ΞG

2 )T δx̂(T ), δk2(T ) = ΞG
1 δx̂(T )− ΞG

2 δx̄0(T ).

Since (4.2) contains many terms that we do not want them appear in the social cost functional, we will use

a similar argument in Section 3 to get off the dependence of δĴ (N)
soc (δu0) on those terms. Therefore, we need

to construct six auxiliary equations to help us obtain the optimal control of the leader. We introduce the first
three auxiliary equations:

dqi = midt+ n0
i dW0 + nidWi, qi(0) = 0, i = 1, 2, . . . , N,

dl1 = s1dt+ r1dW0, l1(0) = 0,

dl2 = s2dt+ r2dW0, l2(0) = 0.

where 
mi = −(BR−1BT pi −BR−1BT yi −Aqi),
s1 = C0l2 +A0l1 − C0qi, s2 = (A+ C)l2 −BR−1BT ŷi + Fl1 − Cqi,
ni = 0, n0

i = 0, r1 = 0, r2 = 0.

Here qi, l1 and l2 are used to free δĴ (N)
soc (δu0) from the dependence on pi, k1 and k2, respectively. By a similar

argument from (3.5) to (3.7), we can rewrite the variation of the social cost functional as follows:

1

2
δĴ (N)

soc (δu0)

= E
∫ T

0

N∑
i=1

〈αQ0Ψ1 −ΘT
1 QΨi

2, δx̄0〉+

N∑
i=1

〈−αΘT
0 Q0Ψ1 −ΘTQΨi

2, δx̂〉+

N∑
i=1

〈QΨi
2, δx̄i〉

+N〈αR0ū0, δu0〉+

N∑
i=1

〈BR−1BT pi, δpi〉+

N∑
i=1

〈l1,−(AT
0 δk1 + FT δk2 + Ξ4δx̄0 − ΞT

2 δx̂)〉

+

N∑
i=1

〈s1, δk1〉+

N∑
i=1

〈s2, δk2〉+

N∑
i=1

〈l2,−((A+ C)T δk2 + CT
0 δk1 + Ξ1δx̂− Ξ2δx̄0)〉

+

N∑
i=1

〈−(AT δpi +Qδx̄i + [Ξ1 −Q]δx̂− Ξ2δx̄0 + CT
0 δk1 + CT δk2), qi〉+

N∑
i=1

〈δpi,mi〉

+

N∑
i=1

[〈δβ1, r1〉+ 〈δβ2, r2〉] +

N∑
i=1

[〈δζ0, n0
i 〉+ 〈δζi, ni〉]dt+

N∑
i=1

〈GΨi
5(T )−Gqi(T ), δx̄i(T )〉
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+

N∑
i=1

〈αG0Ψ4(T )− Θ̂T
1 GΨi

5(T )− (ΞG
4 )T l1(T ) + (ΞG

2 )T l2(T ) + (ΞG
2 )T qi(T ), δx̄0(T )〉

−
N∑
i=1

〈αΘ̂T
0 G0Ψ4(T ) + Θ̂TGΨi

5(T )− (ΞG
2 )T l1(T ) + (ΞG

1 )T l2(T ) + (ΞG
1 −G)T qi(T ), δx̂(T )〉.

Next, we introduce another three auxiliary equations:

dŷi = α̂dt+ β̂dW0 +

N∑
i=1

β̂idWi,

ŷi(T ) = αΘ̂T
0 G0Ψ4(T ) + Θ̂TGΨi

5(T )− (ΞG
2 )T l1(T ) + (ΞG

1 )T l2(T ) + (ΞG
1 −G)T qi(T ),

dyi0 = α̂0dt+ β̂0dW0 +

N∑
i=1

β̂0
i dWi,

yi0(T ) = αG0Ψ4(T )− Θ̂T
1 GΨi

5(T )− (ΞG
4 )T l1(T ) + (ΞG

2 )T l2(T ) + (ΞG
2 )T qi(T ),

dyi = αidt+ β0dW0 + βidWi, yi(T ) = GΨi
5(T )−Gqi(T ), i = 1, 2, . . . , N.

where 
α̂0 = −(αQ0Ψ1 −ΘT

1 QΨi
2 + FT yi − FT ŷi +AT

0 y
i
0 − ΞT

4 l1 + ΞT
2 l2 + ΞT

2 qi),

α̂ = −αΘT
0 Q0Ψ1 −ΘTQΨi

2 + CT yi − (A+ C)T ŷi + CT
0 y

i
0 + Ξ2l1 − ΞT

1 l2 − (Ξ1 −Q)T qi,

αi = −(QΨi
2 +AT yi −QT qi).

Here ŷi, yi0 and yi are used to free δĴ (N)
soc (δu0) from the dependence on δx̂, δx̄0 and δx̄i, respectively. Similarly,

by Itô formula and the duality relations, the variation of the social cost functional can be further rewritten as
follows:

1

2
δĴ (N)

soc (δu0)

= E
∫ T

0

N∑
i=1

〈αQ0Ψ1 −ΘT
1 QΨi

2 + FT yi − FT ŷi +AT
0 y

i
0 + α̂0 − ΞT

4 l1 + ΞT
2 l2

+ ΞT
2 qi, δx̄0〉+

N∑
i=1

〈−αΘT
0 Q0Ψ1 −ΘTQΨi

2 + CT yi − (A+ C)T ŷi + CT
0 y

i
0

− α̂+ Ξ2l1 − ΞT
1 l2 − (Ξ1 −Q)T qi, δx̂〉+

N∑
i=1

〈QΨi
2 +AT yi + αi −Qqi, δx̄i〉

+

N∑
i=1

〈BR−1BT pi −BR−1BT yi +mi −Aqi, δpi〉+

N∑
i=1

[〈ni, δζi〉+ 〈n0
i , δζ0〉]

+

N∑
i=1

〈s1 − C0l2 −A0l1 + C0qi, δk1〉+

N∑
i=1

〈s2 − (A+ C)l2 +BR−1BT ŷi − Fl1

+ Cqi, δk2〉+

N∑
i=1

[〈r1, δβ1〉+ 〈r2, δβ2〉] +

〈
αNR0ū0 +

N∑
i=1

BT
0 y

i
0, δu0

〉
dt,
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which implies,

1

2
δĴ (N)

soc (δu0) = E
∫ T

0

〈
αNR0ū0 +

N∑
i=1

BT
0 y

i
0, δu0

〉
dt.

Thus, 1
2δĴ

(N)
soc (δu0) = 0 is equivalent to

αNR0ū0 +

N∑
i=1

BT
0 y

i
0 = 0.

Then, we have the centralized form of the optimal control for the leader

ū0 = −α
−1

N
R−1

0 BT
0

N∑
i=1

yi0 := u
(N)
0 , (4.3)

where ū0 relies on N and the following FBSDE

dyi = −(AT yi −QT qi +QΨi
2)dt+ β0dW0 + βidWi, yi(T ) = GΨi

5(T )−Gqi(T ),

dqi = (BR−1BT yi +Aqi −BR−1BT pi)dt, qi(0) = 0, i = 1, 2, . . . , N,

dŷi = (−αΘT
0 Q0Ψ1 −ΘTQΨi

2 + CT yi − (A+ C)T ŷi + CT
0 y

i
0 + Ξ2l1 − ΞT

1 l2

− (Ξ1 −Q)T qi)dt+ β̂dW0 +

N∑
i=1

β̂idWi,

ŷi(T ) = αΘ̂T
0 G0Ψ4(T ) + Θ̂TGΨi

5(T )− (ΞG
2 )T l1(T ) + (ΞG

1 )T l2(T ) + (ΞG
1 −G)T qi(T ),

dyi0 = −(αQ0Ψ1 −ΘT
1 QΨi

2 + FT yi − FT ŷi +AT
0 y

i
0 − ΞT

4 l1 + ΞT
2 l2 + ΞT

2 qi)dt

+ β̂0dW0 +

N∑
i=1

β̂0
i dWi,

yi0(T ) = αG0Ψ4(T )− Θ̂T
1 GΨi

5(T )− (ΞG
4 )T l1(T ) + (ΞG

2 )T l2(T ) + (ΞG
2 )T qi(T ),

dl1 = (A0l1 + C0l2 − C0qi)dt, l1(0) = 0,

dl2 = [Fl1 + (A+ C)l2 −BR−1BT ŷi − Cqi]dt, l2(0) = 0.

(4.4)

Denote 
y∗ = lim

N→+∞

1

N

N∑
i=1

yi, ŷ∗ = lim
N→+∞

1

N

N∑
i=1

ŷi, y∗0 = lim
N→+∞

1

N

N∑
i=1

yi0,

q∗ = lim
N→+∞

1

N

N∑
i=1

qi, l∗1 = lim
N→+∞

1

N

N∑
i=1

l1, l∗2 = lim
N→+∞

1

N

N∑
i=1

l2.

Here, using a similar argument of (3.2), we can easily prove that 1
N

∑N
i=1 yi,

1
N

∑N
i=1 ŷ

i, 1
N

∑N
i=1 y

i
0, 1

N

∑N
i=1 qi,

1
N

∑N
i=1 l1 and 1

N

∑N
i=1 l2 converge to y∗, ŷ∗, y∗0 , q∗, l∗1 and l∗2, respectively. Thus, combining (3.16) and (4.4),
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when N →∞, we can obtain the CC system for the leader-follower problem

dx̂ = [(A+ C)x̂+ Fx̄0 −BR−1BT k2]dt, x̂(0) = ξ̂,

dx̄0 = [A0x̄0 + C0x̂−B0(αR0)−1BT
0 y
∗
0 ]dt+D0dW0, x̄0(0) = ξ0,

dk1 = −[Ξ4x̄0 − ΞT
2 x̂+AT

0 k1 + FT k2 + Ξ5]dt+ β1dW0,

dk2 = −[Ξ1x̂− Ξ2x̄0 + CT
0 k1 + (A+ C)T k2 − Ξ3]dt+ β2dW0,

k1(T ) = ΞG
4 x̄0(T )− (ΞG

2 )T x̂(T ) + ΞG
5 , k2(T ) = ΞG

1 x̂(T )− ΞG
2 x̄0(T )− ΞG

3 ,

dy∗ = −(AT y∗ −QT q∗ +QΨ3)dt+ β∗dW0, y∗(T ) = GΨ6(T )−Gq∗(T ),

dq∗ = (BR−1BT y∗ +Aq∗ −BR−1BT k2)dt, q∗(0) = 0,

dŷ∗ = [−αΘT
0 Q0Ψ1 −ΘTQΨ3 + CT y∗ − (A+ C)T ŷ∗ + CT

0 y
∗
0 + Ξ2l

∗
1 − ΞT

1 l
∗
2

− (Ξ1 −Q)T q∗]dt+ β̂∗dW0,

ŷ∗(T ) = αΘ̂T
0 G0Ψ4(T ) + Θ̂TGΨ6(T )− (ΞG

2 )T l∗1(T ) + (ΞG
1 )T l∗2(T ) + (ΞG

1 −G)T q∗(T ),

dy∗0 = −(αQ0Ψ1 −ΘT
1 QΨ3 + FT y∗ − FT ŷ∗ +AT

0 y
∗
0 − ΞT

4 l
∗
1 + ΞT

2 l
∗
2 + ΞT

2 q
∗)dt

+ β̂∗0dW0,

y∗0(T ) = αG0Ψ4(T )− Θ̂T
1 GΨ6(T )− (ΞG

4 )T l∗1(T ) + (ΞG
2 )T l∗2(T ) + (ΞG

2 )T q∗(T ),

dl∗1 = (A0l
∗
1 + C0l

∗
2 − C0q

∗)dt, l∗1(0) = 0,

dl∗2 = [Fl∗1 + (A+ C)l∗2 −BR−1BT ŷ∗ − Cq∗]dt, l∗2(0) = 0.

(4.5)

and the decentralized optimal control for the leader

u∗0 = −(αR0)−1BT
0 y
∗
0 . (4.6)

The final CC system is highly coupled with five forward equations and five backward equations. The existence
and uniqueness of (4.5) is very important for obtaining the optimal control, however it is very difficult to solve
such high-dimensional system. We need to simplify the CC system to a FBSDE using block matrices and these
will be discussed in next section.

5. Well-posedness of the CC system

Note that in (4.5), the equations of (x̂, x̄0, k1, k2) form a coupled FBSDE and (y∗, q∗, ŷ∗, y∗0 , l
∗
1, l
∗
2) form

another coupled FBSDE. The two FBSDEs are also fully coupled with each other. Therefore, we try to look at
the above FBSDEs in a different way. To this end, we set

X =


x̂
x̄0

q∗

l∗1
l∗2

 , Y =


y∗

ŷ∗

y∗0
k1

k2

 , X(0) =


ξ̂
ξ0
0
0
0

 ,Y(T ) =


GΨ6 −Gq∗(T )

αΘ̂T
0 G0Ψ4 − Θ̂TGΨ6 − (ΞG

2 )T l∗1(T ) + (ΞG
1 )T l∗2(T ) + (ΞG

1 −G)T q∗(T )

αG0Ψ4 − Θ̂T
1 GΨ6 − (ΞG

4 )T l∗1(T ) + (ΞG
2 )T l∗2(T ) + (ΞG

2 )T q∗(T )
ΞG

4 x̄0(T )− (ΞG
2 )T x̂(T ) + ΞG

5

ΞG
1 x̂(T )− ΞG

2 x̄0(T )− ΞG
3

 .

Then (4.5) is equivalent to

{
dX = [AX + BY + b]dt+ DdW0, X(0) = (ξ̂T ξT0 0 0 0)T ,

dY = [ÂX + B̂Y + b̂]dt+ D̂dW0, Y(T ) = GX(T ) + g,
(5.1)
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with

A =


A+ C F 0 0 0
C0 A0 0 0 0
0 0 A 0 0
0 0 −C0 A0 C0

0 0 −C F (A+ C)

 , B =


0 0 0 0 −BR−1BT

0 0 −B0(αR0)−1BT
0 0 0

BR−1BT 0 0 0 −BR−1BT

0 0 0 0 0
0 −BR−1BT 0 0 0

 ,

b =


0
0
0
0
0

 , D =


0
D0

0
0
0

 , Â =


−Q(I −Θ) QΘ1 QT 0 0

Ξ1 −Q(I −Θ) −Ξ2 +QΘ1 −(Ξ1 −Q)T Ξ2 −ΞT
1

ΞT
2 −Ξ4 −ΞT

2 ΞT
4 −ΞT

2

ΞT
2 −Ξ4 0 0 0
−Ξ1 Ξ2 0 0 0

 ,

b̂ =


Qη

−Ξ3 +Qη
−Ξ5

−Ξ5

Ξ3

 , D̂ =


β∗

β̂∗

β̂∗0
β1

β2

 , B̂ =


−AT 0 0 0 0
CT −(A+ C)T CT

0 0 0
−FT FT −AT

0 0 0
0 0 0 −AT

0 −FT

0 0 0 −CT
0 −(A+ C)T

 ,

g =


−Gη̂

ΞG
3 −Gη̂

ΞG
5

ΞG
5

−ΞG
3

 , G =


G(I − Θ̂) −GΘ̂1 −G 0 0

−ΞG
1 +G(I − Θ̂) ΞG

2 −GΘ̂1 (ΞG
1 −G)T −(ΞG

2 )T (ΞG
1 )T

−(ΞG
2 )T ΞG

4 (ΞG
2 )T −(ΞG

4 )T (ΞG
2 )T

−(ΞG
2 )T ΞG

4 0 0 0
ΞG

1 −ΞG
2 0 0 0

 .

Denote

Ā =

(
A + BG B

Â−GA + B̂G−GB̂G B̂−GB

)
, b̄ =

(
b

b̂−Gb

)
, D̄ =

(
D

D̂−GD

)
, Ȳ = Y−GX.

Then (5.1) can be rewritten as:  d

(
X
Ȳ

)
=

{
Ā
(

X
Ȳ

)
+ b̄

}
dt+ D̄dW0,

X(0) = (ξ̂T ξT0 0 0 0)T , Ȳ(T ) = g.

(5.2)

This is a fully coupled FBSDE. From the Theorem 3.7 of Chapter 2 in [28], the FBSDE (5.2) is solvable for all
g ∈ L2

F(Ω;R5n) if and only if the following condition holds:

det

{
(0, I)eĀt

(
0
I

)}
> 0, ∀ t ∈ [0, T ]. (5.3)

In the case, (5.1) admits a unique solution for any given g ∈ L2
F(Ω;R5n).

Under the condition (5.3), we may decouple the FBSDE (5.2) by

Ȳ = KX + κ, t ∈ [0, T ],
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where K ∈ C1([0, T ];S5n) is a solution of the following Ricatti equation

K̇ + K(A + BG) + KBK− (B̂−GB)K− (Â−GA + B̂G−GB̂G) = 0, t ∈ [0, T ], K(T ) = 0,

and κ ∈ C1([0, T ];R5n) satisfies

κ̇+ (KB− (B̂−GB))κ+ Kb− (b̂−Gb) = 0, t ∈ [0, T ], κ(T ) = g. (5.4)

By the Theorems 3.7 and 4.3 of Chapter 2 in [28], if (5.3) hold, then the Ricatti equation admits a unique
solution K(·) which has the following representation:

K = −
[
(0, I)eĀ(T−t)

(
0
I

)]−1[
(0, I)eĀ(T−t)

(
I
0

)]
, t ∈ [0, T ]. (5.5)

Example 5.1. Consider the system (5.2) with parameters A0 = 0.1, B0 = 1, C0 = 0.01, D0 = 1, A = 0.05,
B = 1, C = 0.05, D = 1, F = 0.3, Θ0 = 1, Q0 = 1, R0 = 10, G0 = 0, Θ = 0.1, Θ1 = 1, Q = 0.9, R = 15, G = 0,
α = 1.02, T = 12, η0 = η = 0. Then, we have

A =


0.10 0.30 0 0 0
0.01 0.10 0 0 0

0 0 0.05 0 0
0 0 −0.01 0.10 0.01
0 0 −0.05 0.30 0.10

,B =


0 0 0 0 −0.0667
0 0 −0.0980 0 0

0.0667 0 0 0 −0.0667
0 0 0 0 0
0 −0.0667 0 0 0

,

Â =


−0.81 0.90 0.90 0 0
0.939 −0.93 −2.649 1.83 −1.749
1.83 −1.92 −1.83 1.92 −1.83
1.83 −1.92 0 0 0

−1.749 1.83 0 0 0

, B̂ =


−0.05 0 0 0 0
0.05 −0.10 0.01 0 0
−0.30 0.30 −0.10 0 0

0 0 0 −0.10 −0.30
0 0 0 −0.01 −0.10

.
Hence, according to the simulation through Matlab software, for any t ∈ [0, T ], we obtain

Ā =

(
A + BG B

Â−GA + B̂G−GB̂G B̂−GB

)
, det

{
(0, I)eĀt

(
0
I

)}
> 0,

(e.g. for t = 6, det

{
(0, I)eĀt

(
0
I

)}
= 12.7053 > 0). By the argument above, FBSDE (5.1) is solvable.

For further analysis, we make the following assumption:
(A4) The equation (5.2) has a unique solution and the solution (X, Ȳ, D̄) belongs to M[0, T ].

For the following equation{
dx̄i = [Ax̄i −BR−1BT pi + Cx̂+ Fx̄0]dt+DdWi, xi(0) = ξi, i = 1, 2, . . . , N,

dpi = −[AT pi +Qx̄i + χ1]dt+ ζ0dW0 + ζidWi, pi(T ) = Gxi(T ) + χ2,
(5.6)

where χ1 and χ2 are related to ū0. We let pi = P̄ x̄i + ϕ̄, t ∈ [0, T ], where P̄ ∈ C1([0, T ];Sn) is a solution of the
following Ricatti equation and ϕ̄ ∈ C1([0, T ];Rn) satisfies{

˙̄P + P̄A− P̄BR−1BT P̄ +AT P̄ +Q = 0, t ∈ [0, T ], P̄ (T ) = G,

˙̄ϕ+ (AT − P̄BR−1BT )ϕ̄+ χ1 + P̄Cx̂+ P̄F x̄0 = 0, t ∈ [0, T ], ϕ̄(T ) = χ2.
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Since the Ricatti equation is standard, it has a unique solution. Hence, the FBSDE (5.6) is uniquely solvable
and the solution belongs to M[0, T ].

6. Asymptotically social optimality

In this section, we discuss that if the leader announces u∗0 obtained in (4.6) to the N followers, then the set of
the optimal decentralized controls for the leader and the followers will constitutes an approximated Stackelberg
equilibrium. First, for the open-loop decentralized strategy (u∗0, u

∗) in (4.6) and (3.13), we have the realized
decentralized state x∗0 and x∗i , satisfies

dx∗0(t) = [A0x
∗
0(t)−B0(αR0)−1BT

0 y
∗
0(t) + C0(x∗)(N)(t)]dt+D0dW0(t),

dx∗i (t) = [Ax∗i (t)− BR−1BTpi(t) + C(x∗)(N)(t) + Fx∗0(t)]dt + DdWi(t),

x∗0(0) = ξ0, x∗i (0) = ξi, i = 1, 2, . . . , N,

(6.1)

where y∗0 , pi satisfy (4.5) and (5.6), respectively. Then, by [2] and [31], we give the definition of the Stackelberg
equilibrium.

Definition 6.1. A set of control laws M(ǔ0) ∈ U has asymptotic social optimality if

∣∣∣∣ 1

N
J (N)
soc (ǔ0;M(ǔ0))− 1

N
inf

(ǔ0,ǔ)∈Uc
J (N)
soc (ǔ0; ǔ)

∣∣∣∣ = O

(
1√
N

)
,

where M is a mapping and M : U0 → U . Uc is defined in Section 3 as a set of centralized information-based
control.

Definition 6.2. A set of control laws (u∗0, u
∗) ∈ U0×U , where u∗ =M(u∗0), is an Stackelberg equilibrium with

respect to J (N)
soc (u0, u) if the following two properties hold:

1. M(ǔ0) has asymptotic social optimality under ǔ0.
2. The following equation is satisfied∣∣∣∣ 1

N
J (N)
soc (u∗0;M(u∗0))− 1

N
inf

ǔ0∈Uc
J (N)
soc (ǔ0;M(ǔ0))

∣∣∣∣ = O

(
1√
N

)
.

We first need to introduce some lemmas before proving the Stackelberg equilibrium.

Lemma 6.3. Assume that (A1)–(A4) hold. Then

E
∫ T

0

‖(x∗)(N) − x̂‖2dt+ E
∫ T

0

‖p(N) − p̂‖2dt+ E
∫ T

0

‖x∗0 − x̄0‖2dt = O

(
1

N

)
.

Proof. See Appendix A.

Lemma 6.4. Assume that (A1)–(A4) hold. There exists a constant K, which is independent of N , such that

J (N)
soc (u∗0;u∗) ≤ NK.

Proof. See Appendix B.
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Proposition 6.5. Assume that (A1)–(A4) hold. For all (ǔ0; ǔ) ∈ Uc, there exists a constant K, which is
independent of N , such that

αN‖ǔ0‖2L2 + ‖ǔ‖2L2 ≤ NK.

Proof. By Lemma 6.4, we have

E
∫ T

0

αN‖ǔ0‖2 + ‖ǔ‖2dt ≤ inf
(ǔ0;ǔ)

J (N)
soc (ǔ0; ǔ) ≤ J (N)

soc (u∗0;u∗) ≤ NK, (α > 0).

Therefore, αN‖ǔ0‖2L2 + ‖ǔ‖2L2 ≤ NK, where K is independent of N . The proposition follows.

The following two propositions will give the rigorous proofs for the approximations in Section 4.

Proposition 6.6. Assume that (A1)–(A4) hold. Then, for (3.1), E sup0≤t≤T ‖δx0‖2 = O( 1
N2 ),

E sup0≤t≤T ‖δx(N)‖2 = O( 1
N2 ) and 〈ΘTQ(x̄i−Θx̄(N)−Θ1x̄0−η), δx(N)〉+〈ΘT

1 Q(x̄i−Θx̄(N)−Θ1x̄0−η), δx0〉+
〈Θ̂TG(x̄i(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), δx(N)(T )〉+ 〈Θ̂T

1 G(x̄i(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), δx0(T )〉 = o(1).

Proof. See Appendix C.

Proposition 6.7. Assume that (A1)–(A4) hold. Then, Nδxj, Nδx0, Nδxj converge to
∑

j 6=i δxj, δx†0, δx†

such that

E
∫ T

0

‖Nδxj −
∑
j 6=i

δxj‖2 = O

(
1

N2

)
, E

∫ T

0

‖Nδx0 − δx†0‖2 = O

(
1

N2

)
, E

∫ T

0

‖Nδxj − δx†‖2 = O

(
1

N2

)
.

Proof. See Appendix C.

By the lemmas and propositions, we discussed above, we give the main result.

Theorem 6.8. Assume that (A1)–(A4) hold. Then (u∗0, u
∗) given in (4.6) and (3.13) is a Stackelberg

equilibrium with respect to the social cost functional.

Proof. For (ǔ0; ǔ) ∈ Uc, let

1

N
J (N)
soc (u∗0;u∗)− 1

N
J (N)
soc (ǔ0; ǔ) =

1

N
J (N)
soc (u∗0;M(u∗0))− 1

N
J (N)
soc (ǔ0;M(ǔ0))

+
1

N
J (N)
soc (ǔ0;M(ǔ0))− 1

N
J (N)
soc (ǔ0; ǔ) := ∆1 + ∆2,

where ∆1 = 1
NJ

(N)
soc (u∗0;M(u∗0)) − 1

NJ
(N)
soc (ǔ0;M(ǔ0)), ∆2 = 1

NJ
(N)
soc (ǔ0;M(ǔ0)) − 1

NJ
(N)
soc (ǔ0; ǔ). Since ǔ0 is

fixed, by following the standard method in Huang et al [22], we obtain ‖∆2‖2 ≤ c(‖ǔ0‖2L2) 1
N . Specifically, we

denote x̀i as the state of the ith follower when its control isMi(ǔ0), thus x̀i is equivalent to x̄i in Section 4. Let

{
ũ0 = ǔ0 − ǔ0 = 0, ũ = ǔ−M(ǔ0), ũi = ǔi −Mi(ǔ0),

x̃0 = x̌0 − x̀0, x̃i = x̌i − x̀i.



SOCIAL OPTIMA IN LEADER-FOLLOWER MEAN FIELD LINEAR QUADRATIC CONTROL 21

Then we have

J (N)
soc (ǔ0; ǔ) = αNJ0(ǔ0; ǔ) +

N∑
i=1

Ji(ǔ0; ǔ)

= αNJ0(ǔ0;M(ǔ0)) + αNH0 + αNI0 +

N∑
i=1

Ji(ǔ0;M(ǔ0)) +

N∑
i=1

Hi +

N∑
i=1

Ii,

where

J0(ǔ0;M(ǔ0)) = E
{∫ T

0

‖x̀0 −Θ0x̀
(N) − η0‖2Q0

+ ‖ǔ0‖2R0
dt+ ‖x̀0(T )− Θ̂0x̀

(N)(T )− η̂0‖2G0

}
,

H0 = E
{∫ T

0

‖x̃0 −Θ0x̃
(N)‖2Q0

dt+ ‖x̃0(T )− Θ̂0x̃
(N)(T )‖2G0

}
,

Ji(ǔ0;M(ǔ0)) = E
{∫ T

0

‖x̀i −Θx̀(N) −Θ1x̀0 − η‖2Q + ‖Mi(ǔ0)‖2Rdt

+ ‖x̀i(T )− Θ̂x̀(N)(T )− Θ̂1x̀0(T )− η̂‖2G
}
,

Hi = E
{∫ T

0

‖x̃i −Θx̃(N) −Θ1x̃0‖2Q + ‖ũi‖2Rdt+ ‖x̃i(T )− Θ̂x̃(N)(T )− Θ̂1x̃0(T )‖2G
}
,

I0 = E
{∫ T

0

(x̀0 −Θ0x̀
(N) − η0)TQ0(x̃0 −Θ0x̃

(N))dt

+ (x̀0(T )− Θ̂0x̀
(N)(T )− η̂0)TG0(x̃0(T )− Θ̂0x̃

(N)(T ))

}
,

Ii = E
{∫ T

0

(x̀i −Θx̀(N) −Θ1x̀0 − η)TQ(x̃i −Θx̃(N) −Θ1x̃0) +MT
i (ǔ)Rũidt

+ (x̀i(T )− Θ̂x̀(N)(T )− Θ̂1x̀0(T )− η̂)TG(x̃i(T )− Θ̂x̃(N)(T )− Θ̂1x̃0(T ))

}
.

By straightforward computation

αNI0 = E
{∫ T

0

αN [ΨT
1 Q0 − (Θ0υ1)TQ0]x̃0 − α[ΨT

1 Q0Θ0 − (Θ0υ1)TQ0Θ0]

N∑
i=1

x̃idt

+ αN [Ψ4(T )TG0 − (Θ̂0υ1(T ))TG0]x̃0(T )− α[Ψ4(T )TG0Θ̂0 − (Θ̂0υ1(T ))TG0Θ̂0]

N∑
i=1

x̃i(T )

}
,

(6.2)

N∑
i=1

Ii = E
{∫ T

0

N∑
i=1

(Ψi
2)TQx̃i − [(Θυ1)TQ+ ΨT

3 QΘ− ((I −Θ)υ1)TQΘ]

N∑
i=1

x̃i −N [ΨT
3 QΘ1

− [(I −Θ)υ1]TQΘ1]x̃0 +MT
i (ǔ)Rũidt+

N∑
i=1

(Ψi
5(T ))TGx̃i(T )− [(Θ̂υ1(T ))TG+ Ψ6(T )TGΘ̂

− ((I − Θ̂)υ1(T ))TGΘ̂]

N∑
i=1

x̃i(T )−N [Ψ6(T )TGΘ̂1 − [(I − Θ̂)υ1(T )]TGΘ̂1]x̃0(T )

}
.

(6.3)
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where υ1 = x̀(N) − x̂. By (4.5), (5.6) and Itô formula, we obtain following relations:

N〈k1(T ), x̃0(T )〉 = 〈αNG0Ψ4, x̃0(T )〉 − 〈NΘ̂T
1 GΨ6, x̃0(T )〉

= E
∫ T

0

−〈αNQ0Ψ1, x̃0〉+ 〈NΘT
1 QΨ3, x̃0〉 − 〈k2, NF x̃0〉+

〈
CT

0 k1,

N∑
i=1

x̃i

〉
dt,

(6.4)

and

N∑
i=1

〈pi(T ), x̃i(T )〉 = E
∫ T

0

〈
ΘTQΨ3,

N∑
i=1

x̃i

〉
−

〈
QΨi

2,

N∑
i=1

x̃i

〉
+

〈
αΘT

0 Q0Ψ1,

N∑
i=1

x̃i

〉

−

〈
CT

0 k1,
N∑
i=1

x̃i

〉
−

〈
p(N) − k2, C

N∑
i=1

x̃i

〉
+

N∑
i=1

〈pi, Bũi〉+
〈
p(N), NF x̃0

〉
dt.

(6.5)

Meanwhile, by (3.13), we have

N∑
i=1

〈Mi(ǔ), Rũi〉+

N∑
i=1

〈pi, Bũi〉 =

N∑
i=1

〈RMi(ǔ) +BT pi, ũi〉 =

N∑
i=1

〈R(−R−1BT pi) +BT pi, ũi〉 = 0. (6.6)

Combining (6.2)–(6.6), Lemmas 6.3 and 6.4, it follows that

1

N

(
αNI0 +

N∑
i=1

Ii

)
= O

(
1√
N

)
.

Moreover, 1
N

(
αNH0 +

∑N
i=1Hi

)
≥ 0. Thus, we have

∆2 =
1

N
J (N)
soc (ǔ0;M(ǔ0))− 1

N
J (N)
soc (ǔ0; ǔ) ≤ c(‖ǔ0‖L2)

1√
N
. (6.7)

For ∆1, we decompose it as follows:

∆1 =
1

N
J (N)
soc (u∗0;M(u∗0))− 1

N
J (N)
soc (ǔ0;M(ǔ0)) =

1

N
J (N)
soc (u∗0;M(u∗0))

− 1

N
J (N)
soc

(
u

(N)
0 ;M

(
u

(N)
0

))
+

1

N
J (N)
soc

(
u

(N)
0 ;M

(
u

(N)
0

))
− 1

N
J (N)
soc (ǔ0;M(ǔ0)).

Note that u
(N)
0 is the centralized social optimal control in (4.3), thus one can easily obtain that

1

N
J (N)
soc

(
u

(N)
0 ;M

(
u

(N)
0

))
≤ 1

N
J (N)
soc (ǔ0;M(ǔ0)). (6.8)

We know that J (N)
soc (u0;M(u0)) continuously depends on u0. Since M(u0) is the solution of FBSDE (5.6)

which continuously depends on parameters, we have M(u0) is continuous in u0. Note that J (N)
soc (u0;M(u0)) is

a quadratic functional and u∗0 is fixed. Let x̌
(N)
0 and x̌

(N)
i be the state of the leader and the ith follower when
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the control of the leader is u
(N)
0 . Denote

ú0 = u
(N)
0 − u∗0, δM(u0) =M

(
u

(N)
0

)
−M(u∗0),

δMi(u0) =Mi

(
u

(N)
0

)
−Mi(u

∗
0), x́0 = x̌

(N)
0 − x∗0, x́i = x̌

(N)
i − x∗i .

Then we have ∣∣∣∣J (N)
soc

(
u

(N)
0 ;M

(
u

(N)
0

))
− J (N)

soc (u∗0;M(u∗0))

∣∣∣∣
=

∣∣∣∣J (N)
soc

(
u

(N)
0 − u∗0 + u∗0;M(u

(N)
0 )−M(u∗0) +M(u∗0)

)
− J (N)

soc (u∗0;M(u∗0))

∣∣∣∣,
and

J (N)
soc

(
u

(N)
0 ;M(u

(N)
0 )

)
= αN [J0(u∗0;M(u∗0)) +H ′0 + I ′0] +

N∑
i=1

[Ji(u∗0;M(u∗0)) +H ′i + I ′i],

where

J0(u∗0;M(u∗0)) = E
{∫ T

0

‖x∗0 −Θ0(x∗)(N) − η0‖2Q0
+ ‖u∗0‖2R0

dt+ ‖x∗0(T )− Θ̂0(x∗)(N)(T )− η̂0‖2G0

}
,

H ′0 = E
{∫ T

0

‖x́0 −Θ0x́
(N)‖2Q0

+ ‖ú0‖2R0
dt+ ‖x́0(T )− Θ̂0x́

(N)(T )‖2G0

}
,

Ji(u∗0;M(u∗0)) = E
{∫ T

0

‖x∗i −Θ(x∗)(N) −Θ1x
∗
0 − η‖2Q + ‖Mi(u

∗
0)‖2Rdt

+ ‖x∗i (T )− Θ̂(x∗)(N)(T )− Θ̂1x
∗
0(T )− η̂‖2G

}
,

H ′i = E
{∫ T

0

‖x́i −Θx́(N) −Θ1x́0‖2Q + ‖δMi(u0)‖2Rdt+ ‖x́i(T )− Θ̂x́(N)(T )− Θ̂1x́0(T )‖2G
}
,

I ′0 = E
{∫ T

0

(x∗0 −Θ0(x∗)(N) − η0)TQ0(x́0 −Θ0x́
(N))dt

+ (x∗0(T )− Θ̂0(x∗)(N)(T )− η̂0)TG0(x́0(T )− Θ̂0x́
(N)(T ))

}
,

I ′i = E
{∫ T

0

(x∗i −Θ(x∗)(N) −Θ1x
∗
0 − η)TQ(x́i −Θx́(N) −Θ1x́0) +MT

i (u∗0)RδMi(u0)dt

+ (x∗i (T )− Θ̂(x∗)(N)(T )− Θ̂1x
∗
0(T )− η̂)TG(x́i(T )− Θ̂x́(N)(T )− Θ̂1x́0(T ))

}
.

By using similar arguments in Lemma A.1 to Lemma A.2 and ‖∆2‖2 ≤ c(‖ǔ0‖2L2) 1
N , we obtain

1

N
H ′0 +

1

N
H ′i + αI ′0 +

1

N

N∑
i=1

I ′i = O

(
1√
N

)
.
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Hence, we have

− 1

N
J (N)
soc

(
u

(N)
0 ;M

(
u

(N)
0

))
+

1

N
J (N)
soc (u∗0;M(u∗0)) ≤ K

(
1√
N

)
= O

(
1√
N

)
, (6.9)

where K is independent of N . By (6.9) and (6.8), it follows that

1

N
J (N)
soc (u∗0;M(u∗0))− 1

N
J (N)
soc

(
u

(N)
0 ;M

(
u

(N)
0

))
= O

(
1√
N

)
,

and

1

N
J (N)
soc

(
u

(N)
0 ;M

(
u

(N)
0

))
− 1

N
J (N)
soc (ǔ0;M(ǔ0)) ≤ 0,

respectively. Thus, we have

∆1 =
1

N
J (N)
soc (u∗0;M(u∗0))− 1

N
J (N)
soc (ǔ0;M(ǔ0)) ≤ O

(
1√
N

)
. (6.10)

By Proposition 6.5, there exists K independent of N such that ‖ǔ0‖L2 ≤ K. Then, combining (6.7), (6.10), we
can obtain:

∆1 + ∆2 ≤ O
(

1√
N

)
+ c (‖ǔ0‖L2)

(
1√
N

)
≤ K ·O

(
1√
N

)
= O

(
1√
N

)
,

where K is independent of N . The theorem follows.

7. Numerical examples

We now give a numerical example for Lemma 6.3. By (5.5) and (5.4), K and κ can be easily computed.
Consider Y = KX + κ, we can obtain that

dX = [(A + BK)X + Bκ+ b]dt+ DdW0, Y = KX + κ,

where X = ((x̂)T (x̄0)T (q∗)T (l∗1)T (l∗2)T )T , Y = ((y∗)T (ŷ∗)T (y∗0)T (k1)T (k2)T )T . Since pi = P̄ x̄i + ϕ̄, by the
following equations below (5.6), we have

dx̄i = [(A−BR−1BT P̄ )x̄i −BR−1BT ϕ̄+ Cx̂+ Fx̄0]dt+DdWi.

The realized decentralized state x∗0 and (x∗)(N), can be derived by (6.1). Combining them with (4.5), one can
obtain
d

(
x∗0 − x̄0

(x∗)(N) − x̂

)
=

[(
A0 C0

F A+ C

)(
x∗0 − x̄0

(x∗)(N) − x̂

)
−
(

0
BR−1BT

)
(p(N) − p̂)

]
dt+

1

N

(
0∑N
1 D

)
dWi,(

x∗0 − x̄0

(x∗)(N) − x̂

)
(0) =

(
0

1
N

∑N
1 ξi − ξ̂

)
,

where p̂ = k2.
We continuously use the parameters in Example 5.1. The population N = 100 and the time interval is [0, 12].

By Matlab computation, the trajectories of the realized state x∗i are shown in Figure 1(a).
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Figure 1. (a) is the trajectories of x∗i , i = 1, . . . , 100 and (b) is the curves of ε2
i , i = 1, 2, 3

when time interval is [0, 12].

We defined ε2
1 = E

∫ 12

0
‖(x∗)(N)− x̂‖2dt, ε2

2 = E
∫ 12

0
‖x∗0− x̄0‖2dt, ε2

3 = E
∫ 12

0
‖p(N)− p̂‖2dt. When N increases

from 1 to 100, the curves of ε2
1, ε2

2 and ε2
3 are shown in Figure 1b. The X axis indicates N and the Y axis

indicates ε2
i , i = 1, 2, 3. It can be seen that they are approaching to zero when N is growing larger and larger.

8. Conclusion

This paper has analyzed the social optima in a class of LQ mean field control problem. We obtain the
decentralized form of the optimal controls for the leader and N followers. By Ricatti equation method, we
discuss the solvability of the FBSDE. Finally, a Stackelberg equilibrium theorem is established. For future work,
one can extend the results of this paper to the hierarchical control with many leaders case.

Appendix A. Proof of lemma 6.3

By (5.6) and (6.1), we have



d(x∗)(N) = [A(x∗)(N) −BR−1BT p(N) + C(x∗)(N) + Fx∗0]dt+
1

N

N∑
i=1

DdWi, (x∗)(N)(0) =
1

N

N∑
i=1

ξi,

dx̄(N) = [Ax̄(N) −BR−1BT p(N) + Cx̂+ Fx̄0]dt+
1

N

N∑
i=1

DdWi, x̄(N)(0) =
1

N

N∑
i=1

ξi,

dp(N) = −[AT p(N) + χ1]dt+ ζ0dW0 +
1

N

N∑
i=1

ζidWi, p(N)(T ) = Gx(N)(T ) + χ2.

(A.1)

To prove Lemma 6.3, we need the following two lemmas.

Lemma A.1. Assume that (A1)–(A4) hold. Let x̄(N) = 1
N

∑N
i=1 x̄i and p(N) = 1

N

∑N
i=1 pi. Then

sup
0≤t≤T

E‖x̄(N) − x̂‖2 = O

(
1

N

)
, sup

0≤t≤T
E‖p(N) − p̂‖2 = O

(
1

N

)
.
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Proof. Combining (A.1) and (3.15), we can obtain
dµ1 = [Aµ1 −BR−1BTµ2]dt+

1

N

N∑
i=1

DdWi, µ1(0) =
1

N

N∑
i=1

ξi − ξ̂,

dµ2 = −[ATµ2 +Qµ1 +
1

N

N∑
i=1

ζidWi, µ2(T ) = Gµ1,

where µ1 = x̄(N) − x̂ and µ2 = p(N) − p̂. Denote µ2 = Pµ1 + ϕ, t ∈ [0, T ], where P ∈ C1([0, T ];Sn) is the
solution of the following Ricatti equation and ϕ ∈ C1([0, T ];Rn) satisfies

Ṗ + PA− PBR−1BTP +ATP +Q = 0, t ∈ [0, T ], P (T ) = G,

dϕ = −(A−BR−1BTP )Tϕdt+
1

N

N∑
i=1

(PD − ζi)dWi, t ∈ [0, T ], ϕ(T ) = 0.

This is a standard Ricatti equation and the latter BSDE has a unique solution ϕ = 0, t ∈ [0, T ]. Thus µ2 = Pµ1

and

dµ1 = [A−BR−1BTP ]µ1dt+
1

N

N∑
i=1

DdWi.

By Cauchy-Schwarz inequality and Burkholder-Davis-Gundy’s inequality, we have

sup
0≤t≤T

E‖µ1‖2 = sup
0≤t≤T

E
∥∥∥∥∫ t

0

(A−BR−1BTP )µ1ds+

∫ t

0

1

N

N∑
i=1

DdWi

∥∥∥∥2

≤2 sup
0≤t≤T

E
∥∥∥∥∫ t

0

(A−BR−1BTP )µ1ds

∥∥∥∥2

+ 2 sup
0≤t≤T

E
∥∥∥∥ ∫ t

0

1

N

N∑
i=1

DdWi

∥∥∥∥2

≤2K

{
sup

0≤t≤T
E
∫ t

0

‖µ1‖2ds+
1

N2

N∑
i=1

E
∫ T

0

‖D‖2ds
}

= 2K sup
0≤t≤T

E
∫ t

0

‖µ1‖2ds+O

(
1

N

)
,

where constant K is independent of N . Then, by Gronwall’s inequality and µ2 = Pµ1, we obtain

sup
0≤t≤T

E‖µ1‖2 = O

(
1

N

)
, sup

0≤t≤T
E‖µ2‖2 = O

(
1

N

)
.

The lemma follows.

Lemma A.2. Assume that (A1)–(A4) hold. Let (x∗)(N) = 1
N

∑N
i=1 x

∗
i . Then

sup
0≤t≤T

E‖x∗0 − x̄0‖2 = O

(
1

N

)
, sup

0≤t≤T
E‖(x∗)(N) − x̄(N)‖2 = O

(
1

N

)
.

Proof. Denote µ3 = x∗0 − x̄0 and µ4 = (x∗)(N) − x̄(N). By (A.1), we can obtain

d

(
µ3

µ4

)
=

[(
A0 C0

F A+ C

)(
µ3

µ4

)
+

(
C0

C

)
µ1

]
dt,

(
µ3

µ4

)
(0) =

(
0
0

)
.
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For some constant K which is independent of N such that

sup
0≤t≤T

E
∥∥∥∥( µ3

µ4

)∥∥∥∥2

= sup
0≤t≤T

E
∥∥∥∥∫ t

0

[(
A0 C0

F A+ C

)(
µ3

µ4

)
+

(
C0

C

)
µ1

]
ds

∥∥∥∥2

≤2K

{
sup

0≤t≤T
E
∫ t

0

∥∥∥∥( µ3

µ4

)∥∥∥∥2

ds+ sup
0≤t≤T

E
∫ t

0

‖µ1‖2ds
}

= 2K sup
0≤t≤T

E
∫ t

0

∥∥∥∥( µ3

µ4

)∥∥∥∥2

ds+O

(
1

N

)
.

By Gronwall’s inequality, one can obtain

sup
0≤t≤T

E
∥∥∥∥( µ3

µ4

)∥∥∥∥2

= O

(
1

N

)
.

Thus, the lemma follows.

Proof of Lemma 6.3. Since

‖(x∗)(N) − x̂‖2 = ‖(x∗)(N) − x̄(N) + x̄(N) − x̂‖2 ≤ 2‖(x∗)(N) − x̄(N)‖2 + 2‖x̄(N) − x̂‖2.

Combining Lemma A.1 and Lemma A.2, it leads to

E
∫ T

0

‖(x∗)(N) − x̂‖2dt+ E
∫ T

0

‖p(N) − p̂‖2dt+ E
∫ T

0

‖x∗0 − x̄0‖2dt ≤ T ·O
(

1

N

)
= O

(
1

N

)
.

The lemma follows.

Appendix B. Proof of lemma 6.4

Proof. By (4.5), (A.1), (6.1) and using a similar argument in Lemma A.2, one obtain that for some constant K
which is not dependent on N such that

sup
0≤t≤T

E‖x∗0‖2 ≤ K, sup
0≤t≤T

E‖(x∗)(N)‖2 ≤ K.

By Cauchy-Schwarz inequality and Burkholder-Davis-Gundy’s inequality, we obtain

sup
0≤t≤T

E‖x∗i ‖2 = sup
0≤t≤T

E
∥∥∥∥∫ t

0

(Ax∗i −BR−1BT pi + C(x∗)(N) + Fx∗0)ds+DdWi

∥∥∥∥2

≤ sup
0≤t≤T

E
∫ t

0

2‖Ax∗i ‖2 + 2‖BR−1BT pi‖2 + 2‖C(x∗)(N)‖2 + 2‖Fx∗0‖2ds+ sup
0≤t≤T

∫ t

0

2‖DdWi‖2

≤2E
∫ T

0

‖Ax∗i ‖2 + ‖BR−1BT pi‖2 + ‖C(x∗)(N)‖2 + ‖Fx∗0‖2ds+

∫ T

0

‖D‖2ds

≤2A2 sup
0≤t≤T

E
∫ T

0

‖x∗i ‖2ds+K,

where constant K is independent of N . By Gronwall’s inequality, we have

sup
1≤i≤N

[
sup

0≤t≤T
E‖x∗i ‖2

]
≤ K,
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where K is not dependent on N . Then, according to Cauchy-Schwarz inequality, Burkholder-Davis-Gundy’s
inequality and the above discussion, we have

J (N)
soc (u∗0;u∗) = αNJ0(u∗0;u∗) +

N∑
i=1

Ji(u∗0;u∗)

= αNE
{∫ T

0

[
‖x∗0 −Θ0(x∗)(N) − η0‖2Q0

+ ‖ − (αR0)−1BT
0 y
∗
0‖2R0

]
dt+ ‖x∗0(T )

− Θ̂0(x∗)(N)(T )− η̂0‖2G0

}
+

N∑
i=1

E
{∫ T

0

[
‖x∗i −Θ(x∗)(N)(t)−Θ1x

∗
0 − η‖2Q

+ ‖ −R−1BT pi‖2R
]
dt+ ‖x∗i (T )− Θ̂(x∗)(N)(T )− Θ̂1x

∗
0(T )− η̂‖2G

}
≤ NK,

where K is independent of N . The lemma follows.

Appendix C. Proof of propositions 6.6 and 6.7

Proof of Proposition 6.6. Since

dδx0 = (A0δx0 + C0δx
(N))dt, δx0(0) = 0,

dδx(N) = [(A+ C)δx(N) +
B

N
δui]dt, δx(N)(0) = 0,

and by Proposition 6.5, we have ‖δui‖2L2 ≤ K, K is independent of N . Using Cauchy-Schwarz inequality, it
follows that

E sup
0≤s≤t

‖δx(N)‖2 = E sup
0≤s≤t

∥∥∥∫ s

0

[(A+ C)δx(N) +
B

N
δui]dr

∥∥∥2

≤KE
∫ t

0

‖δx(N)‖2dr +
1

N2
‖K‖2dr ≤ KE

∫ t

0

‖δx(N)‖2dr +O
( 1

N2

)
,

where K is independent of N . By Gronwall’s inequality

E sup
0≤t≤T

‖δx(N)‖2 = O
( 1

N2

)
.

For δx0, we have

E sup
0≤s≤t

‖δx0‖2 =E sup
0≤s≤t

∥∥∥∫ s

0

[A0δx0 + C0δx
(N)]dr

∥∥∥2

≤ KE
∫ t

0

‖δx0‖2dr +O
( 1

N2

)
,

where K is independent of N . By Gronwall’s inequality

E sup
0≤t≤T

‖δx0‖2 = O
( 1

N2

)
.
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Moreover,

ΘTQ(x̄i −Θx̄(N) −Θ1x̄0 − η) ≤ 1

N
inf

(u0;u)
J (N)
soc (u0;u) ≤ K.

Similarly, ΘT
1 Q(x̄i − Θx̄(N) − Θ1x̄0 − η), Θ̂TG(x̄i(T ) − Θ̂x̄(N)(T ) − Θ̂1x̄0(T ) − η̂), Θ̂T

1 G(x̄i(T ) − Θ̂x̄(N)(T )
− Θ̂1x̄0(T )− η̂) are bounded. Thus,

〈ΘTQ(x̄i −Θx̄(N) −Θ1x̄0 − η), δx(N)〉+ 〈ΘT
1 Q(x̄i −Θx̄(N) −Θ1x̄0 − η), δx0〉+ 〈Θ̂TG(x̄i(T )− Θ̂x̄(N)(T )

− Θ̂1x̄0(T )− η̂), δx(N)(T )〉+ 〈Θ̂T
1 G(x̄i(T )− Θ̂x̄(N)(T )− Θ̂1x̄0(T )− η̂), δx0(T )〉 = o(1).

The proposition follows.

Proof of Proposition 6.7. Since
d

∑
j 6=i

δxj

 =

A
∑

j 6=i

δxj

+ C
N − 1

N
δx(N) + F (N − 1)δx0

dt,

∑
j 6=i

δxj

 (0) = 0,

d(Nδx0) = [A0(Nδx0) + C0(Nδx(N))]dt, (Nδx0)(0) = 0,

d(Nδxj) = [A(Nδxj) + C(Nδx(N)) + F (Nδx0)]dt, (Nδxj)(0) = 0.

According to equations in (3.3), one can obtain

d

Nδxj −∑
j 6=i

δxj

 =

A
Nδxj −∑

j 6=i

δxj

+
C

N
δx(N) + Fδx0

dt,

Nδxj −∑
j 6=i

δxj

 (0) = 0,

d(Nδx0 − δx†0) =

A0

(
Nδx0 − δx†0

)
+ C0

Nδxj −∑
j 6=i

δxj

+ C0

(
Nδxj − dδx†

) dt,
(
Nδx0 − δx†0

)
(0) = 0,

d(Nδxj − δx†) = [(A+ C)(Nδxj − δx†) + C

Nδxj −∑
j 6=i

δxj

+ F (Nδx0 − δx†0)]dt, (Nδxj − δx†)(0) = 0.

Combing with the results in Proposition 6.6, we have

E sup
0≤s≤t

∥∥∥∥∥∥Nδxj −
∑
j 6=i

δxj

∥∥∥∥∥∥
2

= E sup
0≤s≤t

∥∥∥∫ s

0

A
Nδxj −∑

j 6=i

δxj

+
C

N
δx(N) + Fδx0

dr
∥∥∥2

≤KE
∫ t

0

∥∥∥∥∥∥Nδxj −
∑
j 6=i

δxj

∥∥∥∥∥∥
2

dr +O
( 1

N2

)
,

where constant K is independent of N . By Gronwall’s inequality

E sup
0≤t≤T

∥∥∥∥∥∥Nδxj −
∑
j 6=i

δxj

∥∥∥∥∥∥
2

= O

(
1

N2

)
.
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Since Nδx0 − δx†0 and Nδxj − δx† are coupled, we have

E sup
0≤s≤t

∥∥∥∥∥
(

Nδx0 − δx†0
Nδxj − dδx†

)∥∥∥∥∥
2

=E sup
0≤s≤t

∥∥∥∥∥
∫ s

0

[(
A0 C0

F A+ C

)(
Nδx0 − δx†0
Nδxj − dδx†

)
+

(
C0

C

)
(Nδxj −

∑
j 6=i

δxj)

]
dr

∥∥∥∥∥
2

≤KE
∫ t

0

∥∥∥∥∥
(

Nδx0 − δx†0
Nδxj − dδx†

)∥∥∥∥∥
2

dr +O
( 1

N2

)
,

where real-valued matrix K is independent of N . By Gronwall’s inequality

E sup
0≤t≤T

∥∥∥∥∥
(

Nδx0 − δx†0
Nδxj − dδx†

)∥∥∥∥∥
2

= O
( 1

N2

)
.

The proposition follows.
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[36] H. Tembine, Q. Zhu and T. Başar, Risk-sensitive mean-field games. IEEE Trans. Automat. Contr. 59 (2014) 835–850.
[37] B. Wang and J. Zhang, Mean field games for large population multiagent systems with Markov jump parameters. SIAM J.

Control Optim. 50 (2012) 2308–2334.
[38] B. Wang and J. Zhang, Hierarchical mean field games for multiagent systems with tracking-type costs: distributed ε-Stackelberg

equilibria. IEEE Trans. Automat. Contr. 59 (2014) 2241–2247.
[39] B. Wang and J. Zhang, Social optima in mean field linear-quadratic-Gaussian models with Markov jump parameters. SIAM

J. Control Optim. 55 (2017) 429–456.
[40] B. Wang and J. Huang, Social optima in robust mean field LQG control, in Proceedings of the 11th Asian Control Conference.

Gold Coast, QLD (2017) 2089–2094.
[41] G.Y. Weintraub, C.L. Benkard and B.V. Roy, Markov perfect industry dynamics with many firms. Econometrica 76 (2008)

1375–1411.
[42] J. Yong, Linear forward–backward stochastic differential equations. Appl. Math. Optim. 39 (1999) 93–119.

[43] J. Yong, A leader-follower stochastic linear quadratic differential game. SIAM J. Control Optim. 41 (2002) 1015–1041.

[44] J. Yong and X.Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York (1999).


	Social optima in leader-follower mean field linear quadratic control
	1 Introduction
	2 Problem formulation
	3 The mean field LQ control problem for the N followers
	3.1 Person-by-person optimality
	3.2 Decentralized strategy design for followers
	3.3 The consistency condition of the follower problem

	4 The optimal control problem for the leader
	5 Well-posedness of the CC system
	6 Asymptotically social optimality
	7 Numerical examples
	8 Conclusion
	Appendix A Proof of lemma 6.3
	Appendix B Proof of lemma 6.4
	Appendix C Proof of propositions 6.6 and 6.7

	References

