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Dynamics of a periodic tick-borne disease model
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Abstract By extending a mechanistic model for the tick-borne pathogen sys-
temic transmission with the consideration of seasonal climate impacts, host
movement as well as the co-feeding transmission route, this paper proposes a
novel modeling framework for describing the spatial dynamics of tick-borne
diseases. The net reproduction number for tick growth and basic reproduction
number for disease transmission are derived, which predict the global dynam-
ics of tick population growth and disease transmission. Numerical simulations
not only verify the analytical results, but also characterize the contribution of
co-feeding transmission route on disease prevalence in a habitat and the effect
of host movement on the spatial spreading of the pathogen.

Keywords Tick-borne disease · patch model · co-feeding transmission · net
reproduction number · basic reproduction number · global stability

1 Introduction

In recent years, tick-borne diseases, including Lyme disease, tick-borne en-
cephalitis, babesiosis and anaplasmosis, are seriously threatening the health
of humans living in the countryside or near woodlands. Lyme disease caused
by the bacteria pathogen Borrelia burgdorferi is the most common tick-borne
disease in the northern hemisphere (Kurtenbach et al. 2006). In USA, a to-
tal of 33,666 confirmed and probable cases of Lyme disease were reported in
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2018 and the number of counties with an incidence of ≥ 10 confirmed cases
per 100,000 persons increased from 324 in 2008 to 415 in 2018 (CDC 2019).
In Europe, there may be more than 200,000 cases per year (O’Connell 2010).
In Canada, 992 cases of Lyme disease were reported in 2016 compared with
114 in 2009, and the number of endemic areas is gradually increasing with the
expanding range of ticks, which was attributed to climate change (Ogden et
al. 2009, 2015).

Several tick-borne diseases are mainly transmitted by Ixodes ticks, which
are most abundant in forests, woodlands and dense bushes and have three
distinct post-egg stages: larva, nymph and adult (Dennis et al. 1998). The de-
velopment from one stage to the next is processed by taking a blood meal. Im-
mature ticks (larva and nymph) mainly feed on small animals such as rodents
and other small vertebrates, and adult ticks prefer large mammals (Ostfeld
2010). Systemic and co-feeding transmissions (also called viraemic and non-
viraemic transmissions) are two main routes for the widespread of tick-borne
pathogens (Voordouw 2015).

Mathematical models have been formulated to extensively study various
aspects of factors involving disease transmission. For example, Rosà et al.
(2003) proposed a tick-borne infection dynamics model with two types of host
species with differential competence of viraemic transmission, and derived the
explicit threshold of disease persistence in terms of viraemic and non-viraemic
transmissions. They further explored the impact of the dynamics of tick pop-
ulation and host densities on the persistence of tick-borne disease (Rosà and
Pugliese 2007). Zhao (2012) employed a reaction-diffusion model to investi-
gate the global dynamics of Lyme disease based on the reproduction number.
Dunn et al. (2013) formulated a mechanistic model of tick-borne pathogens to
obtain the specific form of the basic reproduction number, and evaluated the
importance of parameters in conformity with the results of global sensitivity
analysis. Tick population and tick-borne diseases pose a high level of seasonal-
ity, which can also be studied through models with seasonal weather variations.
For example, Heffernan, Lou and Wu (2014) developed a tick-borne disease
model incorporating climate change and seasonal bird migration and showed
that bird migration may amplify the probability of pathogen establishment.
Egyed et al. (2012) investigated the seasonal timing of questing by all develop-
mental stages of Ixodes ricinus and its infection rate for the major tick-borne
pathogens in Hungary. Hancock et al. (2011) proposed an age-structured tick
population model and explored seasonal activity patterns of I. ricinus for dis-
ease persistence subject to temperature changes. Wu et al. (2015) and Liu, Lou
and Wu (2017) studied age-structured models with time-dependent periodic
maturation delays for tick populations. More models can be found in a brief
review (Lou and Wu 2017).

It is well known that natural ecological environment has been separated
into many patches due to human activities, such as the construction of high-
ways and railways. Although ticks move only in a small spatial range by them-
selves, their hosts can freely move among various habitats. Hence, it is inter-
esting and important to investigate the role of host movement on the spread of
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tick-borne diseases among different patches. A popular way to describe species
movement in a fragmented environment is using the patch modeling frame-
work. For instance, Arino et al. (2005) described a multi-species SEIR epidemic
model with spatial dynamics consisting of s species and n patches. Wang and
Mulone (2003) proposed an SIS epidemic model between two patches to de-
scribe the threshold of disease transmission. Gao and Ruan (2011) formulated
an SIS patch model with variable spread coefficients to explore how human
movement could affect the transmission of epidemic diseases in patchy envi-
ronments. Recent extensive theoretical studies have been performed to study
asymptotic profiles of the steady states for patch models, see for example,
Allen et al. (2007).

Considering the possible impact of patchy environmental, systemic and co-
feeding transmission routes and seasonal variations on disease transmission,
in this paper, we are going to formulate a tick-borne disease transmission
model. The net reproduction number of tick growth and the basic reproduc-
tion number for tick-borne pathogen transmission will be derived. Based on
these two reproduction numbers, the global dynamics of tick-borne disease
model can be characterized. The impact of host movement, co-feeding and
seasonal variations on pathogen transmission will be evaluated through nu-
merical simulations.

2 The model

In this section, we will construct a tick-borne disease model with co-feeding
transmission in n-patches. Unlike models for tick-borne pathogen transmission
reviewed in Lou and Wu (2017), which normally involve many variables, in
particular, variables for infected larvae, infected nymphs and so on to capture
the main features of stage-structure and infectivity of ticks, here we stratify
tick and host populations by their infection status: susceptible (superscript
s) and infected (superscript i). Three stages of tick population in an indexed
patch (assume to be the k-th patch), larvae (Lk), nymphs (Nk) and adults
(Ak) are considered. The host population in the k-th patch Hk is classified
into two distinguished subgroups: susceptible hosts Hs

k and infectious hosts
Hi

k.

The model is formulated based on the following assumptions:

(i) Since ticks can move by themselves only in a small range and the number
of ticks that can be carried from one patch to another through feeding
blood is small due to short biting period, we ignore the migration of tick
population among n patches.

(ii) Although many different species can serve as hosts for ticks and com-
petent reservoirs for the pathogen (Ostfeld 2010), as a simplification,
we classify them into the rodent compartment and use the averaged pa-
rameters in terms of growth, pathogen transmission and movement. We
denote mij(t) as the rodent migration rate from j-th patch to i-th patch.
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(iii) Since transovarial transmission is low in tick population (Pettersson et
al. 2014), we assume that all newly emerging larvae are susceptible and
pathogen transmission are mainly due to the blood feeding of infectious
rodents and/or co-feeding with infectious ticks on a host.

(iv) Systemic transmission of pathogen involves three closely related paths:
susceptible larvae feed on infectious rodents and get infection; infectious
larvae develop into infected nymphs; infected nymphs transmit tick-borne
pathogens to susceptible rodents through biting on them. Since adults
mainly take blood feeding on large-size animals different from hosts for
immature ticks, we ignore the transmission between infectious adults and
non-viraemic deer (Hudson et al. 1995). Susceptible nymphs may also
get infected through blood feeding on infectious rodents and develop to
infectious adults.

(v) A susceptible larva can also be infected by co-feeding transmission when
it co-feeds on a rodent with an infected nymph in a proximity over a
certain period of time. The co-feeding probability of a susceptible larval
tick by infected nymphal ticks depends on the relative location of ticks
on the host and the number of infected nymphal ticks. For the simplicity,
here we assume that the number of infected ticks is equally distributed
on all hosts and do not consider the relative distance between a larva and
infected nymphs on one host. To describe the transmission rate through
co-feeding transmission, let ηk be the probability that a susceptible larva
gets infection from a co-feeding infected nymph through co-feeding trans-
mission. Assume that feeding nymphs are evenly distributed in all ro-
dents. Since the events that each infectious nymph launches co-feeding
transmission to a susceptible larva are independent, the probability that
a susceptible larva becomes infected through co-feeding with i number of
infectious nymphs is 1− (1− ηk)

i (see Nah et al. (2019) for more details
on the derivation).

(vi) Tick-borne pathogen transmission via systemic route from infected hosts
and that via co-feeding route from infected nymphs are assumed to be
independent events. That is, the incidence of one transmission route does
not affect the probability of transmission through the other route.

The transmission routes between multi-stage ticks and rodents can be de-
picted by the diagram in Fig. 1. Please note that in this diagram, Lk and
Nk should be regarded as questing immature ticks looking for host for blood
meal. Based on this diagram, a mechanistic model with less variables can be
formulated to capture the complex cycle of systematic transmission of the
pathogen between the multi-stage ticks and rodents. Considering the birth,
stage-structured growth, pathogen transmission and seasonal variations on
tick growth and activity, we can formulate the following model for the indexed
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Fig. 1: A schematic illustration of tick-borne disease dynamics with both systemic and
co-feeding transmissions: the tick population is stratified into immature ticks (larvae and
nymphs) and adults. All newly emerging larvae are assumed to be susceptible, may get
infected by taking a blood meal from a host where systemic and co-feeding transmission
can both occur, and then develop into nymphs. Susceptible nymphs can also get infection
through biting an infectious host. Susceptible hosts can get infection through the bites of
infected nymphs. ST: systematic transmission; CT: co-feeding transmission.

k-th patch where k = 1, 2, · · · , n:

dLk(t)
dt

= ρk(t)Ak(t)− dLk (t)Lk(t)− µL
k (t)L

2
k(t)− βL

k (t)Hk(t)Lk(t),
dNs

k(t)

dt
= mL

k (t)β
L
k (t)Hk(t)Lk(t)− dNk (t)Ns

k(t)− µN
k (t)Nk(t)N

s
k(t)− βN

k (t)Hk(t)N
s
k(t)

−ζLk mL
k (t)β

L
k (t)Hi

k(t)Lk(t)−
(
1− (1− ηk)

Ni
k(t)/Hk(t)

)
mL

k (t)β
L
k (t)Hs

k(t)Lk(t)

−
(
1− (1− ηk)

Ni
k(t)/Hk(t)

)
(1− ζLk )mL

k (t)β
L
k (t)Hi

k(t)Lk(t),

dNi
k(t)

dt
= ζLk mL

k (t)β
L
k (t)Hi

k(t)Lk(t) +
(
1− (1− ηk)

Ni
k(t)/Hk(t)

)
mL

k (t)β
L
k (t)Hs

k(t)Lk(t)

+
(
1− (1− ηk)

Ni
k(t)/Hk(t)

)
(1− ζLk )mL

k (t)β
L
k (t)Hi

k(t)Lk(t)− dNk (t)N i
k(t)

−µN
k (t)Nk(t)N

i
k(t)− βN

k (t)Hk(t)N
i
k(t),

dAs
k(t)

dt
= mN

k (t)βN
k (t)Hk(t)N

s
k(t)− dAk (t)As

k(t)− µA
k (t)Ak(t)A

s
k(t)

−βA
k (t)DkA

s
k(t)− ζNk mN

k (t)βN
k (t)Hi

k(t)N
s
k(t),

dAi
k(t)

dt
= mN

k (t)βN
k (t)Hk(t)N

i
k(t) + ζNk mN

k (t)βN
k (t)Hi

k(t)N
s
k(t)− dAk Ai

k(t)

−µA
k (t)Ak(t)A

i
k(t)− βA

k (t)DkA
i
k(t),

dHs
k(t)

dt
= dHk Hk(t)− dHk Hs

k(t)− ζHk βN
k (t)Hs

k(t)N
i
k(t) +

n∑
j=1,j ̸=k

mkj(t)H
s
j (t)

−
n∑

j=1,j ̸=k
mjk(t)H

s
k(t),

dHi
k(t)

dt
= ζHk βN

k (t)Hs
k(t)N

i
k(t)− dHk Hi

k(t) +
n∑

j=1,j ̸=k
mkj(t)H

i
j(t)−

n∑
j=1,j ̸=k

mjk(t)H
i
k(t),

(1)

where Lk(t) denotes the density of larvae at time t in k-th patch, Ns
k(t) and

N i
k(t) represent the densities of susceptible and infected nymphs at time t

in k-th patch, respectively, As
k(t) and Ai

k(t) are the densities of susceptible
and infected adults at time t in k-th patch. Hs

k(t) and H
i
k(t) are the densities

of susceptible and infected hosts in k-th patch at time t, respectively. Please
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Table 1: Parameters and descriptions of model (1).

Parameters Descriptions Baseline values
Reproduction ρk(t) Recruitment rate of larvae in k-th patch see Section 5

Mortality

dLk (t) Mortality rate of larvae in k-th patch 0.01(day−1) (Randolph and Rogers (1997))
dNk (t) Mortality rate of nymphs in k-th patch see Section 5
dAk (t) Mortality rate of adults in k-th patch 0.00625(day−1) (Rosà and Pugliese (2007))

µL
k (t)

Time-dependent parameter with µL
kLk as

the density-dependent death rate of larvae in k-th patch
10−5(day−1) (assumed)

µN
k (t)

Time-dependent parameter with µN
k Nk as

the density-dependent death rate of nymphs in k-th patch
10−5(day−1) (assumed)

µA
k (t)

Time-dependent parameter with µA
k Ak as

the density-dependent death rate of adults in k-th patch
10−5(day−1) (assumed)

Tick-host
encountering

βL
k (t)

Encounter rate between larvae and rodents
in k-th patch

0.0015(assumed)

βN
k (t)

Encounter rate between nymphs and rodents
in k-th patch

0.00051(assumed)

βA
k (t)

Encounter rate between adults and deers
in k-th patch

0.0001 (assumed)

Molting
mL

k (t)
Molting success rate of larvae developing

to nymphs in k-th patch
0.35 (assumed)

mN
k (t)

Molting success rate of nymphs developing
to adults in k-th patch

0.1 (assumed)

Systemic
transmission

ζLk
Systemic transmission probability between infected

rodents and susceptible larvae in k-th patch
0.9× [0, 0.9](Nonaka et al. (2010))

ζNk
Systemic transmission probability between infected

rodents and susceptible nymphs in k-th patch
0.9× [0, 0.9](Nonaka et al. (2010))

ζHk
Systemic transmission probability between susceptible

rodents and infected nymphs in k-th patch
see Section 5

Co-feeding
transmission

ηk

Probability that a single larva gets infection
from a single infected nymph through co-feeding

transmission in k-th patch
see Section 5

Host ecology dHk Mortality rate of hosts in k-th patch see Section 5
Host mobility mkj(t) Host migration proportion from patch j to k see Section 5

note that ζLkm
L
k (t)β

L
k (t)H

i
k(t)Lk(t) represents the incidence term of systemic

transmission route, while
(
1− (1− ηk)

Ni
k(t)/Hk(t)

)
mL

k (t)β
L
k (t)H

s
k(t)Lk(t) and(

1− (1− ηk)
Ni

k(t)/Hk(t)
)
(1−ζLk )mL

k (t)β
L
k (t)H

i
k(t)Lk(t) represent the incidence

rates of co-feeding transmission routes when larvae biting susceptible and infec-
tious hosts, respectively. To describe the co-feeding incidence through sharing
a same host, feeding nymphal ticks are supposed to distribute evenly on all
rodents here. Actually, the distributions of ticks on hosts may obey other com-
plicated forms, such as Poisson distribution, which may derive other incidence
terms. All parameters are positive and their descriptions are shown in Table 1.
Among them, those time-dependent parameters are assumed to be continuous
and ω = 1 year-periodic functions.

In this model, we assume that there is no birth and death during rodents
movement, and therefore, the total movement rate between immigration and
emigration should satisfy

n∑
k=1

( n∑
j=1,j ̸=k

mkj(t)−
n∑

j=1,j ̸=k

mjk(t)

)
= 0.
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Adding the equations of the host population in k-th patch, we have

dHk(t)

dt
=

n∑
j=1,j ̸=k

mkj(t)Hj(t)−
n∑

j=1,j ̸=k

mjk(t)Hk(t).

The host population dynamics in n-patches can be described by the following
system

dH(t)

dt
=M(t)H(t), (2)

where H(t) = (H1(t),H2(t), · · · ,Hn(t))
T and the mobility matrix M(t) is

represented as

M(t) =


−

n∑
j=1,j ̸=1

mj1(t) m12(t) . . . m1n(t)

. . .
...

mn1(t) mn2(t) . . . −
n∑

j=1,j ̸=n

mjn(t)

 .

We assume that the mobility matrixM(t) consisting of the migration rates
among various patches is irreducible. That is, the patches as vertices following
the matrix M(t) as arcs of a directed digraph are strongly connected under
the migration of host population.

By applying Smith (1995, Remark 5.2.1), as discussed in Lou, Wu and Wu
(2014), we can show that for a given nonnegative initial value for system (1),
there is a unique solution which remains nonnegative for all t ≥ 0.

Let SH(t) =
n∑

k=1

Hk(t) be the total density of hosts in all patches, and X

be a set

X := {(H1,H2, · · · ,Hn) ∈ Rn
+ :

n∑
k=1

Hk > 0}.

Then we get the following result:

Theorem 1 Assume that the mobility matrix M(t) is irreducible in the host
migration model (2). Then model (2) has a unique positive ω-periodic solution
H∗(t) = (H∗

1 (t),H
∗
2 (t), · · · ,H∗

n(t)) which is globally asymptotically stable to
any positive solution.

Proof Clearly, SH(t) can be determined by dSH(t)
dt = 0, namely, SH(t) = SH(0)

which means total density of host population is a constant for all t ≥ 0. Let Φ(t)

be the fundamental solution matrix of system (2) satisfying dΦ(t)
dt =M(t)Φ(t)

and Φ(0) = In where In is the n × n identity matrix. Notice that M(t) has
nonnegative off-diagonal elements and its integral on the interval [0, ω] is ir-
reducible. Then Φ(t) is not only nω-periodic, but a strongly positive operator
(see Smith (1995)). Then Aronsson and Kellogg (1978) implies that system
(2) has a positive nω-periodic solution H∗(t) which is globally attractive for
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any nonzero initial condition H(0) ∈ X. Therefore, based on the similar ar-
gument in Weng and Zhao (2011), this nω-periodic solution is also a globally
asymptotically stable ω-periodic solution satisfying S∗

H(t) = SH(0). ⊓⊔

Based on this result, without loss of generality, we may assume that the
rodent population density stabilizes at the periodic positive solution, H∗

k(t),
k = 1, 2, · · · , n.

Considering the population densities of nymphs Nk(t) = Ns
k(t) + N i

k(t),
adult ticks Ak(t) = As

k(t)+A
i
k(t) and rodents Hk(t) = Hs

k(t)+H
i
k(t), we have

the following system which is equivalent to model (1)

dLk(t)

dt
=ρk(t)Ak(t)− dLk (t)Lk(t)− µL

k (t)L
2
k(t)− βL

k (t)Hk(t)Lk(t),

dNk(t)

dt
=mL

k (t)β
L
k (t)Hk(t)Lk(t)− dNk (t)Nk(t)− µN

k (t)N2
k (t)− βN

k (t)Hk(t)Nk(t),

dAk(t)

dt
=mN

k (t)βN
k (t)Hk(t)Nk(t)− dAk (t)Ak(t)− µA

k (t)A2
k(t)− βA

k (t)DkAk(t),

dN i
k(t)

dt
=ζLk mL

k (t)β
L
k (t)Hi

k(t)Lk(t) +
(
1− (1− ηk)

Ni
k(t)/Hk(t)

) (
Hk(t)− ζLk Hi

k(t)
)

·mL
k (t)β

L
k (t)Lk(t)− dNk (t)N i

k(t)− µN
k (t)Nk(t)N

i
k(t)− βN

k (t)Hk(t)N
i
k(t),

dHi
k(t)

dt
=ζHk βN

k (t)(Hk(t)−Hi
k(t))N

i
k(t)− dHk Hi

k(t) +
n∑

j=1,j ̸=k

mkj(t)H
i
j(t)

−
n∑

j=1,j ̸=k

mjk(t)H
i
k(t)

(3)

with k = 1, 2, · · · , n.

3 Tick population dynamics

In this section, we assume all conditions in Theorem 1 holds. Therefore, we
may assume Hk(t) = H∗

k(t), k = 1, 2, · · · , n to study the long-term behavior
of tick population dynamics. From model (3), we have a decoupled system to
describe stage-structured tick population growth in k-th patch as follows:

dLk(t)
dt

= ρk(t)Ak(t)− dLk (t)Lk(t)− µL
k (t)L

2
k(t)− βL

k (t)H∗
k(t)Lk(t),

dNk(t)
dt

= mL
k (t)β

L
k (t)H∗

k(t)Lk(t)− dNk (t)Nk(t)− µN
k (t)N2

k (t)− βN
k (t)H∗

k(t)Nk(t),
dAk(t)

dt
= mN

k (t)βN
k (t)H∗

k(t)Nk(t)− dAk (t)Ak(t)− µA
k (t)A2

k(t)− βA
k (t)DkAk(t),

(4)

for k = 1, 2, ..., n.

Next, we will evaluate the net reproduction number R(k)
T for system (4) in

the k-th patch through the procedure in Wang and Zhao (2008). The linearized
system of (4) in the k-th patch at the tick-free equilibrium (0, 0, 0) takes the
following form

dLk(t)
dt = ρk(t)Ak(t)− (dLk (t) + βL

k (t)H
∗
k(t))Lk(t),

dNk(t)
dt = mL

k (t)β
L
k (t)H

∗
k(t)Lk(t)− (dNk (t) + βN

k (t)H∗
k(t))Nk(t),

dAk(t)
dt = mN

k (t)βN
k (t)H∗

k(t)Nk(t)− (dAk (t) + βA
k (t)Dk)Ak(t).

(5)
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Obviously, system (5) is cooperative. We introduce

F
(k)
T (t) =

0 0 ρk(t)
0 0 0
0 0 0

 ,

and

V
(k)
T (t) =

dLk (t) + βL
k (t)H

∗
k(t) 0 0

−mL
k (t)β

L
k (t)H

∗
k(t) d

N
k (t) + βN

k (t)H∗
k(t) 0

0 −mN
k (t)βN

k (t)H∗
k(t) d

A
k (t) + βA

k (t)Dk

 .

Suppose Y
(k)
T (t, s), t ≥ s, is the evolution operator of the linear periodic system

dy

dt
= −V (k)

T (t)y.

That is, for each s ∈ R, the evolution operator Y
(k)
T (t, s) satisfies

dY
(k)
T (t, s)

dt
= −V (k)

T (t)Y
(k)
T (t, s), ∀t ≥ s, Y

(k)
T (s, s) = I3,

where I3 is the 3× 3 identity matrix.
Let CT

ω be the ordered Banach space of all ω-periodic functions from R1 to
R3, equipped with the maximum norm. In the periodic patchy environment, we
assume that ϕ(s) ∈ CT

ω represents the initial distribution of larval, nymphal

and adult ticks. Then F
(k)
T (s)ϕ(s) represents the distribution of larvae pro-

duced by the adult ones who were introduced at time s in the k-th patch.

Given t ≥ s, then Y
(k)
T (t, s)F

(k)
T (s)ϕ(s) denotes the distribution of those ticks

who were newly born into the larval tick compartment at time s and remain
alive as larval, nymphal or adult ticks at time t in the k-th patch. It follows
that

ψ(t) :=

∫ t

−∞
Y

(k)
T (t, s)F

(k)
T (s)ϕ(s)ds =

∫ ∞

0

Y
(k)
T (t, t− a)F

(k)
T (t− a)ϕ(t− a)da

represents the distribution of accumulative new larval, nymphal and adult ticks
at time t produced by all those larval, nymphal and adult ticks ϕ(s) introduced
at previous time to t in the k-th patch. Then, we can define a linear operator

L
(k)
T : CT

ω → CT
ω by

(L
(k)
T ϕ)(t) =

∫ ∞

0

Y
(k)
T (t, t− a)F

(k)
T (t− a)ϕ(t− a)da, ∀t ∈ R, ϕ ∈ CT

ω .

We call L
(k)
T the next population reproduction operator and define the net

reproduction number in the k-th patch as R(k)
T := ρ(L

(k)
T ), the spectral radius

of L
(k)
T . By using theories on monotone dynamical systems (Smith 1995; Zhao

2017) and results in Wang and Zhao (2008), as discussed in Heffernan, Lou
and Wu (2014) and Lou, Wu and Wu (2014), we have the following result on
the tick growth in the k-th patch.
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Lemma 1 The following statements hold

(i) If R(k)
T ≤ 1, the tick-free equilibrium of system (4) in the k-th patch is

globally asymptotically stable.

(ii) If R(k)
T > 1, system (4) in the k-th patch has a unique positive ω-periodic

solution (L∗
k(t), N

∗
k (t), A

∗
k(t)) which is globally asymptotically stable for

every nontrivial solution.

Without loss of generality, by relabelling each patch, we assumeR(i)
T ≥ R(j)

T

whenever i < j. It is natural to introduce the maximum and minimum net
reproduction number for all patches:

Rmax
T = max

1≤k≤n
R(k)

T = R(1)
T and Rmin

T = min
1≤k≤n

R(k)
T = R(n)

T .

Then we have the following results.

Theorem 2 (i) If Rmax
T ≤ 1, the tick-free equilibrium of system (4) with n

patches is globally asymptotically stable.

(ii) If Rmin
T > 1, system (4) with n patches has a unique ω-periodic solution

(L∗(t), N∗(t), A∗(t)) = (L∗
1(t), · · · , L∗

n(t), N
∗
1 (t), · · · , N∗

n(t), A
∗
1(t), · · · , A∗

n(t)),

which is globally asymptotically attractive for each positive solution.
(iii) If Rmin

T ≤ 1 < Rmax
T , there exists a unique K with 0 < K < n such that

R(K)
T > 1 while R(K+1)

T ≤ 1. Then system (4) with n patches satisfies

lim
t→∞

(Lk(t), Nk(t), Ak(t)) = (L∗
k(t), N

∗
k (t), A

∗
k(t))

and

lim
t→∞

(Lp(t), Np(t), Ap(t)) = (0, 0, 0)

for 1 ≤ k ≤ K and K + 1 ≤ p ≤ n.

4 The dynamics of disease spread

For a patch with the net reproduction number smaller than or equal to unity,

that is R(k)
T ≤ 1, there will be no ticks. For this unfavorable patch for ticks,

we have lim
t→∞

N i
k(t) = lim

t→∞
Nk(t) = 0 as N i

k(t) ≤ Nk(t). To investigate the

pathogen persistence in ticks in a habitat, we introduce another reproduction
number for the pathogen. For the ease of explanation, we first investigate
the scenario Rmin

T > 1, and then the other two cases in Theorem 2 will be
discussed later. In this case, the tick population in patch k will eventually
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follow the seasonal pattern (L∗(t), N∗(t), A∗(t)). Now consider the following
asymptotic system of model (3) for infected compartments:

dN i
k(t)

dt
=ζLk mL

k (t)β
L
k (t)Hi

k(t)L
∗
k(t) +

(
1− (1− ηk)

Ni
k(t)/H∗

k(t)
) (

H∗
k(t)− ζLk Hi

k(t)
)

·mL
k (t)β

L
k (t)L∗

k(t)− dNk (t)N i
k(t)− µN

k (t)N∗
k (t)N

i
k(t)− βN

k (t)H∗
k(t)N

i
k(t),

dHi
k(t)

dt
=ζHk βN

k (t)(H∗
k(t)−Hi

k(t))N
i
k(t)− dHk Hi

k(t) +
n∑

j=1,j ̸=k

mkj(t)H
i
j(t)

−
n∑

j=1,j ̸=k

mjk(t)H
i
k(t),

(6)

with k = 1, 2, . . . , n.
We will derive the basic reproduction number based on the next generation

operator approach in Wang and Zhao (2008) for system (6) of periodic ordinary
differential equations. Let u(t) = (N i

1(t), · · · , N i
n(t), H

i
1(t), · · · ,Hi

n(t))
T be the

vector which includes all infectious variables for system (6). Linearizing system
(6) at the disease-free equilibrium, we produce the following system

du

dt
= (F̃ (t)− Ṽ (t))u,

where

F̃ (t) =

[
F̃11(t) F̃12(t)

F̃21(t) 0

]
, Ṽ (t) =

[
Ṽ11(t) 0

0 Ṽ22(t)

]
,

and

F̃11(t) =

mL
1 (t)β

L
1 (t)L∗

1(t) ln(1− η1)−1 . . . 0

. . .
..
.

0 . . . mL
n(t)β

L
n (t)L∗

n(t) ln(1− ηn)−1

 ,

F̃12(t) =

 ζL1 mL
1 (t)β

L
1 (t)L∗

1(t) . . . 0

. . .
..
.

0 . . . ζLnmL
n(t)β

L
n (t)L∗

n(t)

 ,

F̃21(t) =

 ζH1 βN
1 (t)H∗

1 (t) . . . 0

. . .
..
.

0 . . . ζHn βN
n (t)H∗

n(t)

 ,

Ṽ11(t) =

 dN1 (t) + µN
1 (t)N∗

1 (t) + βN
1 (t)H∗

1 (t) . . . 0

. . .
.
..

0 . . . dNn (t) + µN
n (t)N∗

n(t) + βN
n (t)H∗

n(t)

 ,

Ṽ22(t) =


dH1 +

n∑
j=1,j ̸=1

mj1(t) −m12(t) . . . −m1n(t)

. . .
..
.

−mn1(t) −mn2(t) . . . dHn +
n∑

j=1,j ̸=n
mjn(t)

 .

Let Ỹ (t, s), t ≥ s, be the evolution operator of the linear periodic system

dy

dt
= −Ṽ (t)y.
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For each s ∈ R, the 2n× 2n matrix Ỹ (t, s) satisfies

dỸ (t, s)

dt
= −Ṽ (t)Y (t, s), ∀t ≥ s, Ỹ (s, s) = I2n,

where I2n is the 2n× 2n identity matrix.
Let C̃ω be the ordered Banach space of all ω-periodic functions from R1 to

R2n equipped with the maximum norm. In the periodic patchy environment,
if ψ ∈ C̃ω is the initial distribution of infectious nymphs and hosts, then
F̃ (s)ψ(s) characterizes the distribution of new infections caused by the initial
infectious nymphs and hosts who were introduced at time s. Given t ≥ s, then
Ỹ (t, s)F̃ (s)ψ(s) denotes the distribution of infectious nymphs and hosts who
were newly infected at time s and remain infectious until time t. It follows
that ∫ t

−∞
Ỹ (t, s)F̃ (s)ψ(s)ds =

∫ ∞

0

Ỹ (t, t− a)F̃ (t− a)ψ(t− a)da

represents the distribution of accumulative new infectious nymphs and in-
fectious hosts at time t produced by all those infections ψ(s) introduced at

previous time to t. Then a linear operator L̃ : C̃ω → C̃ω can be introduced as

(L̃ψ)(t) =

∫ ∞

0

Y (t, t− a)F̃ (t− a)ψ(t− a)da, ∀t ∈ R, ψ ∈ C̃ω.

Then, the basic reproduction number of the periodic system (6) is defined as

R0 := ρ(L̃), (7)

the spectral radius of L̃. Based on Theorem 2.2 in Wang and Zhao (2008), the
following result holds.

Lemma 2 The zero equilibrium of system (6) is locally asymptotically stable
if R0 < 1, and unstable if R0 > 1.

Based on the observation that N i
k(t) ≤ Nk(t) and Hi

k(t) < Hk(t) while
lim
t→∞

[(Nk(t),Hk(t)) − (N∗
k (t),H

∗
k(t))] = 0 , we have the boundedness of solu-

tions for (6). Let

N i(t) = (N i
1(t), N

i
2(t), · · · , N i

n(t)) and H
i(t) = (Hi

1(t),H
i
2(t), · · · ,Hi

n(t)),

then u(t) = (N i(t), Hi(t)). System (6) takes the following form

du(t)

dt
= G(t, u(t)),

where G(t, u) is the vector field of system (6) and it is periodic in time t. In
what follows, we will further show the global dynamics of system (6).

Theorem 3 When Rmin
T > 1, we can use the basic reproduction number de-

fined in (7) to characterize the global dynamics of the asymptotic system (6):
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(i) If R0 ≤ 1, the zero equilibrium of system (6) is globally asymptotically
stable.

(ii) If R0 > 1, system (6) has a unique positive ω-periodic solution (N i∗(t),
Hi∗(t)) = (N i∗

1 (t), · · · , N i∗
n (t),Hi∗

1 (t), · · · ,Hi∗
n (t)), which is globally asymp-

totically attractive for each positive solution.

Proof For every u ≥ 0 with N i
k = 0, k = 1, 2, · · · , n, we have

Gk(t, u) = ζLkm
L
k (t)β

L
k (t)H

i
k(t)L

∗
k(t) ≥ 0.

For every u ≥ 0 with Hi
k = 0, k = 1, 2, · · · , n, we have

Gn+k(t, u) = ζHk β
N
k (t)H∗

k(t)N
i
k(t) +

n∑
j=1,j ̸=k

mkj(t)H
i
j(t) ≥ 0.

Let Γ (t): (N i(0), Hi(0)) → (N i(t),Hi(t)) be the solution map of system (6)
for t > 0. Then Γ (ω) is the Poincaré map of system (6) and Γ (t) is monotone
as the system (6) is cooperative (Smith 1995). Moreover, the irreducibility of
(
∫ ω

0
M(t)dt)n×n implies that the semiflow of system (6) is strongly monotone.
For every t ≥ 0 and u ≫ 0, k = 1, 2, · · · , n, we can show that G(t, u)

is strictly subhomogeneous on R2n
+ . Therefore, Theorem 3.1.2 in Zhao (2017)

implies the threshold dynamics in this theorem. ⊓⊔

When Rmin
T ≤ 1 < Rmax

T , Lemma 1 implies that ticks establish in the
first K patches while the remaining n−K patches are unfavorable patches for
ticks. In this scenario, we have an asymptotic system for the model (3)

dN i
k(t)

dt
=ζLk mL

k (t)β
L
k (t)Hi

k(t)L
∗
k(t) +

(
1− (1− ηk)

Ni
k(t)/H∗

k(t)
) (

H∗
k(t)− ζLk Hi

k(t)
)

·mL
k (t)β

L
k (t)L∗

k(t)− dNk (t)N i
k(t)− µN

k (t)N∗
k (t)N

i
k(t)− βN

k (t)H∗
k(t)N

i
k(t),

dHi
k(t)

dt
=ζHk βN

k (t)(H∗
k(t)−Hi

k(t))N
i
k(t)− dHk Hi

k(t) +
n∑

j=1,j ̸=k

mkj(t)H
i
j(t)

−
n∑

j=1,j ̸=k

mjk(t)H
i
k(t),

dHi
p(t)

dt
=− dHp Hi

p(t) +
n∑

j=1,j ̸=k

mkj(t)H
i
j(t)−

n∑
j=1,j ̸=k

mjk(t)H
i
p(t)

(8)

with k = 1, 2, · · · ,K and p = K + 1,K + 2, · · · , n. Then a similar argument
as that for the system (6) can be used to define the basic reproduction number
for this asymptotic system (8), denoted as R̃0 . Furthermore, Lemma 2 and a
similar result to Theorem 3 still hold.

Our next target is to characterize the global dynamics of the whole model
system (3) by lifting the dynamics of the asymptotic systems with the aid of
theories of internally chain transitive sets (Zhao 2017). For easy reference, we
combine Lemma 1.2.1 and Theorem 1.2.1 of Zhao (2017) into the following
Lemma:
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Lemma 3 Let F : X → X be a continuous map. Then the omega limit set
of any precompact positive orbit is internally chain transitive. Let A be an
attractor and C a compact internally chain transitive set for F . If C∩W s(A) ̸=
∅, then C ⊂ A. Here, W s(A) is the stable set of A.

Based on this Lemma, we can establish the next result.

Theorem 4 The following statements hold

(i) If Rmax
T ≤ 1, the zero equilibrium (0, 0, 0, 0, 0) of system (3) is globally

attractive.
(ii) When Rmin

T > 1
(a) If R0 ≤ 1, the disease-free state (L∗(t), N∗(t), A∗(t), 0, 0) of system

(3) is globally attractive for all nontrivial solutions.
(b) If R0 > 1, the unique positive ω-periodic solution (L∗(t), N∗(t),

A∗(t), N i∗(t), Hi∗(t)) of system (3) is globally attractive for each
positive initial condition.

(iii) When Rmax
T > 1 ≥ Rmin

T , then

lim
t→∞

(Nk(t)−N∗
k (t)) = 0 and lim

t→∞
N i

p(t) = lim
t→∞

Np(t) = 0

for 1 ≤ k ≤ K and K + 1 ≤ p ≤ n. Furthermore, we have
(a) If R̃0 ≤ 1, then lim

t→∞
N i

k(t) = 0 and lim
t→∞

Hi
q(t) = 0 for 1 ≤ k ≤ K

and 1 ≤ q ≤ n;
(b) If R̃0 > 1, then there are unique positive ω-periodic functions N i∗

k (t)
and Hi∗

q (t) such that lim
t→∞

(N i
k(t) − N i∗

k (t)) = 0 and lim
t→∞

(Hi
q(t) −

Hi∗
q (t)) = 0 for 1 ≤ k ≤ K and 1 ≤ q ≤ n for all nontrivial solutions.

Proof Let

P : P (L(0), N(0), A(0), N i(0), Hi(0)) = (L(ω), N(ω), A(ω), N i(ω),Hi(ω))

be the Poincaré map of system (3). Clearly, P is compact. Let Ω be the omega
limit set of Pn(L(0), N(0), A(0), N i(0),Hi(0)). Then Lemma 3 implies that Ω
is an internally chain transitive set for P . Next, we will prove three scenarios
depending on the net reproduction number Rmin

T (or Rmax
T ) and the basic

reproduction number R0.

Scenario (i): Rmax
T ≤ 1.

From Theorem 2, tick-free equilibrium of system (4) is globally asymptot-
ically stable. Then we have

lim
n→∞

Pn(L(0), N(0), A(0), N i(0),Hi(0)) = lim
n→∞

(0, 0, 0, 0, Pn
5 (H

i(0))),

where P5 is the Poincaré solution map of the following system

dHi(t)

dt
= −dHHi(t). (9)

That means Ω = {(0, 0, 0, 0)} × Ω5 where Ω5 is the omega limit set of P5.
Since 0 is globally asymptotically stable for system (9), it is easy to see that
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Ω5 = {0}. It follows that Ω = {(0, 0, 0, 0, 0)}. This completes the proof of the
first statement (i).

Scenario (iia): Rmin
T > 1 and R0 ≤ 1.

It can be seen from Theorem 2 that

lim
n→∞

Pn(L(0), N(0), A(0), N i(0),Hi(0))

= lim
n→∞

(L∗(0), N∗(0), A∗(0), P̃n(N i(0),Hi(0))),

where P̃ is the Poincaré solution map of system (6). It means that there
exists the omega limit set Ω2 ∈ R2n corresponding to P̃ such that Ω =
{(L∗(0), N∗(0), A∗(0))} × Ω2. When R0 ≤ 1, Theorem 3 implies that for all(
L(0), N(0), A(0), N i(0),Hi(0)

)
, we have

lim
n→∞

(
P̃n(N i(0),Hi(0))

)
= (0, 0),

According to Lemma 3, we have Ω2 = {(0, 0)}. Therefore, the disease-free
periodic solution (L∗(t), N∗(t), A∗(t), 0, 0) of system (3) is globally attractive
which completes the proof of statement (iia).

Scenario (iib): Rmin
T > 1 and R0 > 1.

In this case, the unique positive ω-periodic solution (N i∗(t),Hi∗(t)) of
system (6) is globally asymptotically stable for each positive initial condition
(N i(0),Hi(0)) ∈ U(0) from Theorem 3. Since Ω2 is the omega limit set of
Poincaré solution map P̃ , there are two possible situations

Ω2 = {(N i∗(0),Hi∗(0))} or Ω2 = {(0, 0)}.

In what follows, we will rule out the second situation Ω2 = {(0, 0)}.
Assume, by contradiction, that Ω2 = {(0, 0)} for a positive initial condi-

tion (N i(0),Hi(0)) ∈ U(0). Then, Ω = {(L∗(0), N∗(0), A∗(0), 0, 0)} and the
solution of system (3) guarantees

lim
t→∞

((
L(t), N(t), A(t), N i(t),Hi(t))− (L∗(t), N∗(t), A∗(t), 0, 0

))
= 0. (10)

Due to R0 > 1, there exists a small ϵ > 0 such that the spectral radius of the
Poincaré map associated with the following linear system

dN
i

k(t)

dt
=[ln(1− ηk)

−1mL
k (t)β

L
k (t)(L

∗
k(t)− ϵ)− dNk (t)− µN

k (t)(N∗
k (t) + ϵ)

− βN
k (t)H∗

k(t)]N
i

k(t) + ζLkm
L
k (t)β

L
k (t)(L

∗
k(t)− ϵ)H

i

k(t),

dH
i

k(t)

dt
=ζHk β

N
k (t)H∗

k(t)N
i

k(t)− (dHk +
n∑

j=1,j ̸=k

mjk(t))H
i

k(t)

+

n∑
j=1,j ̸=k

mkj(t)H
i

j(t)

(11)
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with k = 1, 2, · · · , n is greater than one. From (10), there exists some t̃(ϵ) > 0
such that Lk(t) > L∗

k(t)− ϵ and Nk(t) < N∗
k (t)+ ϵ with k = 1, 2 · · · , n for any

t > t̃. For t > t̃, we have

dN i
k(t)

dt
≥ζLk mL

k (t)β
L
k (t)Hi

k(t)(L
∗
k(t)− ϵ) + (1− (1− ηk)

Ni
k(t)/H∗

k(t))
(
H∗

k(t)− ζLk Hi
k(t)

)
·mL

k (t)β
L
k (t)(L∗

k(t)− ϵ)− dNk (t)N i
k(t)− µN

k (t)(N∗
k (t) + ϵ)N i

k(t)

− βN
k (t)H∗

k(t)N
i
k(t),

dHi
k(t)

dt
=ζHk βN

k (t)(H∗
k(t)−Hi

k(t))N
i
k(t)− dHk Hi

k(t) +

n∑
j=1,j ̸=k

mjk(t)H
i
k(t)

+

n∑
j=1,j ̸=k

mkj(t)H
i
j(t)

with k = 1, 2, · · · , n. Since system (11) is unstable, by the similar argument
to Theorem 3 (ii), the following comparison system

dN
i
k(t)

dt
=ζLk mL

k (t)β
L
k (t)Hi

k(t)(L
∗
k(t)− ϵ) + (1− (1− ηk)

Ni
k(t)/H∗

k(t))
(
H∗

k(t)− ζLk Hi
k(t)

)
·mL

k (t)β
L
k (t)(L∗

k(t)− ϵ)− dNk (t)N i
k(t)− µN

k (t)(N∗
k (t) + ϵ)N i

k(t)

− βN
k (t)H∗

k (t)N
i
k(t),

dH
i
k(t)

dt
=ζHk βN

k (t)(H∗
k(t)−Hi

k(t))N
i
k(t)− dHk Hi

k(t) +
n∑

j=1,j ̸=k

mjk(t)H
i
k(t)

+
n∑

j=1,j ̸=k

mkj(t)H
i
j(t)

has a positive periodic solution

(N
i∗
(t), H

i∗
(t)) = (N

i∗
1 (t), · · · , N i∗

n (t),H
i∗
1 (t), · · · , Hi∗

n (t)).

The comparison principle implies that

lim
t→∞

inf((N i(t), Hi(t))− (N
i∗
(t), H

i∗
(t))) ≥ 0,

which contradicts to (10). Then we must haveΩ2 = {(N i∗(0), Hi∗(0))}, namely,
Ω = {(L∗(0), N∗(0), A∗(0), N i∗(0),Hi∗(0))}. Therefore, statement (iib) is valid.

The statements for the remaining scenarios (iiia) and (iiib) can be shown
by using similar approaches to (iia) and (iib). ⊓⊔

5 Numerical illustrations

In this section, we first perform simulations on model (1) with two patches
to verify theoretical results and explore the effects of migration on population
dynamics.

Some baseline parameter values are taken from existing literatures studying
the tick population growth and tick-borne pathogen transmission (Dunn et al.
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Table 2: Different parameter values of model (1) with 2 patches. Please note
that parameter values of ρk(t) and d

N
k (t) in k-th patch (k = 1, 2) are set to be

out of phase, which implies mortality rate of nymphs is high only sometimes
after the recruitment rate of larvae is high.

Parameter Patch 1 (k = 1) Patch 2 (k = 2)

ρk(t)
I 0.45− 0.1 cos( 2πt

365
)(day−1) 0.41− 0.1 cos( 2πt

365
)(day−1)

dNk (t)I 0.035− 0.02 sin( 2πt
365

)(day−1) 0.03− 0.01 sin( 2πt
365

)(day−1)

dHk 0.01(day−1) 0.03(day−1)
Dk 15 20

ζLk 0.5 0.25

ζNk 0.5 0.25

ζHk 0.5 0.3
Hk(0) 250 180

2013; Nonaka et al. 2010; Rosà et al. 2003; Rosà and Pugliese 2007), which are
summarized in Table 1. To distinguish two patches, different parameter values
are set to reflect the spatial and temporal heterogeneity in Table 2.

In Sections 3 and 4, the net reproduction number and basic reproduction
number for periodic ordinary differential systems are defined as the spectral
radius of operators on functional spaces. Theoretically, it is hard to derive the
analytic expressions for two reproduction numbers. In this section, numeri-
cal algorithms based on Theorem 2.1 in Wang and Zhao (2008) are used to
compute the reproduction numbers.

Under this scenario, the net reproduction number of tick populationRmin
T =

1.27 (R
(1)
T = 1.56 and R

(2)
T = 1.27) which guarantees tick population will be

persistent in both patches. Moreover, we can calculate the basic reproduction
number of tick-borne diseases for each patch without host migration. Fix the
probability of co-feeding transmission ηk = 0.04. For the first patch, the basic
reproduction number is R1

0 = 1.88 which is greater than 1 and then the disease
will remain persistent. For the second patch, the basic reproduction number
is R2

0 = 0.61 and the disease will die out without migration. The correspond-
ing numerical solutions are depicted in Fig. 2(a). However, when the hosts
are freely move between two patches with migration proportions m12(t) = 0.5
and m21(t) = 0.2, the basic reproduction number of tick-borne pathogen be-
comes to be greater than one, i.e., R0 = 1.43, indicating theoretically that the
tick-borne pathogen persists in both patches, which is confirmed by the Fig.
2(b). Therefore, in this scenario, host migration promotes persistence of the
pathogen transmission in a wider range. Furthermore, it is interesting to see
that the amplitudes of seasonal variations of infectious hosts become larger in
the first patch.

In order to explore the effects of host migrations, the relationship between
the basic reproduction number and host migration proportions (m12 orm21) is
investigated in Fig. 3(a). Fixingm21 = 0.2, we can see from the blue curve that
the basic reproduction number R0 is increasing with respect to m12, which
indicates that tick-borne pathogen will appear to be endemic in both patches
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Fig. 2: Solutions of infected host population in each patch. (a) Without host migration,
Hi

1(t) (red dashed line) approaches to a periodic solution and Hi
2(t) (blue solid line) tends

to zero in the left panel. (b) When hosts are allowed to move between patches, infected host
populations persist in both patches and approach to periodic solutions.

Fig. 3: The basic reproduction numbers R0 vary with the host migration proportions and
probability of co-feeding transmission. (a) The blue (red) curve shows the basic reproduction
number is increasing (decreasing) with respect to m12 ∈ [0, 1] (m21 ∈ [0, 1]) when m21 = 0.2
(m12 = 0.5), ηk = 0.04 and others parameters are fixed in Table 1 and Table 2. (b) The basic
reproduction number is increasing with respect to ηk ∈ [0, 1] when m12 = 0.15, m21 = 0.6
and others parameters are fixed in Table 1 and Table 2.
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Fig. 4: The contour plots of R0 depending on the host migration proportions m12, m21

with different co-feeding transmission probability (a) ηk = 0.04 and (b) ηk = 0.25 when the
other parameters are fixed in Table 1 and Table 2.

once the host migration proportion from patch 2 to 1 is greater than 0.12.
Then we set m12 = 0.5 and investigate the effect of host migration propor-
tion m21 on the basic reproduction number. The red curve shows that basic
reproduction number R0 is decreasing with the increasing of host migration
proportion m21. Furthermore, the influence of co-feeding transmission on the
basic reproduction number is illustrated in Fig. 3(b) when m12 = 0.15 and
m21 = 0.6 are fixed. From Fig. 3(b), the increasing of co-feeding transmission
makes a greater contribution to the spread of tick-borne diseases.

Fig. 4 presents contour plots for the basic reproduction number versus
the migration proportions m12,m21 ∈ [0, 1] when the co-feeding transmission
probabilities are ηk = 0.04 and ηk = 0.25 respectively. It is easy to observe that
the isolines move towards bottom right corner and dark red color area appears
in the upper left corner while the probability of co-feeding transmission ηk
increases from 0.04 to 0.25. From Fig. 4, we can see the parameter region
satisfying R0 > 1 becomes larger when co-feeding transmission probability
increases.

To better understand the effect of host migration on population persis-
tence and disease spreading, simulations for 9 patches, P1, P2, · · · , P9, are
performed. The movement rates are used to reflect the distributions of patches
and the relative distances among them. In this case, all movement rates are
set to be periodic. To reflect the variety of patches and generality of theo-
retical frameworks in this study, 9 patches are categorized into three classes:
5 patches (P1, P2, · · · , P5) with net reproduction number and basic repro-
duction number both greater than one, two patches (P6 and P7) with net
reproduction number more than one and basic reproduction number less than
one, and two patches (P8 and P9) with net reproduction number less than
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Fig. 5: The comparison of accumulated infected nymph density for model (3) in a year:
(a) 9 patches are isolated from each other; (b) host population can move freely among 9
patches.

one. Then there is no disease risk in patches P6 − P9 (see Fig. 5(a) for the
accumulated yearly amounts of infected nymphal ticks). When host species
are freely moving among 9 patches with parameters listed in the Appendix
Section, then accumulated yearly amounts of infected nymphal ticks for each
patch Pi, i = 1, 2, · · · , 9 can be simulated as Fig. 5(b) (also presented in the
Appendix Section). In this case, the basic reproduction number for the whole
9 patches is R0 = 2.05 which illustrates that tick-borne pathogen can spread.
However for the patches with net reproduction numbers smaller than one (P8

and P9), the pathogen transmission cycle is not established and there is no
disease risk. This confirms the results in Theorem 4. Migration can reduce
the severity of tick-borne diseases dramatically for some patches, such as the
first patch P1 where the accumulated infected nymph number decreases from
3.5098 × 105 to 5.694 × 104. At the same time, migration may facilitate the
establishment of pathogen spreading in those patches with the patch basic
reproduction number smaller than one, such as P6 and P7. However, since the
net reproduction numbers for P8 and P9 are both less than one, the pathogen
fails to persist even with the help of infected host species migration. The last
column of Table 6 in the Appendix Section lists the comparison of accumu-
lated yearly nymphal ticks and infected nymphal ticks across 9 patches for
Fig. 5(a) and (b), each corresponding to with and without host migration.

6 Discussions

Habitat fragmentation, a process of slowly altering the layout of the physical
environment, may cause serious consequences on population dynamics. The
current study evaluates the effect of spatial heterogeneity and host spatial
movement on tick-borne pathogen transmission. In addition to that, seasonal
factors on tick growth and co-feeding transmission factor are incorporated.
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Since the range tick population moves by itself is limited, the model is to
uncover the relationship between rodent population dispersal and the spread
of tick-borne diseases.

Unlike existing models involving many variables, this paper proposes a
periodic tick-borne disease model with less variables in the consideration of
patchy environment and co-feeding transmissions. Based on feeding behaviour
of tick population, ticks are stratified into three stages: larvae, nymphs and
adults. In modeling the co-feeding transmission, nymphs are assumed to obey
uniform distribution on rodent population at time t. The global dynamics of
tick population in each patch can be characterized by the net reproduction
numbers Rmax

T and Rmin
T which can guarantee that tick-free equilibrium and

the unique ω-periodic solution with n patches are globally asymptotically sta-
ble, respectively. Furthermore, the basic reproduction number of tick-borne
disease R0 is derived and the tick-borne disease transmission pattern is inves-
tigated through the theory of monotone dynamics systems. Further numerical
simulations are performed to show that rodent migration can promote the
disease spreading among all patches. This interesting result inspires us that
migration restriction of host population among multiple patches can be used
to control the breakout and spread of tick-borne disease.

Co-feeding transmission is another key factor which may make a significant
contribution to the pathogen spread. The co-feeding transmission incidence
term is formulated in the current model (1) by a uniform distribution assump-
tion, that is, feeding nymphal ticks are supposed to distribute evenly on all
rodents. The term of the probability of co-feeding transmission in tick-borne
disease model (1) should be reformulated with other distribution assumptions,
which will be our future work.

Another interesting aspect worthy to be investigated is the host immune
response in the tick-borne disease transmission cycle. First, the host immune
response to tick infestation may regulate the tick population dynamics. Many
interesting models have been formulated to include the effect of this density-
dependent aspect, for example, the models in Fan, Thieme and Zhu (2015)
and Rosà et al. (2003). This would be especially important to evaluate the
effect of co-feeding since when many ticks are biting a single host, the density-
dependent death of ticks due to host grooming should be counted. The cur-
rent paper incorporates the host immunity to tick biting by density-dependent
death rates of ticks. However, other types of self-regulations due to host im-
munity may be possible. Moreover, existing studies show that various types
of host immune effector mechanisms could be induced by tick-borne pathogen
(Torina et al. 2020). It would be interesting to include the effect of host im-
mune response to infection with tick-transmitted pathogen in model formu-
lation. However the modeling process involves careful biological justifications,
and possible immunological- and epidemiological- modeling frameworks can
be used.
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Table 3: Different parameter values of model (1) with 9 patches.

Patch ρk ηLk βL
k βN

k Hk(0)
P1 0.6− 0.04 cos(2πt/365) 0.45 0.0015 0.0015 230
P2 0.51− 0.06 cos(2πt/365) 0.35 0.0012 0.0012 250
P3 0.46− 0.1 cos(2πt/365) 0.4 0.0009 0.0009 220
P4 0.43− 0.1 cos(2πt/365) 0.28 0.00087 0.00087 250
P5 0.45− 0.1 cos(2πt/365) 0.3 0.0012 0.0012 230
P6 0.38− 0.1 cos(2πt/365) 0.32 0.00039 0.00039 230
P7 0.42− 0.05 cos(2πt/365) 0.2 0.0006 0.0006 200
P8 0.21− 0.05 cos(2πt/365) 0.1 0.0009 0.0009 180
P9 0.25− 0.05 cos(2πt/365) 0.05 0.00045 0.00045 200
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Appendix

We show parameter values used in Fig.5, including recruitment rates of lar-
val ticks ρk, probability of co-feeding transmission ηk, systemic transmission
probability between infected rodents and susceptible larvae ζLk and between
susceptible rodents and infected nymphs ζHk , and initial rodent densities Hk(0)
in Table 3. Host migration proportions from patch j to patch k take the form

mkj(t) = (m
(1)
kj m

(2)
kj )(1 cos(2πt/365))T , j, k = 1, 2, · · · , 9. Table 4 lists all the

components m
(1)
kj and m

(2)
kj of host migration proportions. Other parameters

among the 9 patches are fixed at the same values as follows:

dLk = 0.01, dNk =

{
0.03− 0.01 sin(2πt/365), k = 1, 2, 3, 4,
0.02− 0.01 sin(2πt/365), k = 5, 6, 7, 8, 9,

dAk = 0.00625, dHk = 0.01, µL
k = µN

k = µA
k = 0.00001,

ζLk = 0.5, ζNk = 0.5, ζHk = 0.57,

mL
k = 0.35, mN

k = 0.1, Dk = 20.

Without migration, we calculate the net reproduction numbers, the basic
reproduction numbers and accumulated infected nymphal densities in one year
for each patch k, k = 1, 2, · · · , 9 and list them in Table 5. When host migration
is considered, the added numbers of accumulated yearly nymphal ticks and
infected nymphal ticks across 9 patches are summarized in Table 6.
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Table 4: Parameter values of host migration proportion (m
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−0.05

) (
0.29
−0.1
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Table 5: Net reproduction numbers and basic reproduction numbers for 9
patches.

P1 P2 P3 P4 P5 P6 P7 P8 P9

RT 2.12 1.83 1.61 1.44 1.48 1.34 1.34 0.65 0.86

R0 2.47 1.92 1.64 1.36 1.8 0.88 0.95 not defined not defined

Table 6: Accumulated yearly nymphal ticks (AYNT) and accumulated yearly
infected nymphal ticks (AYINT) with and without migration, and their com-
parisons for 9 patches (×105).

Without migration With migration Comparisons

AYNT AYINT AYNT AYINT AYNT AYINT

P1 3.6599 3.5098 0.5973 0.5694 −3.0626 −2.9404

P2 2.3746 1.7109 2.4389 1.8927 0.0643 0.1818

P3 1.7637 1.1409 1.7451 0.8656 −0.0186 −0.2753

P4 1.0794 0.2164 0.8644 0.0773 −0.2150 −0.1391

P5 1.2771 0.6064 1.0947 0.4834 −0.1824 −0.1230

P6 0.8382 0.0000 0.8194 0.1034 −0.0188 0.1034

P7 0.9296 0.0000 0.8208 0.1261 −0.1088 0.1261

P8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

P9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Total number 11.9225 7.1844 8.3806 4.1179 −3.5419 −3.0665
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