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Ball Bonding Inspections using a Conjoint

Framework with Machine Learning and

Human Judgement

Kit Yan Chan, Ka Fai Cedric Yiu, Hak-Keung Lam, Bert Wei Wong,

Abstract5

Ball bonding inspections with human vision are essential in manufacturing processes of

semiconductors devices and integrated circuits (ICs). The inspections are an intensive task

which involves human labors to detect poor bonds. Prolonged visual inspections cause poor

inspection integrity due to eye-fatigue. However, inspections nowadays are mostly conducted

manually by humans which cannot satisfy the demanding productions. Motivated by the10

extraordinary performance of machine learning for manufacturing inspections, a detection

framework integrated with machine learning and human judgement is proposed to aid bond-

ing inspections based on visual images. The detection framework is incorporated with the

convolution neural network (CNN), support vector machine (SVM) and circle hough trans-

form algorithm (CHT); human judgement is only used when the detection uncertainty is15

below the threshold. The novel machine learning integration is proposed on the detection

framework to improve the generalization capabilities. The CNN architecture is redeveloped

by incorporating with the SVM which is generally more effective than the fully connected

network in the classical CNN. Also a novel training function is proposed based on the CHT to

ensure the inspection reliability; the function not only takes into account real image captures,20

but also locates important features using pattern analysis of the ball bondings. Experimental

results show that significantly better classifications can be achieved by the proposed framework
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compared with the classical CNN and other commonly used classifiers. Only the machine

learning determinations below the threshold are reassessed by human judgements.

Index Terms25

Machine learning, human judgement, threshold detection, manufacturing of electronic

products, manufacturing inspection, ball bonding.

I. Introduction

Modern semiconductor device assembly and interconnection technologies, known

as electronic packaging, provide housing and interconnection of integrated circuits to30

manufacture electronic products. Electronic packaging, such as die attach, is the heart of

electronic products involved with microcontrollers, light-emitting diode (LED) products,

microchips and integrated circuits. Die attach is a cost-effective and flexible interconnect

technology to develop electrical interconnections between electronic systems in semicon-

ductor products. Interconnections can be used for system levels of printed circuit boards35

such as providing connections to small electronic devices. Since electronic appliances

require increased reliability and performance at smaller sizes, increasingly precise of ball

bondings is essential to connect many small components onto a small printed circuit

board. Inspection of ball bonding conditions is critical since the bondings with poor

conditions cannot be reproducible. The inspection attempts to detect whether the ball40

bonding conditions are satisfactory.

Assume that a ball bonding machine produces 20 bonds per seconds and we have 100

machines in the manufacturing line [1]. When all machines are operated for 24 hours,

172,800,000 bonds are produced everyday and all bonds are required to be inspected.

However, the inspections are mostly conducted manually by humans with the aid of45

microscopes [2]. As human inspections are time consuming and expensive, only a small

sample is taken from a manufacturing batch. Also, the inspections are prone to error

due to eye fatigue after prolonged working hours. The inspections are unreliable due to

susceptible errors which reduce manufacturing efficiency. As human inspections cannot

satisfy the massive productions of electronic appliances, commercial vision inspection50

systems are developed based on 2-D images captured for ball bonding processes [3]. The

vision inspection system first locates bonding ball positions in order to trace and inspect
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the ball bonding conditions. To detect bonding balls, the pattern matching method is

used by comparing the captured image patterns with a set of collected bonding samples

[3]. However, long computational time and an extra database is required to track and55

locate image data.

Despite using the pattern matching, circle hough transforms (CHT) can be used to

detect bond balls in digital images [4], [5]. In the CHT, the potential centers of circle

patterns are nominated, and the patterns with high votes are elected as the existing

circles [6]. CHTs have also been used for other electronic packaging inspections such60

as solder joints [7], [8] and solder pastes [9]–[11]. Although the CHT is simple and

involves only a few algorithmic steps, the CHT requires large memory storage since

a 4-D parameter space is used to vote circle patterns with different radius [12]. Also,

misclassification is likely to be generated when irregular patterns are captured. For

example, Fig. 1 shows four ball bonding patterns, where bond balls exist in Fig. 1a and65

1b and bond ball is not in Fig. 1c and 1d . The CHT is likely to detect correct circle

patterns in Fig. 1a and 1b but it mistakenly detects a circle pattern in Fig. 1d which

exists a small hole and is actually a manufacturing defect. A wire is supposed to be

bonded in the small hole in Fig. 1d but does not exist. A wrong inspection is caused.

In this paper, a detection framework integrated with machine learning and human70

judgement is proposed to provide more robust and reliable detections for ball bondings.

The detection framework is incorporated with human judgement and machine learning;

human judgement is only used when the detection uncertainty generated by the machine

learning is below the threshold. The convolutional neural network (CNN) [13] is pro-

posed to be the framework backbone since the CNN has the extraordinary performance75

for many pattern recognition applications [14] such as solder joint inspection of surface

mount [15], quality monitoring of grain products [16], detecting defect in gas pipeline

[17], scene understanding [18], crack patterns in tunnels [19], human actions [20] and

ECG features [21]. The CNNs use the entire images to perform detections while classical

classifiers only use a few image features. Hence, more robust and reliable detections80

are likely to be performed by the detection framework.

To further improve the generalization capabilities of the proposed detection frame-

work, two strategies are proposed. First, a novel training function is proposed to develop

the CNN. Unlike classical CNNs which only optimize the loss function which counts the
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correct estimates, the proposed training function is integrated with a penalty term which85

takes into account the similarities of image features of ball bondings. When images

with similar features are given to the CNN but different estimates are generated, some

estimates are likely to be incorrect and the CNN penalizes itself through the training.

The image features are measured by the CHT which is commonly used for ball bonding

inspections [4], [5]. These image features are guaranteed to train the CNN, while the90

classical training only involves the full image and the image features may not be used

for training. Second, the CNN configuration is redeveloped to achieve more robust

classifications. Unlike the classical CNN configuration which uses a fully connected

neural network in the last layer, the SVM is used in the last layer. The proposed

configuration uses the features generated at the last CNN layer as the inputs of the SVM.95

The SVM is generally more effective for binary classifications or diagnosis compared

to the fully connected neural networks or statistical regression models. The classical

CNN configuration is ineffective for binary classifications such as handwritten digit

recognition [22], target detection at radar images [23], animal classification [24], when

comparing to the configuration which uses SVM in the last layer. Since the proposed100

configuration is incorporated with the SVM, better generalization capabilities are likely

to be obtained by the proposed detection framework.

The performance of the proposed detection framework is evaluated by a set of bond-

ing images which are captured by the ball bonding machines. Experimental results

shows that the proposed CNN achieved significantly better classifications, compared105

with the classical CNN and the other commonly used approaches for binary classifi-

cation including logistic regression, SVM and decision tree. Analytical discussions are

given to support why better classification results can be obtained. Also the experimental

results show that only the machine learning determinations below the threshold are nec-

essary to be reassessed by human judgements when the proposed detection framework110

is used.

The main contribution of this article is summarized as follows:

1) A semi-automatical framework is developed to perform die bonding detections.

The detections are mostly conducted by the proposed novel CNN in the frame-

work. Only the detections which are below the threshold are reassessed by human115

judgements. The framework attempts to reduce human resources to perform man-
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(a) (b) (c) (d)

Figure 1: IC chip with bonding ball on the base material

ual detection. Also detection accuracies can be improved when this framework is

implemented.

2) The detection framework is incorporated with the CNN, SVM and circle hough

transform algorithm. The framework attempts to enhance the detection accuracies120

of the commonly used detection algorithms and the CNN which is effective to

perform pattern detection and recognition. Also experimental results demonstrate

more accurate detection can be achieved by the proposed framework.

II. Ball bonding inspection

Fig. 2 shows the IC chip with ball bondings and it also shows the bonding conditions in125

the left hand side, where the bond balls are captured by green circles; the ball bondings

in good conditions are captured by blue squares; and the poor ball bonding with a short

circuit is captured by a red square. In order to trace the wire and inspect the bonding

conditions, the computational algorithm first locates positions of bonding balls [3], [25].

The algorithm starts from the located bonding balls to trace the wires. It detects the130

short circuit between the wire pair which is captured by the red square in the figure.

The algorithm also checks whether shift exists in the ball position since slight shift may

cause an electric short between two adjacent pads.

To locate the bond balls, the circle hough transform (CHT) can be used [6], where the

CHT have also been used in inspections of solder joints [7], [8], solder pastes [9], [10]135

and wire bonding [4], [5]. When a bond ball with a circle radius is required to be located,

the CHT determines the center of a potential circle by “voting” each pixel of the image

and then the CHT elects the pixel with the maximum vote as the determined center.

When the image, M, is given, the CHT algorithm in Algorithm II, namely CHT(M, R, τ),

computes the likelihoods hR+k with k = 0, 1, .., τ such that circle with radius, R + k,140
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Figure 2: IC chip with ball bondings on the base material

exists in M; R, R + 1,...and R + τ are the typical bonding ball radius; All hR+k are

determined by the CHT features, which are recently used to determine bold balls [7],

[8], [10]; CHT(M, R, τ) attempts to find circle candidates in a digital image where each

candidate is formulated by a center, (cx, cy), and a particular radius, r, in (1). The circle

candidates are produced by “voting” the Hough space and the best candidate is selected145

with a maximum voting.

(x− cx)
2 + (y− cy)

2 = r2 (1)

Fig. 3 shows the image patterns for the ball bonding and also their corresponding

CHT features. Fig. 3a and 3b show the images with one and two bond balls, and 3c

and 3d show their corresponding CHT patterns respectively. Fig. 3c shows clearly that

the brightest point is the bond ball center which is given in Fig. 3a. Also Fig. 3d shows150

two brightest points which are likely to be the two bond ball centers in Fig. 3b. These

two examples show that bond ball centers can be correctly detected by the CHT. For the

images carrying no bond ball, Fig. 3e and 3f are shown and also their corresponding

CHT features are shown in Fig. 3g and 3h. Fig. 3e shows a clear image without a bond
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Algorithm 1 Circle hough transform algorithm (CHT)

1: procedure CHT(M, R, τ) . M is the image
2: . Required radius: R to R + τ
3: Convert M to gray scale
4: Detect edges on the gray M by Canny operator
5: A[x, y]← 0 . Setting all A[x, y] to 0
6: . (x, y) are the pixels in M(i)

7: for r = R to (R + τ) do
8: for ∀(x, y) in M do
9: for t = 0 to 2π do . angle from 0 to 2π

10: cx=x–r ∗ cos(t)
11: cy=y–r ∗ sin(t)
12: . polar coordinate for r and t
13: A[cx, cy] + +
14: . voting by adding A[cx, cy] by 1
15: hi,r = max

∀cx,cy
(A[cx, cy]) . Maximum value in A

16: return (hi,R, hi,R+1, ..., hi,R+τ)

and no bright point exists in the corresponding CHT feature in Fig. 3g. Hence, correct155

detection can be generated by the CHT. Fig. 3f shows an uncompleted ball bonding.

These irregular patterns cause inappropriate CHT analysis, where bright points exist

in the corresponding CHT features in Fig. 3h. Therefore, an incorrect detection can be

generated when ones use these CHT features for the detection. Despite this limitation,

CHT requires large storage for hough features and the computational complexity is160

high as the transformation requires 4-D parameter spacing [11].

III. Proposed detection framework

This section discusses the proposed detection framework illustrated in Figure 4, which is

incorporated with the CHT, the machine learning algorithm namely convolution neural

network (CNN) and the human judgement. In the proposed framework, a set of ball165

bonding images are captured from the ball bonding machine. Human is employed to

classify the images with either bonds or no bond manually. Pattern labels are marked

for the images to indicate whether the bond exists or not. Those labeled images are

included in the database and are used to trained the CNN. Since the CNN is trained by

the human selected data, the CNN simulates the human decision for detecting bonds.170

Also, the CNN is incorporated with both the SVM and the CHT of which the CHT fully
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(a) Image with a bond (b) Image with two bonds

(c) CHT with a bond (d) CHT with two bonds

(e) Image with no bond (f) Image with no bond

(g) CHT with no bond (h) CHT with no bond

Figure 3: Hough transforms for ball bonding images

depends on the bond features to perform the detection. The incorporation overcomes

the limitations of training the CNN that some bonding features are not fully included

in the training data, and also the CNN achieves more robust and reliable detections

since the SVM is incorporated.175

After the CNN is trained, the CNN can be used to detect whether a bond exists when

a newly image is given. The CNN generates a bond factor namely “bond f actor” which

indicates whether a bond exists or not. If “bond f actor” is a positive value, the bond
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Figure 4: The proposed detection framework

exists; otherwise, if “bond f actor” is negative, the bond does not exist. “bond threshold”

and “nobond threshold” are the thresholds to indicate whether the CNN determination180

is certain. If “bond f actor” is larger than “bond threshold” or “|bond f actor|” is larger

than “nobond threshold”, the CNN determination is certain. Otherwise the CNN deter-

mination is not certain; Human is employed to perform the final judgement manually.

Our experimental results in Section IV show that the absolute values of the bond factors

are generally higher than the thresholds, human is barely necessary to perform the final185

judgements. Hence, this framework is able to save the human resources to manually

detect and also enhance the commonly used approach, CHT, which is fully relied on

image features to detect.
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Figure 5: CNN for bonding ball detection

Section III-A discusses the CNN backbone for ball bonding detection. In Sections III-B

and III-C, two strategies are proposed to improve the generalization capabilities. Section190

III-B discusses the proposed training function which takes into account the similarities

between image patterns. Based on the similarities, more information of bond patterns

can be used to train the CNN and better generalization capabilities are more likely to

be obtained. Section III-C discusses the proposed CNN architecture which is integrated

with the SVM. The proposed architecture attempts to further improve the generalization195

capability.

A. CNN backbone for ball bonding detection

For bonding ball detections, the CNN in Fig. 5is used as a classifier f CNN : M → d̂,

where M is the image pattern given to the CNN and d̂ is the predicted pattern label

which is either +1 or −1. If d̂ = +1, a bonding ball is detected in M. Otherwise, if200

d̂ = −1, no bonding ball is detected. In f CNN, M is preprocessed by downsampling

from a high resolution to low resolution and also the edge detection is performed on

the downsampled M. The number of pixels of the preprocessed image is less than that

of the original image. Also the edges attempt to cover the important image features.

Hence, much less memory is required to develop the CNN. Based on the experiments,205

we found that there is no significant difference when using the preprocessed or the

original images to train the CNN. After preprocessed the M, f CNN has an alternate

pattern transformation which consists of convolution and pooling.
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The convolution of layer l is computed as,

sl
j = ϕ

(
∑
alli

sl−1
i ∗ wl

ij + bl
j

)
(2)

where ” ∗ ” denotes the convolutional operation; sl−1
i and sl

j are the ith and jth neurons210

at layers l − 1 and l respectively; sl−1
i and sl

j are the square matrices which cover the

square regions in layers l− 1 and l; wl
ij are the kernel weights between sl

j and sl−1
i ; bl

j is

the bias for sl
j, and ϕ(x) is the activation function. As each sl

j at layer l is convolved from

all sl−1
i in layer l − 1, the convolutional layer can be used to detect local combinations

of features from the previous layer. ϕ(x) can learn nonlinear combinations of all sl−1
i in215

the previous layer. In f CNN, ϕ(x) is the sigmoid transformation of the maximum sum

of x.

Following the convolution, pooling is performed in each convoluted nervous, sl
j. Here

max-pooling is adopted, since it eliminates nonmaximal values in the convolution layer

in order to reduce computation. Also it generates translation invariance and captures220

the more robust features for all sl
j. Based on sl

j, the max-pooling operation is computed

as

pooling(sl
j(m)) = max

x∈sl
j(m)

(x) (3)

where x is an element within a region of sl
j(m). The processes of convolution and pooling

continue until the image features reach the last layer which is a fully connected neural

network. The output of the last layer consists of two neurons which classify whether225

bonding balls exist in image patterns. A bonding ball is detected and +1 is generated

by f CNN when the ’With bond’ value is higher. Otherwise, no bonding ball is detected

when the ’Without bond’ value is higher. f CNN generates −1.

B. Proposed training function and Circle hough transform

f CNN is developed based on a set of collected ball bonding images with pattern labels230

(M(1), d(1)), ..., (M(P), d(P)), where M(k) is the kth image pattern of the chip with ball

bonding; d(k) is either +1 or −1. When d(k) = +1, a bonding ball is detected in M(k).

When d(k) = −1, no bonding ball is detected in M(k). Generally, a CNN is optimized
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by the back propagation algorithm with respect to the mean square error function

in (4). Unlike the mean absolute error which is not differentiable, the mean square235

error function is involved with the square term which is differentiable. Hence, the back

propagation can be used to determine the network weights. Also the mean square error

function attempts to eliminate the predictions with high errors, since the high errors

between the predictions and actual observations dominate the function value when the

square operation is used on each error.240

MSE(α) =
1
P

P

∑
i=1

(di − f CNN(M(i), α))2 (4)

where α = {wl
ij, bl

j, θ} consists of all CNN parameters, namely network weight wl
ij,

network bias bl
j, and the parameters of the fully connected neural network, θ. There is

a potential limitation, when (4) is used to train the CNN. The CNN training is fully

relied on M(i) and does not use the CHT features which are commonly used to detect

circle patterns [6]. To overcome this limitation, a novel training function (5), is proposed245

by integrating the CHT features as the penalty,

RMSE(α) = λ
( 1

P

P

∑
i=1

(di − f CNN(M(i), α)2
)

+
P

∑
i,j=1
i 6=j

ai,j( f CNN(M(i), α)− f CNN(M(j), α))2
(5)

In (5), the first term is the product of MSE(α) in (4) and a large factor, λ. The first

term forces f CNN(M(i), α) to agree with M(i). The second term is the graph Laplacian

regularization, which incurs a penalty when the patterns of M(i) and M(j) are similar250

but their predictions are different, i.e. f CNN(M(i), α) 6= f CNN(M(j), α). ai,j indicates the

similarity between M(i) and M(j) which is computed based on the CHT features. When

ai,j is large, M(i) is similar to M(j). When ai,j is small, M(i) is very different to M(i).

When M(i) and M(j) are similar, this is unlikely that f CNN(M(i), α) 6= f CNN(M(j), α).

Hence, the prediction is likely to be incorrect and a penalty is added to (5). The penalty255

is related to the value of ai,j. When ai,j is larger and f CNN(M(i), α) 6= f CNN(M(j), α), the
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prediction is very likely to be incorrect. Hence, large penalty is imposed to (5). As the

CNN attempts to determine whether circle bonding balls exist in the image patterns,

ai,j is computed by (6) which indicates the correlation regarding the CHT features in

M(i) and M(j). ai,j is high when similar CHT features exist in M(i) and M(j). Otherwise,260

ai,j is low.

ai,j = C−
∑τ

k=0

(
hi,R+k − hj,R+k

)
τ + 1

(6)

where hi,R+k and hj,R+k indicate the likelihoods that circles with radius, R + k, exist

in M(i) and M(j); R, R + 1,...and R + τ are the typical bonding ball radius; C value is

defined based on the values of all hi,R+k and hj,R+k. C ensures that all ai,j > 0. All hi,R+k

and hj,R+k are determined by the CHT features, which are recently used to determine265

bold balls [7], [8], [10]; The CHT algorithm attempts to find circle candidates in a digital

image where each candidate is formulated by a center, (cx, cy), and a particular radius,

r, in 7. The circle candidates are produced by “voting” the Hough space and the best

candidate is selected with a maximum voting. The CHT algorithm is given in Algorithm

2, namely CHT(M(i), R, τ), which computes hi,R+k with k = 0, 1, .., τ when an image,270

M(i), is given.

(x− cx)
2 + (y− cy)

2 = r2 (7)

Algorithm 2 computed the correlations, aij in (6), for the four image patterns given in

Fig. 3 which consists of two images with bonding balls and two images with no bond.

aij are given in the following correlation matrix for the four images. We can see that the

correlations between bonds and those between no bond are generally larger than those275

of the mutual ones. Hence, a penalty is imposed in (5) when image patterns with high



XXXXX 14

Figure 6: Architecture of the proposed CNN for bond detection

correlations are predicted as nonidentical.

no no

bond bond bond bond


bond 1.3596 0.8025 0.3888 0.2373

bond 0.8025 1.3596 0.1050 0.3594

no bond 0.3888 0.1050 1.3596 0.9996

no bond 0.2373 0.3594 0.9996 1.3596

C. Proposed CNN architecture

Fig. 5 shows that a classical CNN consists of two parts, layers with convolutions and

poolings and a fully connected neural network, where the layers with convolutions280

and poolings extract important image features and the fully connected neural network

determines whether bonding balls exist on the image patterns. In the proposed CNN,

the fully connected neural network is replaced by the SVM [26] which achieves higher

generalizations in binary classifications than the fully connected neural network [22]–

[24]. After the CNN is trained with (6), the image features generated at the last layer285

with convolution and pooling is used as the inputs of the SVM. The proposed CNN

is illustrated in Fig. 6, where the fully connected neural network is replaced with the

SVM [26] in order to detect whether bonding balls exist. In the SVM, existing of the

bonding ball is classified by a hyperplane given in (8) and a bond factor ,“bond f actor”

is generated to determine whether the bond exists. If “bond f actor < 0” , the bond290

exists; otherwise the bond does not exist.
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if bonding balls exist, bond f actor = f PCNN(x̄i) = w̄ ·Φ(x̄i) + β ≥ 0 and di = +1;

if no bonding ball, bond f actor = f PCNN(x̄i) = w̄ ·Φ(x̄i) + β ≤ 0 and di = −1

(8)

where w̄ is the SVM weight vector; Φ(..) is a feature-space transformation; x̄i is the vector

of the bonding ball features generated by the last CNN layer; x̄i is corresponding to the

image pattern M(i); FPCNN(x̄i) is the outcome of the proposed CNN; when bond f actor

is positive, the bond ball is detected; when bond f actor is negative, no bond ball is295

detected; The dimensions of both w̄ and x̄i are the same. β is the SVM bias. (8) can be

reformulated as the following Lagrange multiplier (9).

L(w̄, β) =
1
2
||w̄||2 −

P

∑
i=1

CSVM · ((di · (w̄ ·Φ(x̄i) + β))− 1) (9)

where CSVM is a positive constant which ensures all di have to be classified correctly

within a certain margin. (9) can be solved by the derivatives of L(w̄, β) with respect

to w̄ and β. The details of solving (9) can be referred to [26]. After determined w̄ and300

β, the hyperplane (8) can be used to determined whether a bonding ball exists when

the image features are given. In Figure 4, the two thresholds, “bond threshold” and

“inbond threshold”, are determined based on the correct detection of f PCNN for the

images with bonds and no bond respectively. The thresholds are defined in (10) based

on the certain proportion of correct detections namely γ, which are nearest to the SVM305

hyperplane.

bond threshold = f PCNN(x̄i), with f PCNN(x̄i) > f PCNN(x̄j) and j = 1, 2, ..., round(P+ × γ)

nobond threshold == f PCNN(x̄i), with f PCNN(x̄i) < f PCNN(x̄j) and j = 1, 2, ..., round(P− × γ)

(10)

where P+ and P− are the numbers of data with bonds and no bond respectively.

IV. Performance evaluations for the proposed framework
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Algorithm 2 Circle hough transform algorithm (CHT)

1: procedure CHT(M(i), R, τ) . M(i) is the image
2: . Required radius: R to R + τ
3: Convert M(i) to gray scale
4: Detect edges on the gray M(i) by Canny operator
5: A[x, y]← 0 . Setting all A[x, y] to 0
6: . (x, y) are the pixels in M(i)

7: for r = R to (R + τ) do
8: for ∀(x, y) in M(i) do
9: for t = 0 to 2π do . angle from 0 to 2π

10: cx=x–r ∗ cos(t)
11: cy=y–r ∗ sin(t)
12: . polar coordinate for r and t
13: A[cx, cy] + +
14: . voting by adding A[cx, cy] by 1
15: hi,r = max

∀cx,cy
(A[cx, cy]) . Maximum value in A

16: return (hi,R, hi,R+1, ..., hi,R+τ)

A. Image patterns of ball bonding and experimental setup

In this section, we evaluated the generalization capability of the proposed CNN, namely310

CNN-Hough-SVM, when performing bonding ball detections, where the CNN-Hough-

SVM is in the proposed framework illustrated in Fig. 4 The CNN-Hough-SVM is in-

tegrated with the training function (5) in Section III-B and the SVM mechanism in

Section III-C. The image patterns were collected from the ball bonding machines which

are installed with a high resolution camera. Copper wires are used as the material315

for ball bonding interconnects, where the copper can be developed as a fine bonding in

sizes up to the 0.003 inch (75 micrometers). We have collected 494 image patterns where

bonding balls exist in 384 image patterns and 110 image patterns carry no bonding balls.

The images are 24 bit depth in the bitmap format, which can represent more than 16

million unique colors and is enough for humans to distinguish whether bonding balls320

exist. The collected images have the resolutions between 129× 210 pixels to 129× 283

pixels. Based on the collected patterns, the CNN-Hough-SVM are developed. We have

also evaluated another proposed CNN, namely CNN-Hough, which is integrated with

the proposed training function (5). SVM is used in the last layer of CNN-Hough-SVM

and the fully connected neural network is used in the last layer of CNN-Hough. This325
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comparison attempts to evaluate the classification performances when the proposed

training function (5) is used but different mechanisms are used in the last layer.

The manufacturing company supporting this research collected the images which

are used for developing the CNNs. The samples are included with both regular and

irregular images. The irregular images were particularly collected in order to evaluate330

the classification performance, where the irregular images were captured by numer-

ous bonding machines. The images were captured on a bonding machine which was

performing the bonding operations. Light flashes were performed when capturing the

images. The regular images are captured, when the lighting conditions are satisfactory.

The irregular images were particularly collected, when the unsatisfactory lighting are335

accidentally flashed. Also some of the irregular images are included with defects. The

irregular images are more challenging to be recognized correctly by the CNN. Among

all 494 images, 69 irregular images are included, where 24 of those are involved with

bonding and 45 of those have no bond. Since the total number of image patterns are

limited, we have generated extra image patterns by performing data augmentation. We340

have used the ImageDataGenerator function in python tensorflow, in order to generate

9 extra images from each collected image by angle rotations. Hence we have created

4446 images (i.e. 9×494)and have used 4940 (i.e. 10×494) to generate the classifiers.

Despite the proposed methods, we have also evaluated the performance of the classical

CNN, namely CNN-FCN which is identical to the CNN mechanism in Fig. 5. CNN-345

FCN is identical to the proposed CNN-Hough except that different training function is

used, where (4) is used in CNN-FCN and (5) is used in CNN-Hough. (4) is similar to

(5) except that the penalty term in (5) is omitted in (4). This comparison attempts to

evaluate the effectiveness of the proposed penalty function. Table I shows the parameters

used in the three CNNs. The parameters of the CNNs were determined based on the350

default values used in the tool developed by [27]. Based on the default values, we

tested the CNN for several times until no significant improvement can be achieved.

The classification performances of the three CNNs were evaluated when long and

short training time was used. For the long training time, 4000 epochs were used on

the three CNNs namely CNN-FNN-4000, CNN-Hough-4000 and CNN-Hough-SVM-355

4000. For the shorter training, 400 epochs were used for CNN-FNN-400, CNN-Hough-

400 and CNN-Hough-SVM-400. We have also compared the results obtained by the
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Table I: CNN parameters used in CNN-FCN, CNN-SVM-Hough and CNN-Hough

CNN Parameters Settings
Kernel size of the 1st and 2nd convolution layers 5× 5
Kernel size of the 1st and 2nd pooling layers 2× 2
Number of kernels in the 1st convolution layer 12
Number of kernels in the 2nd convolution layer 8
Number of features in the image feature layer 16
Number of hidden nodes in the CNN-FCN 128
Initial learning rate of the backpropagation 0.01

three commonly used classifiers namely, logistic regression (LR) [28], support vector

machine (SVM) [29], and decision tree (DT) [30]. The matlab version of LR, SVM and

DT has been implemented. To further compare the performance of the proposed CNNs,360

we have implemented the XGBoost python version of boosted tree algorithm (BT).1

The CHT values of the typical bonding ball radius were used as the input features

of the classifiers, where the typical bonding ball radius are 17 to 21 pixels of the

captured images. These classifiers are considered since they are commonly used for

classifications when numerical features are used. Also the CHT values are commonly365

used for identifying bonding balls or soldering patterns in electronic packaging [3], [8],

[10]. Based on this comparison, the generalization capabilities of the proposed methods

can be further validated. All the algorithms were implemented in MatlabR2017a and the

scripts were developed in Matlab codes based on [27]. The algorithms were executed by

a P510 Xeon E5-1630 v4 machine with 32GB memory and two xGTX1080 GPU cards.370

B. Ball bonding detection with CNN

This section presents the detection results of the proposed framework of which the

CNN is only used and the human judgement is not involved. The performance of the

proposed CNNs is evaluated. Cross-validations were performed to evaluate the fitting

and generalization capabilities of the proposed CNN-Hough and CNN-Hough-SVM,375

and the other tested classifiers. Since different classifiers are generated when different

training datasets are used, more than one cross validation are used to evaluate the

overall performance of the classifiers. In this experimental study, 30 cross validations

1XGBoost Documentation: https:xgboost.readthedocs.io
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were performed to develop the classifiers. Among the 4940 image patterns, 3940 image

patterns were randomly selected as the training dataset and the rest 1000 image patterns380

were used as the test dataset to evaluate the generalization capability of the trained

classifiers. In the training dataset, 3000 image patterns were randomly selected and

were used to develop the classifiers, and the rest 940 image patterns were used for the

validations in order to avoid overtraining. The cross validation is used, since the number

of collected images is limited. The cross validation attempts to maximize the use of the385

collected images for training and testing the classifiers. It assesses the generalization

capabilities of the classifiers when different combinations of training and test samples

are used. The cross validation helps to assess the CNN performance in a more unbiased

way than solely training and testing the CNN with a single fold.

The CNNs are trained by minimizing the cost functions, where (4) is used for the390

CNN-FCN and (5) is used for the proposed CNN-Hough and CNN-Hough-SVM. The

CNN was trained when the validation error started to increase in order to avoid over-

training the CNN. Figure 7 shows the characteristic of the CNN-Hough-4000 of which

4000 epochs were pre-defined. The figure shows that the validation error started to

increase after 450 epochs. To avoid overfitting, the trained CNN-Hough-4000 was gen-395

erated in this epoch number. After the classifier was trained, its generalization capability

was evaluated based on the test dataset of which no sample is duplicate to the training

dataset. The training and test errors indicate the incorrect rates of the training and

test dataset respectively. They indicate the fitting and generalization capabilities of the

classifiers respectively.400

Fig. 9 and 10 show the training and test errors for the CNNs when 400 and 4000

epochs were used respectively. For 400 epochs, Fig. 9a shows that the three CNNs

namely CNN-FCN-400, CNN-Hough-400 and CNN-Hough-SVM-400, achieved smaller

training errors than those of the classical classifiers, LR, SVM and DT. Fig. 9b also shows

that the three CNNs achieved smaller test errors than the classical classifiers. Therefore405

the fitting and generalization capabilities of the CNNs are generally better than the

classical classifiers, although small number of epochs was used in the CNNs. Fig. 10a

and 10b show the training and test errors when 4000 epochs were used. The results of

classical classifiers, LR, SVM and DT are not shown in the two figures, as those results

are already shown in Fig. 9. Fig. 10a shows that the training errors of the proposed410
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Figure 7: Characteristics of training and validation

Figure 8: Correlations between image patterns

CNN-Hough-SVM-4000 and CNN-Hough-4000 are generally smaller than the classical

CNN-FNN-4000. Hence the fitting capabilities of the proposed methods are better than

the classical one.

For the test errors, it is difficult to distinguish the differences between the proposed

and the classical methods. Since cross validation is a stochastic operation, the training415
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samples, validation samples and test samples are randomly split from the whole set

of collected samples. Hence, in each split, the training samples, validation samples

and test samples are different for each validation. When ones attempt to compare the

performances of two methods, ones would analyze the average training and test errors

obtained in all validations. Also ones would calculate the variances for the errors for420

all validations. Based on the means and the variances, the t-test can be used in order

to determine the confident level of how the proposed method outperforms the tested

method. Tables II and III show the means, variances, improvement and t-tests. The

second rows show that the proposed CNN-Hough-4000 and CNN-Hough-SVM-4000

achieved smallest means and variances for both training and test errors, comparing to425

the commonly used classifiers, LR, SVM and DT. Also the results of CNN-Hough-400

and CNN-Hough-SVM-400 with smaller epochs are shown. These results demonstrate

that larger epochs are necessary since smaller training and test errors can be achieved.

To further demonstrate the performance of the proposed CNN-Hough-4000 and CNN-

Hough-SVM-4000, the percentages of relative improvements are shown. For the training430

errors, the third and the fourth rows show that more than 80% improvements can be

achieved by the proposed CNN-Hough-4000 and CNN-Hough-SVM-4000, compare to

the tested classifiers. For the test errors, more than 40% of improvement can generally

be achieved.

The last two rows of Tables II and III show that the t-values between the proposed435

CNN-Hough-4000 and CNN-Hough-SVM-4000 to the other tested methods. Based on

the t-distribution table, if the t-value is higher than 2.01, the misclassification rates

obtained by the proposed CNN-Hough-4000 and CNN-Hough-SVM-4000 are signifi-

cantly smaller than those of the other tested methods at a 97.5% confidence level. The

results show that the t-values of the proposed CNN-Hough-4000 and CNN-Hough-440

SVM-4000 are higher than 2.24. Hence, the proposed methods are able to obtain better

classification rate than the tested methods with a 97.5% confident level. In Tables II and

III, the comparison is indicated by the improvements and t-values, and the comparison

is corresponded between the proposed method to the other methods. Since we cannot

compare the performance of the proposed method to its own, ‘Nil’ is put on the tables.445

Despite the classification rates, the three performance metrics namely precision, recall,

F-measure, type-I error and type-II error are also used to further validate the generaliza-
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tion capability of the proposed CNN methods. Precision indicates the rate that the bond

ball samples are correctly predicted to the total bond ball samples are predicted. Recall

indicates the rate that the bond ball samples are correctly predicted to the total bond450

band samples exist in the dataset. F-Measure indicates a score that evaluates whether

the precision and recall are balance. F-Measure is approximately the average of precision

and recall when both are close. F-Measure is formulated as (11)

F-Measure = 2 · (precision) · (recall)
(precision) + (recall)

(11)

The type I error (i.e. the false positive) is the rejection of a true null hypothesis of

which at least a bond ball exists but no detection is predicted. The type II error (i.e.455

the false negative) is the non-rejection of a false null hypothesis of which no bond ball

exists but detection is predicted.

The results obtained by CNN-Hough-4000 and CNN-Hough-SVM-4000 are shown,

since both of the proposed CNN methods outperform the other tested methods in term

of the classification rates. The precision, recall, F-measure, type-I error and type-II error460

are shown in the first, second, third fourth and fifth main rows of Table IV respectively.

For each metric, the means and variances obtained by each method are also shown.

These results show that the proposed CNN-Hough-4000 and CNN-Hough-SVM-4000

are better than the CNN-FCN-4000 which is generally better than LR, SVM, DT and

BT. Also the t-tests were used to evaluate the significance of the hypothesis that the465

averaged metric value obtained by the proposed CNN-Hough-4000 and CNN-Hough-

SVM-4000 are better than that obtained by another method. If the t-values are higher

than 2.24 and 1.89, the metric values obtained by the proposed CNN approach are

significantly larger than those of another tested method at 97.5% and 94.1% confidence

levels. The t-values show that both the proposed CNN-Hough-SVM-4000 and CNN-470

Hough-4000 are able to obtain better metric values than the LR, SVM, DT and BT with

a 97.5% confident level. Also both the proposed CNN-Hough-SVM-4000 and CNN-

Hough-4000 obtained significantly better metric values than the CNN-FCN-4000 with

97.5% and 94.1% confidence levels respectively. These results further demonstrate the

generalization capability of the proposed CNN methods.475
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Although the CNNs can generate more accurate detections compared to the classical

classification methods including the LR, SVM, DT and BT, a large number of param-

eters are required in the CNNs. A large memory space is required to implement the

CNNs. Table V shows the numbers of parameters required on the CNN-Hough-4000

and CNN-Hough-SVM-4000 of which the network configurations can be referred to480

Table I. The numbers of parameters of LR and SVM are also shown. The table shows

that the numbers parameters required by the CNN-Hough-4000 is much larger than

that of CNN-Hough-SVM-4000 which is larger than those required by the LR and SVM.

Therefore, this is a trade-off to select the classification methods. When ones attempt to

have more accurate detections, CNN-Hough-4000 is used; when the memory space is485

concerned, CNN-Hough-SVM-4000 are used. When the ensemble scheme [31] is used,

the fully connected network based CNN is parallelly connected with the SVM. The total

number of parameters is the parameters of the fully connected network based CNN and

those of the SVM; the total number of parameters is much larger than the one in the

CNN-Hough-SVM-4000. This is another reason that the CNN is modified by replacing490

the fully connected network with the SVM rather than parallelly connecting the fully

connected network based CNN with the fully connected network and the SVM as in

the ensemble scheme.

C. Analytical discussion and human judgement

This section discusses why the proposed CNNs are able to obtain better classifications495

and the proposed detection framework is able to achieve more robust detection. This

section also discusses how we set the parameters to tradeoff the performance.

The classification results show that the three CNNs, CNN-FCN, CNN-Hough and

CNN-Hough-SVM, are better than the three classical classifiers, LR, SVM, DT and

BT. Better results are achieved since the three CNNs uses the image features which500

are generated from the original image patterns by the pooling and convolution layers.

However, the three classical classifiers only use the CHT values as the image features.

These results indicates that solely using the CHT values is not enough since the CHT

values cannot fully cover all image features for classifications. CNNs can obtain higher

classification rates, since image features from the original image patterns are used.505
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(a) Training errors

(b) Test errors

Figure 9: Training and test errors for 400 epochs

Among the three CNNs, the proposed CNN-Hough and CNN-Hough-SVM are sig-

nificantly better than the classical CNN-FCN. The mechanism of the proposed CNNs

is similar to CNN-FCN except that different cost functions are used. The mean square

error (4) is used by the CNN-FCN and the proposed CNNs uses (5) which is engaged

with the penalty. Potentially wrong classifications are penalized in (5) when image510
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(a) Training errors

(b) Test errors

Figure 10: Training and test errors for 4000 epochs

patterns are similar but their classifications are different. Fig. 8 shows the correlations

for all collected 494 image patterns. Darkness indicates the correlations. Bonding ball

patterns with higher darkness are indexed from 1 to 384; no bonding patterns with

lower darkness are indexed from 385 to 494. Based on the correlations, penalties are

forced on the cost function when potentially wrong classifications are generated. This515
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explains why better generalization can be performed by the proposed CNNs.

For the two proposed CNNs, the configurations of CNN-Hough and CNN-Hough-

SVM are the same except the last layer. Fully connected neural network is used in

the CNN-Hough and SVM is used in the CNN-Hough-SVM. Based on the measured

execution time, the CNN-Hough requires 14.28 µs and the proposed CNN-Hough-520

SVM requires 68.02 ms. Hence, the CNN-Hough is more recommendable in real-time

implementation since the execution time is shorter. Tables III and IV show that, the CNN-

Hough-SVM can achieve better results in term of the classification performances than the

CNN-Hough. The trade-off between the execution time and classification performance

have to be decided which of the two proposed CNNs should be implemented.525

In the proposed detection framework in Fig. 4, “bond f actor” is generated by the

CNN to determine whether bonds exist. Bonds exist when “bond f actor > 0”; other-

wise, a bond does not exist. To ensure the determination is certain, the threshold check

is used. If “bond f actor > bond threshold” or “|bond f actor| > unbond threshold”,

the detection is certain. Both “bond threshold” and “unbond threshold” are defined530

based on (10), where γ adjusts the thresholds. Here γ is set as 0.8 such that 20% of

the training data above the hyperplane is considered to be certain. In the proposed

detection framework, our records show that 15 samples among all the 100 test samples

are uncertain. These 15 uncertain samples are detected based on the human judgement

and the other 85 samples are detected by the CNN. Hence, 85 detections are performed535

without human. When γ is set to high value, the thresholds are high and more samples

detected by the CNN are considered as uncertain. Although detection robustness of the

proposed framework is higher, more human judgements are required. Hence this is a

tradeoff to select γ.

V. Conclusion and future work540

In this paper, a framework involving machine learning and human judgements was

proposed for ball bonding detections. Machine learning integrated with CNN, SVM

and CHT, is used to detect in the front line; the detection can be finally outcome if

the detection uncertainty is above the threshold. Otherwise, human judgement is used

when the detection uncertainty is below the threshold; hence significant numbers of545
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human judgements can be saved, compared to the current manufacturing inspection

which is fully relied on human judgements.

To improve the classification rates, two strategies were proposed. First, a novel training

function was proposed in the CNN which is the backbone of the detection framework.

Unlike the classical CNNs which optimize the loss function involving only the classifi-550

cation rates, the proposed cost function was integrated with a penalty term which takes

into account similarities between image patterns. When similar features are inspected

by the CNN but different outcomes are generated, the CNN is penalized through the

training. The similarities are measured by the CHT features which are commonly used

for ball bonding inspections. Hence, more information is used to train the CNN. Second,555

the CNN configuration was redeveloped by integrating with the SVM. The last layer of

the proposed CNN is replaced with the SVM, since the SVM is more effective effective

for binary classifications when comparing to the fully connected neural network which

is originally used in CNNs.

To evaluate the performance of the proposed detection framework, image data was560

collected from ball bonding machines. We have compared the classification results ob-

tained by the proposed framework with the classical CNN and three commonly used

classifiers, SVM, logistic regression and decision tree. Experimental results showed that

the proposed framework was able to achieve significant better classification rates. Better

results can be explained by three reasons: 1) more image features were used in last565

layer of the proposed CNN backbone to perform classification; the commonly used

classifiers only use a few CHT features and some important image features are not

used. 2) the classical CNN only used the convolved images to perform classification

and the CHT features may not be included; the proposed framework used both the

images and CHT features to perform classifications. 3) a SVM with better generalization570

capabilities is used in the proposed framework; the classical CNN only uses the fully

connected networks which perform poorer in binary classification than the SVM used in

the proposed CNN backbone. Therefore, better classification results are achieved by the

proposed framework. Also the experimental results show that only the machine learning

determinations below the predefined threshold are necessary to be reassessed by human575

judgements when the proposed detection framework is used. Our experimental results

showed that 15 samples among all the 100 test samples were below the predefined



XXXXX 28

threshold. These 15 uncertain samples were required to be reassessed manually based

on the human judgement. Hence 85% of detections are automatically conducted by the

proposed framework580
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Table IV: Analysis of recalls, precisions and F-measures

Classification methods LR SVM DT BT CNN-
FCN-
4000

CNN-
Hough-
4000

CNN-
Hough-
SVM-
4000

Precision Mean 84.9892 87.4350 81.9035 83.2398 96.2823 97.3781 97.5992

Variance 6.1583 8.2817 6.5744 6.5794 6.0393 4.7213 4.3988

T values (to CNN-Hough-4000) 20.5724 15.1029 25.2187 23.0359 1.8296 Nil -0.4011

T values (to CNN-Hough-SVM-
4000)

21.2570 15.6339 25.9521 23.7373 2.2325 0.4011 Nil

Recall Mean 94.8035 95.4068 93.4495 94.1112 98.9039 99.3398 99.4504

Variance 0.7682 0.8374 0.8285 0.7793 0.8319 0.5783 0.4988

T values (to CNN-Hough-4000) 21.4118 18.1048 27.2004 24.5787 2.0103 Nil 0.5838

T values (to CNN-Hough-SVM-
4000)

22.6112 19.1594 28.5286 25.8670 2.5947 -0.5838 Nil

F-measure Mean 89.6285 91.2471 87.2964 88.3423 97.5755 98.3491 98.5161

Variance 1.3661 1.5211 1.4716 1.3936 1.4623 1.0303 0.8960

T values (to CNN-Hough-4000) 30.8553 24.3530 38.2726 35.2046 2.6839 Nil 0.6589

T values (to CNN-Hough-SVM-
4000)

32.3661 25.6087 39.9376 36.8269 3.3547 -0.6589 Nil

Type I er-
ror

Mean 15.0108 12.5650 18.0965 16.7602 3.7177 2.6219 2.4008

Variance 0.0616 0.0828 0.0657 0.0658 0.0604 0.0472 0.0440

T values (to CNN-Hough-4000) 205.7243 151.0295 252.1865 230.3589 18.2959 Nil -4.0105

T values (to CNN-Hough-SVM-
4000)

212.5698 156.3387 259.5209 237.3726 22.3251 4.0105 Nil

Type II er-
ror

Mean 14.4605 13.0644 17.7898 16.1531 3.3172 2.0135 1.6914

Variance 0.0701 0.0733 0.0652 0.0660 0.0757 0.0537 0.0473

T values (to CNN-Hough-4000) 193.7234 169.8336 250.5915 223.8344 19.8519 Nil -5.5501

T values (to CNN-Hough-SVM-
4000)

204.0570 179.3415 262.8502 235.2829 25.3895 5.5501 Nil
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Table V: Analysis of classification methods.

Classifiers Analysis Parameters

SVM • 5 weights due to 5 features
• 1 bias for the SVM model
• hence 6 parameters are required

6

Logistic
regression (LR)

• 5 weights due to 5 features
• 1 bias for the regression model
• hence 6 parameters are required

6

CNN-FCN-4000 • 4596=300+200+4096 = (parameters in the
first layer) + (parameters in the second
layer) + (parameters in the fully connected
network)

• parameters in the first layer = 300 (i.e. =
5 × 5 × 12), since the kernel size is 5 × 5
and the number of kernels is 12

• parameters in the second layer = 200 (i.e. =
5× 5× 8), since the kernel size is 5× 5 and
the number of kernels is 8.

• parameters in the fully connected network
= 4096 (i.e. = 16× 128× 2), since the num-
ber of input nodes is 16, the number of
hidden nodes is 128, and the number of
output nodes is 2.

4596

CNN-Hough-
4000 / CNN-
Hough-SVM-4000

• 506=300+200+17 = (parameters in the first
layer) + (parameters in the second layer) +
(parameters in the SVM)

• parameters in the first layer = 300 (i.e. =
5 × 5 × 12), since the kernel size is 5 × 5
and the number of kernels is 12

• parameters in the second layer = 200 (i.e. =
5× 5× 8), since the kernel size is 5× 5 and
the number of kernels is 8.

• parameters in the SVM = 17 (i.e. = 16+1),
since the number of inputs to the SVM is
16 and the SVM has one bias.
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